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The adoption of high-fidelity models for many-query optimization problems is majorly limited by the significant 
computational cost required for their evaluation at every query. Multifidelity Bayesian methods (MFBO) allow 
to include costly high-fidelity responses for a sub-selection of queries only, and use fast lower-fidelity models 
to accelerate the optimization process. State-of-the-art methods rely on a purely data-driven search and do not 
include explicit information about the physical context. This paper acknowledges that prior knowledge about 
the physical domains of engineering problems can be leveraged to accelerate these data-driven searches, and 
proposes a generalized formulation for MFBO to embed a form of domain awareness during the optimization 
procedure. In particular, we formalize a bias as a multifidelity acquisition function that captures the physical 
structure of the domain. This permits to partially alleviate the data-driven search from learning the domain 
properties on-the-fly, and sensitively enhances the management of multiple sources of information. The 
method allows to efficiently include high-fidelity simulations to guide the optimization search while containing 
the overall computational expense. Our physics-aware multifidelity Bayesian optimization is presented and 
illustrated for two classes of optimization problems frequently met in science and engineering, namely design 
optimization and health monitoring problems.
1. Introduction

Optimization problems are ubiquitous in science and engineering 
applications [1]. Those also include the support to engineering tasks 
that are in increasing demand to meet sustainability goals such as the 
identification of the best design configurations to maximize the perfor-

mance and minimize the environmental impact of novel engineering 
solutions, and the detection and identification of damages or faults to 
monitor the health condition of complex systems to maximize their use-

ful life and minimize waste of resources.

Over the last decades, the increase of computing power and 
the advances in computational modeling capabilities made available 
computer-based models for the accurate analysis and simulation of com-

plex physical systems. This is the case of computational schemes for the 
numerical solution of governing partial differential equations as com-

putational fluid dynamic solvers to represent viscous fluids, and finite 
element methods for the analysis of mechanical structures, heath trans-

fer and electromagnetic phenomena. In principle, this computer-based 
representations can provide a remarkable contribution to enhance the 
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search and identification task in simulation-based optimization. Unfor-

tunately, the extensive adoption of these high-fidelity models during 
the optimization procedure is hampered by the significant computa-

tional cost and time required for their evaluation, potentially in the 
order of months for a single evaluation on high performance comput-

ing platforms. This issue becomes more challenging for many-query 
optimization problems where the demand for model evaluations grows 
exponentially with the number of parameters to optimize.

The use of low-fidelity models constitutes a popular approach to 
reduce the computational resources associated with the solution of opti-

mization problems. Low-fidelity representations introduce assumptions 
about the physics and/or approximate the solution of the governing 
equations, and relief the computational expenditure for the evaluation 
of the response of the system. On one hand, the use of low-fidelity 
models allows to efficiently acquire and exploit a massive amount of 
information; on the other hand, their adoption results in a reduction 
of the overall time required for optimization. However, the main draw-

back of this strategy is enclosed in the simplified modeling approach 
which might not be adequate to capture complex physical phenomena 
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that characterize many advanced technological applications, providing 
inaccurate responses that potentially lead to the suboptimal identifica-

tion of solutions.

Multifidelity methods offer the opportunity to efficiently include 
high-fidelity models during the optimization procedure, combining in-

formation elicited from a library of models hierarchically ordered ac-

cordingly to the accuracy of the response and associated expense of 
the computations [2–5]. These methodologies use fast low-fidelity mod-

els to speedup the search procedure, and refine the solution identified 
through of a principled selection of high-fidelity information. The goal 
is to accelerate the identification of optimal solutions while managing a 
trade-off between accuracy and computational cost. Multifidelity frame-

works have been applied to solve a variety of optimization problems. 
Examples include and are not limited to the design optimization of air-

craft [6], vessels [7], and hybrid vehicle [8], and health assessment of 
civil structures [9], composite wings [10] and industrial systems [9].

Multifidelity Bayesian Optimization (MFBO) represents a class of 
computational techniques that relies on a Bayesian framework to ad-

dress optimization problems, and combines data from sources of infor-

mation at different levels of fidelity [11–13]. The Bayesian methodology 
defines a scheme for the optimization of black-box functions where a 
probabilistic surrogate model is updated at each iteration using eval-

uations of models prescribed by an acquisition function [14–16]. The 
surrogate model provides an approximation of the objective function 
over the domain while the acquisition function determines a policy to 
measure the utility of evaluating the objective function in certain loca-

tions of the domain. Whether a library of models is available, multifi-

delity Bayesian optimization synthesizes data elicited through multiple 
sources of information into a unique surrogate model, and guides the 
search through an adaptive sampling scheme based on a multifidelity 
acquisition function that selects the most promising location and the 
associated level of fidelity to query.

MFBO has been widely adopted to solve optimization problems in 
science and engineering. Meliani et al. [17] propose a multifidelity 
Bayesian technique for high-dimensional design optimization problems, 
and demonstrate the methodology for the aerodynamic shape optimiza-

tion of an airfoil outperforming a standard single-fidelity Bayesian al-

gorithm. Tran et al. [18] develop a multifidelity Bayesian framework 
for the inference of the optimal chemical composition in material sci-

ence, dedicating particular attention to the identification of the optimal 
concentration of components achieving the desired bulk modulus for 
ternary random alloys. Serani et al. [19] propose a multifidelity ap-

proach based on stochastic radial basis functions to include expensive 
computational fluid dynamic simulations in global design optimization, 
and demonstrate the methodology for the optimization of a NACA hy-

drofoil and a destroyer-type vessel for naval engineering applications. 
Perdikaris and Karniadakis [20] adopt a multifidelity Bayesian strategy 
to solve inverse problems in haemodynamics through the identification 
of system parameters that characterize physiologically correct blood 
flow simulations.

All these multifidelity frameworks rely on fully data-driven adaptive 
samplings informed exclusively through probabilistic data extracted 
from the surrogate model. Accordingly, the search procedure has to 
learn entirely from data both the surrogate model and the charac-

terization of the discrepancies – frequently non-linear – between the 
different models over the entire physical domain. This can still require 
a large amount of high-fidelity information to capture the modeling 
correlations for each level of fidelity available, and results in inten-

sive computations associated with the massive evaluations of accurate 
numerical models. In the engineering context, prior knowledge about 
these discrepancies is at disposal, either because it is formalized by 
the governing equations that represent the physics of the system or be-

cause it derives from the know-how of experts about the distinguishing 
physical phenomena characterizing the system behavior. In these op-

timization scenarios, the introduction of the physics-awareness during 
2

the search procedure could lead to a principled and efficient use of high-
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fidelity data according to the prior knowledge about the physics of the 
system.

This paper aims at capturing this opportunity and proposes an origi-

nal physics-aware multifidelity Bayesian optimization that incorporates 
prior domain knowledge to further improve and accelerate the opti-

mization search in multifidelity settings. This permits to partially al-

leviate the data-driven search from the characterization of the domain 
structure while trying to identify the optimal combination of parameters 
that minimizes the objective function. In previous works, we introduced 
preliminary approaches to capture this prior/expert knowledge in the 
form of domain-awareness [21,22].

This work proposes a formal generalization of this sort of physics-

aware reasoning for a broader relevance and direct applicability to 
multiple classes of optimization problems in science and engineering. 
The proposed framework adopts the multifidelity Gaussian process re-

gression to model the belief about the objective function over the entire 
domain, which is progressively updated through an original acquisi-

tion function based on the multifidelity expected improvement. The 
multifidelity acquisition function is distinctively shaped to combine (i) 
data-driven information extracted from the surrogate model and (ii) 
prior/expert knowledge about the structure of the domain encapsulated 
during the search through a physics-aware utility function. This form 
of awareness allows to define an adaptive sampling scheme that effi-

ciently manages different sources of information, targeting the balance 
between computational cost and accuracy demanded along the opti-

mization search.

