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I. INTRODUCTION

QUADRATIC programming (QP) solvers that join effectiveness
with a simple implementation are becoming essential in

the field of optimal control, specifically when dealing with
real-time applications with strict timing constraints and limited
computational resources. To address this need, we present a novel
high-performance QP solution method based on pseudo-transient
continuation (PTC). PTC is a numerical technique that transforms
multivariate nonlinear equations into autonomous systems that
converge to the solution sought. In our approach, we recast the
general QP Karush-Kuhn-Tucker (KKT) conditions into a system
of equations and employ PTC to solve the latter to attain the
optimal solution. Importantly, we provide theoretical guarantees
demonstrating the global convergence of our PTC-based solver to
the optimal solution of any given QP. To showcase the effective-
ness of PTC, we employ it within the domain of Model Predictive
Control (MPC). Specifically, numerical simulations are carried
out on the MPC control of a quadrotor – a demanding dynamical
system – highlighting excellent results in accurately executing the
control task and ensuring lower computational times compared to
conventional QP solvers.

II. PSEUDO-TRANSIENT CONTINUATION FOR
QUADRATIC PROGRAMMING

Consider a multivariate nonlinear equation in the form

𝐹(𝑥) = 0, 𝐹 ∶ R𝑛 → R𝑛, (1)

having a set of solutions 𝑆 = {𝑥 ∈ R𝑛 ∶ 𝐹 (𝑥) = 0}.
Pseudo-transient continuation (PTC) [1] seeks a functional
𝑓(𝐹(𝑥)) ∶ R𝑛 → R𝑛 such that the autonomous system

̇𝑥 = 𝑓(𝐹(𝑥)) (2)

has a set of equilibrium points 𝑆∗ ⊆ 𝑆 and converges (at least
locally) to one of such equilibria, i.e.,

𝑓(𝐹(𝑥(𝑡))) → 0, 𝑥(𝑡) → 𝑥∗ ∈ 𝑆∗ for 𝑡 → +∞. (3)

In this work, we leverage PTC to efficiently solve general convex
quadratic programs (QPs) in the following form:

min
𝑦

1
2𝑦⊤𝐻𝑦 + 𝑐⊤𝑦 s.t. 𝐶𝑦 = 𝑝, 𝐷𝑦 ≤ 𝑞, (4)

where 𝑦 ∈ R𝑛 is the vector of decision variables; 𝐻 ∈ R𝑛×𝑛,
𝐻 = 𝐻⊤ ≻ 0; 𝐶 ∈ R𝑁𝐸×𝑛 and 𝑝 ∈ R𝑁𝐸 represent the 𝑁𝐸
equality constraints, 𝐶 has full row rank; 𝐷 ∈ R𝑁𝐼×𝑛 and 𝑞 ∈
R𝑁𝐼 represent the 𝑁𝐼 inequality constraints. Since the cost and
the inequality constraints of (4) are convex functions, it admits a
unique global minimum 𝑦∗. PTC allows to solve (4) for its global
optimum with high computational performance. In this perspective,
two fundamental steps have to be performed:
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1. by manipulating the Karush-Kuhn-Tucker (KKT) conditions as-
sociated with (4), recast them as a system of equations like (1),
having as unique solution the global optimum of (4);

2. derive sufficient conditions characterizing 𝐹 such that, for given
functionals 𝑓 , the global asymptotic convergence of (2) to its
unique equilibrium is guaranteed.

These two steps are assessed in Sections II-A and II-B, respectively.

A. Conversion of QP KKT Conditions into a System of Equations
Let us consider the Lagrangian of (4), i.e.,

ℒ(𝑦, 𝜇, 𝜆) = 1
2𝑦⊤𝐻𝑦 + 𝑐⊤𝑦 − 𝜇⊤(𝐶𝑦 − 𝑝) − 𝜆⊤(𝐷𝑦 − 𝑞), (5)

where 𝜇 ∈ R𝑁𝐸 and 𝜆 ∈ R𝑁𝐼 are the Lagrange multipliers. If a
triple (𝑦∗, 𝜇∗, 𝜆∗) satisfies the KKT conditions, i.e.,

∇𝑦ℒ(𝑦, 𝜇, 𝜆) = 𝐻𝑦 + 𝑐 − 𝐶⊤𝜇 − 𝐷⊤𝜆 = 0, 𝐶𝑦 = 𝑝, (6a)
𝐷𝑦 ≤ 𝑞, 𝜆 ≤ 0, 𝜆⊤(𝐷𝑦 − 𝑞) = 0, (6b)

then 𝑦∗ is also the global minimum of (4). According to [2], condi-
tions (6b) can be equivalently rewritten as

