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Abstract1

Starting from a reformulation of the mass balance law based on the Bilby-Kröner-Lee (BKL-)2

decomposition of the deformation gradient tensor, we study some peculiar mechanical aspects3

of growth in a monophasic continuum by regarding the reformulated mass balance equation as4

a non-holonomic and rheonomic constraint. Such constraint restricts the admissible rates of the5

growth tensor, i.e., one of the two factors of the BKL-decomposition, to comply with a growth6

law provided phenomenologically. For our purposes, we put the constraint in Pfaffian form, and7

treat time as a fictitious, additional Lagrangian parameter, subjected to the condition that its8

rate must be unitary. Then, by taking some suggestions from the literature, we assume the9

existence of generalized forces conjugated with the virtual variations of the growth tensor, and10

we write a constrained version of the Principle of Virtual Work (PVW) that leads to a mixed11

boundary value problem whose unknowns are the motion, the growth tensor, and the Lagrange12

multipliers of the considered theory. This allows to extrapolate a physical interpretation of the13

role that the growth-conjugated forces play on the components of the growth tensor, especially14

on the distortional ones, i.e., those that are not directly related to the variation of mass of15

the body. The core message of our work is conceptual: we show that the growth laws usually16

encountered in the literature, which are prescribed phenomenologically, but may be difficult to17

justify theoretically, can be put in the framework of the Principle of Virtual Work by regarding18

them as constraints. Moreover, we retrieve more particularized frameworks of growth available19

in the literature, while being able to switch to a theory of growth of grade one, such as a Cahn-20

Hilliard model of growth.21

22

Keywords23
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1 Introduction26

In Mechanics, the Principle of Virtual Work (PVW)1 constitutes a well-established paradigmatic27

method for determining the conditions of (dynamic) equilibrium for systems with finite number of28

∗Corresponding author
1In this work, we refer to the Principle of Virtual Work (PVW) in a generalized sense, thereby including also

D’Alembert’s Principle. In Continuum Mechanics, this can be done by counting inertial forces among the body forces
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degrees of freedom (see e.g. [87, 14, 17, 47]). Even in the presence of holonomic constraints, be they29

rheonomic (i.e., explicitly time-dependent) or not, or of non-holonomic and scleronomic (i.e., not30

explicitly dependent on time) constraints, the Lagrange multiplier method makes the constrained31

version of the PVW a straightforward generalization of the case in which such constraints are absent32

[87]. However, to the best of our knowledge, the formulation of the PVW becomes less obvious33

when the considered constraints are non-holonomic and rheonomic, although constraints of this34

type are the focus of several studies [106, 92, 121, 95, 104, 91], especially after the formulation of35

the so-called vakonomic dynamics due to Kozlov [82, 83, 84, 85].36

In Continuum Mechanics, the PVW has a rather long history, too (see e.g. [52]), and, as reported37

by Germain [53], it has been employed in an increasingly consistent manner for determining the38

balance of forces at the basis of the continuum theories developed through the years. By virtue39

of the intrinsic elegance of its formulation, which has its origin in the concept of duality between40

kinematics and dynamics, the PVW puts naturally Mechanics in the framework of Differential41

Geometry, as suggested by Epstein and Segev [42], Marsden and Hughes [98], and many other42

authors.43

In addition to the problems involving “non-classical” continua, such as beams and plates [33]44

modeled after Cosserat media [29], materials with microstructure [53, 103, 119, 21], micromorphic45

and micropolar media [60, 43], or multipolar media [61], and generalized continua [34], the PVW46

has been used extensively also in the context of the mechanics of inelastic phenomena, such as47

standard and strain gradient plasticity [32, 75], where it served as a point of departure for re-48

interpreting the theories proposed, for example, by Aifantis [3, 4], or for developing new theories49

[71, 72, 73], and performing studies based on such theories [13, 69].50

In some of the above referenced works (see e.g. [71, 73]), the theory is accompanied by con-51

straints imposed on the tensor field that describes the plastic distortions, which are indeed assumed52

to be isochoric, and associated with null plastic spin. In this respect, the elastoplasticity developed53

by Gurtin and Anand [71, 73] is only one example of continuum theories with internal constraints,54

i.e., constraints that, rather than being expressed through contact conditions between bodies, or55

through Dirichlet boundary conditions on one or more kinematic descriptors of a given body, restrict56

the admissibility of such descriptors in the internal points of the body itself. In fact, many other57

examples of internal constraints may be cited, which can be either holonomic or non-holonomic,58

and some of those have been reviewed by Capriz and Podio Guidugli [22] for “oriented materials”,59

and by Batra [18] and Carlson et al. [23] for thermo-elasticity and hyperelasticity, respectively.60

In our opinion, it is important to emphasize that, in those theories mentioned above, in which61

the PVW is used to study materials with microstructure, the PVW is formulated by extending62

the kinematics of the “classical” continua2 so as to include the structural degrees of freedom of63

per unit volume [75].
2By “classical” continua, we mean continua that do not possess an active microstructure. For a continuum of

this type, the microstructure, if at all considered, evolves passively under the action of either kinematic or dynamic
entities, such as the deformation gradient tensor or Cauchy stress tensor, respectively, that are inherent to changes
of configuration of the continuum under study. However, no specific micro-structural descriptor is introduced, be
it viewed as an internal variable or as a representation of a structural degree of freedom. For example, fiber-
reinforced materials can be studied as “classical” continua when the evolution of their microstructure, consisting
in a reorientation of the fibers, is assumed to be a passive consequence of their deformation (see e.g. [44, 118]
and the references therein). On the other hand, they can also be modeled as non-classical materials, when their
microstructure is assumed to be active. In this case, the reorientation of the fibers is a dynamic process, coupled with
the deformation, but virtually independent of it, that represents the manifestation of one or more micro-structural
degrees of freedom [107]. One of these can be, for instance, the mean angle of the probability density distribution
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the materials under study. Indeed, whereas the kinematics of a classical continuum is limited to64

describe its motion in the three-dimensional Euclidean space, the extended kinematics describes65

also the evolution of the microstructure of the continuum itself. In fact, this is achieved through the66

introduction, for a given body, of suitable kinematic descriptors, which, along with their variations,67

are virtually independent of the changes of shape of the body, and only have to be compatible with68

the internal constraints that are possibly present.69

The concept of extended kinematics is at the basis also of the theories of plasticity proposed70

by Cermelli et al. [24], and Gurtin and Anand [71, 73], in which the Bilby-Kröner-Lee (BKL) de-71

composition of the deformation gradient tensor is introduced, and the factor of such decomposition72

termed tensor of plastic distortions is taken as the descriptor of the structural changes that, in73

a body, are brought about by plasticity. In particular, Cermelli et al. [24] define stress-like gen-74

eralized forces, which they call “couple densities”3, and study their balance under the constraint75

of isochoric plastic distortions. Moreover, in the investigation of the dissipation inequality, they76

compute the power that the “couple densities” produce on the rate of the tensor of plastic distor-77