We demonstrate our physics-aware multifidelity framework for two 
popular families of optimization problems, namely the identification of 
the best combination of design parameters to maximize systems per-

formance, and the non-destructive identification of systems damages 
or faults. In the first case, we consider the specific example of the 
aerodynamic design optimization of a transonic airfoil and the prior 
domain knowledge concerns the sensitivity of the fluid dynamic regime 
to the variation of the Mach number. The health monitoring problem 
demands for the assessment of the fault condition of a composite struc-

ture, and the prior domain knowledge relates to the effects that can be 
observed for different extensions of the damage. The two forms of sci-

entific and expert domain knowledge are formulated as physics-aware 
utility functions that bias the query of numerical models depending on 
the structure of the domain.

This article is organized as follows: Section 2 describes the multi-

fidelity Bayesian scheme and Section 3 presents our original physics-

aware multifidelity Bayesian framework in detail. In Section 4 and 
Section 5, the proposed methodology is applied for an aerodynamic de-

sign problem and a structural health monitoring test case, respectively, 
and the formalization of our physics-aware technique together with the 
results are discussed. Finally, Section 6 provides concluding remarks.

2. Multifidelity Bayesian optimization: problem setup

The goal of optimization problems is to identify a combination of 
parameters x∗ that minimizes an unknown objective function 𝑓 (x), and 
is mathematically described as:

x∗ = argmin
x∈

𝑓 (x) (1)

where  ∈ ℝ𝑑 is the domain of the objective function. Frequently in 
these settings, the objective function is a black-box input/output rela-

tionship whose analytical form and derivatives are not explicitly avail-

able.

Bayesian optimization (BO) is a popular surrogate-based method 
that uses the Bayesian probability theory to address the optimiza-

tion of black-box objective functions [14–16]. BO realizes a sequential 
derivative-free optimization procedure based on two core elements: a 
stochastic surrogate model that approximates the response of numeri-
cal models and emulates the distribution of the objective function over 
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Algorithm 1 Multifidelity Bayesian optimization.

Input: Design space  ∈ ℝ𝑑 , multifidelity objective function 𝑓 (𝑙)(x) and the 
prior distribution 𝑃 (𝑓 (𝑙))

Output: x∗ = argminx∈ 𝑓 (x)
1: 1 ← {x𝑛, 𝑓 (𝑙𝑛), 𝑙𝑛}

𝑁1
𝑛=1 collect initial observations

2: 𝑖 ← 1
3: repeat

4: Update the posterior distribution 𝑃 (𝑓 (𝑙)|𝑖) using 𝑖

5: Maximize the acquisition function {x𝑖+1, 𝑙𝑖+1} =max𝑈 (x, 𝑙)
6: Evaluate 𝑓 (𝑙𝑖+1)(x𝑖+1)
7: Augment the dataset 𝑖+1 =𝑖 ∪ {x𝑖+1, 𝑓 (𝑙𝑖+1)(x𝑖+1), 𝑙𝑖+1}
8: 𝑖 + 1 ← 𝑖

9: until 𝐵𝑖 ≤𝐵𝑚𝑎𝑥

10: return x∗ that minimize 𝑓 (x) over 𝑖

the domain, and an acquisition function that determines the optimal se-

quence of future samples to be evaluated. The overall computational ef-

ficiency of BO can be improved combining data from multiple sources of 
information at different levels of fidelity {𝑓 (1), ..., 𝑓 (𝑙), ..., 𝑓 (𝐿)}: usually 
in this set the higher the level of fidelity, the more accurate and yet ex-

pensive its evaluation. In multifidelity Bayesian optimization, both the 
stochastic emulator and the acquisition function must accommodate the 
multiple sources available to compute (approximated) observations of 
the objective function. In particular, the surrogate model approximates 
the objective function by synthesizing the information from multiple fi-

delities into a unique emulator. Commonly, the predictive framework 
for MFBO is based on the extension of Gaussian processes surrogate 
models to multiple levels of fidelity through an autoregressive scheme 
[23–25].

The multifidelity acquisition function defines an adaptive sampling 
scheme that permits to sequentially decide the best location of the 
domain and associated source of information to query. This decision 
making procedure is typically driven entirely by the statistical data 
in output from the surrogate model. The multitude of multifidelity 
acquisition functions proposed in literature are often developed lever-

aging existing acquisition functions adopted in single-fidelity Bayesian 
optimization, such as the Expected Improvement (EI) [26], Probabil-

ity of Improvement (PI) [27] and Entropy Search (ES) [28]. Examples 
of popular multifidelity acquisition functions include the Multifidelity 
Expected Improvement (MFEI) [29], Variable-Fidelity Probability of 
Improvement (VFPI) [30], Multifidelity Predictive Entropy Search (MF-

PES) [31], and Multifidelity Max-Value Entropy Search (MFMES) [32]. 
The primary difference between these formulations is that the decision 
making process is realized through different approaches to measure 
the reward of unknown samples. The goal is to achieve the trade-

off between the exploration of the domain  in locations where the 
uncertainty associated with the surrogate model is higher, and the ex-

ploitation in regions where the prediction of the emulator indicates that 
the optimum is likely to be located.

Algorithm 1 illustrates the pseudo-code of the multifidelity Bayesian 
optimization methodology. MFBO consists of a sequential approach to 
solve the optimization problem in Equation (1), starting with an ini-

tial dataset 1 = {x𝑛, 𝑓 (𝑙𝑛)(x𝑛), 𝑙𝑛}
𝑁1
𝑛=1 of samples and associated values 

of the objective function evaluated with the 𝑙𝑛 level of fidelity. At each 
iteration 𝑖 of the optimization procedure, the collected dataset is used 
to build the multifidelity surrogate model combining the prior distri-

bution 𝑃 (𝑓 (𝑙)) with the likelihood function 𝑃 (𝑖|𝑓 (𝑙)) to compute the 
posterior distribution 𝑃 (𝑓 (𝑙)|𝑖) ∝ 𝑃 (𝑖|𝑓 (𝑙))𝑃 (𝑓 (𝑙)), which represents 
the updated emulator of the objective function for each level of fi-

delity. Then, MFBO induces a multifidelity acquisition function 𝑈 (x, 𝑙)
based on the posterior that measures the utility of probing domain lo-

cations with certain levels of fidelity: the next design x𝑖+1 and level of 
fidelity 𝑙𝑖+1 to query are selected by maximizing the acquisition function 
{x𝑖+1, 𝑙𝑖+1} = argmax𝑈 (x, 𝑙) over the domain  . After the new obser-

vation is collected, the dataset 𝑖+1 = 𝑖 ∪ {x𝑖+1, 𝑓 (𝑙𝑖+1)(x𝑖+1), 𝑙𝑖+1} is 
3

updated and the procedure iterates until a maximum computational 
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budget 𝐵𝑖 =𝐵𝑚𝑎𝑥 is reached, where 𝐵𝑖 is the cumulative computational 
cost expended until iteration 𝑖.

3. Physics-aware multifidelity Bayesian optimization

The Physics-Aware Multifidelity Bayesian Optimization (PA-MFBO) 
framework permits to accelerate the optimization procedure alleviating 
the burden of learning the characterization of the domain structure en-

tirely from data. In particular, PA-MFBO embeds the available prior 
scientific and expert knowledge about the structure of the physical 
domain during the search procedure. This formalizes a sort of physics-

aware reasoning based on an original formulation of the multifidelity 
acquisition function (Section 3.2) that biases the query of numerical 
models according to the specific structures of the domain, while still 
informed with data from the multifidelity emulator (Section 3.1).

3.1. Multifidelity Gaussian process

Our PA-MFBO framework employs the multifidelity Gaussian pro-

cess as the emulator of the objective function, which is formalized 
extending the Gaussian process to multiple levels of fidelity through 
an autoregressive scheme.

