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Abstract
When cells are seeded on a cyclically deformed substrate like silicon, they tend to
reorient their major axis in two ways: either perpendicular to the main stretching
direction, or forming an oblique angle with it. However, when the substrate is very soft
such as a collagen gel, the oblique orientation is no longer observed, and the cells align
either along the stretching direction, or perpendicularly to it. To explain this switch, we
propose a simplified model of the cell, consisting of two elastic elements representing
the stress fiber/focal adhesion complexes in the main and transverse directions. These
elements are connected by a torsional spring that mimics the effect of crosslinking
molecules among the stress fibers,which resist shear forces.Ourmodel, consistentwith
experimental observations, predicts that there is a switch in the asymptotic behaviour
of the orientation of the cell determined by the stiffness of the substratum, related to a
change from a supercritical bifurcation scenario, whereby the oblique configuration is
stable for a sufficiently large stiffness, to a subcritical bifurcation scenario at a lower
stiffness. Furthermore, we investigate the effect of cell elongation and find that the
region of the parameter space leading to an oblique orientation decreases as the cell
becomes more elongated. This implies that elongated cells, such as fibroblasts and
smooth muscle cells, are more likely to maintain an oblique orientation with respect
to the main stretching direction. Conversely, rounder cells, such as those of epithelial
or endothelial origin, aremore likely to switch to a perpendicular or parallel orientation
on soft substrates.
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1 Introduction and Biological Background

In the 1980s the study of cardiovascular diseases gave rise to the need of understanding
the behaviour of cells undergoing periodic stretch. In fact, heart beats induce a periodic
stretch not only of its own cells, but also of the arterial walls due to the induced periodic
pressure and then inflation. It was then observed that smooth muscle cells in the intima
of the aorta are oriented along specific directions (Buck 1979; White et al. 1983).
Specifically, they either align along the vessel axis (Zhao et al. 1995) or obliquely
forming helical-like structures with an angle of 20◦–40◦ with respect to the vascular
axial direction (Driessen et al. 2004; Gasser et al. 2006; Osborne-Pellegrin 1978).
Starting from this need, Buck (1980) examined the behaviour of fibroblasts seeded in
vitro on a cyclically stretched rubber plastic substrate and observed that they tended
to reorient more perpendicularly with respect to the stretching direction than along it.
Similar experiments were then performed by many other researchers with many cells
types (see Giverso et al. 2023, for a review).

In general, it is observed that in most cell lines, such as fibroblasts, myofibroblasts,
cardiomyocytes, and endothelial cells, periodic stretching triggers a dynamic response
of the cytoskeleton that results in the formation of a preferred orientation of both the
cytoskeleton and the cell shape itself, at either an oblique or a perpendicular angle
with the main stretching direction. Actually, the aspect ratio of the cell can even reach
values close to 10 with the nucleus that achieves an ellipsoidal shape with the long
axis along the same direction.

In this process the leading role is played by the cytoskeleton, that is characterised by
the presence of strong filamentary structures, named as stress fibres (SFs), which are
bundles of aligned actin filaments cross-linked by several molecules, such as fascin,
fibrin, and actinin. Then, cell focal adhesions (FAs) cluster at the ends of assembled
SFs, anchoring the cell to the substrate.

Generally speaking, the action of mechanical stress induces an internal remodelling
process involving the disruption, formation, and reorganization of both SFs and FAs.
In this way the cell is able to adapt to the external mechanical cue, fostering changes in
shape and orientation of the whole cell. Specifically, the remodelling process slowly
continues untill the cell reaches a stable configuration characterised by a clearly visible
mean angle between its major axis (i.e., the one defined by the main assembly of SFs)
and the direction of largest stretching. It is useful to remark that cell internal orientation
can occur even in the absence of effective spatial migration, i.e., it does not necessarily
lead to a head-and-tail differentiated cell configuration. For this reason, we will use
the word orientation, rather than polarization.

After an initial attempt to model such behaviour as a strain avoidance mechanism,
based on the minimization of the sensed strain (De et al. 2008; Faust et al. 2011;
Morioka et al. 2011; Safran and De 2009; Wang 2000; Wang et al. 1995), Livne et al.
(2014) showed that a better fit was obtained by minimizing the elastic energy. This
approach, firstly developed in a linear elasticity framework, was recently generalised
to large deformations in Ciambella et al. (2022), Lucci and Preziosi (2021) using a
very general nonlinear orthotropic elastic model.

Then, in Giverso et al. (2021) a linear viscoelastic model was proposed to explain
the experimental evidence that cells reorient only if the frequency of the deformation
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applied to the substrate is sufficiently high, say, greater than 0.1 Hz for fibroblasts
(Hsu et al. 2009; Jungbauer et al. 2008; Liu et al. 2008). In fact, this experimental fact
requires the introduction of viscoelastic effects with a characteristic response time that
need to be compared with the period of oscillations.

