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ABSTRACT

This work presents a 3D quantum mechanics based model to address the physics at band structure crossing/anti-crossing points in full
band Monte Carlo (FBMC) simulations. The model solves the Krieger and Iafrate (KI) equations in real time using pre-computed coeffi-
cients at k-points spatially sampled within the first Brillouin zone. Solving the KI equations in real time makes this model applicable for all
electric fields, which enables its use in FBMC device simulations. In this work, a two-level refinement scheme is used to aggressively sample
regions in proximity to band crossings for accurate solutions to the KI equations and coarsely sample everywhere else to limit the number
of k-points used. The presented sampling method is demonstrated on the band structure of silicon but is effective for the band structure of
any semiconductor material. Next, the adaptation of the fully quantum KI model into the semi-classical FBMC method is discussed. Finally,
FBMC simulations of hole transport in 4H silicon carbide with and without the KI model are performed. Results along different crystallo-
graphic directions for a wide range of electric fields are compared to previously published simulation and experimental values.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0194536

I. INTRODUCTION

Monte Carlo is a powerful and established method for simu-
lating carrier transport in semiconductor materials. Its incorpora-
tion of the energy band structure makes it superior over other
conventional methods, such as drift-diffusion, for simulating high-
field effects in semiconductor materials and devices. For this
reason, full-band Monte Carlo (FBMC) has been extensively used
to study non-equilibrium carrier transport phenomena, such as
velocity-field characteristics and impact ionization coefficients, of
technologically significant and emerging semiconductor materials.
Furthermore, FBMC also relies upon to simulate the performance
of semiconductor devices operating in far from equilibrium condi-
tions, such as power devices, high-speed transistors operating in
the large signal regime, and avalanche photodiodes.

In the standard FBMC paradigm, carrier transport is treated
semi-classically, meaning carriers are represented as wavepackets
that are completely localized to an energy band. When accelerated
by an applied field, the average wavevector of a carrier is altered,
but the carrier remains localized to the same band. Thus, the stan-
dard semi-classical FBMC is only rigorously valid for simulating
carrier transport within a singular band. Despite not including
quantum mechanical effects, the standard FBMC transport model
has still demonstrated its effectiveness by accurately simulating
carrier transport properties for a wide variety of conventional semi-
conductors, especially those with cubic crystal structures.

However, for wide and ultra-wide bandgap semiconductors with
non-cubic crystal structures, which have many band crossings and
anti-crossings at high symmetry points, the standard semi-classical
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FBMC model is insufficient for simulating high-field transport.
Accurate simulations in these materials necessitate the integration
of additional models to account for quantum mechanical effects
associated with the crossing and anti-crossing points.1 Examples of
these crossing points in silicon and 4H silicon carbide (4H-SiC) are
shown in Fig. 1, depicting a carrier approaching the band crossing
point and tunneling into the neighboring bands. This process may
result in the carrier completely transitioning into a different band or
existing in multiple bands simultaneously in a mixed state, with
neither effect included in the standard FBMC transport model. Prior
Monte Carlo works on several important, non-cubic materials2–5

have demonstrated the importance of including these quantum
mechanical effects for high-field simulations to obtain results more
closely aligned with the experiment.

Previous works that incorporate simulated physics at band
crossings have used methods such as imposing continuous carrier
velocity in free flight,6 determining the amplitude probabilities
through an overlap test3,7 or solving the Krieger and Iafrate (KI)
equation.2,4,5,7–11 Since the KI equation produces the most physi-
cally correct results, it is the focus of this work. Prior FBMC works
that include KI4,5,7,10 were performed exclusively in 1D along a spe-
cific crystallographic direction or for a confined system such as a
nanowire. However, for accurate 3D device simulations of non-
cubic materials, a 3D method to solve the KI equations for any

arbitrary electric field strength and direction is required.
Furthermore, a 3D KI model would also simplify the process of
extracting carrier transport properties along any arbitrary crystallo-
graphic direction. Unfortunately, adapting the currently available
1D methods to 3D would require an impractical amount of
memory usage, which is explained in Secs II and III.