The Gaussian process (GP) is a non-parametric kernel-based sta-

tistical model that permits to effectively approximate the black-box 
relationship between locations of the domain x and the associated val-

ues of the objective 𝑓 (x) [23,24]. Accordingly, the Gaussian process 
regression builds an emulator of the objective function using the knowl-

edge of observations of 𝑓 (x) collected in specific locations, and defines 
a distribution over functions completely specified by the mean func-

tion 𝜇(x) ∶  → ℝ and covariance function 𝜅(x, x′) ∶  ×  → ℝ. The 
mean function 𝜇(x) = 𝔼 [𝑓 (x)] reflects the expected value of the ob-

jective at a certain location x and the covariance or kernel function 
𝜅(x, x′) = 𝔼 

[
(𝑓 (x) − 𝜇(x))(𝑓 (x′) − 𝜇(x′))

]
represents the dependence 

between the values of the objective function at different locations x

and x′. This constitutes a predictive framework where the predictor in 
the form of the mean function approximates the objective function over 
unknown regions of the domain, and the covariance function quantifies 
the uncertainty associated with this prediction.

The availability of multiple representations of the objective func-

tion {𝑓 (𝑙)}𝑙=𝐿
𝑙=1 demands for an emulator capable to approximate the 

distribution of the objective function and synthesize observations from 
different sources of information. In this scenario, the Gaussian process 
regression can be extended to combine the models of the objective func-

tion at different levels of fidelity into a single predictive framework. 
Let us assume we have collected paired input/output observations of 
the objective function in the form 𝑁 = {x𝑛, 𝑦(𝑙𝑛)(x𝑛), 𝑙𝑛}𝑁𝑛=1, where the 
output y = {𝑦(𝑙𝑛)(x𝑛)}𝑁𝑛=1 is normally distributed given f = {𝑓 (𝑙𝑛)

𝑛 }𝑁
𝑛=1:

y | f , 𝜎2
𝜖
∼ (f , 𝜎2

𝜖
I) (2)

where the measurement noise is characterized by the same variance 𝜎2
𝜖

over the available levels of fidelity.

Following the Bayesian inference principle, the prior belief about 
the objective function 𝑃 (𝑓 (𝑙)) is combined with the likelihood func-

tion 𝑃 (𝑁 | 𝑓 (𝑙)) to compute the posterior distribution 𝑃 (𝑓 (𝑙) | 𝑁 ) ∝
𝑃 (𝑁 | 𝑓 (𝑙))𝑃 (𝑓 (𝑙)). This represents the updated probabilistic model 
of the objective function at a certain level of fidelity 𝑙. In the black-

box setting, the multifidelity Gaussian process regression considers no 
prior information about the multiple representations of the objective 
function. Hence, the lowest-fidelity prior 𝑓 (1) ∼𝐺𝑃 (0, 𝜅1

(
x,x′)) is rep-

resented as a Gaussian process with zero mean function 𝜇(𝑙) = 0 and 
covariance function 𝜅1

(
x,x′) while the higher levels of fidelity are de-

rived recursively through an autoregressive scheme [25]:
𝑓 (𝑙) = 𝜚(𝑙−1)𝑓 (𝑙−1) (x) + 𝛿(𝑙) (x) 𝑙 = 2, ...,𝐿 (3)
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where 𝜚(𝑙−1) is a constant scaling factor that tunes successive levels of 
fidelity 𝑓 (𝑙) and 𝑓 (𝑙−1), and 𝛿(𝑙) is the discrepancy between two adjoin-

ing levels of fidelity modeled as a Gaussian process with mean function 
𝜐(x)𝑇 𝛽(𝑙) and covariance function 𝜅(𝑙) (x,x′) where 𝜐 is the vector of re-

gression functions and 𝛽(𝑙) are the regression coefficients. In this work, 
we adopt the Gaussian correlation model as the covariance function:

𝜅(x,x′) = 𝜍2
𝑙
exp{−

𝑀∑
𝑚=1

𝜛𝑚
𝑙
(x𝑚 − x′

𝑚
)2} (4)

where 𝜛 = (𝜛1
𝑙
, 𝜛2

𝑙
, ..., 𝜛𝑀

𝑙
) is the roughness parameter, and 𝜍2

𝑙
is the 

process variance of the 𝑙-th level of fidelity.

Accordingly, the posterior distribution of the multifidelity Gaussian 
process is completely specified by the mean 𝜇(𝑙) and variance 𝜎2(𝑙):

𝜇(𝑙)(x) = 𝜅
(𝑙)
𝑁
(x)𝑇

(
K + 𝜎𝜖I

)−1
y (5)

𝜎2(𝑙)(x) = 𝜅 ((x, 𝑙) , (x, 𝑙)) − 𝜅
(𝑙)
𝑁
(x)𝑇

(
K + 𝜎𝜖I

)−1
𝜅
(𝑙)
𝑁
(x) (6)

where 𝜅(𝑙)
𝑁

is defined as 𝜅𝑁 (x) ≐ (𝜅((x, 𝑙), (x1, 𝑙1)), ⋯ , 𝜅((x, 𝑙), (x𝑁, 𝑙𝑁 ))), 
and K is the kernel matrix formalized as follows:

K =
(

𝜅(𝑙−1)(x,x′)K(𝑙−1) 𝜚𝜅(𝑙−1)(x,x′)K(𝑙−1)

𝜚𝜅(𝑙−1)(x,x′)K(𝑙−1) 𝜚2𝜅(𝑙−1)(x,x′)K(𝑙−1) + 𝜅(𝑙)(x,x′)K(𝑙)

)
(7)

where K(𝑙−1)(𝑖, 𝑗) = 𝜅((x𝑖, 𝑙−1), (x𝑗 , 𝑙−1)) and K(𝑙)(𝑖, 𝑗) = 𝜅((x𝑖, 𝑙), (x𝑗 , 𝑙)).
The posterior mean function 𝜇(𝑙) constitutes the prediction of the ob-

jective function at the 𝑙-th level of fidelity over the domain  , and the 
posterior standard deviation 𝜎(𝑙) quantifies the associated level of un-

certainty. The hyperparameters (𝜚, 𝛽, 𝜛, 𝜍) of the multifidelity Gaussian 
process surrogate model are estimated by maximizing the likelihood 
function [33].

3.2. Physics-aware multifidelity acquisition function

PA-MFBO incorporates the prior scientific and expert knowledge 
about the physical phenomena and the specific structure of the domain 
through the original physics-aware multifidelity acquisition function 
𝑈𝑃𝐴(x, 𝑙) based on the multifidelity expected improvement [29]:

𝑈𝑃𝐴(x, 𝑙) =𝑈𝐸𝐼 (x)𝛼1(x, 𝑙)𝛼2(x, 𝑙)𝛼3(𝑙)𝛼4(𝝍 , 𝑙) (8)

where 𝑈𝐸𝐼 (x) is the expected improvement acquisition function evalu-

ated at the highest level of fidelity [26]:

𝑈𝐸𝐼 (x) = 𝔼[max(𝑓 (𝐿)(x̂∗) − 𝑓 (𝐿)(x),0)]

= 𝜎(x)(𝐼(x)Φ(𝐼(x))) + (𝐼(x); 0,1)
(9)

where 𝐼(x) = (𝑓 (𝐿)(x̂∗) − 𝜇(x))∕𝜎(x) is the predicted improvement, x̂∗

is the current location of the best value of the objective sampled so 
far, Φ(⋅) is the cumulative distribution function of a standard normal 
distribution. The expectation term in Equation (9) relates only to the 
high-fidelity model of the objective function, and quantifies the ex-

pected gain potentially achieved adding an high-fidelity evaluation of 
the objective function.