A different approachwas used byXu et al. (2016), aswell as inMao et al. (2021) and
Xu et al. (2018). They schematize cells as formed by two parallel elastic struts along
the orientation axis and two other struts perpendicular to them. A string connecting the
ends of the struts is also considered, but then neglected. The energy of the system is
then evaluated, but unfortunately it presents some flaws in the computation of the work
done by the applied force. In addition, there is some confusion with some signs (see,
for instance, Eqs. (13) and (18) in Xu et al. 2016). Fortunately, apart from some signs,
that are a posteriori adjusted, the energy discussed is consistent with a special case of
the linear elastic energy. This allows them to recover the same ordinary differential
equation for the temporal evolution of cell orientation obtained by Livne et al. (2014),
and thus the same equilibrium states for time independent stretches.

In the present article we use a similar approach, schematizing the cell as formed
by two elastic elements that respectively model stress fiber assemblies in its main and
transversal orientations (Sect. 2). The two elements are hinged at their center through
a torsional elastic spring. Specifically, the elastic elements are intended to model
the behaviour of both stress fibers and focal adhesions, while the torsional spring
mimics the action of crosslinking molecules connecting stress fibers and resisting to
shear. The mathematical model proposed is then based on the assumption that cell re-
orientation results fromprocesses occurring at different time scales, i.e., the cell readily
deforms to comply to the deformation of the substrate, and actively reorients slowly
remodelling its internal cytoskeletal structure tominimise its internal energy. In Sect. 3
the analytical solution of the proposed model is given and its qualitative behaviour
for long times is discussed. It is shown that, in the limit of very stiff substrates, our
mathematical model reduces to the models mentioned above, e.g. Livne et al. (2014),
Lucci and Preziosi (2021), being then able to reproduce the related experimental
results. However, themain focus of this article is to discuss the influence of the stiffness
of the substrate on cell orientation. In this respect, the first fact that is observed is that
the substrate need to be stiff enough to induce cell reorientation.We show that,when the
stiffness of the substrate becomesmuch smaller than that of the stress fibers, the time to
reach the equilibrium configuration increases considerably, so that reorientation is not
observed in the time of the experiment, being moreover hidden by random behaviours
as explained in Loy and Preziosi (2023).

The model is also able to explain the empirical observation that when the substrate
is very soft, cells elongate along the main stretching direction or perpendicularly to
it, rather than achieving an oblique orientation, as shown in the experiments reported
in Terracio et al. (1988), Thodeti et al. (2009). In Sect. 4 we discuss in detail how the
model is able to explain this switch in the asymptotic trend and we relate it to a change
of bifurcation scenario from a supercritical one, with a stable oblique equilibrium, to
a subcritical one, in which the oblique configuration becomes unstable.

Finally, in Sect. 5 we investigate the impact of cell elongation demonstrating that
an increase in cell elongation leads to a larger region in the parameter space leading to
either oblique or perpendicular orientations, at the expenses of the oblique orientation.
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This indicates that the stability switch is more likely to occur in rounder cells, such
as epithelial or endothelial cells, compared to elongated cells, such as fibroblasts and
smooth muscle cells.

2 Mathematical Model

In order to model the cell re-orientation process described in the Introduction, it is
important to observe that the phenomenon is characterised by different time scales,
which allow to identify the following phases:

1. As soon as the substrate is deformed, the first reaction of the cell is to immediately
adapt to the deformation of the substrate. This results in a stretching of the cell and
occurs at the same time scale as the period of the imposed external deformation,
which is typically of the order of one second or less.

2. Under the action of stretching, the cell then re-adjusts its cytoskeletal orientation
in order to minimize the stored internal energy. This process occurs on a much
longer time scale, which is in the range of several minutes. As a result of this
internal remodelling process, the cell may acquire an orientation that is different
from the initial one.

With this in mind, let us define a bidimensional reference frame (O, i, j) with the
origin at the center of the mass of our representative cell and the axes aligned with
the main stretching directions. If the reaction of the cell to the externally applied
deformation were negligible, the deformation gradient in the plane that is applied to
the substrate would be homogeneous and given by

F(t) = diag{1 + εxx (t), 1 + εyy(t)} = diag{1 + ε(t), 1 − rε(t)}, (1)

where r is a fixed constant called biaxiality stain ratio. In Eq. (1), the strain amplitude
ε(t) is assumed to be small and continuous in time. Actually, it was experimentally
observed that strains larger than 40% can cause cell death Boccafoschi et al. (2007)
and usually a strain of 10% is applied Giverso et al. (2023). The range of r usually
tested in experiments is r ∈ [0, 1], where r = 0 corresponds to a substrate clamped
along the sides parallel to the main stretching direction, while r = 1 implements
an isochoric planar deformation (i.e., εyy = −εxx ). Very few results are reported
for negative values of r , which corresponds to stretching in both directions (see, for
instance, Li et al. 2016). However, the fact that the x-axis is assumed parallel to the
maximum stretching direction implies that r ≥ −1. At the other extremum, r > 1
would correspond to an untested strong compression of the substrate along the y-axis.
For this reason, we hereafter focus on the range r ∈ [−1, 1].