In this work, we present a general method to solve the KI
equations in 3D for any electric fields within our FBMC frame-
work.12 The 3D method incorporates an adaptive refinement
k-point sampling technique that is used to produce accurate
solutions of the KI equations while limiting the memory storage
requirements. The effectiveness of the method is demonstrated
on anti-crossing points in silicon, which have been the focus of
previous studies.9,10 The method is then integrated into our
FBMC simulator, where the KI equations are solved along a car-
rier’s drift path in reciprocal space, and also includes the devel-
opment of mixed-state carrier drift and scatter models, while
maintaining as much of the conventional FBMC paradigm as
possible. The KI-integrated FBMC simulator is used to simulate
the velocity-field characteristics and impact ionization coeffi-
cients for 4H-SiC along different crystallographic directions. The
results are validated against available experimental data and also
compared with previously computed FBMC results. Since the
results from the previous FBMC simulations were primarily
computed using a different and less physically accurate model
for band crossings, with only a few datapoints computed using a
KI model, the results of this work can also be considered an
updated calculation of hole velocity-field curves and impact ion-
ization coefficients of 4H-SiC.

All k-vector values given in this work are normalized by 2π=a,
where a is the lattice constant of the material.

II. METHODOLOGY

A. Mathematical model

The most widely used equation for determining the time-
dependent band amplitude probability coefficients, Cn(t), of charge
carriers traversing through band crossings was originally derived by
Krieger and Iafrate (KI)8 and is presented below:

i�h
@Cn(t)
@t

¼ En(k(t))Cn(t)þ qF �
X
m=n

Xm,n(k(t))Cm(t), (1)

where En is the energy eigenvalue of the nth band, k ¼ (kx , ky , kz)
is the reciprocal-space position, q is the electronic charge, and F ¼
(Fx , Fy , Fz) is the electric field vector. The probability of the carrier
being in band n is equal to jCn(t)j2. The off diagonal matrix coeffi-
cients Xm,n(k) ¼ (Xm,n(k), Ym,n(k), Zm,n(k)) are computed using the
formula

Xm,n(k) ¼ �i
ð
Ω
u*n(k, r)∇k um(k, r) dr

3, (2)

where the term un(k, r) is the periodic part of the Bloch wavefunc-
tion at k for band n, with r ¼ (x, y, z) being the real-space position.

FIG. 1. Band crossings of the valence bands of 4H-SiC (top) and the conduc-
tion bands of Si (bottom) are plotted along the Γ!A and Γ!X axes, respec-
tively. The close-ups of the circled crossings are shown in the right panels. The
dotted arrows indicate a realistic transition for carriers through the crossing
point.
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In matrix form, Eq. (1) becomes

i�h

_C1
_C2

� � �
_CN

2
664

3
775 ¼

E1 qF�X1,2 � � � qF�X1,N

qF�X2,1 E2 � � � qF�X2,N

� � � � � � � � � � � �
qF�XN ,1 qF�XN ,2 � � � EN

2
664

3
775

C1

C2

� � �
CN

2
664

3
775, (3)

where _Cn is shorthand for @Cn(t)=@t and N is the total number of
bands.

The values of Xm,n(k) can be evaluated in two ways: with a
finite difference approach2,9,10 or with an approach originally
derived from perturbation theory.11 From previous works, the more
widely used method has been the finite difference approach, which
is more straightforward and requires computing the overlap inte-
gral between wavefunctions at adjacent k-points. For example, to
calculate Zm,n(k), the term ∇k um(k, r) from Eq. (2) is replaced
with (um(k þ dkz , r)� um(k, r))=dkz , allowing Eq. (2) to be rewrit-
ten as

Zm,n(k) ¼ �i
ð
Ω
u*n(k, r)