tions. In these respects, our approach has some similarities with the works by Cermelli et al. [24],78

and Fried and Sellers [50], although, as discussed in detail below, our results are found within the79

context of growth, and following a procedure explicitly based on a constrained version of the PVW80

for the case of non-holonomic and rheonomic constraints, and on the use of the Lagrange multiplier81

technique.82

Within a line of thought similar to the one followed by Cermelli et al. [24], the idea of the83

extended kinematics summarized above was adopted by DiCarlo and Quiligotti [38] in the context84

of Biomechanics for addressing growth and remodeling. These processes are both anelastic, and85

consist of the variation of mass and change of material properties of biological tissues [117] or cellular86

complexes [49, 48, 110, 57, 35], respectively. In fact, in several biologically relevant situations, both87

growth and remodeling are described by having recourse to the BKL decomposition [115], or to88

similar decompositions (see e.g. [39]), and the factor of the decomposition employed that accounts89

for the anelastic distortions accompanying growth or remodeling is sometimes referred to as growth90

tensor or remodeling tensor. This tensor, thus, replaces the tensor of plastic distortions encountered91

in elastoplasticity. Yet, a fundamental difference exists between plasticity and remodeling, on92

the one side, and growth, on the other side. This difference is due to the fact that, whereas in93

elastoplasticity and remodeling the tensor of inelastic distortions is often assumed to be isochoric94

[116, 111], the growth tensor is required to comply with the mass balance law in the following95

sense: the trace of a suitably defined rate of the growth tensor can be set equal to the normalized96

source/sink of mass describing growth (see e.g. [41, 8, 97, 96]). The relation obtained this way97

between the source/sink of mass and the growth tensor can be interpreted in different ways. In98

particular, if the source/sink of mass is supplied from the outset, e.g. phenomenologically [8, 10,99

100, 58], the relation in question amounts to translating the mass balance law into a non-holonomic100

and rheonomic constraint on the growth tensor.101

The just given interpretation of the mass balance constitutes the core of our present work. To102

expand this idea, we first have to review some crucial points of the derivation outlined by DiCarlo103

[16, 64, 67, 63, 31] that describes the orientation of the fibers in composite materials with statistical fiber distributions
(see e.g. [88, 45, 93, 78]and the references therein.)

3A list of works that introduce generalized forces similar to the “couple densities” [24] and study the balance laws
associated with them can be found in the work by Cermelli et al. [24], where these laws are called “ancillary”, and
in the work by Fried and Sellers [50].
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and Quiligotti [38], who base their approach to the mechanics of growth on the PVW. For their104

purposes, indeed, they regard the growth tensor as the basic descriptor of the growth kinematics,105

introduce the generalized virtual velocity associated with it, define a set of generalized forces dual to106

the virtual velocity of the growth tensor, and obtain the balance of these forces as a consequence of107

the localization of the integral equation expressing the PVW. We remark, however, that, although108

DiCarlo and Quiligotti [38] speak of growth (and remodeling) in their paper, they do not mention109

the mass balance law, nor do they discuss any a priori condition that the growth tensor should110

fulfill, at least not explicitly. A review of their approach and its connection with the one presented111

hereafter is the subject of a forthcoming work of ours.112

Compared with the formulation summarized above, and with others that have come afterwards113

(see e.g. [107]), we believe that the approach that we are proposing is novel because it treats114

the mass balance law as a non-holonomic and rheonomic constraint on the growth tensor, and115

provides a constrained version of the PVW relying on the Lagrange multiplier technique. More116

specifically, by mimicking the PVW employed in computational mechanics for systems subjected to117

internal constraints, as is the case, e.g., for incompressibility [79, 20], and adapting the procedure118

to the non-holonomic and rheonomic case, we append the constraint on the growth tensor to the119

“standard version” of the PVW [38] in order to determine the full set of equations that govern the120

dynamics of the growing body under investigation. To the best of our knowledge, this procedure121

is not standard for the case of non-holonomic and rheonomic constraints and, indeed, it has been122

obtained by adapting some results put forward by Nadile [106] and Llibre et al. [95] in completely123

different frameworks.124

Although being conceived for the mechanics of volumetric growth, our results are meant to125

apply to all those situations in which the kinematic variables describing the structural changes of126

a body must satisfy one or more a priori conditions, dictated, for example, by the phenomenology127

under study.128

In our work, we also retrieve some results obtained by Gurtin [74], who provides a rational129

derivation of the Cahn-Hilliard model for mass transport, and we reinterpret them in light of the130

constrained version of the PVW within the context of growth mechanics. Our purpose, in this131

case, is to show that, framed as we do in our approach, the formulation developed by Gurtin [74]132

can be regarded as a “precursor” of a growth problem (although his paper, in fact, was published133

two years later than the paper by Rodriguez et al. [115]). In this respect, our study aims to build134

connections with other formulations of growth (see e.g. [41]) and to highlight both the similarities135

and the conceptual differences among the considered approaches.136

In order to give prominence to the theoretical results of our study, we prefer to show no numerical137

simulations here, and to dedicate another work to the numerical aspects of our approach.138

In our opinion, our analysis may contribute to construct a unified formulation of inelastic139

processes, based on the paradigmatic procedure of the PVW, which is made compliant, when140

necessary, with phenomenological laws treated as constraints.141

2 General Notation142

In this section, we briefly give the notation used throughout the rest of our work. To this end,143

we introduce the three-dimensional Euclidean space S , the reference placement of the body under144

study, i.e., B ⊂ S , the time line I , the time interval [tin, tfin] ⊂ I , and the map χ( · , t) : B → S ,145

which, for every time t ∈ [tin, tfin] ⊂ I , transforms univocally each point X of B into the point146
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x = χ(X, t) ∈ S , so that χ(B, t) =: Bt ⊂ S represents the change of shape of the body from147

its reference placement to the placement Bt attained at time t. Note that, with a slight abuse of148

terminology, we shall refer to this map simply as “motion” in the sequel. In addition, we define149

the auxiliary maps150

X : B ×I → B, X (X, t) = X, (1a)

T : B ×I → I , T (X, t) = t (1b)

(see e.g [46] and the references therein), which enjoy the properties151

TX (X, t) = I(X, t), Ẋ (X, t) = 0, ∀ (X, t) ∈ B ×I , (2a)

GradT (X, t) = 0, Ṫ (X, t) = 1, ∀ (X, t) ∈ B ×I , (2b)

where TX (X, t) is the tangent map of X ( · , t) at X ∈ B, I(X, t) : TXB → TXB is the identity152

tensor, and TXB is the tangent space of B attached at X ∈ B (see e.g. [98]). For completeness,153

we also define the transpose of the identity tensor, i.e., IT(X, t) : T ∗XB → T ∗XB, with T ∗XB being154

the dual space of TXB, as well as the metric tensor associated with B, i.e., G(X, t), for which it155

identically holds that Ġ(X, t) = 0, for all (X, t) ∈ B × I . By virtue of the maps χ and T , any156

function f : Bt × I → K, with K representing the set of real numbers or any vector or tensor157

space, can be expressed as a function of the points of B and time by means of the composition158

with the pair (χ, T ), i.e., f ◦ (χ, T ) : B ×I → K, provided the composition makes sense.159