The terms 𝛼1, 𝛼2 and 𝛼3 are conceived to capture and balance the 
contributions of lower-fidelity evaluations of the objective function, and 
are formalized as follows:

𝛼1(x, 𝑙) = 𝑐𝑜𝑟𝑟
[
𝑓 (𝑙)(x), 𝑓 (𝐿)(x)

]
= 𝜅((x, 𝑙), (x,𝐿))√

𝜎2(𝑙)𝜎2(𝐿)
(10)

𝛼2(x, 𝑙) = 1 −
𝜎𝜖√

𝜎2(𝑙)(x) + 𝜎2
𝜖

(11)

𝛼3(𝑙) =
𝜆(𝐿)

𝜆(𝑙)
. (12)

𝛼1 is defined as the posterior correlation coefficient between the 𝑙-th 
4

level of fidelity and the highest-fidelity available at the same location 
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of the domain. This utility function reflects the reduction of the acqui-

sition function when samples are evaluated with lower-fidelity models, 
and accounts for the decrease of the accuracy associated with a low-

fidelity representation of the objective function. Accordingly, the use 
of a high-fidelity model is solicited when a low-fidelity estimate might 
produce unreliable observations of the objective function. 𝛼2 consid-

ers the reduction of the uncertainty associated with the prediction of 
the multifidelity Gaussian process at the 𝑙-th level of fidelity after a 
new observation of the objective function with a certain level of fidelity 
𝑙 is added to the dataset 𝑁 . The objective of this term is to adjust 
the contribution of the high-fidelity expected gain quantified through 
Equation (9) considering the reduction of the optimization gain of ad-

ditional evaluations at the 𝑙-th level of fidelity as the MFGP prediction 
becomes more accurate. Accordingly, this prevents the systematic sam-

pling in already explored regions of the domain characterized by lower 
uncertainty. 𝛼3 is formulated as the ratio between the computational 
cost 𝜆(𝐿) associated with the evaluation of the high-fidelity model and 
the computational cost 𝜆(𝑙) required to compute the 𝑙-th fidelity model. 
This utility function is conceived to include awareness about the compu-

tational resources required for the evaluation of the objective function 
adopting the 𝑙-th level of fidelity. The purpose of this term is to privilege 
the selection of lower-fidelity queries when similar improvements of the 
solution are obtained from higher-fidelity observations, and balance the 
computational cost and the informative contribution of different fidelity 
levels.

𝛼4(𝝍 , 𝑙) is the physics-aware utility function that embeds a source 
of prior knowledge represented by a set of physical variables 𝝍 in the 
sampling scheme. This permits to introduce a learning bias that cap-

tures the scientific understanding and expertise underlying the physical 
domain of the system. Without claiming to limit the informative con-

tent that can be incorporated into our acquisition function, we identify 
two main sources of prior knowledge in the form of scientific and expert 
knowledge. Scientific knowledge refers to the body of rules formalized 
and validated through the scientific method such as conservation laws, 
physical principles or phenomenological behaviors that represent the 
physics of interest. Examples include the Navier-Stokes partial differen-

tial equations in fluid dynamics to model the motion of viscous fluids, 
and numerical methodologies to approximate the solution of the gov-

erning equations as the finite element method in structural mechanics. 
Expert knowledge represents the information that is held by a com-

munity of experienced specialists and validated implicitly over several 
years of experience in a specific field. Examples include the common 
knowledge within the engineering or physics community resulting from 
training, research and personal experience.

The proposed physics-aware multifidelity Bayesian optimization 
framework is illustrated and demonstrated for two cases of study, 
namely an aerodynamic design optimization problem (Section 4), and 
a structural health monitoring task (Section 5).

4. Aerodynamic design example

The design test case addresses the optimization of a transonic air-

foil to improve the aerodynamic performance. Particular attention is 
dedicated to the cross-regime scenario where the fluid regime and the 
associated physical phenomena evolve during the optimization process. 
This defines a robust optimization procedure that potentially ensures 
to obtain optimal airfoil shapes for different operational conditions, 
without limiting the improvement of performance to a single applica-

tion context [34,35]. In this case, the prior scientific knowledge about 
the structure of the domain relates to the transition of the fluid dy-

namic regimes during the optimization. Thus, the physics-aware utility 
function is formalized to bias the search procedure according to the 
evolution of the physical domain.

The Mach number 𝑀 is the main physical variable that captures the 
evolution of the fluid domain, and constitutes a measure of the com-
pressibility effects that modify the fluid structure. According to the fluid 
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mechanics theory [36,37], the flow-field around streamlined bodies is 
defined subsonic for values of the Mach number lower than 0.8, and 
represents a condition characterized by the absence of discontinuities 
and the fluid properties vary continuously. As the Mach number ap-

proaches the sonic condition, discontinuities in the form of local shock 
waves start to appear in the fluid domain with the consequent sepa-

ration of the viscous boundary layer. This mixed subsonic-supersonic 
flow field emerges for values of the Mach number between 0.8 and 1.2, 
and is commonly referred as the transonic regime. The interactions be-

tween shock waves and boundary layer determine an increase of the 
drag force, and unsteady effects generated by a shift of the center of 
pressure of the aerodynamic body. Therefore, the cross-regime scenario 
poses significant challenges associated with the modeling of complex 
physics. On one hand, the subsonic regime can be represented adopting 
simplifications in the aerodynamic modeling due to the smooth evolu-

tion of the flow field; on the other hand, the transonic regime requires 
the implementation of accurate and robust modeling techniques to cap-

ture non-linear phenomena in the unsteady mixed subsonic-supersonic 
flow.

4.1. Optimization problem: cross-regime airfoil design

The aerodynamic design optimization problem consists in the identi-

fication of the optimal combination of design parameters that minimizes 
the drag coefficient 𝐶𝑑 of a transonic airfoil, subject to a variety of aero-

dynamic and geometric constraints. For this demonstrative test-case, we 
adopt the RAE 2822 transonic airfoil that is modified through the code 
WG2AER developed by [38], where the original shape of the airfoil is 
linearly combined with weighted shape modification functions to ob-

tain new geometries. The aerodynamic design optimization problem is 
formulated as follows:

min
x∈

𝐶𝑑 (x)

x =
[
𝑤1, ...,𝑤6,𝑀

] (13a)

𝑠.𝑡. 𝐶𝑙 = 0.824 (13b)

− 0.1 ≤ 𝐶𝑚 ≤ −0.01 (13c)

𝑡∕𝑐 = 0.1211 (13d)

𝑟 ≥ 0.007𝑐 (13e)

𝜏 ≥ 5◦ (13f)

𝑡85∕𝑐 ≥ 0.02 (13g)

 = 𝐼𝑤 × 𝐼𝑀 (13h)

where the design parameters x =
[
𝑤1, ...,𝑤6,𝑀

]
consist of six weights 

𝑤𝑖 assigned to the shape modification polynomial functions and the 
Mach number 𝑀 . The feasibility of the design configuration is subject 
to obtain certain aerodynamic performances in terms of lift coefficient 
𝐶𝑙 and pitching momentum coefficient 𝐶𝑚, and the modified geometry 
must accomplish the constraints on the airfoil thickness 𝑡, chord 𝑐, trail-

ing edge angle 𝜏 , and thickness of the airfoil at the 85% of the chord 𝑡85. 
The search for optimal design configuration is limited to the domain 
bounded by the move limits imposed for the weights 𝐼𝑤 = [−1,1]6 and 
for the Mach number 𝐼𝑀 = [0.6,0.99]. This allows for the exploration 
of different aerodynamic configurations, and improves the robustness 
of the optimization procedure in presence of an evolution of the fluid 
domain from the low subsonic to the transonic regime.

4.2. Aerodynamic models

The fluid domain around the airfoil is modeled through the Reynolds 
Averaged Navier-Stokes (RANS) equations to capture the effects of tur-

bulence that occur at high speed regimes. The differential formulation 
5

of RANS is mathematically expressed as follows:
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R (U) =
𝜕 (U)
𝜕𝑡

+∇ ⋅ F𝑐 −∇ ⋅ F𝑣 − Q = 0 𝑖𝑛Ω, 𝑡 > 0 (14)

where Ω is the computational domain, R are the numerical residuals, 
Q is the source term, U = (𝜌, 𝜌𝑣, 𝜌𝐸) are the conservative variables, 
namely the air density 𝜌 = 𝜌(ℎ), the free-stream velocity 𝑣 and the total 
energy 𝐸, and F𝑐 and F𝑣 are the convective and viscous fluxes, respec-

tively:

F𝑐 =
⎛⎜⎜⎝

𝜌𝑣

𝜌𝑣⊗ 𝑣+ I𝑝

𝜌𝐸𝑣+ 𝑝𝑣

⎞⎟⎟⎠ (15)

F𝑣 =
⎛⎜⎜⎝

⋅
𝝉

𝝉𝑣+ 𝑘∇𝑇

⎞⎟⎟⎠ (16)

where 𝑇 = 𝑇 (ℎ) is the free-stream temperature, 𝑝 = 𝑝(ℎ) is the free-

stream static pressure, 𝑘 = 𝑘(ℎ) is the thermal conductivity and 𝝉 is the 
tensor of viscous stresses.