(um(k þ dkz , r)� um(k, r))
dkz

¼ �i
Ok,kþdz ,m,n � Ok,k,m,n

dkz

¼ �i
Ok,kþdz ,m,n

dkz
, (4)

where Ok,k0 ,m,n is the overlap integral hun(k, r)jum(k0, r)i, whose
magnitude has a maximum value of one. Although this method is
both simple and effective for 1D implementations, it is non-local
and is only accurate with a very small k-point spacing, Δk, as
shown in Fig. 2. Previous works have noted that a Δk of 2� 10�4

(Ref. 9) or 4� 10�4 (Ref. 10), normalized by 2π=a, is required to
get consistent results. However, these Δk values are impractical for
sampling the entire 3D first Brillouin zone (FBZ) or its irreducible
wedge (IW) as it would result in approximately 1010 k-points.

For the general implementation of the KI equations into 3D
Monte Carlo simulations, Xm,n(k) must be evaluated using a
method that is invariant to Δk to restrict to a more manageable
number of required k-points. This can be achieved using the
approach originally derived from the perturbation theory,11 trans-
forming Eq. (2) into

Xm,n(k) ¼ i
�h
m0

hum(k, r) j p j un(k, r)i
Em(k)� En(k)

, (5)

where p ¼ (�i�h @
@x , �i�h @

@y , �i�h @
@z ) is the momentum operator and

m0 is the electron mass.
For this work, wavefunctions obtained from band-structure

calculations through methods such as empirical pseudopotential
(EPM) or Density Functional Theory (DFT) are represented as a
sum of plane waves, as shown below:

un(k, r) ¼ eik�r
X

h
An,k(Gh) e

iGh�r , (6)

where An,k(Gh) is the complex basis of the plane wave component

of the wavefunction at k and in band, n, for a corresponding
G-vector, Gh ¼ (Gh,x , Gh,y , Gh,z). The value of Zm,n(k) using the z
component of the momentum operator can be calculated as

um(k, r)j � i�h
@

@z
jun(k, r)

� �
¼

X
h
A*
m,k(Gh)Gh,z An,k(Gh): (7)

The values of jXm,n(k)j near the X-point in silicon calculated using
the perturbation theory method [Eq. (5)] are compared to those
calculated using the finite difference method [Eq. (4)] in Fig. 2.
The peak value of jXm,n(k)j occurs where the energy separation
between the first and second conduction bands of silicon is small-
est. This comparison demonstrates that obtaining accurate values of
jXm,n(k)j using the finite difference method requires sampling with
a small Δk but can be achieved with a more relaxed Δk using the
perturbation theory method.

Previous works have shown that the arbitrary phase of the
wavefunctions obtained by band structure solvers, such as EPM
and DFT, creates a discontinuities in the phase of Xm,n(k)

11 and
results in erroneous solutions of the KI equation [Eq. (1)]. The
method outlined in Ref. 11, which has been used in prior FBMC
works,4,5 aligns all wavefunction phases to a reference wavefunction
in order to enforce phase continuity of Xm,n(k), but has only been
used in 1D. In this work, we find that this approach is inconsistent
when used for the full 3D IW, with differing solutions to the KI
equation depending on the location of the reference k-point.
Instead, we find that simply using purely real values of Xm,n(k) and
preserving the skew symmetry of the matrix in Eq. (3), which can
be accomplished by replacing hum(k, r) j p j un(k, r)i from Eq. (5)

FIG. 2. Comparison of the calculated magnitudes jX2,1(k)j between the finite
difference overlap integral method (ovp) and the perturbation theory method
(upu) with different Δk. The band structure of silicon was used, with the slice
performed along the kx axis from 0:99 � kx � 1:00, normalized by 2π=a.
(ky , kz) is at (0:005, 0:005).
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with �i j hum(k, r) j p j un(k, r)i j, results in consistent and well-
behaved solutions to the KI equations.