As shown in Fig. 1, the cell cytoskeleton is schematised by two elastic elements,
named a and b, with elastic moduli ka and kb and end points A,A′ and B,B′, respec-
tively. They are in charge of describing the response of the cell to the external
mechanical input: the element a along the main orientation of SFs, hereafter char-
acterised through the time-dependent angle �, and the element b along a transversal
(i.e., rotated of an angle θ ) direction. These two elements are further assumed to be:
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Fig. 1 Schematization of the cell as two elastic elements that model stress fibers-focal adhesions assemblies
in its main and transversal orientations. Themain orientation of the cell is determined by the angle� (a) that
slowly evolves due to the remodelling of the actin cytoskeleton. Due to the cell reaction to stretching, during
the deformation the anchoring points XA and XB go to xA �= xSA and xB �= xSB (b), where, for instance,
xSA is the location of the point that would be occupied by XA as a result of the imposed deformation in
absence of cell reaction (Color figure online)

• linked to the substrate at their end points, which indeed model focal adhesion
complexes. Specifically,we denote as SQ the point of the substrate that is connected
with the end point Q of one of the two cytoskeletal elements of the cell (being
Q ∈ {A,A′,B,B′});

• hinged at their centers (which are superimposed to the domain origin O);
• interconnected by a torsional spring, with modulus equal to kθ , that is at rest when
the two elements are orthogonal, i.e., when θ = π

2 ;• the two cytoskeletal elements have relaxed lengths equal to 2La and 2Lb, respec-
tively, which can be interpreted as mean dimensions of the cell in the absence of
stresses. They are assumed to be constant.

Let us now model the above-introduced first phase of the process, i.e., the cell instan-
taneous response to the imposed substrate deformation. To do this, we hereafter take
advantage of the symmetry of the system and focus on the upper half of the domain.

Before stretching, the cell is in a rest configuration. This, as seen, implies orthogonal
elastic elements with semi-lengths La and Lb, respectively, with main SF orientation
defined by the angle �. The two end points of interest occupy domain locations XA
andXB that coincide with the locations of the substrate points to which they are linked
to, i.e., XA = XSA and XB = XSB (see Fig. 1a).

As a consequence of the imposed deformation, in absence of cell reaction, the
two substrate points of our interest would go to xSA = FXSA and xSB = FXSB (see
Fig. 1b). However, the cell is not passively dragged by such a substrate displacement,
but it rather resists to the underlying stretch. So, the end points A and B shift to
xA �= xSA and xB �= xSB . In this respect, the points xA and xB are identified by the
angles (�−θa) and (�+π/2+θb) and by the distances from the origin La = La+ξa
and Lb = Lb + ξb, respectively. In particular, θa and θb give the variation of the
relative orientation of the two cytoskeletal elastic elements, whereas ξa and ξb give
the variation of their lengths. The effective values of these quantities can be obtained
by the minimization of the total energy stored by the system as a consequence of the
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imposed substrate deformation

Utot = 1

2
kaξ

2
a + 1

2
kbξ

2
b + 1

2
kθ (θa + θb)

2 + 1

2
ks
(
|xSA − xA|2 + |xSB − xB|2

)
,

(2)

where the last term is an elastic contribution that accounts for the above-explained
mechanical resistance of the cell to the dragging due to the substrate deformation, being
ks the corresponding elastic modulus. As already mentioned, the Hooke constants
of the elements along a and b are respectively ka and kb, while kθ is the torsion
coefficient of the torsional spring in O. In the limit of small deformations, i.e., for

θa, θb,
ξa

La
,

ξb

Lb
� 1, Utot simplifies to

Utot = 1

2
kaξ

2
a + 1

2
kbξ

2
b + 1

2
kθ (θa + θb)

2

+1

2
ks
[
ε2L2

a(cos
2 � + r2 sin2 �) − 2εL2

a(1 + r) sin� cos�θa + L2
aθ

2
a

−2εLaξa(cos
2 � − r sin2 �) + ξ2a

]

+ 1

2
ks
[
ε2L2

b(sin
2 � + r2 cos2 �) − 2εL2

b(1 + r) sin� cos�θb + L2
bθ

2
b

+ 2εLbξb(r cos
2 � − sin2 �) + ξ2b

]
, (3)

(see the “Appendix” formore details on the technical calculations), which isminimised
by a cell configuration characterised by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ̄a = εLaks
ka + ks

(cos2 � − r sin2 �),

ξ̄b = − εLaks
kb + ks

(r cos2 � − sin2 �),

θ̄ab := θ̄a + θ̄b = 2εks(
1
L2
a

+ 1
L2
b

)
kθ + ks

(1 + r) sin� cos�.

(4)

So, for a given�, under the externally imposed stretch, we assume that the cell readily
achieves a cytoskeletal arrangement defined, in terms of SF lengths and orientations, by
the equilibrium quantities in Eq. (4). In this respect, being an equilibrium, the viscosity
of the cytoskeleton does not play any role. The influence of the cell membrane is also
neglected.However, if it is schematised as an elastic spring connecting the end points of
the two elements it would lead to a contribution that can be absorbed in the coefficients
of Eq. (4).