We are interested in the distribution of the pressure coefficient 
around the airfoil which is a function of the design configuration se-

lected at each iteration of the optimization procedure. The aerodynamic 
modeling approach consists in the numerical solution of the RANS equa-

tions through a Computational Fluid Dynamic (CFD) solver to obtain a 
finite-dimensional approximation of the pressure coefficient over the 
fluid domain. We use the SU2 v6.2.0 CFD code based on the finite-

volume method to discretize the RANS partial differential equations 
considering a fully turbulent flow-field [39]. To ensure the robustness 
of the aerodynamic outcomes, the convergence criteria is set for com-

putational residuals minor than 10−6 with a fixed maximum number 
of 20000 iterations. The fluid domain is discretized through a compu-

tational mesh generated using the GMSH software v4 [40] where an 
automated procedure embedded within the adopted computational tool 
[38] adapts the hybrid grid of triangles and quadrangles elements with 
the modified geometry of the airfoil. This permits to target the balance 
between accuracy and efficiency of the CFD computations.

The pressure field around the airfoil is represented through three 
numerical models based on the aforementioned aerodynamic modeling 
approach, and differ for the accuracy and related CPU time associated 
with their evaluation. These models return the design objective 𝐶𝑑 and 
the aerodynamic constraints on lift 𝐶𝑙 and pitching momentum coeffi-

cients 𝐶𝑚 given the selected design configuration in terms of modified 
geometry of the airfoil through the assignment of the weights w and 
Mach number 𝑀 . The fidelity of the aerodynamic simulations is deter-

mined controlling the granularity of the computational mesh through 
the associated element scale factor 𝐸𝑆 where the higher the value of 
𝐸𝑆 the coarser the discretization of the fluid domain. Specifically, three 
levels of fidelity are considered for the aerodynamic modeling: we set 
𝐸𝑆 = 2.5 for the high-fidelity model corresponding to a grid of about 
90000 cells, 𝐸𝑆 = 12 for the mid-fidelity model with about 30000 cells, 
and 𝐸𝑆 = 20 for the low-fidelity model consisting of a mesh with 15000
cells.

Fig. 1 illustrates the drag coefficient computed with the aerody-

namic model for different element scale factors. The high-fidelity model 
– marker corresponding to 𝐸𝑆 = 2.5 in Fig. 1 – achieves an accu-

rate representation of complex aerodynamic phenomena that occurs 
at higher regimes of speed including discontinuities, shock-waves and 
unsteadiness of the flow-field. This provides a close prediction of the 
mixed subsonic-supersonic fluid domain that characterizes the transonic 
regime. The mid-fidelity model – marker corresponding to 𝐸𝑆 = 12
in Fig. 1 – reduces the demand for CPU if compared with the high-

fidelity model by decreasing the number of cells that discretize the fluid 
domain. This produces a reliable estimate of the aerodynamic coeffi-

cients for Mach number regimes far from the sonic condition where the 
unsteady phenomena have marginal effects, and a reduced accuracy 
for discontinuous flows that occur at the transonic regime. The low-
fidelity model – marker corresponding to 𝐸𝑆 = 20 in Fig. 1 – further 
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Fig. 1. Drag coefficient of the RAE-2822 airfoil varying the element scale of the 
CFD computational mesh. The markers indicate the drag coefficients computed 
adopting the element scale of the high-fidelity 𝐸𝑆 = 2.5, mid-fidelity 𝐸𝑆 = 12, 
and low-fidelity 𝐸𝑆 = 20 aerodynamic model.

decreases the number of elements adopted to discretize the fluid do-

main, and leads to an inaccurate representation of the compressibility 
effects that characterize the more turbulent flows at higher Mach values 
(𝑀 > 0.65). However, the coarser discretization reduces the computa-

tional cost required for its evaluation of the 65% with respect to the cost 
associated with the high-fidelity model.

For the aerodynamic representations, we define the relative compu-

tational cost 𝜆(𝑙) of the 𝑙-th CFD model as the ratio between the element 
scale factors of the high-fidelity model and the 𝑙-th level of fidelity 
model. Accordingly, we set 𝜆(𝐿) = 1 for the high-fidelity aerodynamic 
model, 𝜆(2) = 0.2 for the mid-fidelity model, and 𝜆(1) = 0.125 for the 
low-fidelity model. The high-fidelity (Fig. 2), mid-fidelity (Fig. 3), and 
low-fidelity (Fig. 4) meshes and distributions of the pressure coefficient 
highlight the increasing discrepancy of the flow field representations as 
the level of fidelity decreases.

4.3. Physics-aware utility function for aerodynamic design

We formulate our physics-aware utility function 𝛼4 to include a sort 
of physics-based reasoning that wisely quantifies the utility of querying 
an aerodynamic model according to the characteristics of the fluid dy-

namic regime. This is achieved by formalizing a bias dependent on the 
Mach number 𝝍 =𝑀 as the variable representative of the physical phe-

nomena involved in the aerodynamic domain. Accordingly, 𝛼4(𝑀, 𝑙) is 
formalized as follows:

𝛼4(𝑀,𝑙) =

{
1 if 𝑙 = 1, ...,𝐿− 1

𝑀𝑠

𝑀𝑠−𝑀
if 𝑙 =𝐿 𝑀𝑠 = 1 (17)

This physics-aware utility function encourages the query of the 
high-fidelity model for values of the Mach number close to the sonic 
condition (𝑀 = 1). Indeed, 𝛼4 increases the value of the multifidelity 
acquisition function (Equation (8)) when an aerodynamic configura-

tion is evaluated with the high-fidelity model in the transonic regime 
(𝑀 > 0.8). The goal is to capture large-scale separation of the fluid vein 
and unsteady effects that deeply influence the overall performance of 
the aerodynamic system. This permits to better support and improve 
the search for optimal designs through the a priori scientific knowledge 
about the aerodynamic domain structure derived directly from the gov-

erning equations.

4.4. Aerodynamic design results

This section illustrates and discusses the results achieved with the 
physics-aware multifidelity Bayesian optimization (PA-MFBO) frame-

work for the aerodynamic design optimization problem of the RAE 2822 
transonic airfoil. The effectiveness of the PA-MFBO algorithm is com-

pared with other existing methods commonly adopted to address black-
6

box optimization problems, namely the single-fidelity efficient global 
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optimization (EGO) algorithm [26], and the multifidelity Bayesian op-

timization based on the multifidelity expected improvement acquisition 
function (MFBO) [29]. For the aerodynamic design experiments, the 
initial set of samples is determined through a Latin hypercube strategy 
[41] and are used to compute the surrogate model at the first step (Sec-

tion 3.1). Specifically, the multifidelity algorithms are initialized with 
32 initial aerodynamic design configurations among which 20 evalua-

tions of the objective function are obtained with the low-fidelity model, 
10 are computed with the mid-fidelity model, and 2 are evaluated with 
the high-fidelity model, while for the single fidelity frameworks we con-

sider 6 initial design configurations at which we compute high-fidelity 
observations. We select the minimum drag coefficient as the assessment 
metric to evaluate the capabilities of the competing algorithms, and 
provide a measure of the improvement of the aerodynamic performance 
achieved by the identified design configurations:

𝐶∗
𝑑
=min𝐶𝑑 (x) (18)

Fig. 5 reports the progression of the optimization procedure in terms 
of values of the minimum drag coefficient 𝐶∗