Finally, with the values Xm,n(k) computed, the probability
coefficients Cn(t) are obtained by solving Eq. (1) with a fourth
order Runge–Kutta (RK4) scheme.

B. Sampling in the 3D Brillouin zone

The general 3D treatment for band crossings requires solving
the KI equation [Eq. (1)] along an arbitrary k-vector with an arbi-
trary electric field. Regions with strong band interaction correspond
to the highest values of jXm,n(k)j, with the peak of jXm,n(k)j located
where the energy separation between interacting bands is the small-
est. In these regions, jXm,n(k)j must be finely sampled to obtain
accurate solutions to the KI equation. In this section, the first and
second conduction bands of silicon are used to demonstrate the
sampling methodology.

Figure 3 exemplifies how the Δk affects the RK4 solution
of the KI equations along 0:99 , kx , 1:00 near the X-point of
the silicon band structure for the interaction between the first
and second conduction bands. In the first case, a fixed Δk of
1:67� 10�3 is used for the entire k range, with values of jXm,n(k)j in
between sampled k-points exponentially interpolated, resulting
in inaccurate values of Cn. However, by increasing the sampling only
around the peak of jXm,n(k)j, with Δk ¼ 5:56� 10�4 for
0:9983 , kx , 1:00, as shown in the second case, the resulting

accuracy of Cn can be significantly improved. Also important is the
behavior for 0:99 , kx , 0:995, where the small values of jXm,n(k)j
does not significantly affect the amplitude probabilities. This means
that the Δk far away band crossing points can be further relaxed,
reducing the total number of k-points while retaining accuracy.

To minimize the number of k-points used, a two-level adap-
tive refinement meshing technique is used so that the smallest Δk is
used in regions with the strongest band-to-band interaction. Using
the IW reduces the required k-points by 48 times for zincblende
structures, and 24 times for wurtzite structures, but requires addi-
tional rotation operations in its implementation in Monte Carlo.
The initial sampling uses a uniform mesh to detect the regions
with strong band interactions. The first level (L1) of mesh refine-
ment is then applied only in regions with band crossings to
increase the sampling in those regions. A second level (L2) mesh
refinement is then subsequently applied to the L1 refinements to
further enhance the sampling. The L2 refinement is implemented
so that a Δk on the order of 10�4 can be achieved with a much
fewer number of k-points than using only a single level of refine-
ment. With this methodology, the normalized Δk within the same
mesh can range from 10�4 to 10�2, which results in a number of
k-points on the order of 106. Although this many k-points is rela-
tively computationally expensive for standard FBMC simulations, it
is well within the capabilities of modern-day computers, and is
drastically fewer than the unattainable 1010 k-points required for a
fixed Δk of 2� 10�4 or 4� 10�4 used in the prior 1D methods.

FIG. 3. Comparison of the exact and interpolated (interp) solutions of the KI equations with different sampling of Xm,n(k). The top left figure shows jXmnj sampled with a
fixed Δk spacing of 1:67�10�3 for 0:99 , kx , 1. The top right figure shows a fixed Δk spacing of 1:67�10�3 for 0:99 , kx , 0:9983, and a fixed spacing of
5:56�10�4 for for 0:9983 , kx , 1. jXmnj in between sampled k-points are exponentially interpolated. The resulting solutions of the KI equations are correspondingly
shown in the bottom row. All k values are normalized by 2π=a.
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To demonstrate the adaptive refinement method on silicon, the
IW of the zincblende reciprocal space is uniformly sampled with a
Δk of 1� 10�2 requiring 96 876 k-points and 87 125 cubic elements.
Within each cubic element, potential band crossings are detected by
computing the overlap integrals Om,n,k f ,ki ¼ hun(ki, r)jum(k j, r)i for
all n=m and i=j, where n and m are the band indices, and ki and
k j are the k-point nodes of each cubic element. The max value of
this calculation, Omax, correlates with the probability of carriers
experiencing interband transitions somewhere within the cubic
element. Cubic elements with high Omax are subsequently refined
and subdivided into smaller cubic elements to form the L1 refine-
ments, following the refinement rules presented in Table I. For
the first two conduction bands of silicon, the L1 refinements
require an additional 151 928 k-points and 79 836 cubic elements.