(𝐷)𝑖,⋅ 𝑦 = 𝑞𝑖 if 𝜆𝑖 ≤ 0, (𝐷)𝑖,⋅ 𝑦 < 𝑞𝑖 if 𝜆𝑖 = 0, (7)

where (𝐷)𝑖,⋅ denotes the 𝑖-th row of 𝐷. (7) is also equivalent to the
following system of piecewise affine equations [2]:

𝐷𝑦 = 𝜙[−∞,𝑞](𝐷𝑦 − 𝛼𝜆), (8)

where 𝛼 ∈ R>0 and 𝜙[𝑎,𝑏](𝑧) denotes the asymmetric saturation of
the vector 𝑧 ∈ R𝑁𝐼 by [𝑎, 𝑏], whose expression is

𝜙[𝑎,𝑏](𝑧) ≡ [𝜙[𝑎𝑖,𝑏𝑖](𝑧𝑖)]
𝑁𝐼
𝑖=1, 𝜙[𝑎𝑖,𝑏𝑖](𝑧𝑖) =

⎧{
⎨{⎩

𝑎𝑖 if 𝑧𝑖 < 𝑎𝑖,
𝑧𝑖 if 𝑎𝑖 ≤ 𝑧𝑖 ≤ 𝑏𝑖,
𝑏𝑖 if 𝑧𝑖 > 𝑏𝑖.

(9)
Hereafter, for notation clarity, we denote 𝜙[−∞,𝑞] as 𝜙.

The KKT conditions (6) can be then rewritten as a system of
equations as follows:

𝐻𝑦 + 𝑐 − 𝐶⊤𝜇 − 𝐷⊤𝜆 = 0, 𝐶𝑦 − 𝑝 = 0, (10a)
𝐷𝑦 − 𝜙(𝐷𝑦 − 𝛼𝜆) = 0. (10b)

The system of equations (10) can be simplified as

𝑦 = 𝐺′𝐷⊤𝜆 + ℎ′, (11a)
𝜇 = (𝐶𝐻−1𝐶⊤)−1(𝑝 − 𝐶𝐻−1(𝐷⊤𝜆 − 𝑐)), (11b)
𝐺𝜆 + ℎ − 𝜙((𝐺 − 𝛼𝐼)𝜆 + ℎ) = 0, (11c)

where

𝐺′ = 𝐻−1 − 𝐻−1𝐶⊤(𝐶𝐻−1𝐶⊤)−1𝐶𝐻−1,
ℎ′ = 𝐻−1(𝐶⊤(𝐶𝐻−1𝐶⊤)−1(𝐶𝐻−1𝑐 + 𝑝) − 𝑐),
𝐺 = 𝐷𝐺′𝐷⊤, ℎ = 𝐷ℎ′. (12)

Only (11c) has to be solved for 𝜆, since 𝑦 and 𝜇 are function of 𝜆
only. Also, since (11) admits a unique solution (𝑦∗, 𝜇∗, 𝜆∗), then
𝜆∗ is the unique solution of (11c).

B. Global Convergence of PTC for QPs Solution
To prove that any QP problem (4), when rewritten as a system of
equations (11), can be effectively solved through PTC and exhibits
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Figure 1. MPC quadrotor control:
comparison of PTC closed-loop tra-
jectory with the globally optimal one.
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Figure 2. Primal and dual residuals on the
MPC solution obtained by each solver.
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Figure 3. Execution time of each MPC
control step, with detail of the range
[0, 5] ms.

Solver Exec. time Iterations
Max Mean Max Mean

PTC 4.19 0.85 20 3
quadprog 98.04 45.02 90 7
Gurobi 14.23 10.96 24 16
MOSEK 43.20 20.17 49 24
OSQP 53.64 6.17 2875 329
qpSWIFT 6.33 4.73 18 14
DAQP 8.74 1.43 23 3
PIQP 4.98 4.28 13 11
QPALM 13.29 6.82 49 28

Table 1. Execution time (in ms) and itera-
tions (single MPC control step).

global convergence to its optimum, we introduce Theorem 1, re-
porting a sufficient condition for the PTC autonomous system (2)
to be globally asymptotically stable in the sense of Lyapunov.

Theorem 1. Assume that: i) the multivariate nonlinear equation
(1), i.e., 𝐹(𝑥) = 0, has a unique solution 𝑥∗; ii) there exists a
symmetric and positive definite matrix 𝑀 ∈ R𝑛×𝑛 such that

(𝑥 − 𝑥∗)⊤𝑀𝐹(𝑥) > 0, ∀𝑥 ≠ 𝑥∗. (13)

Then, the system
̇𝑥 = −𝛽𝐹(𝑥), 𝛽 ∈ R>0 (14)

has a unique equilibrium point in 𝑥∗ and such equilibrium is glob-
ally asymptotically stable (GAS).