𝑑
as a function of the com-

putational budget 𝐵. We define the computational budget 𝐵 =
∑

𝜆
(𝑙)
𝑖

as the cumulative computational cost 𝜆(𝑙)
𝑖

expended evaluating the 𝑙-
th aerodynamic level of fidelity at each iteration of the optimization 
procedure. We compute 25 independent replications of the experiment 
for each methodology to measure and compensate the influence of the 
random initial sampling procedure and ensure a fair comparison of the 
algorithms. The outcomes of the statistics are represented through the 
median values of the assessment metric 𝐶∗

𝑑
together with the associ-

ated values in between the 25-th and 75-th percentiles. We adopt as 
the baseline solution the value of the drag coefficient 𝐶∗

𝑑
= 0.017796

obtained for the RAE 2822 airfoil corresponding to the design config-

uration x = [0,0,0,0,0,0,0.65]. The overall convergence histories show 
that all the algorithms are capable to identify promising design con-

figurations, and provide significant reductions of the drag coefficient if 
compared with the baseline RAE 2822 design solution. However, the 
PA-MFBO method leads to superior design solutions in terms of aerody-

namic performance if compared with EGO and MFBO, as a result of the 
better management and exploitation of multiple numerical models. As 
can be seen, PA-MFBO reduces the drag coefficient at the beginning of 
the optimization procedure and identifies optimal design configurations 
consuming a fraction of the available computational budget. In addi-

tion, we note from the convergence of the PA-MFBO experiments that 
the algorithm starts the search allocating budget for the exploration of 
different design configurations over the domain, which corresponds to 
a moderate reduction of the drag coefficient. Then, the computational 
resources are directed towards the exploitation phase reducing the val-

ues of the design objective. After the identification of an optimal design 
solution, it is possible to notice that PA-MFBO queries design solutions 
that perform worse that the best design identified so far – the median of 
the minimum drag coefficient remains constant as the consumed budget 
increases. We observed that the algorithm in this phase mostly evalu-

ates the low-fidelity aerodynamic model to contain the computational 
expense during a secondary exploration phase.

To further quantify the performance of the PA-MFBO methodology, 
Table 1 reports the median values of the minimum drag coefficient for 
incremental computational expense 𝐵 = 6, 10, 25, 50, and 100. At the 
end of the initial sampling phase (𝐵 = 6), the identified designs of all 
the algorithms determine values of the drag coefficient higher than the 
baseline solution. However, after the collection of data from the aero-

dynamic models (𝐵 = 10), the multifidelity frameworks are capable to 
improve the baseline design configuration while the EGO algorithm still 
achieves worst designs if compared with the unmodified RAE 2822 air-

foil. The PA-MFBO methodology realizes the larger design improvement 
of the 24.31% before consuming a Budget of 𝐵 = 50, which is superior to 
the MFBO design upgrade of the 20.32% obtained adopting much more 

computational resources. Moreover, the EGO methodology is capable 
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Fig. 2. (a) High-fidelity discretization of the computational domain, and (b) high-fidelity pressure coefficient contours for the RAE-2822 airfoil.

Fig. 3. (a) Mid-fidelity discretization of the computational domain, and (b) mid-fidelity pressure coefficient contours for the RAE-2822 airfoil.

Fig. 4. (a) Low-fidelity discretization of the computational domain, and (b) low-fidelity pressure coefficient contours for the RAE-2822 airfoil.
Fig. 5. Statistics over 25 runs of the minimum drag coefficient 𝐶∗
𝑑

obtained with 
the competing algorithms.

to deliver a design improvement of only the 6.83% using all the avail-

able computational budget. Table 2 provides details about the average 
evaluations of the aerodynamic models at different levels of fidelity 
for each competing algorithm over the statistics of 25 runs. It is pos-

sible to observe that the multifidelity methods (MFBO and PA-MFBO) 
drastically reduce the acquisition of high-fidelity data with respect to 
7

the single-fidelity EGO algorithm, and use lower levels of fidelity to 
Table 1

Median values of the minimum of the drag coefficient 𝐶∗
𝑑

and corre-

sponding design improvement (⋅) obtained with the competing algo-

rithms.

𝐵 𝐶∗
𝑑

EGO 𝐶∗
𝑑

MFBO 𝐶∗
𝑑

PA-MFBO

6 0.02212 (-24.30%) 0.02212 (-24.30%) 0.02212 (-24.30%)

10 0.01887 (-6.055%) 0.01515 (14.87%) 0.01455 (18.24%)

25 0.01770 (0.5394%) 0.01484 (16.61%) 0.01435 (19.36%)

50 0.01738 (2.337%) 0.01454 (18.30%) 0.01347 (24.31%)

100 0.01658 (6.833%) 0.01418 (20.32%) 0.01348 (24.31%)

efficiently explore the design space. However, the proposed PA-MFBO 
permits to better direct the computational resources towards optimal 
design solutions through the wise evaluation of the costly high-fidelity 
model guided by the physics awareness about the evolution of the aero-

dynamic domain. This guarantees the identification of superior design 
solutions with contained computational cost if compared with the stan-

dard EGO and MFBO.

To clarify and interpret the results obtained, Fig. 6 illustrates the 
aerodynamic performance of the optimal designs determined by all the 
algorithm. In particular, we report the optimal airfoil shapes corre-

sponding to the best aerodynamic design (Fig. 6(a)), and the related 

pressure coefficient distribution for the PA-MFBO (Fig. 6(b)), MFBO 
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Fig. 6. (a) Optimal airfoils geometry and associated pressure coefficient contours obtained with (b) the PA-MFBO, (c) MFBO, and (d) EGO algorithm.
Table 2

Average evaluations of the high-fidelity (HF), mid-fidelity (MF), 
and low-fidelity (LF) aerodynamic model over the 25 runs of the 
aerodynamic design optimization problem.

Method HF evaluations MF evaluations LF evaluations

EGO 100 - -

MFBO 11.6 127.3 503.5

PA-MFBO 12.3 99.5 542.4

(Fig. 6(c)), and EGO (Fig. 6(d)) design solutions. It can be noticed 
that the superior performance of the design configuration identified 
with the PA-MFBO can be explained with the efficient expansion of the 
fluid at the upper surface leading edge that induces low-intensity shock 
waves if compared with the other modified airfoils. This results from 
the increase of the leading edge radius and aft camber that produces 
a reduction of the adverse pressure gradient, and permits a smooth 
evolution of the pressure coefficient in the supersonic bubble. These 
features of the aerodynamic domain determine the substantial decrease 
of the drag coefficient and enhance the overall efficiency of the mod-

ified airfoil. In this design test case, the remarkable performance of 
the PA-MFBO framework is related to the physical bias introduced in 
the sampling scheme. This enables the capitalization from the prior 
scientific knowledge about the fluid dynamic regime, and permits to 
accelerate and improve the optimization search through the wise se-

lection of the aerodynamic model to query with a continuous balance 
between computational cost and accuracy of the solution.

5. Structural health monitoring example

The structural health monitoring problem requires the assessment of 
the health status of a composite skin plate of an aircraft wing. Particu-

lar attention is dedicated to the incipient fracture of the carbon fiber: 
this represents one of the most critical failure for laminates since in-

volves the degradation of the mechanical properties of the material and 
cannot be easily detected by standard non-destructive health monitor-

ing techniques [42]. For this application, the expert knowledge about 
the physics relates to specific structures of the domain characterized 
8

by damage conditions that might be misinterpreted by simplified mod-
eling approaches. This knowledge is included in the search procedure 
through a physics-aware utility function that biases the query of numer-

ical models to accurately distinguish the actual fault condition affecting 
the plate.