Let us now focus on the slower remodeling process. In order to do that, we assume
that the temporal evolution of � is driven by the virtual work of the forces exerted
on the cell cytoskeleton due to the externally imposed deformation of the substrate.
In the elastic case such a virtual work can be written in terms of the derivative of the
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internal potential energy

Uin = 1

2
kaξ̄

2
a + 1

2
kbξ̄

2
b + 1

2
kθ θ̄

2
ab.

In addition, there is a dissipation force that resists to remodelling and eventually results
in the application of a viscous-like moment proportional to the angular velocity. So,
neglecting inertia, the evolution of cytoskeletal reorientation can be described by the
following equation

0 = −h
d�

dt
− ∂Uin

∂�
, (5)

where h is related to the characteristic time for stress fiber and focal adhesion renewal
dynamics.

Recalling Eq. (4), we have that

Uin = 1

2
ε2k2s

{
kaL2

a

(ka + ks)2
(cos2 � − r sin2 �)2 + kbL2

b

(kb + ks)2
(r cos2 � − sin2 �)2

+ 4kθ[(
1
L2
a

+ 1
L2
b

)
kθ + ks

]2 (1 + r)2 sin2 � cos2 �

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (6)

and Eq.(5) therefore rewrites as

h
d�

dt
= 2ε2(t)k2s (1 + r)

{
kaL2

a

(ka + ks)2
[(1 + r) cos2 � − r ]

+ kbL2
b

(kb + ks)2
[(1 + r) cos2 � − 1]

− 2kθ[(
1
L2
a

+ 1
L2
b

)
kθ + ks

]2 (1 + r)[2 cos2 � − 1]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
sin� cos�. (7)

We firstly notice that the case r = −1, corresponding to the equi-biaxial deformation
with εyy = εxx , will lead to no evolution of�. In fact, from themathematical viewpoint
the r.h.s. of Eq. (7) vanishes and from the mechanical viewpoint it corresponds to an
isotropic deformation with equal strain in all directions.

We also observe that in the limit ks � ka, kb,
kθ

L2 (where 1
L2 = 1

L2
a

+ 1
L2
b
), Eq. (7)

is identical to the evolution equation considered in Livne et al. (2014) for the case
kθ = 0, and it can be also obtained from the model proposed in Giverso et al. (2021)
by neglecting viscoelastic effects and second ordermixed energy terms in the quadratic
form of the elastic energy.
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In addition, softening the substrate leads to a decrease of the forcing term in Eq.
(7). Therefore, the dynamics slow down with the characteristic time that increases like
k−2
s as ks decreases.
Lastly, we remark that we are only focusing on orientational changes and not on

shape change, that is, the rest length of the axes of the cells do not remodel.
For the following discussion, it is useful to scale the mechanical coefficients in Eq.

(7) with ka and introduce the dimensionless quantities

k̂b = kb
ka

, k̂s = ks
ka

, k̂θ = 2kθ

kaL2
a
, (8)

and the aspect ratio λ = L2
b/L

2
a .

Then, by scaling times with τ = h

kaL2
a
, we can rewrite Eq. (7) as

d�

dt̂
= 2k̂2s

(1 + k̂s)2
ε2(t) (1 + r)2(α cos2 � − β) sin� cos�, (9)

where

α = 1 + λk̂b

(
1 + k̂s

k̂b + k̂s

)2

− 2k̂θ

(
1 + k̂s

λ+1
2λ k̂θ + k̂s

)2

,

β = r

1 + r
+ λk̂b

1 + r

(
1 + k̂s

k̂b + k̂s

)2

− k̂θ

(
1 + k̂s

λ+1
2λ k̂θ + k̂s

)2

. (10)

Interestingly, α is independent from the biaxiality ratio r , while the mechanical
parameters, i.e., k̂b k̂θ , k̂s, and the aspect ratio λ influence both α and β.

3 Analytic Solution and Asymptotic Behaviour

The analytical solution of Eq. (9) can be written in an implicit form as

|α cos2 �(t̂) − β|α/(βγ )

[cos2 �(t̂)]1/β [sin2 �(t̂)]1/γ = C exp

[
− 4k̂2s

(1 + k̂s)2
(1 + r)2

∫ t̂

0
ε2(τ̂ ) d τ̂

]
, (11)

where C is the integration constant depending on the initial value �(0) and

γ = α − β = 1

1 + r
+ r

1 + r
λk̂b

(
1 + k̂s

k̂b + k̂s

)2

− k̂θ

(
1 + k̂s

λ+1
2λ k̂θ + k̂s

)2

. (12)