Granted the usual differentiability properties of χ( · , t), we introduce the deformation gradient160

tensor F (X, t) := Tχ(X, t) : TXB → TxS , where Tχ(X, t) is the tangent map of χ( · , t) at X ∈ B,161

with t ∈ [tin, tfin], while TxS is the tangent space of S attached at x ≡ χ(X, t) ∈ S (see e.g. [98]).162

We also introduce the right Cauchy-Green deformation tensor C(X, t) := FT(x, t)g(x, t)F (X, t),163

with x ≡ χ(X, t), and where g(x, t) is the metric tensor at x ∈ S . It is understood that ∂tg(x, t) =164

0, for all x ∈ S and t ∈ I . We remark that FT(x, t) is defined as FT(x, t) : T ∗xS → T ∗XB,165

where T ∗xS is the dual space of TxS , and the notation FT ◦ (χ, T ) should be used, when it is166

necessary to rephrase FT as a function of the points of B and time. However, when there it no167

room for confusion, to reduce the notational burden, we omit the composition with (χ, T ), and168

tacitly redefine FT as a function of the points of B and time.169

We recall the BKL decomposition, F (X, t) = Fe(X, t)K(X, t), where Fe(X, t) and K(X, t) are170

referred to as tensor of elastic distortions and growth tensor, respectively. The latter one, indeed,171

describes the anelastic distortions induced in the body by the variation of mass due to growth.172

For future use, we set J := detF , Je := detFe, and JK := detK. Here, we do not fuss over the173

physical meanings attributed to the BKL decomposition, since a huge literature is available on the174

topic (see e.g. [115, 117, 8, 38, 80, 51, 96, 6, 64, 19, 81, 86, 112, 65, 62, 114, 36, 5, 31]). However, we175

mention that, although K is in principle a two-point tensor, in the sequel we consider it a mixed176

tensor from TXB into a “relaxed” copy of this vector space (see e.g. [28, 36]).177

Finally, the maps X and T defined in Equations (1a) and (1b) are useful to express the explicit178

dependence of physical quantities on the points of B and time. For instance, if h a is physical179

quantity that can be written as h(X, t) = ĥ(F (X, t),K(X, t), X, t), where ĥ is the constitutive180

representation of h, then the notation h = ĥ ◦ (F ,K,X , T ) applies.181
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3 Mass balance as a constraint on the growth tensor182

In this section, we briefly review the mass balance law of the body under study in the context of183

the theory of volumetric growth based on the BKL decomposition. To this end, we recall that such184

decomposition permits to rewrite the balance of mass of the considered body as a relation between185

the trace of the rate K−1K̇ and the normalized source/sink of mass Rγ , i.e. [41, 97, 9, 8],186

tr(K−1K̇) ≡K−T : K̇ = Rγ , in B × [tin, tfin], (3)

where Rγ is defined as Rγ := Jrγ/%R, rγ is the “true” source/sink of mass, and %R is the mass187

density per unit volume of the body’s reference placement. Equation (3) is obtained from the mass188

balance law, expressed in local form and with respect to the reference placement of the body, i.e.,189

%̇R = Jrγ , by exploiting the relation %R = JK%ν , where %ν is the mass density per unit volume of190

the body’s natural state, and using the identity J̇K = JKtr(K−1K̇), under the hypothesis that %ν191

is constant in time.192

We assume that Rγ is prescribed phenomenologically through a growth law of the type [100, 99]193

Rγ ≡ Rγ(ph) := R̄γ(ph) ◦ (℘, ω) = R̂γ(ph) ◦ (F ,K, ω), in B × [tin, tfin], (4)

where ω is the mass fraction of the nutrient substances (e.g. glucose or oxygen) that promote the194

accretion of the tissue’s mass, and ℘ := −1
3trσ is the mechanical pressure in the tissue [100, 99],195

which, under suitable constitutive assumptions, can be expressed as ℘ = ℘̂◦(F ,K). As reported in196

[100, 99], the growth law (4) is calibrated in such a way that Rγ can be positive (mass accretion),197

null, or negative (mass resorption), depending on whether ω exceeds, equals, or goes below a certain198

threshold mass fraction, ωcr. Finally, the dependence on ℘ is introduced since it is believed that199

pressure, when it is positive, has the capability of slowing down the rate of mass accretion [25],200

whereas it has no relevant influence on Rγ(ph), when it is negative.201

To complete the description of Rγ(ph), the evolution of the nutrients’ mass fraction has to be202

described. This is done by taking into account the mass balance law of the nutrients. In this work,203

we assume that they are free to move within the body, and that such a motion can be modeled in204

terms of Fickean diffusion. In particular, it can be shown that, within the monophasic framework4,205

and written with respect to the reference placement of the body, the mass balance law of the206

nutrients becomes the diffusion-reaction equation, defined in B × [tin, tfin], given by207

JK%ν ω̇ −Div
(
JK%νDGradω

)
= −JK%νrnω − JK%ν [R̂γ(ph) ◦ (F ,K, ω)]ω, (5)

where rn is the rate at which the nutrients are absorbed by the tumor, and D := D̂ ◦ (F ,K) is the208

diffusivity tensor (see e.g. [15, 35] for possible constitutive expressions of D). Moreover, following209

[8, 99, 36, 113], we can equip Equation (5) with boundary and initial conditions of the type210

ω = ωb, on ∂ωDB, (6a)

[−JK%νDGradω]N = b, on ∂ωNB, (6b)

ω(X, tin) = ωin(X), in B, (6c)

4For biological tissues and tumors, the monophasic framework is clearly much less descriptive than the biphasic,
or the multiphasic, one [36, 69, 113]. However, it is sufficient for conveying the message contained in our work.
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where ωb and b are the nutrients’ mass fraction and flux imposed on the Dirichlet portion ∂ωDB211

and on the Neumann portion ∂ωNB of ∂B associated with ω, respectively.212

Once Rγ(ph) is assigned from the outset, we regard Equation (3) as an a priori restriction on213

the rate K̇, for given F , K, and ω, and, accordingly, we rewrite it as214

ĈK ◦ (F ,K, K̇, ω) := K−T : K̇ − R̂γ(ph) ◦ (F ,K, ω) = 0. (7)

Equation (7) defines a non-holonomic and rheonomic constraint on K (see e.g. [87] for a classi-215

fication of these constraints). The constraint is non-holonomic because it cannot be integrated,216

and, indeed, there exists no scalar function f := f̂ ◦ (F ,K, ω) whose time derivative coincides with217

ĈK ◦ (F ,K, K̇, ω); it is rheonomic because ĈK ◦ (F ,K, K̇, ω) depends on time not only through218

F , K and K̇, which are kinematic variables of the model, but also through ω, as prescribed by219