5.1. Optimization problem: composite plate health monitoring

The structural health monitoring problem demands for the identifi-

cation of the damage parameters affecting a composite plate subject to 
a cut in the fibers. The composite plate is constituted of four layers of 
plain weave fabric of carbon prepreg (IM7/8552 AS4) laminated with 
a stacking sequence 

[
45◦∕0◦∕0◦∕45◦

]
, and with dimension of 102 mm 

transversal length, 456 mm longitudinal length, and 0.76 mm thickness 
of each ply. The material properties for the IM7/8552 AS4 considered 
in this application are reported in the data sheet published from the na-

tional center for advanced materials [43]. To reproduce an operational 
condition, we consider a load applied along the major dimension of 
the plate which represents a simplified load condition of a wing panel 
during the flight. The damage consists in a cut of the fibers along the 
transversal direction in the third layer, and is selected to simulate a 
critical condition where the fault involves the layer with 0◦ orientation 
that mainly contributes to support the load.

The health status of the system is represented through different 
damage parameters x =

[
𝑞1, 𝑞2, 𝑞3, 𝑞4

]
, including the transversal 𝑞1 and 

longitudinal 𝑞2 position of the cut, the extension of the cut 𝑞3 along the 
transversal direction, and the load 𝑞4 acting on the structure. Accord-

ingly, the health monitoring task aims at identify the health status of 
the composite plate minimizing the discrepancy 𝛾 between a real-world 
signal measured from the real system and the same signal computed 
evaluating a structural numerical model. For this procedure, we adopt 
the strain field 𝑆 as the output signal to determine the health status of 
the structure: this signal is sensitive to failures in the fibers and can be 
easily measured in real-world applications and in laboratory. Formally, 
this health monitoring task is formulated as an inverse optimization 
problem:

x∗ = argmin
x∈

𝛾(x) (19)
where the discrepancy function 𝛾(x) is computed as follows:
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𝛾(x) =𝑅𝑀𝑆𝐸
(
𝑆𝑟𝑒𝑓 (x), 𝑆(𝑙)

𝑚𝑜𝑛
(x)

)
=

√√√√√ 1
𝑁

𝑁∑
𝑗=1

(𝑆𝑗

𝑟𝑒𝑓
(x) −𝑆

(𝑙)𝑗
𝑚𝑜𝑛(x))2

𝑆
𝑗

𝑟𝑒𝑓
(x)

(20)

where 𝑆𝑟𝑒𝑓 (x) is the reference strain field measured from the real sys-

tem, 𝑆(𝑙)
𝑚𝑜𝑛(x) is the strain field computed with the 𝑙-th level of fidelity 

numerical model, and 𝑁 is the number of elements of the 𝑙-th level of fi-

delity field. The domain of the fault parameters  = 𝐼𝑞1
× 𝐼𝑞2

× 𝐼𝑞3
× 𝐼𝑞4

bounds the transversal 𝐼𝑞1 = [0, 102] mm and longitudinal 𝐼𝑞2 = [0, 456]
mm position of the cut according to the maximum dimensions of the 
plate, while the intervals for the length of the cut 𝐼𝑞3 = [0, 30] mm and 
the load 𝐼𝑞4 = [0, 20] N are imposed from the expert knowledge about 
the specific structural health monitoring problem.

5.2. Structural models

The strain field 𝑆 of the composite plate is modeled through the 
Reissner-Mindlin plate equations [44] and numerically solved adopting 
the Finite Element Method (FEM). The structural modeling approach 
represents the composite material of the undamaged structure as an 
orthotropic material assigning the properties of the carbon prepreg 
IM7/8552 AS4, and the cut in the fiber is modeled as an homogeneous 
material with the mechanical properties of the matrix. The boundary 
conditions impose a clamp in the lower section and a displacement in 
the upper portion of the plate with a region extended for the 10% of the 
total longitudinal length. This represents a simplification of the aero-

dynamic load acting on a composite panel adopted for the skin of an 
aircraft wing.

We use the software MSC Patran and MSC Nastran to develop two 
FEM models and compute the strain field of the damaged composite 
plate at different levels of fidelity. The high-fidelity model consists of 
a three-dimensional representation of the structure discretized through 
an adaptive grid of HEXA8 3D elements characterized by a dimension 
of 1 mm in both the longitudinal and transversal direction near the 
cut region thought the border, and an increasingly coarse discretization 
away from the cut. This permits to capture the variation of the strain 
field that occurs in a small region near the cut with an high level of 
accuracy, while containing the overall computational cost reducing the 
number of elements far from the damaged location. The thickness of the 
plate is modeled inserting three HEXA8 elements for each of the four 
layers along the thickness direction to further enhance the accurate rep-

resentation of the strain field. The cut is represented as a rectangular 
parallelepiped in the third layer characterized by a transversal exten-

sion discretized with HEXA8 elements, longitudinal extension equal to 
one element and thickness of three elements. The low-fidelity model 
approximates the composite plate through a two-dimensional repre-

sentation discretized using an adaptive mesh of QUAD4 elements with 
transversal dimension of 2 mm and longitudinal dimension of 4 mm 
around the cut, and progressively increases the coarseness towards the 
boundaries of the plate. The cut is modeled through the same method-

ology of the accurate numerical model.

The high-fidelity model provides a reliable representation of the 
strain field as a result of the refined computational grid near the dam-

age. This guarantees an high sensitivity to small incipient faults for 
which the variation of the strain field occurs in a contained region 
around the cut. In addition, this model allows to distinguish variations 
in the strain field caused by the application of intense loads in presence 
of a small cut in fiber – which leads to a significant variation of the 
strain field even in regions far from the damage – from an extended cut 
of the fiber – which produces large strains in an extended region due to 
the size of the damage. We consider the high-fidelity structural model 
as an emulator of the real-world composite plate that is adopted to com-

pute the reference strain field 𝑆𝑟𝑒𝑓 (x), and is used as the highest level of 
fidelity available to evaluate the monitoring signal 𝑆(𝐿=2)

𝑚𝑜𝑛 (x). The low-
9

fidelity representation reduces the computational burden if compared 
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with the high-fidelity model, and achieves a satisfactory accuracy of 
the strain field prediction for damages characterized by an extended 
cut in the fiber. However, the coarse discretization entails an inaccu-

rate evaluation of the strain field for small incipient damages of the 
composite plate, and fails in differentiating the increase of the strain as-

sociated with small cuts in presence of significant loads from extended 
damages in the fiber. This results in an approximated representation of 
the monitoring strain signal 𝑆(𝑙=1)

𝑚𝑜𝑛 (x).
For this set of structural models, the relative computational cost 

𝜆(𝑙) is measured as the average CPU time required to solve the struc-

tural model at 𝑙-th level of fidelity referred to the high-fidelity CPU 
time. From our preliminary experiments, we observe that the high-

fidelity model requires 40 minutes to achieve convergence while the 
low-fidelity representation takes 8 minutes on a single core of a desktop 
PC with Intel Core i7-8700 (3.2 GHz) and 32 GB of RAM. Accordingly, 
we set 𝜆(𝐿) = 1 for the high-fidelity structural model and 𝜆(1) = 0.2 for 
the low-fidelity structural model.

Fig. 7 and Fig. 8 illustrate the computational mesh and strain field 
over the four layers of the plate computed with the high-fidelity and 
low-fidelity structural model, respectively. These results are achieved 
for a cut in the fiber of the third layer located horizontally at 40 mm 
and vertically at 250 mm considering a cut length of 10 mm and load 
equal to 5 N.