The next step is to create the L2 refinements, following the
same set of rules as before, but applied onto the L1 refinements.
For this step, only the cubic elements with Omax . 0:75 are further
refined to limit the number of additional k-points. For the example

case, this step adds 545 875 k-points and 277 599 cubic elements.
In total, the mesh used to map the values of Xm,n(k) for the interac-
tion between first and second conduction bands of silicon required
794 679 k-points and 444 560 cubic elements, with a normalized Δk
ranging from 3:33�10�4 to 1�10�2. The calculated values of Omax

on the kz ¼ 0 plane of the IW for silicon and the resulting refined
cubic mesh with both L1 and L2 refinements are shown in Fig. 4.

Finally, the values of Xm,n(k) are computed at all sampled
k-points, which includes the uniform mesh, L1 refinements, and L2
refinements, with the results shown in Fig. 5. In total, the required
memory to store the Xm,n(k) values is calculated to be
Nb�Nb�Nk�3�8 bytes, where Nb is the number of bands included
and Nk is the number of k-points. The factor of 3 accounts for the
storage of Xm,n(k), Ym,n(k), and Zm,n(k) values, and the factor of 8
accounts for the byte size of double-precision floating-point data.

C. Integration into full-band Monte Carlo

This section discusses how the 3D KI model is integrated into
FBMC simulations. Prior implementations, which were primarily
used for calculation of bulk transport properties, used a lookup
table approach, requiring a different lookup table for each different
electric field strength and direction.4,5,7 In this work, the KI equa-
tions are solved in real time with RK4 during the FBMC simula-
tions using a 3D mesh of Xm,n(k) values as discussed in Sec. II B.

Values of Xm,n(k) are determined by first reducing an arbitrary
k-vector in the FBZ to its equivalent position in the IW with the
appropriate rotation matrix, RFBZ!IW and localizing the cubic
element with the highest level of refinement. Interpolation is per-
formed using an exponential first-order serendipity interpolation
scheme15 using the values of Xm,n(k) computed at the eight corner

TABLE I. Adaptive refinement methodology used for silicon. Δk-partition refers to
how each side of the cubic element is subdivided for refinement, resulting in “num
k-cubes” number of additional cubic elements, and “num k-points” additional number
of k-points.

Omax Δk-partition Num cubes Num k-points

>0.999,≤ 1.00 1/6 216 343
>0.90,≤ 0.999 1/5 125 216
>0.75,≤ 0.90 1/4 64 125
>0.60,≤ 0.75 1/3 27 64
>0.30,≤ 0.60 1/2 8 27

FIG. 4. The computed values of Omax for the first conduction band of silicon along the z ¼ 0 plane of the IW (left) and the closeup of the mesh near the U-point (right)
are shown. High values of Omax correspond to where the first conduction band interacts with the second conduction band. L1 and L2 mesh refinements are only placed in
regions with high Omax values. Images were generated using VisIt.
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nodes of each cubic element. For a carrier with k-vector rotated
into the IW with RFBZ!IW , the electric field acting on that carrier
must also be rotated using the same rotation matrix.

FBMC simulations are discretized into drift and scatter cycles,
where a carrier ballistically drifts for a finite drift time, Δtdr , then
scatters depending on the scattering rate. The KI equations are
solved during the drift cycle of an FBMC simulation. For a carrier
in an electric field, F, its displacement vector in normalized k-space
is computed as Δkdr ¼ +q=�h � F � Δtdr � 2π=a. The KI equations
are solved using RK4 along this vector, with an initial k-vector, k0,
and final k-vector, k f ¼ k0 þ Δkdr .