R̂γ(ph) ◦ (F ,K, ω).220

Remark 3.1 (More general form of the constraint ĈK ◦ (F ,K, K̇, ω) = 0)221

The expression of the growth law and of the corresponding constraint can be made more general222

than the ones in Equations (4) and (7) by introducing a new function Řγ(ph), such that Rγ(ph) =223

Řγ(ph) ◦ (F ,K,X , T ), and the new function ČK ◦ (F ,K, K̇,X , T ), such that224

ČK ◦ (F ,K, K̇,X , T ) := K−T : K̇ − Řγ(ph) ◦ (F ,K,X , T ) = 0, (8)

where the composition with the maps X and T is meant to account for the explicit dependence of225

the growth law on material points and time virtually in all possible ways. A dependence of this226

type, for example, should be considered when an explicit expression of Equation (4) features mate-227

rial parameters that are functions of the material points and time, rather than being constants, as228

assumed later. According to Equation (8), the non-integrability of the constraint may be rephrased229

by saying that there exists no scalar function f = f̌ ◦ (F ,K,X , T ), whose time derivative co-230

incides with ČK ◦ (F ,K, K̇,X , T ). This is imputable to the functional form of the growth law231

Řγ(ph) ◦ (F ,K,X , T ). We also mention that, within the framework of bone mechanics, there exist232

mathematical models of growth (see e.g. [90]) in which the growth law Rγ(ph) is given as a function233

of a biomechanical stimulus expressed through the convolution integral of the strain energy density234

of the material with a suitably defined kernel [90, 55].235

Remark 3.2 (The limit case of holonomic, rheonomic constraint)236

The constraint (8) turns out to be integrable if the growth law takes on the simple form Rγ :=237

[Rγp ◦ X ][Rγt ◦ T ], where Rγp is a function of material points, and Rγt is a function of time that238

admits primitives in [tin, tfin]. Indeed, in this case, the constraint reads239

ČK ◦ (K, K̇,X , T ) := K−T : K̇ − [Rγp ◦ X ][Rγt ◦ T ] = 0, (9)

and it can be obtained by requiring the vanishing of the total time derivative of the function240

f := f̌ ◦ (K,X , T ) = log detK − [Rγp ◦ X ][Sγt ◦ T ] + f0 ◦ X , (10)

where Sγt is one primitive of Rγt over [tin, tfin], i.e., Ṡγt(t) = Rγt(t) for t ∈ [tin, tfin], and f0 is241

an arbitrary function of material points, only. Accordingly, Equation (10) can be rephrased as242

a holonomic constraint that prescribes f̌ ◦ (K,X , T ) to remain constant in time over [tin, tfin].243
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Moreover, since, without loss of generality, the constant value of f̌ ◦ (K,X , T ) can be assumed to244

be zero, the constraint becomes245

f̌ ◦ (K,X , T ) = 0 ⇒ log detK − [Rγp ◦ X ][Sγt ◦ T ] = −f0 ◦ X . (11)

Finally, if Sγt is chosen as Sγt(t) :=
∫ t
tin
Rγt(s)ds, and the initial condition detK(X, tin) = 1 is246

imposed, then, we achieve the identification f0(X) ≡ 0, which yields247

detK(X, t) ≡ JK(X, t) = exp

(
Rγp(X)

∫ t

tin

Rγt(s)ds

)
, ∀ (X, t) ∈ B × [tin, tfin]. (12)

Hence, the growth problem is reformulated as a problem subjected to an a priori condition on detK.248

This, in turn, could be understood as a “prescribed dilatation, or volumetric contraction, due to249

growth”, and features some similarities with the theory of swelling [120]. Moreover, if the growth250

law were switched off, the condition detK(X, t) = 1 would be obtained, thereby recovering isochoric251

inelastic distortions.252

Before closing this section, we notice that, regardless of whether the constraint under study is253

expressed as in Equation (7) or as in Equation (8), a direct consequence of the introduction of the254

map T (see Equations (1b) and (2b) for its properties) is that the constraint can be rewritten as255

a Pfaffian form [95], i.e., in terms of new functions that formally depend on the rate Ṫ as follows256

V̂K ◦ (F ,K, K̇, Ṫ , ω) := K−T : K̇ − [R̂γ(ph) ◦ (F ,K, ω)]Ṫ = 0, (13a)

V̌K ◦ (F ,K, K̇, Ṫ ,X , T ) := K−T : K̇ − [Řγ(ph) ◦ (F ,K,X , T )]Ṫ = 0, (13b)

where we have exploited Equation (2b).257

4 Time as a constrained, fictitious Lagrangian parameter258

To our knowledge, the non-holonomic and rheonomic nature of the constraint (7) presents some259

technical difficulties in the formulation of the Principle of Virtual Work (see e.g. [87]). Specifically,260

the main issue is that, when the method of Lagrange multipliers is invoked, the term R̂γ(ph) ◦261

(F ,K, ω) in Equation (7), or Řγ(ph) ◦ (F ,K,X , T ) in Equation (8), cannot be combined, as it262

stands, with the virtual works expended on the virtual variations of χ and K. This difficulty,263

however, can be circumvented by having recourse to an alternative formulation of the constraint,264

in which time is viewed as a fictitious, additional Lagrangian parameter of the considered problem.265

Before entering the details, we remark that this way of proceeding is not new per se (see e.g.266

[106, 95], and [87] for the case in which time is treated as an “ignorable variable”), and it can267

be put in our context on the basis of the rationale exposed in Appendix A1. Here, for the sake268

of conciseness, we say that the main reason for undertaking this path is to study the constraint269

expressed by Equation (7), or (8), within the setting of the Principle of Virtual Work. Indeed,270

regarding time as a Lagrangian parameter allows to introduce its virtual variations, along with a271

system of generalized, fictitious forces, dual to such variations and satisfying their own balance law.272

These forces produce virtual work against the virtual variations of time, and this virtual work can273

be combined with the work done on the same virtual variations by the term R̂γ(ph) ◦ (F ,K, ω), or274
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Řγ(ph) ◦ (F ,K,X , T ), multiplied by a suitable Lagrange multiplier. A more detailed discussion on275

this topic is done below in this section as well as in the next one, and in Appendix A1.276

For the purposes outlined above, in addition to T in Equation (1b), we introduce277

T : B ×I → I , T(X, t) = tX . (14)

In principle, the auxiliary map T differs from T in that the re-mapped time tX = T(X, t) is not a278

priori required to be equal to t = T (X, t), whereas the latter equality is true by definition.279

To clarify the introduction of T, and its relation with T , let us notice that, formally, T has280

the same “dignity” as χ and K, and has the property of returning a unique instant of time281

tX = T(X, t) ∈ I , for each pair (X, t) ∈ B ×I , whereas χ(X, t) = x defines a unique position in282

space, and K(X, t) describes how the body elements of TXB are relaxed at time t ∈ I . Hence,283

while χ is a space-like Lagrangian parameter, and K is a structural Lagrangian parameter, T could284

be termed time-like Lagrangian parameter, and, as a Lagrangian parameter of the theory, it can285

be associated with a dynamic equation [106]. Yet, T is fictitious, because its evolution is known286

a priori on physical grounds. Indeed, for consistency with the Galileian laws of composition of287

velocities and accelerations, T is restricted to produce, at most, the time translation288