Though it is not immediate to visualize the behaviour of the solution, it can be noticed
that, for any ε(t̂), for large times the r.h.s. of Eq. (11) will eventually vanish. So, the
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Fig. 2 a Summary of the asymptotic trends in the (α, β) plane. In the panels on the right, the bifurcation
diagrams for a time indepedent strain are reported for b α > 0 and c α < 0. In the former case the
oblique orientation is stable when it exists and bifurcations are supercritical. In the latter it is unstable
and bifurcations are subcritical. In particular, only the parallel and/or perpendicular orientations are stable
(Color figure online)

asymptotic behaviour of �(t) is governed by the sign of the exponents in the factors
of the l.h.s. of Eq. (11), i.e. it is substantially dictated by the sign of α, β, and γ . In
fact, by recalling that |εxx | > |εyy | implies r > −1 and defining �

eq
obl such that

cos2 �
eq
obl = β

α
, (13)

one has the following Proposition

Proposition For r > −1

• If α > β > 0, then �(t) → �
eq
obl;• If α < β and β > 0, then �(t) → �

eq
‖ = 0;

• If α < β < 0, then either �(t) → �
eq
‖ = 0, or �(t) → �

eq
⊥ = π

2 ;

• If α > β and β < 0, then �(t) → �
eq
⊥ = π

2 .

Proof Let us start observing that �(t) = π
2 can nullify the l.h.s. of Eq. (11) only if

β < 0 (pale blue and magenta regions in Fig. 2a).

Similarly, �(t) = 0 can do it only if γ < 0, that is, if α < β (pale blue and green
regions in Fig. 2a).

Regarding the oblique orientation�
eq
obl, Eq. (13) implies that it exists only if 0 ≤ β

α
≤ 1

(i.e., the pale blue and yellow regions in Fig. 2a). So, the fact that the ratio β/α must
be positive implies that the l.h.s. of Eq. (11) can be nullified when � = �

eq
obl only for

γ > 0, i.e. α > β. This rules out the possibility of negative values of α and β, and
leaves only the possibility α > β > 0, that is the yellow region in Fig. 2a. �

We observe that Eq. (13) is identical to the oblique orientation found in Giverso
et al. (2021), Livne et al. (2014), Lucci and Preziosi (2021), where, however, the
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effect of substratum deformability was not taken into account. We also notice that the
asymptotic values just identified remain the same if one looks at the limit case of a
time independent strain. This allows to discuss the possible scenarios using classical
stability tools and terminologies, as done in previous papers (see, for instance, Giverso
et al. 2021; Lucci and Preziosi 2021).

Before proceedingwith it, we highlight that, taking separately the three terms on the
r.h.s. of Eq. (9), for a time independent stretch, the first two terms tend to destabilize
the equilibrium orientations �

eq
‖ and �

eq
⊥ , while the last one tends to stabilize them.

The opposite holds true for �
eq
obl. As we will see in Sect. 4, this will lead to important

switches in the asymptotic behaviour also seen in some experiments (see, for instance,
Terracio et al. 1988; Thodeti et al. 2009). Specifically, referring to Fig. 2b, we can
observe that for α > 0

• �
eq
‖ is stable for β ≥ α;

• �
eq
⊥ is stable for β ≤ 0;

• �
eq
obl is stable whenever it exists, i.e. when 0 ≤ β ≤ α.

On the other hand, referring to Fig. 2c, for α < 0

• �
eq
‖ is stable for β ≥ α;

• �
eq
⊥ is stable for β < 0;

• �
eq
obl is always unstable.

Therefore, in the case of a time independent strain the system is characterised by a
switch from a supercritical to a subcritical bifurcation scenario when α changes sign
from positive to negative. In the following, we will thus extend this classification,
calling supercritical (resp. subcritical) scenario the one with α > 0 (resp. α < 0).

4 Effect of Substratum Stiffness

As α and β both depend on k̂s, the effect of the elasticity of the substratum is not
immediately clear, because it influences both dimensionless parameters at the same
time. On the other hand, the aim of the article is to highlight the effect of the substratum
on the evolution of cell orientation. Therefore, hereafter we will translate the discus-
sion done in the previous section in terms of substrate stiffness to prove that it can
determine a switch in the asymptotic behaviour. In particular, we want to show that for
decreasing values of the substrate stiffness, the bifurcation landscape can change from
a supercritical one as in Giverso et al. (2021), Lucci and Preziosi (2021) to a subcriti-
cal one with an unstable oblique orientation and stable parallel and/or perpendicular
orientations, as observed in Terracio et al. (1988), Thodeti et al. (2009).

Before doing that we make some comments on the ammissible physiological range
of the parameters, so that we can limit the discussion to the biologically relevant
dynamics. First of all, from phenomenological observations, we can certainly restrict
our attention to λ ∈ (0, 1] (i.e., 0 < Lb ≤ La) because experiments show that cells
are more elongated along the main direction, i.e., along the element a rather than
along b. In addition, from the mechanical point of view, it can also be observed that
since the response of cells to deformations along the main orientation is stronger
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Fig. 3 Surfaces γ (k̂b, k̂θ , k̂s, r) = 0 in blue and β(k̂b, k̂θ , k̂s, r) = 0 in brown that delimit the different
scenarios in the case of round cells, i.e., with λ = 1, for different values of r , positive in the top row,
negative below

than along the perpendicular one (even much stronger), we can take k̂b ∈ (0, 1) (i.e.,
0 < kb < ka). Similarly, we expect k̂θ ∈ (0, 1

2

)
. This can be realised comparing, for

the same deformation involving the opening of the angle in O for a round cell, the
energetic terms related to the torsional spring (proportional to kθ ) with the energy that
would be stored by a spring with rigidity ka connecting the extrema of the elements a
and b.