For accurate solutions using RK4, the selection of the time
step, Δth, is crucial. In this work, the value of Δth used is
2� 10�17 s, which we observe provides a good trade-off between
the accuracy of the solution and its computational cost. For high
electric fields, it is important to also consider limiting the value of
jΔkhj, defined as jΔkhj ¼ q=�h � jFj � Δth � 2π=a, in order to maintain
accuracy. In this work, the max value of jΔkhj is imposed as half
the edge length of the localized cubic element, with Δth reduced
accordingly where necessary. With the adaptively refined mesh,
limiting jΔkhj to half the cubic element edge length naturally
results in a smaller jΔkhj in regions with the highest band-to-band
interaction. Finally, the RK4 is solved in Nh ¼ Δtdr=Δth number of
steps, with each RK4 Δkh set as Δkh ¼ Δkdr=Nh. Examples compar-
ing the exact and the FBMC-implemented solutions of the KI equa-
tions using this method for varying strength of the band
interactions using exact and FBMC-interpolated values of jX2,1(k)j,
respectively, are provided in Fig. 6. The same methodology is
applied to the simulations of 4H-SiC in Sec. III.

After solving the KI equations, the carriers’ amplitude probability
coefficients, Cn, are used to determine its energy and velocity. At any
given time, the probability of a carrier being in band n is determined
by jCnj2. For carriers in a mixed state, its instantaneous energy and
velocity are computed by randomly selecting the band of the carrier
using a weighted probability according to jCnj2. For a carrier deter-
mined to be in band m, its energy and velocity are Em(k) and
1=�h (@Em=@k), respectively. Finally, the values of Cn are reset only
after a successful scattering event. For a carrier determined to be in
band m after scattering, Cm is set to 1 and Cn is set to 0 for m=n.

III. RESULTS AND DISCUSSIONS

The methodology presented in this work is applied to perform
calculations of the velocity, energy, and impact ionization

coefficients of holes in 4H-SiC. Using the 12 highest valence bands,
Xmn(k) are computed at the nodes for the adaptively refined mesh
and are used to solve the KI equations for all the simulations at dif-
ferent electric fields and crystallographic directions presented in
this section. The results are compared with prior FBMC and exper-
imental data.

To account for the band crossings, the prior works used
overlap tests (ovp) between adjacent k-points to determine the final
amplitude probabilities, with a normalized Δk of 0.02 in the kx , ky ,
and kz directions.

3,7 For example, given a simulated carrier starting
in band n near ki, its probability of being in band m near k f after
the band crossing is Om,n,k f ,ki for all bands, m. However, computing
Om,n,k f ,ki using a coarse Δk leads in inaccurate results, as discussed
in Sec. II and may lead to different results depending on the value

FIG. 5. Calculated values of jX2,1j, jY2,1j, and jZ2,1j in the IW of silicon. The high values seen in X2,1 and Z2,1 along Γ!U indicate band crossings for carriers traversing
in the kx and kz directions, respectively. The value of jY2,1j along Γ!U is low since the bands are degenerate in the ky direction. Images were generated using VisIt.

13

FIG. 6. Comparing the exact and FBMC solutions to the KI equations for the
band crossing between the first and second conduction bands of silicon near
the X point, with 0:99 , kx , 1:00. The (ky , kz) positions are (0:005, 0:005)
(top), and (0:025, 0:015) (bottom), each having a different strength of their
band-to-band interaction. Values computed for jX2,1j use an exponential seren-
dipity interpolation scheme using the corner nodes of the cubic elements of the
mesh.
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of Δk used. Regardless, their results showed that band crossings
must be accounted for in order to obtain accurate simulations of
hole transport at high fields, especially in the Γ!A direction.
In addition to the overlap test, carriers exiting the FBZ in the kz
direction which are in the first and second valence bands are auto-
matically transitioned to the third and fourth valence bands, respec-
tively, to account for the band crossing near the A point. These
automatic transitions were also implemented for higher indexed
bands as well, where appropriate. Reference 7 also provides limited
number of simulated data points for hole velocities, energies, and
impact ionization coefficients using band amplitude probabilities
obtained by solving the KI equations using a lookup table approach.
Their results using the KI model showed significant differences to
their results using the ovp method, with the KI model achieving
impact ionization coefficients more closely aligned with the available
experimental data. However, their method required a different
lookup table for each electric field strength and direction, which
limits its applicability for device simulations.