T(X, t) = T0(X) + t = T0(X) + T (X, t) =: tX ∈ I , ∀ (X, t) ∈ B ×I , (15)

where T0(X) is an arbitrary point-dependent time shift. In particular, Equation (15) guarantees289

the equality Ṫ(X, t) = 1, for all (X, t) ∈ B ×I , which means that the “velocity of time” is equal290

to unity for all body points and for all times. Note that Equation (15) is a direct consequence of291

the fact that, in Galileian mechanics, time is absolute, since it is postulated to flow at the same292

rate for all observers. In fact, the equality Ṫ(X, t) = 1 recasts Equation (15) in differential form,293

and can be interpreted as a constraint on T, or, better, on Ṫ, which can be written as294

V̂T(Ṫ(X, t), Ṫ (X, t)) := Ṫ(X, t)− Ṫ (X, t) = Ṫ(X, t)− 1 = 0, (16)

where V̂T : R2 → R is defined by V̂T(a1, a2) = a1 − a2 = 0, for all (a1, a2) ∈ R2. Finally, by having295

recourse to the composition of maps, we obtain296

V̂T ◦ (Ṫ, Ṫ ) := Ṫ− Ṫ = 0. (17)

We denote by TtI the one-dimensional tangent space of I at t, and by TI := tt∈I TtI the297

tangent bundle of I . Moreover, we define δT : B ×I → TI and δT : B ×I → TI such that,298

for each (X, t) ∈ B ×I , δT (X, t) ∈ TtI and δT(X, t) ∈ TtI represent a virtual time translation299

and the virtual displacement associated with T(X, t), respectively. We notice that, since δT(X, t) is300

defined as a virtual displacement, it has to be compatible with the imposed constraints, and, thus,301

it must satisfy Equations (16) and (17) in the form [95],302

V̂T(δT(X, t), δT (X, t)) = δT(X, t)− δT (X, t) = 0, ∀ (X, t) ∈ B ×I , (18a)

V̂T ◦ (δT, δT ) = δT− δT = 0. (18b)

Before going further, we notice that the constraint in Equation (13a), and, equivalently in303

Equation (13b), is linear in the rates K̇ and Ṫ . Thus, by recalling the definition of δT , and304

introducing the virtual variation of the growth tensor δK : B×I → [TB]11, where [TB]11 is the305
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space of tensors mapping vectors of TXB into vectors of TXB, we can rephrase Equation (13a)306

in the Lagrange-Chetaev form [95]5. This is obtained by replacing K̇ and Ṫ with the “virtual307

displacements” δK and δT , respectively, i.e.,308

V̂K ◦ (F ,K, δK, δT , ω) = K−T : δK − [R̂γ(ph) ◦ (F ,K, ω)]δT = 0. (19)

Moreover, Equations (17) and (18b) permit to rephrase the expressions of the constraint (13a) and309

(19) by substituting Ṫ with Ṫ and δT with δT, thereby obtaining310

V̂K ◦ (F ,K, K̇, Ṫ, ω) := K−T : K̇ − [R̂γ(ph) ◦ (F ,K, ω)]Ṫ = 0, (20a)

V̂K ◦ (F ,K, δK, δT, ω) = K−T : δK − [R̂γ(ph) ◦ (F ,K, ω)]δT = 0. (20b)

Clearly, while the constraint expressed in Equation (20a) has physical dimensions of the recipro-311

cal of time, the one rewritten in Equation (19) is non-dimensional. However, these two versions can312

be made dimensionally coherent with each other by exploiting the fact that V̂K is homogeneous of313

degree 1 in its third and fourth argument. Indeed, given a strictly positive constant tc > 0, which314

may represent a characteristic time scale associated with the accretion or resorption of mass, it315

holds true that316

V̂K ◦ (F ,K, tcK̇, tcṪ, ω) = tc[V̂K ◦ (F ,K, K̇, Ṫ, ω)] = 0, (21)

which is equivalent to Equation (20a), and non-dimensional.317

Similarly, although the constraint in Equation (18b) has physical dimensions of time, whereas318

that in Equation (17) is non-dimensional, we can write319

V̂T ◦ (tcṪ, tcṪ ) = tc[V̂T ◦ (Ṫ, Ṫ )] = 0, (22)

thereby obtaining a constraint with the same physical dimensions as those in Equation (18b). We320

shall use this result in the constrained formulation of the Principle of Virtual Work.321

Remark 4.1 (The maps T and T )322

A direct integration of Equation (17) with respect to time brings us back to Equation (15), in which323

T0(X) takes on the meaning of point-dependent integration constant. This can be particularized,324

for example, by requiring GradT(X, t) = 0, for all (X, t) ∈ B × I , so that the further condition325

GradT0(X) = 0 applies for all X ∈ B. Thus, we can set T(X, t) = tX = t0 + t, with t0 := T0(X)326

being an arbitrary constant for all X ∈ B, and, if we finally choose t0 = 0, we obtain the unique327

solution T(X, t) = t ≡ T (X, t). However, in spite of this result, we find it convenient for the328

forthcoming discussion to maintain a conceptual distinction between T and T . Indeed, whereas T329

is a (fictitious) Lagrangian parameter of the theory, constrained by Equation (17) to have unitary330

generalized velocity, T is an auxiliary function that, through the composition of maps, is often331

5We say that a constraint is expressed in the “Lagrange-Chetaev form” if it can be written in a form in which the
generalized virtual velocities involved in the constraint are replaced with the corresponding generalized displacements.
In fact, this is possible, granted that the constraint complies with the Chetaev —or Lagrange-Chetaev— condition
[95], in which case the constraint is also referred to as “ideal” [95]. By adapting the terminology used by Llibre et al.
[95] to our context, the constraint V̂K ◦ (F ,K, K̇, Ṫ, ω) = 0 is ideal, since it is linear in the generalized velocities K̇
and Ṫ, and, thus, it fulfills the Lagrange-Chetaev conditions, which reads [∂K̇ V̂ ◦ (...)] : δK + [∂ṪV̂ ◦ (...)]δT = K−T :

δK − [R̂γ(ph) ◦ (F ,K, ω)]δT = 0.