So, having in mind the above biologically sound constraints, we will focus the
following discussion on the subspace of parameters defined by

r ∈ (−1, 1], λ ∈ (0, 1], k̂b ∈ (0, 1), and k̂θ ∈
(
0,

1

2

)
, (14)

though it could be easily extended outside this range.
In Fig. 3and then in Fig. 6we plot, respectively for round cells λ = 1 and elongated

cells with λ = 0.5, the surfaces corresponding to γ (k̂b, k̂θ , k̂s, r) = 0 in blue and to
β(k̂b, k̂θ , k̂s, r) = 0 in brown for several fixed values of r . These surfaces subdivide the
space of parameters in regions characterised by the different asymptotic behaviours,
that are identifiable by the same colours as in Fig. 2a.

Focusing on the coordinate planes, we have that in the limit k̂θ = 0, if r > 0 then β

and γ are both positive, and so, the solution can only tend to �
eq
obl. If, instead, r < 0,

that corresponds to imposing a tension in both directions, then the solution will tend
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Fig. 4 Examples of evolution of the orientations in response of an imposed strain ε(t̂) = 0.05
(
1 − cos t̂

10

)
;

toward�
eq
obl in the yellow region (top left);�eq

⊥ in themagenta region (top right); either�eq
‖ or�eq

⊥ according

to the initial condition in the cyan region (bottom left); only �
eq
‖ in the green region (bottom right). The

dotted line corresponds to β = 0 and the full line to γ = 0

toward �
eq
obl when

k̂s ∈
⎡
⎢⎣

√
−rλk̂b − k̂b

1 −
√

−rλk̂b

,

√
k̂b −

√
−r
λ
k̂b

√
−r
λ

−
√
k̂b

⎤
⎥⎦ ,

to �
eq
⊥ above this interval and to �

eq
‖ below it.

On the other hand, in the limit k̂b = 0, if r < 0, then β is always negative. So, �eq
⊥

is always attractive and �
eq
‖ might be for softer values of k̂s below the blue surface

γ = 0, i.e, for

k̂s < klows :=
√
r + 1 − 

√
k̂θ

1 −
√

(r + 1)k̂θ

√
k̂θ , (15)

where  = λ + 1

2λ
, if klows is positive. We explicitly remark that in this case a trend

toward �
eq
obl is ruled out. In addition, if r < −1+ 2

2
, then klows becomes negative for

k̂θ >
1 + r

2 . In this case also the trend toward �
eq
‖ is ruled out and the solution can

only tend to �
eq
⊥ .

Instead, in order to describe what happens in the limit k̂b = 0 when r > 0,

corresponding to the usually tested cases, we start noticing that since γ = β+ 1 − r

1 + r
>
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Fig. 5 Sections for constant k̂b (top row), constant k̂θ (central row), and constant k̂s (bottom row) for λ = 1
and r = 0.5. The dotted line corresponds to β = 0 and the full line to γ = 0

β (we recall that r < 1), the brown surface β = 0 is always above the blue one γ = 0.
Hence, the solution will tend toward �

eq
obl above the brown surface, i.e., for

k̂s > kups := 

√
r k̂θ − √

r + 1√
(r + 1)k̂θ − √

r

√
k̂θ , (16)

and to�
eq
⊥ for values of k̂s below kups , with�

eq
‖ that becomes also attractive for suitable

initial conditions when the condition (15) is satisfied.
In order to describe what happens for k̂b, k̂θ �= 0, for decreasing values of k̂s, we

use as a representative example the case with λ = 1 and r = 0.5, corresponding to an
isocoric deformation, and we fix k̂θ = 0.25 (see Fig. 4).

According to where the parameter values fall, one has a trend toward �
eq
obl (yellow

region), �eq
⊥ (magenta region), �eq

‖ (green region) or either �
eq
⊥ or �

eq
‖ (cyan region).

In particular, fixing k̂b = 0.5 one has that for stiffer substrates (namely, k̂s > 0.46)
the solution will tend toward �

eq
obl. For softer substrates with 0.41 < k̂s < 0.46 the

solutionwill tend toward�
eq
‖ and for even softer substrates with k̂s < 0.41 the solution

may also tend toward �
eq
⊥ according to the initial orientation.