Proof. We refer the reader to the full paper [3].

We then show, in Proposition 1, that the KKT system of equa-
tions (11) satisfies Theorem 1 and, thus, can be solved via PTC.

Proposition 1. Let us consider (11c) and denote it as 𝐹(𝜆) = 0.
Then, the system

�̇� = −𝛽𝐹(𝜆), 𝛽 ∈ R>0 (15)

has a unique equilibrium point 𝜆∗, coinciding with the solution of
(11c), and such equilibrium is GAS.

Proof. We refer the reader to the full paper [3].

III. APPLICATION OF PTC TO MODEL PREDICTIVE CONTROL

To assess the performance of PTC, we consider the following Model
Predictive Control (MPC) problem:

min
�̂�⋅|𝑘,�̂�⋅|𝑘

𝐽𝑘(�̂�⋅|𝑘, ̂𝑥⋅|𝑘)

s.t. 𝑖 = 0, 1, … , 𝑁𝑝 − 1,
̂𝑥0|𝑘 = 𝑥𝑘, ̂𝑥𝑖+1|𝑘 = 𝐴𝑘 ̂𝑥𝑖|𝑘 + 𝐵𝑘�̂�𝑖|𝑘 + 𝑏𝑘, (16a)

𝑢 ≤ �̂�𝑖|𝑘 ≤ 𝑢, 𝑥 ≤ ̂𝑥𝑖|𝑘 ≤ 𝑥, (16b)

𝐽𝑘(�̂�⋅|𝑘, ̂𝑥⋅|𝑘) =
𝑁𝑝−1

∑
𝑖=0

(‖ ̂𝑥𝑖|𝑘 − 𝑥𝑟,𝑘+𝑖‖2
𝑄 + ‖�̂�𝑖|𝑘‖2

𝑅) +
𝑁𝑝−1

∑
𝑖=1

(‖�̂�𝑖|𝑘 − �̂�𝑖−1|𝑘‖2
𝑅Δ

) + ‖ ̂𝑥𝑁𝑝|𝑘 − 𝑥𝑟,𝑘+𝑁𝑝
‖2

𝑃 , (16c)

where �̂�𝑖|𝑘 ∈ R𝑛𝑢 , ̂𝑥𝑖|𝑘 ∈ R𝑛𝑥 are the inputs and states predicted 𝑖
steps ahead at time 𝑘, respectively; 𝑥𝑟 is the state reference trajec-
tory; (16c) is the MPC cost function (‖𝑥‖2

𝑀 ≡ 1
2 𝑥⊤𝑀𝑥); (16a) are

the prediction model constraints; (16b) are inputs and states con-
straints. The MPC optimal control problem (16) can be rewritten
to match the QP formulation (4); thus, it can be fast solved for its
global optimum by PTC with global convergence guarantees, in
view of the results presented in Section II.

As nonlinear plant to control, we select the Euler-Lagrange
quadrotor model in [4]. The control task is to track a lemniscate
reference trajectory, partially crossing an infeasible region of
space (see Figure 1). To deploy the linear MPC (16) to control the
nonlinear continuous-time plant, we adopt the sequential quadratic
programming (SQP) approach with real-time iteration (RTI) to
discretize and linearize the plant.

IV. SIMULATIONS AND RESULTS

PTC is compared with the following conventional QP solvers: the
active-set solvers quadprog and DAQP; the interior-point solvers
Gurobi, MOSEK, qpSWIFT, and PIQP; the operator splitting solver
OSQP; the augmented Lagrangian solver QPALM.

Simulations are performed with MATLAB® 2023b on a 13th Gen
Intel® Core™ i7 CPU at 1.7 GHz. The full source code is avail-
able online1. The PTC autonomous system (15) is numerically in-
tegrated using the explicit Runge-Kutta 2(3) method.

Figure 1 reports the quadrotor closed-loop trajectory, obtained by
solving the MPC problem (16) with PTC. This trajectory is rather
coincident with the globally optimal one (estimated with Gurobi by
setting very low optimality tolerances).

To further assess the goodness of the obtained MPC solutions,
Figure 2 reports the primal and dual residuals at each time instant
and for every solver. We see that PTC consistently achieves low
residuals that stay below the thresholds defined by the optimality
criteria. On the contrary, some of the other solvers fail to deliver
an acceptable dual residual.

Finally, Figure 3 compares, for each solver, the execution time
of each MPC control step, reporting both the actual time values
(solid lines) and Monte Carlo envelopes (scatter plots), obtained by
randomly selecting 50 initial states 𝑥0 from the feasible set [𝑥, 𝑥].
Results are summarized in Table 1, including the number of itera-
tions required by each solver. We observe that PTC outperforms all
other solvers in terms of both maximum and average computational
time.
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