10



useful to express the explicit time dependence of some physical quantities in a formally correct way.332

Above all, the main reason for distinguishing between T and T is the one that has been anticipated333

at the beginning of this section: since T is declared as a Lagrangian parameter, its virtual variation334

δT admits the introduction of fictitious forces, dual to δT, that produce virtual work on δT, and,335

because of the identity δT = δT , this virtual work can be added to the one done on δT by the336

quantity µK [R̂γ(ph) ◦ (F ,K, ω)] or µK [Řγ(ph) ◦ (F ,K,X , T )], where µK is the Lagrange multiplier337

associated with the constraint (20a), put in the form (19) (see Equation (24a) below).338

5 Principle of Virtual Work revisited339

To account for the fact that the Principle of Virtual Work has to be written for arbitrary generalized340

virtual displacements that are in harmony with the imposed constraints, we rephrase the PVW341

formulated by DiCarlo and Quiligotti [38] for growth mechanics as explained below. First, we342

recall that the kinematic descriptors of the present theory, which is of grade one in χ, and of grade343

zero in K [38] and T, are given by344

(χ,F ,K,T, δχ,Gradδχ, δK, δT). (23)

Then, since we are going to append the constraints, both in the rescaled forms (21) and (22) and345

in the Lagrange-Chetaev forms [95] (19) and (18b), to the expression of the PVW that one would346

have in the absence of constraints, we introduce the Lagrange multipliers µK and µT, along with347

their virtual variations δµK and δµT, so that the following duality pairings apply348

µK ÷ [V̂K ◦ (F ,K, δK, δT , ω)], µT ÷ [V̂T ◦ (δT, δT )], (24a)

δµK ÷ [V̂K ◦ (F ,K, tcK̇, tcṪ, ω)], δµT ÷ [V̂T ◦ (tcṪ, tcṪ )], (24b)

where the symbol “÷” indicates the conjugation induced by duality.349

By invoking duality again, we introduce the internal generalized forces that expend virtual work350

on the virtual variations of the associated kinematic descriptors, i.e.,351

P ÷Gradδχ, Yu ÷K−1δK, Yu ÷ δT, (25)

where P is the “classical” first Piola-Kirchhoff stress tensor; Yu is referred to as internal growth-352

conjugated stress in the sequel, since it is a stress-like quantity dual to K−1δK; and Yu is termed353

internal time-conjugated force, since it is dual to δT. The subscript “u” in Yu and Yu indicates354

that these forces are “unconstrained”, in the sense that, because of the presence of the Lagrangian355

multipliers µK and µT, they are associated with arbitrary (and, thus, “unconstrained”) variations356

δK and δT, respectively.357

Finally, we consider the external generalized forces358

f , τ ÷ δχ, Z ÷K−1δK, Z ÷ δT, (26)

where f and τ are the body forces per unit volume and the boundary contact forces per unit area359

of “classical” Continuum Mechanics, respectively, while, from here on, Z and Z are said to be360

external growth-conjugated stress-like force, and external time-conjugated force, respectively.361
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Remark 5.1 (The external time-conjugated force Z)362

The external time-conjugated force Z is introduced by analogy with the external growth-conjugated363

stress-like force Z. Indeed, as for Z, whose origin has been discussed in [38, 37] for the case364

of growth, and that can be found also in [74, 24] for different problems, the rationale behind the365

introduction of Z in our model is the one that has been anticipated at the beginning of the previous366

section as well as in Remark 4.1, and it can be summarized as follows. We admit that the definition367

of T as a Lagrangian parameter of the theory, and the definition of its virtual variation, i.e., δT,368

give room to the existence of forces dual to δT, which can be either internal or external, depending369

on the type of interaction that they model.370

With the premises outlined above, the constrained version of the PVW can be put in the form371 ∫
B
P : Gradδχ +

∫
B
Yu : K−1δK +

∫
B
YuδT

+

∫
B
µK [V̂K ◦ (F ,K, δK, δT , ω)] +

∫
B
µT[V̂T ◦ (δT, δT )]

+

∫
B
δµK [V̂K ◦ (F ,K, tcK̇, tcṪ, ω)] +

∫
B
δµT[V̂T ◦ (tcṪ, tcṪ )]

=

∫
B
fδχ +

∫
∂χNB

τ δχ +

∫
B
Z : K−1δK +

∫
B
ZδT, (27)

where ∂B = ∂χNB t ∂χDB is the boundary of B, while ∂χNB and ∂χDB represent the Neumann and372

the Dirichlet portions of ∂B, respectively. Clearly, since the four integrals featuring the constraints373

are identically zero, the PVW expressed in Equation (27) is only formally different from that of374

the unconstrained theory of growth put forward by DiCarlo and Quiligotti [38].375

Before proceeding, it is worth mentioning that an approach similar to ours can be found in376

the context of the bone remodeling formulated under the assumption of “optimal response” [89].377

We also notice that, in the case of bone remodeling, the role that in our theory is played by the378

structural descriptor K, is sometimes assigned to a scalar variable, termed “microdeformation”379

[55, 54], which is related to purely dissipative effects [30].380

5.1 Dynamic equations in local form381

By performing standard calculations, and writing explicitly V̂K ◦ (F ,K, δK, δT , ω) and V̂T ◦382

(δT, δT ), Equation (27) can be recast in the form383 ∫
∂χNB
{τ − PN}δχ +

∫
B
{DivP + f}δχ

+

∫
B

{
Z − µKIT − Yu

}
: K−1δK +

∫
B
{Z − Yu − µT}δT

+

∫
B

{
µK [R̂γ(ph) ◦ (F ,K, ω)] + µT

}
δT

−
∫

B
δµK [V̂K ◦ (F ,K, tcK̇, tcṪ, ω)] −

∫
B
δµT[V̂T ◦ (tcṪ, tcṪ )] = 0, (28)
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which has to hold true for arbitrary δχ vanishing on ∂χDB, and for arbitrary δK, δT, δT , δµK , and384

δµT. Moreover, localizing Equation (28), and appending the Dirichlet condition for χ on ∂χDB lead385

to the mixed formulation386

DivP + f = 0, in B, (29a)

χ = χb, on ∂χDB, (29b)

PN = τ , on ∂χNB, (29c)(
Yu + µKI

T
)
−Z = 0, in B, (29d)

(Yu + µT)−Z = 0, in B, (29e)

µK [R̂γ(ph) ◦ (F ,K, ω)] + µT = 0, in B, (29f)

V̂K ◦ (F ,K, tcK̇, tcṪ, ω) = 0, in B, (29g)

V̂T ◦ (tcṪ, tcṪ ) = 0, in B. (29h)

Equation (29a) is the local form of the balance of linear momentum of “classical” Continuum387

Mechanics, equipped with the Dirichlet boundary condition (29b) and the Neumann boundary388

condition (29c), where χb is the motion prescribed on ∂χDB, and N is the field of co-normals389

defined over ∂B.390

Equation (29d) is equivalent to the balance of the growth-conjugated stress-like generalized391

forces that was obtained by DiCarlo and Quiligotti [38] in their picture of growth mechanics,392

provided the identification Y ≡ Yu +µKI
T is made, where Y denotes the overall, internal, growth-393

conjugated stress dual to K−1δK (see also [24] for a similar force balance obtained in the context394

of plasticity), and corresponds to what DiCarlo and Quiligotti [38] indicate with “−C” and call395