For very low values of k̂b (e.g., k̂b = 0.15) one has that for a very high stiffness,
i.e., k̂s > 1, again the solution will tend toward �

eq
obl. For softer substrates (i.e.,
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Fig. 6 Surfaces γ (k̂b, k̂θ , k̂s, r) = 0 in blue and β(k̂b, k̂θ , k̂s, r) = 0 in brown that delimit the different
scenarios in the case of elongated cells with λ = 0.5, for different values of r , positive in the top row,
negative below

0.05 < k̂s < 1) the solution will tend toward �
eq
⊥ , with the parallel orientation that

adds up when 0.05 < k̂s < 0.58. Then, for very soft substrates (i.e., k̂s < 0.05) the
solution can only tend toward �

eq
‖ .

From the central row of Fig. 5, it can be observed that variations in the value of k̂θ =
0.25 (that is the ratio between cell resistence to shear and the cell elastic modulus in its
main direction) lead to similar trends, obviouslywith different values of the parameters
leading to transitions. In particular, generally speaking, lower values of k̂θ lead to larger
regions characterised by a trend toward �

eq
obl and smaller regions characterised by a

trend toward�
eq
‖ and/or�eq

⊥ . This means that resistence to shear favours the alignment
of the representative cell in the parallel and perpendicular orientations. Instead, in the
first row of Fig. 5 it can be for instance observed that the regions corresponding to
admissible parallel asymptotic orientation (i.e., the cyan and green ones) get larger
decreasing k̂b, that is the ratio between the elastic moduli of the two elements a and b.
This suggests that the presence of fibers not all aligned in the same direction favours
oblique asymptotic orientations. The fact that softer substrates, i.e., with lower k̂s, are
characterised by larger regions with parallel and perpendicular orientations (see the
third row in Fig. 5) has been already discussed above.

5 Effect of Cell Elongation

In this section we will focus on the effect of the aspect ratio λ of the representative cell
on its asymptotic behaviour. Generally speaking, referring to Fig. 6 it can be observed
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Fig. 7 Examples of evolutions of the orientation of an elongated cell in response of an imposed strain

ε(t̂) = 0.05
(
1 − cos t̂

10

)
; toward �

eq
obl in the yellow region (top left); �

eq
⊥ in the magenta region (top

right); either �
eq
‖ or �

eq
⊥ according to the initial condition in the cyan region (bottom left); only �

eq
‖ in the

green region (bottom right). The dotted line corresponds to β = 0 and the full line to γ = 0. In the insets a
sketch of the final oriented cell shape(s) is reported

that the cyan region characterised by the trend either to�
eq
‖ or�eq

⊥ (with�
eq
obl unstable)

becomesmuch smaller. In particular, themagenta regionwhere the asymptotic trend of
cell orientation is toward�

eq
⊥ enlarges considerably. The yellow region related to�

eq
obl

slightly changes w.r.t. to the case with λ = 1 when r is larger than 0.5. Conversely,
for smaller values of r , the yellow region decreases at the benefit of magenta region
related to �

eq
⊥ . This is even more evident for negative values of r . In fact, the region

even disappears as r gets closer to −1. Further details on the evolution and on the
regions are given in Figs. 7and 8.

Thismeans that, on soft substrates, round-like cells more likely orient themselves in
a parallel or perpendicular fashion with respect to the main stretching directions, than
elongated cells, that prefer the perpendicular orientation alsowith respect to the oblique
one. So, cells like fibroblasts and smooth muscle cells, that are typically characterised
by a large aspect ratio, are more prone to keep an oblique or perpendicular orientation
even on soft substrates with respect to endothelial or epithelial cells, that usually keep
an almost round shape, even under stretch.

6 Conclusions

We have modelled the behaviour of cells seeded on an elastic substrate undergoing
a periodic deformation using a discrete model for the cell interacting with the con-
tinuum substrate, focusing on the effect of the mechanical properties of the cells and
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Fig. 8 Sections for constant k̂b (top row), constant k̂θ (central row), and constant k̂s (bottom row) for λ = 1
and r = 0.5. The dotted line corresponds to β = 0 and the full line to γ = 0 (Color figure online)

above all of the substrate. Specifically, we schematised the cell as formed by two elas-
tic elements, modelling its stress fiber/focal adhesion complexes along its main and
transversal orientations, hinged at the center through a torsional spring.

The main focus of the present work was to describe the possible asymptotic sce-
narios as a function of the mechanical characteristics of the substrate. Consistently
with the experiments, it is found that the supercritical scenario characterised by the
presence of a stable oblique configuration is favoured by sufficiently large substrate
stiffness, while the subcritical scenario characterised by the stability of parallel and
perpendicular orientations is favoured by softer substrates. In addition, the region char-
acterised by subcriticality (i) increases as k̂b (measuring the ratio of the cell response
along the direction perpendicular to the main cell orientation axis versus the latter)
decreases and (ii) increases as k̂θ (measuring the ratio of the cell response to shear
versus the one along the main cell orientation axis) increases.

Finally, we studied the effect of cell elongation, finding that the region of the
mechanical parameters characterised by a subcritical scenario decreases with cell
elongation. This means that oblique orientations with respect to the main stretching
direction are more easily mantained by elongated cells such as fibroblasts and smooth
muscle cells, than by rounder cells such as epithelial or endothelial cells.