5.3. Structural physics-aware utility function

The physics-aware utility function is conceived to incorporate expert 
knowledge about the appropriate structural model to be evaluated in 
presence of a small incipient cut concurrently with a significant load 
condition, or an extended damage in the fiber of the composite plate. 
This is realized through a bias in the search procedure 𝝍 =

[
𝑞3, 𝑞4

]
that 

encodes the specific structure of the domain, and is induced by the 
length of the fiber cut 𝑞3 and the load applied on the plate 𝑞4. Thus, we 
formalize 𝛼4(𝑞3, 𝑞4, 𝑙) for the health monitoring problem as follows:

𝛼4(𝑞3, 𝑞4, 𝑙) =

{
1 if 𝑙 = 1, ...,𝐿− 1
0.5 𝑞3𝑚𝑎𝑥

𝑞3
+ 0.5 1

𝑞4𝑚𝑎𝑥−𝑞4
if 𝑙 =𝐿

(21)

where 𝑞3𝑚𝑎𝑥 is the maximum length of the cut in the fiber and 𝑞4𝑚𝑎𝑥 is 
the maximum load applied on the plate. This physics-aware utility func-

tion realizes a sort of expert reasoning and privileges the evaluation of 
the high-fidelity structural model for small incipient damages and high 
load values. Indeed, 𝛼4(𝑞3, 𝑞4, 𝑙) increases the value of the multifidelity 
acquisition function (Equation (8)) when the health status of the plate 
affected by an incipient cut and high load condition is evaluated with 
the high-fidelity numerical model. This ensures an accurate estimate of 
the strain field and permits to distinguish a narrow cut that generates 
large variations of the strain field amplified by high loading conditions 
form the magnification of strains generated by an extended cut in the 
fiber.

5.4. Structural health monitoring results

This section reports and discusses the results achieved with the 
PA-MFBO framework for the structural health monitoring example to 
evaluate the capabilities of the algorithm against a damage identifi-

cation problem. The outcomes of the PA-MFBO are compared against 
the efficient global optimization (EGO) algorithm [26] and the multi-

fidelity Bayesian optimization implementing the multifidelity expected 
improvement (MFBO) [29]. To assess the performance of the optimiza-

tion algorithms on this test case, we compute the following assessment 
metrics:

𝑒(𝑞𝑖) =
|𝑞∗

𝑖
− 𝑞𝑖|
𝑞∗
𝑖

⋅ 100 (22)
𝛾∗ = min(𝛾(x)) (23)
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Fig. 7. (a) High-fidelity discretization of the computational domain, and (b) high-fidelity strain distribution for the four layers of the damaged composite plate.

Fig. 8. (a) Low-fidelity discretization of the computational domain, and (b) low-fidelity strain distribution for the four layers of the damaged composite plate.
Table 3

Convergence results of the percentage relative error of the 
inference of the damage parameters 𝑒(𝑞𝑖), and minimum 
discrepancy value 𝛾∗ obtained with the competing algo-

rithms.

Method 𝑒(𝑞1) 𝑒(𝑞2) 𝑒(𝑞3) 𝑒(𝑞4) 𝛾∗

PA-MFBO 0.00% 0.00% 0.00% 0.00% 0.00
MFBO 8.46% 11.5% 4.26% 0.19% 0.0261
EGO 34.1% 55.5% 10.7% 2.47% 0.0474

where 𝑞∗
𝑖

is the actual level of damage that affects the composite 
plate, 𝑞𝑖 is the level of damage inferred by the algorithm considering 
the 𝑖-th fault parameter, and 𝛾(x) is the value of the discrepancy be-

tween the reference strain signal and the strain field computed with the 
high-fidelity model. The percentage relative error 𝑒(𝑞𝑖) quantifies the 
accuracy related to the identification of the faults parameters, and 𝛾∗
represents the minimum value of the discrepancy computed by the al-

gorithms and provides a measure of the improvement in the solution of 
the optimization procedure.

Fig. 9 reports the outcomes in terms of median and interval between 
the 25-th and 75-th percentiles for both the assessment metrics, and 
Table 3 summarizes the convergence results both as functions of the 
computational budget 𝐵 =

∑
𝜆
(𝑙)
𝑖

measured as the cumulative compu-

tational cost 𝜆(𝑙)
𝑖

used at each iteration 𝑖 to evaluate the 𝑙-th structural 
level of fidelity. Overall, the multifidelity algorithms – PA-MFBO and 
MFBO – achieve lower values of the identification error rather than 
the single fidelity strategy implementing the high-fidelity structural 
10

model – EGO. However, it can be noticed that the proposed PA-MFBO 
Table 4

Average evaluations of the high-fidelity (HF) 
and low-fidelity (LF) structural model over the 
25 runs of the structural health monitoring 
problem.

Method HF evaluations LF evaluations

EGO 50 -

MFBO 7.7 211.5

PA-MFBO 8.1 209.5

is the only optimization method capable to infer the exact health sta-

tus of the composite plate (𝑒(𝑞𝑖) = 0%) with a computational budget of 
just 𝐵 = 22.8, which corresponds to less than half of the budget con-

sumed by EGO and MFBO (𝐵 = 50) to converge to suboptimal values 
of the identification error 𝑒(𝑞𝑖) > 0%. Table 4 illustrates the average 
number of aerodynamic models queries at different levels of fidelity 
for EGO, MFBO and PA-MFBO over the performed 25 tests. We no-

tice that the multifidelity algorithms MFBO and PA-MFBO massively 
query the low-fidelity structural model to accelerate the exploration 
of different damage configurations and contain the evaluation of ex-

pensive high-fidelity analysis. However, PA-MFBO effectively evaluates 
the high-fidelity model to progressively reduce the inference error of 
damages, and accurately identify the health status of the composite 
plate adopting almost the same number of high-fidelity evaluation as 
MFBO which leads to non-negligible errors. These results suggest that 
the introduction of prior expert knowledge about the health monitoring 
problem enhances the accuracy of the damage identification proce-
dure. A remarkable outcome is that the PA-MFBO algorithm is the only 
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Fig. 9. Statistics over 25 runs of the minimum discrepancy 𝛾∗ and percentage relative error of the inference of the damage parameters 𝑒(𝑞𝑖) obtained with the 
competing algorithms.
optimization framework capable to accurately identify the health sta-

tus of the composite plate within the allocated budget. This outcome 
suggests that the inclusion of the expert knowledge about the struc-

tures of the domain and the behavior of the numerical models over 
those structures allow to obtain a fast and robust inference perfor-

mance.

We consider a statistics over 25 different combinations of fault pa-

rameters determined through the scaled Latin hypercube sampling pro-

cess proposed by Berri et al. [45]. This design of experiments permits to 
increase the distribution of the fiber cut length located in proximity of 
the undamaged condition, and improves the amount of incipient dam-

ages evaluated during the experiments. In particular, the multifidelity 
methods start the health monitoring procedure with 17 damage con-

figurations among which 15 faults are evaluated with the low-fidelity 
structural model and 2 with the high-fidelity representation, while the 
single-fidelity algorithm is initialized with 5 damages evaluated with 
11

the high-fidelity model.
6. Concluding remarks

This paper recognizes that domain knowledge is commonly avail-

able in science and engineering, and can be used to accelerate and 
improve the multifidelity optimization process. We propose a Physics-

Aware Multifidelity Bayesian Optimization – PA-MFBO – framework 
that incorporates forms of prior scientific and expert knowledge about 
the physical domain during the search procedure. This is achieved in-

troducing a learning bias formalized as a physics-aware multifidelity 
acquisition function that leverages the knowledge about the structure 
of the domain to enhance the accuracy of the solution and alleviate the 
computational cost for optimization.

The results achieved with the PA-MFBO are observed and discussed 
for an aerodynamic design problem and a structural health monitor-

ing problem. In the design test-case, the PA-MFBO introduces a bias 
to pursue the awareness about the transition of fluid regimes through 

the Mach number. In the health assessment task, PA-MFBO incorpo-
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rates a bias based on the expert knowledge about the features of the 
domain for specific combinations of load and extension of the damage. 
We note that for the two optimization problems our methodology out-

performs standard single-fidelity and multifidelity Bayesian algorithms 
in terms of accuracy and acceleration of the search. In particular, the 
PA-MFBO identifies aerodynamic design solutions capable to deliver a 
performance improvement of the 24.31% in less than half the compu-

tational time required by competing algorithms to search suboptimal 
designs. Moreover, PA-MFBO is the only algorithm that permits the ro-

bust identification of damages, which otherwise would have required 
more computational resources or might have led to an inaccurate health 
assessment.

Overall, the results show the importance of embedding forms of 
prior knowledge in design and health monitoring optimization proce-

dures as an enabling technique to satisfy the ever-increasing demand 
for performance and reliability to meet sustainability goals.
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