“remodelling self-couple”. Clearly, our external force Z corresponds to the external “remodelling396

couple” denoted by “B” by DiCarlo and Quiligotti [38]. In this respect, we notice that, apart397

from having re-defined Y as the sum of its unconstrained part, i.e., Yu, and the part given by the398

Lagrange multiplier, i.e., µKI
T, Equation (29d) is not new and, in fact, it is rather well-established399

in several papers on inelastic processes (see e.g. [76, 24, 38, 77, 72, 37, 7, 107, 6, 12, 64, 105, 66, 31,400

5, 69, 27, 26]). However, a novelty of our approach is that we are viewing growth as a constrained401

problem, as testified by the presence of the Lagrange multiplier µK in Y ≡ Yu + µKI
T. To this402

end, a constitutive law relating Yu to K̇ will be sought for and, consequently, Equation (29d) will403

be turned into an ordinary differential equation in K, and solved with respect to this tensorial404

variable.405

Equation (29e) defines the balance of the generalized forces dual to δT, for which, in analogy406

with Equation (29d), one can identify Y ≡ Yu + µT. Equation (29f), instead, defines a balance407

between the Lagrange multipliers of the theory. We emphasize that, in spite of the fact that408

Equation (29e) has the same structure as Equation (29d), it has a different meaning. Indeed,409

since the evolution of the fictitious Lagrangian parameter T is entirely described by the constraint410

(29h), which yields T(X, t) = t, for all (X, t) ∈ B × I (see also the discussion in Remark 4.1),411

Equation (29e) determines the difference Z −Yu [106]. In this respect, we highlight that Equations412

(29e) and (29f) are new in the theory of volumetric growth, at least to the best of our knowledge.413

However, similar equations were obtained by Nadile [106] in a completely different context. Finally,414

Equations (29g) and (29h) return the constraints.415

After the constitutive framework is established, Equations (29a) and (29d)–(29h) constitute a416

set of 16 scalar equations in the unknowns χ, K, µK , µT, Z−Yu, and T, which amount to 16 scalar417
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unknowns. Hence, the problem is closed. In particular, Equation (29g) allows to determine the418

Lagrange multiplier µK (although, given the specific hypotheses adopted in this work, a different419

procedure will be used in the sequel), while Equation (29h) is used to obtain T(X, t) = t, so that the420

Lagrange multiplier µT is determined by means of Equation (29f). In our opinion, the constraint421

on time constitutes a novelty in our approach, since it has not been considered in the previous422

formulations of growth which we are aware of.423

5.2 Preparation of the initial and boundary value problem (IBVP)424

After substituting the explicit expressions of the constraints (17) and (20a) into Equations (29h)425

and (29g), respectively, and dropping the strictly positive constant tc featuring in these equations,426

we proceed with the solution of the system (29a)–(29h).427

First, we notice that Equations (29e) and (29f) can be decoupled from the other ones and428

rewritten as429

Yu + µT = Z, in B, (30a)

µT = −µK [R̂γ(ph) ◦ (F ,K, ω)], in B, (30b)

so that the Lagrange multiplier µT can be determined by the right-hand-side of Equation (30b),430

once µK is known. Accordingly, Equation (30a) becomes431

Z − Yu = µT = −µK [R̂γ(ph) ◦ (F ,K, ω)], in B. (31)

Second, Equations (29d) and (29g) can be studied separately from the other ones, so that one432

obtains433

Yu + µKI
T −Z = 0, in B, (32a)

K−T : K̇ − R̂γ(ph) ◦ (F ,K, ω) = 0, in B. (32b)

Consequently, µK can be computed by separating the spherical part of Equation (32a) from its434

deviatoric counterpart, so that Equations (32a) and (32b) become435

devYu = devZ, in B, (33a)

K−T : K̇ = R̂γ(ph) ◦ (F ,K, ω), in B, (33b)

µK = 1
3trZ − 1

3trYu, in B. (33c)

Now, if Z is supplied through a function independent of K̇ and other time derivatives of K of436

order higher than the first, and if Yu is expressed constitutively as a function of K and K̇, then437

Equations (33a) and (33b) become a set of first-order ordinary differential equations. Thus, once438

Z is assigned and Yu is provided constitutively, the Lagrangian multiplier µK is determined by439

the right-hand-side of Equation (33c), while Equations (33a) and (33b) are sufficient to determine440

the 9 independent components of K. Therefore, the boundary value problem that has to be solved441
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according to the formulation presented in this work is given by442

DivP + f = 0, in B, (34a)

χ = χb, on ∂χDB, (34b)

PN = τ , on ∂χNB, (34c)

devYu = devZ, in B, (34d)

K−T : K̇ = R̂γ(ph) ◦ (F ,K, ω), in B, (34e)

which, apart from the boundary conditions (34b) and (34c), involves 12 independent equations in443

12 unknowns (3 equations for χ and 9 equations for K), while µK , µT, and Z−Yu can be computed444

a posteriori by means of Equations (33c), (30b), and (31). To do that, it is necessary to supply P445

and Yu constitutively.446

6 Constitutive laws and final form of the initial and boundary447

value problem448

Given for granted that the constitutive expressions for P and Yu comply with all the axioms of449

the theory of constitutive laws, we focus here on their thermodynamical admissibility. To this end,450

we adhere to the framework presented by Gurtin [74], which we slightly adapt to our purposes,451

and, in the following study of the dissipation inequality, we consider the limit case in which Z is452

assumed to vanish from the outset. However, in Appendix A2, we study the opposite point of view,453

in which Z is not assumed to be zero, and is rather regarded as an unknown of the model. Hence,454

by taking inspiration from [24, 74, 75] for the general structure of the dissipation associated with455

a fixed region R ⊂ B, we write here456 ∫
R
DR =−

˙∫
R

ΨR +

∫
R
fv +

∫
∂R

(PN)v︸ ︷︷ ︸
P(net,χ)
ext

+

∫
R
Z : K−1K̇︸ ︷︷ ︸
P(net,K)
ext

+

∫
R
µch[R̂γ(ph) ◦ (F ,K, ω)]︸ ︷︷ ︸

Mext

≥ 0,

(35)

and refer to Gurtin [74] for an explanation of the fifth term on the right-hand-side of Equation457

(35) (see Remark 6.1). We emphasize that, within the theoretical framework presented in this458

section, one cannot expect to obtain Yu through the study of Equation (35). Indeed, the force Yu459

determined below follows directly from the force balance (31) under the simplifying assumption of460

vanishing Z. A different approach, in which Yu is determined constitutively and Z solves the force461

balance (31) is shown in Appendix A2.462

In Equation (35), DR and ΨR are the dissipation density and Helmholtz free energy density per463

unit volume of the reference placement, respectively, P(net,χ)
ext is the external net power [24] associated464

with the Lagrangian parameter χ through the velocity v := χ̇; P(net,K)
ext denotes the external net465

power conjugated with K−1K̇, and µch is identified with a generalized chemical potential, whose466

product with the growth law Rγ(ph) ≡ R̂γ(ph) ◦ (F ,K, ω) defines Mext, i.e., in a modified version467

of Gurtin’s words [74], the power that is added to or subtracted from the system by means of the468

addition (when Rγ(ph) > 0) or depletion of mass (when Rγ(ph) < 0).469
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Remark 6.1 (On the presence of Mext in Equation (35))470