We also showed that the r.h.s. of the ordinary differential Eq. (9) governing cell

reorientation presents a factor
k̂2s

(1 + k̂s)2
that leads to a considerable increase of the

reorganization time as the substrate softens. Specifically, this means that if the stiffness
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decreases by one order of magnitude (e.g., from about 1MPa for silicon elastomers
and polydimetylsiloxane (PDMS), to about 100 KPa of collagen gels, or even less),
we can expect the reorientation time to increase by two orders of magnitude (i.e., from
a couple of hours to more than a week). This practically implies that over very soft
substrates reorientation is not observed in the time of the experiment and is easily
hidden by random behaviours, as explained in Loy and Preziosi (2023)

As the discrete cell model is based on elastic-like elements, it is not able to describe
the dependence of cell behaviour on the frequency of the imposed deformation, i.e.,
the experimental fact that, roughly speaking, oscillations need to be fast enough (say,
higher than 0.1 Hz) to trigger cell reorientation. In order to do that, following what
done in Giverso et al. (2021), one should include viscoelastic effects relative to the
remodelling of focal ahesions and to the viscoelastic behaviour of the cytoskeleton.
Thismight also take into account of the behaviour of slip bonds and of the development
of catch bonds in response to the imposed traction. However, the modelling approach
proposed here can be properly generalised to include such effects by adding viscous
elements to the struts and to the torsional spring, possibly time dependent and stress
dependent, so that they become Maxwell-like elements. Actually, with respect to
Giverso et al. (2021), the modelling structure proposed here has the advantage to
allow to discriminate between the reaction of the cytoskeleton from the one due to
focal adhesions reorganization, here treated as a single structure. In a similar way, it
would be interesting to include the active response of the acto-myosin machinery to
the imposed deformation, once this effect is clarified in experiment.
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Calculation andminimization of the total energy stored by the system as a consequence
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Given the substrate deformation gradient F in Eq. (1), we have that

xSA = FXSA = (1 + ε)La cos� i + (1 − rε)La sin� j, (17)

xSB = FXSB = −(1 + ε)Lb sin� i + (1 − rε)Lb cos� j. (18)

Equations (17)–(18) are obtained recalling that, before the imposed external stress,

XSA = XA = La (cos� i + sin� j), (19)

XSB = XB = −Lb (sin� i + cos� j). (20)

Due to the elastic characteristics of the cell cytoskeleton, the end points of the elements
instead go to

xA = la cos(� − θa) i + la sin(� − θa)j, (21)

xB = −lb sin(� + θb) i + lb cos(� + θb)j. (22)

In the limit of small deformations, Eqs. (21)–(22) simplify to

xA ≈ [La cos� + ξa cos� + La sin� θa] i + [La sin� + ξa sin� − La cos� θa] j,
(23)

xB ≈ [−(Lb + ξb) sin� − Lb cos� θb] i + [(Lb + ξb) cos� − Lb sin� θb] j,
(24)

being la = La + ξa and lb = Lb + ξb. From Eqs. (21)–(22) and Eqs. (23)–(24), we
can then calculate

xSA − xA ≈ [(εLa − ξa) cos� − La sin� θa] i + [−(rεLa + ξa) sin� + La cos� θa] j,
(25)

xSB − xB ≈ [−(εLb − ξb) sin� + Lb cos� θb] i + [−(rεLb + ξb) cos� + Lb sin� θb] j,
(26)

so that

|xSA − xA|2 ≈ ε2L2
a(cos

2 � + r2 sin2 �) − 2εL2
a(1 + r) sin� cos�θa + L2

aθ
2
a +

− 2εLaξa(cos
2 � − r sin2 �) + ξ2a , (27)

|xSB − xB|2 ≈ ε2L2
b(sin

2 � + r2 cos2 �) − 2εL2
b(1 + r) sin� cos�θb + L2

bθ
2
b

+2εLbξb(r cos
2 � − sin2 �) + ξ2b . (28)

Putting Eqs. (27)–(28) in Eq. (2), we finally obtain Eq. (3).
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The equilibrium configuration of the cell achieved in such a first phase of the process
can be then identified by minimizing Utot, i.e., by solving the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Utot

∂ξa
= −kaξa − ks[ξa − εLa(cos2 � − r sin2 �)] = 0,

∂Utot

∂ξb
= −kbξb − ks[ξb + εLb(r cos2 � − sin2 �)] = 0,

∂Utot

∂θa
= −kθ (θa + θb) − ksL2

a[θa − ε(1 + r) sin� cos�] = 0,

∂Utot

∂θb
= −kθ (θa + θb) − ksL2

b[θb − ε(1 + r) sin� cos�] = 0,

(29)

which implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ̄a = εLaks
ka + ks

(cos2 � − r sin2 �),

ξ̄b = − εLaks
kb + ks

(r cos2 � − sin2 �),

θ̄ab := θ̄a + θ̄b = 2εks(
1
L2
a

+ 1
L2
b

)
kθ + ks

(1 + r) sin� cos�.

(30)
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