In this work, the simulations for 4H-SiC are performed at
300 K using EPM-generated energies and wavefunctions mapped in
the entire FBZ. Full band scattering rates for acoustic and optical
phonon modes are computed using previously established methods.16

Following a standard Monte Carlo approach, three acoustic modes

are represented by a single effective acoustic mode, with a dispersion
of the longitudinal acoustic (LA) mode. The 21 optical modes are
represented one effective non-polar transverse optical (TO) mode,
and one effective longitudinal optical (LO) mode, both using a
constant energy dispersion approximation, with the energies
given in Ref. 3. The calculated k-dependent rates are converted to
energy-dependent rates for use in the FBMC simulations. The LA
and TO effective modes are scaled by a deformation potential to
approach the values of ab initio DFT computed rates, with the
same approach used in Ref. 17. Finally, the 12 highest valence
bands are used in the simulation, with the mesh of Xm,n(k) con-
structed for each band-to-band interaction using the previously
described methods.

The simulated velocities and energies in the Γ!A and Γ!M
crystallographic directions for electric fields ranging from 1� 103

to 4� 106 V cm�1 are shown in Fig. 7, with all band crossings
treated using the same mesh of Xm,n(k). Furthermore, all band-
to-band interactions are treated the same, with no special consider-
ations given to band crossings at zone edges as seen in the prior
works. First, it is important to note that carrier energies and veloci-
ties in both crystallographic directions below a field of 100 kV cm�1

do not see differences with and without the KI model, suggesting
that as expected, carriers do not transition to other bands at low

FIG. 7. The 12 highest energy valence bands of 4H-SiC in the Γ!M (h1100i) and Γ!A (h0001i) directions are shown in the far left panel. In the right panels, carrier
velocities (top row) and carrier energies (bottom row) vs electric field for electric fields in the Γ!A (left column) and Γ!M (right column) directions. The simulations are
performed with and without the inclusion of KI. Prior FBMC simulations, (a) from Ref. 3 and (b) from Ref. 7, used an overlap test (ovp) to account for band crossings.
Mobility estimate, μh � jFj use hole mobility values, (c) from Ref. 14. Black lines and symbols depict the results from this work.
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fields. The effects of KI model is most prominent in the Γ!A
direction, with the average hole energy increasing from 0.1 to 1 eV
at 4 MV cm�1 when KI is included, and showing agreement with
the prior FBMC simulation using KI. Figure 8 presents the simu-
lated hole band occupation in the Γ!A direction, showing that the
differences in energy and velocity at high fields are directly attrib-
uted to carriers being able to access higher indexed bands with KI.
Without KI, carriers in the first and second valence bands are
rarely scattered to the higher indexed bands up to 4MV cm�1.

In the Γ!M direction, the effects of the KI model are less
pronounced but still significant, with the carrier energy at
4MV cm�1 increasing from 1 to 1.8 eV with KI. A significant effect
on the simulated velocities is also observed, with the velocities
decreasing from 7�106 to 3� 106 cm s�1 with KI. The lower simu-
lated velocity with KI is in contrast to the simulated velocities in
the prior FBMC works, which saw negligible changes in their simu-
lated velocities with and without using the ovp method. This dis-
crepancy can be explained by the ovp method not allowing holes to
access higher bands, which can be deduced from the energies in
the prior simulations with and without ovp. However, since a cross-
ing between the second and third valence bands exists at 0.06 eV
below the top of the valence band in the Γ!M direction, as seen
in Fig. 7, the carrier energy should still increase significantly when
band crossing physics is included. Thus, the differences between
the velocities between the KI and ovp model are likely attributed to
a more refined treatment of band crossings using the KI model.

Finally, the calculated impact ionization coefficients in the
Γ!A direction, shown in Fig. 9, are also compared to previously
calculated results and experimental data. The energy-dependent
ionization rates, Rii(E), following the Keldysh formulation,18 are the
same as the ones previously used7 and is given by

Rii(E) ¼ 6�1014 � E�3:23
3:23

� �4
s�1 E . 3:23 eV,

0 Otherwise:

�
(8)

Since ionizations in 4H-SiC can only occur for carriers above its
bandgap energy of 3.23 eV, only carriers in the upper tail of the
energy distribution can contribute to the ionization coefficients for
fields up to 4MV cm�1. The coefficients calculated in this work
show agreement with prior experimental results,19–22 suggesting that
the KI model also properly accounts for the highest energy carriers.
Furthermore, the KI model in this work shows improvement over

FIG. 8. Valence band occupation of holes at 4 MV cm�1 for simulations in the Γ!A (h0001i) crystallographic direction without KI (left) and with KI (right). KI allows carri-
ers to tunnel into higher indexed bands, which change their saturation velocities and energies. Valence band 1 refers to the top valence band.

FIG. 9. Ionization coefficients in the Γ!A (h0001i) direction. The values com-
puted using the KI model of this work are compared with previously performed
simulations and experimental data. The experimental data are obtained from (c)
Ref. 19, (d) Ref. 20, (e) Ref. 21, and (f ) Ref. 22. The prior FBMC ionization
coefficient values are from (a) Ref. 3 and (b) Ref. 7. The calculated ionization
coefficients of this work fall in between experimental values. Simulations without
KI produced no ionizations.
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previously calculated results using the ovp method, and an even
more dramatic difference vs simulations in this work that do not
account for band crossings, which produced no ionizations at all.

IV. CONCLUSIONS

We have presented a method for a fully quantum mechanics
based treatment of band crossings in 3D within the FBMC frame-
work. The method uses a local perturbation theory approach to cal-
culate the necessary coefficients, Xmn(k), which are used to solve
the KI equations. In order to reduce the memory and storage used
in the simulations while maintaining the accuracy of the solutions
to the KI equations, an adaptive meshing technique is used for the
sampling of Xmn(k). First, band crossing and anti-crossing points
are automatically detected within the 3D Brillouin zone using
overlap tests between adjacent k-points. Next, enhanced sampling
is placed in proximity to the detected band crossing and anti-
crossing points using a two-level refinement scheme. The resulting
mesh consists of a coarse Δk of 1� 10�2 away from band crossings,
and a fine Δk of 3� 10�4 in proximity to band crossings, both nor-
malized by 2π=a. With the KI coefficients jXmnj, jYmnj, and jZmnj
calculated at every k-point, the KI equation, Eq. (1) can be solved
for any electric field, F.

This method is tested by computing the hole velocities in
4H-SiC along different crystallographic directions for a wide range
of electric field strengths. Hole transport in the Γ!A direction is
particularly impacted by band crossings. The calculated hole veloci-
ties and energies using the 3D KI model show agreement with previ-
ously computed and experimental values for all simulated electric
fields. The calculated impact ionization coefficients using the KI
model also show agreement with experimental values, while simula-
tions without the KI model produced no ionizations at all. The dif-
ferences in the computed parameters are directly attributed to the
carrier band occupation, with carriers being able to reach higher
indexed bands when the KI model is included in the simulations.

With the ability to account for band crossings and anti-
crossings in any arbitrary k direction and for arbitrary electric field
strengths, the capabilities of our FBMC simulator are expanded to
include accurate device simulations of semiconductors with many
band crossings and anti-crossing points.
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