In his expression of the dissipation inequality, Gurtin [74] introduces the term that we have denoted471

here by Mext because, in his model, the mass source is declared as an entity that operates on472

the system that he considers from the world outside it [74]. Indeed, in analogy with the external473

powers P(net,χ)
ext and P(net,K)

ext , the term Mext must feature explicitly in the dissipation inequality,474

since it constitutes the external power due to the transport of mass. As such, and as anticipated475

above, it is represented by the action of the generalized force dual to the variation of mass, i.e., the476

chemical potential µch, on the mass source/sink, which is the conjugated generalized rate. Within477

our approach, the mass source/sink is given phenomenologically from the outset, and is thus regarded478

as external, thereby making our formulation similar to the one presented by Gurtin [74]. This479

concept is explained also by Fried and Sellers [50], although they investigate a different situation.480

Indeed, also other approaches are possible. In fact, Fried and Sellers [50] elaborate a model in which481

their source/sink of mass is introduced as a supply/loss of mass operating from the inside of the482

system under study. Consistently with this point of view, their source/sink of mass cannot feature483

explicitly in the definition of the dissipation inequality, although it can be made to appear in the484

subsequent expression of the dissipation obtained by exploiting the mass balance law. This difference485

between the approach proposed by Gurtin [74], and slightly modified in our work, and the approach486

proposed by Fried and Sellers [50] is, in fact, essential. Indeed, since Fried and Sellers [50] treat487

the mass source/sink as an internal constitutive variable, they have to determine a constitutive law488

for it.489

6.1 Local dissipation490

We proceed with the localization of the dissipation inequality (35) under the assumption that491

R ⊂ B is independent of time [24]. To this end, we apply Gauss’ Theorem, and enforce the492

dynamic equations (29a) and (29d), thereby obtaining493

DR =− Ψ̇R + P : Ḟ + (Yu + µKI
T) : K−1K̇ + µch[R̂γ(ph) ◦ (F ,K, ω)] ≥ 0. (36)

By recalling Equation (7), which implies R̂γ(ph) ◦ (F ,K, ω) = IT : K−1K̇, Equation (36) features494

the term (µK+µch)[IT : K−1K̇], which can be eliminated by setting µch = −µK , thereby obtaining495

DR =− Ψ̇R + P : Ḟ + Yu : K−1K̇ ≥ 0. (37)

To study Equation (37), we write ΨR as ΨR = JKΨν , where Ψν is the body’s Helmholtz free496

energy density per unit volume of the natural state, and, under the hypothesis of hyperelastic497

material, we express Ψν constitutively as Ψν = Ψ̂ν ◦ (FK−1), so that ΨR can be re-defined as498

ΨR = Ψ̂R◦(F ,K) = JK [Ψ̂ν ◦(FK−1)]. Then, by computing the time derivative of ΨR, substituting499

it into Equation (37), and making the identifications500

P = P̂ ◦ (F ,K) =
∂Ψ̂R

∂F
◦ (F ,K) = (detK)

(
∂Ψ̂ν

∂FK−1 ◦ (FK−1)

)
K−T, (38a)

H = Ĥ ◦ (F ,K) = KT

(
∂Ψ̂R

∂K
◦ (F ,K)

)
= [Ψ̂R ◦ (F ,K)]IT − FT[P̂ ◦ (F ,K)], (38b)

Yu,d := Yu − [Ĥ ◦ (F ,K)], (38c)
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where H is Eshelby stress tensor, and Yu,d is the dissipative part of Yu (see also [24, 38, 37]), the501

dissipation inequality reduces to502

DR =Yu,d : K−1K̇ ≥ 0. (39)

6.2 Constitutive laws503

By looking at Equation (39), and restricting our study to the linear theory and to the isotropic504

case, we express Yu,d by using a decomposition of fourth-order tensors [108] that yields (see also505

[70, 64, 94])506

Yu,d := Ŷu,d ◦ (F ,K, K̇) =1
3JKaνtr(K−1K̇)IT + JKbν{CK−1K̇C−1 + (K−1K̇)T}
+ JKcν{CK−1K̇C−1 − (K−1K̇)T}

=[T̂ ◦ (F ,K)] : (K−1K̇), (40)

where aν , bν , and cν are constant material parameters such that aν + 2bν ≥ 0, bν ≥ 0, and cν ≥ 0,507

while T̂◦ (F ,K) is the constitutive function, mapped in the space of fourth-order tensors, given by508

T̂ ◦ (F ,K) :=1
3JKaνI

T ⊗ IT + JKbν
{
C ⊗C−1 + IT⊗ I

}
+ JKcν

{
C ⊗C−1 − IT⊗ I

}
. (41)

Next, we discuss the external forces f and Z. Whereas f is often assumed to be negligible in509

the mechanics of tumor growth, Z may be important in the evolution of a tumor [37]. To us, this510

generalized force may be the expression of genetic and/or epigenetic and/or chemical information,511

appropriately “translated” into mechanical interactions (cf. the interpretation given by [37]). In our512

opinion, providing accurate models of such interactions is not straightforward and further research513

in this direction is therefore necessary. In an ongoing work of ours, we propose a possible expression514

for Z on the basis of several discussions with colleagues and former co-workers6. However, since515

providing an explicit expression for Z is not the focus of the present work, we simply assume here516

that it can be assigned as Z := Ẑ ◦ (F ,K, ω,Gradω). In particular, we choose Z such that C−1Z,517

and, thus, also C−1devZ, are symmetric second-order tensor fields, so that, according to Equation518

(34d), C−1devYu is symmetric, too. Consequently, the term multiplied by the generalized viscosity519

cν in Equation (40) has to be zero.520

6.3 Final form of the IBVP521

In summary, the set of equations describing the considered growing medium consists of Equation522

(34a), i.e., the linear momentum balance law, which determines the medium’s deformation, χ;523

Equations (34d), i.e., the balance of forces dual to the unconstrained part of K̇; Equation (34e),524

i.e., the constraint describing the medium’s growth; Equation (5), which represents the diffusion-525

reaction equation for the nutrients’ mass fraction, ω. The above mentioned list of equations is526

equipped with the boundary conditions (34b) and (34c), assessing prescribed deformations and527

tractions, and with the boundary conditions (6a) and (6b) assigned on ω. Analogously, we prescribe528

6We acknowledge, in particular, several discussions done with Ms. Francesca Ballatore and especially with
Ms. Valentina Licari at the time of her Master of Science thesis [94].
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an initial condition of the type K(X, tin) = K in(X) for the growth tensor and the initial condition529

for ω expressed in Equation (6c). Finally, we obtain the IBVP530

DivP = −f , in B, (42a)

χ = χb, on ∂χDB, (42b)

PN = τ , on ∂χNB, (42c)

2JKbνdevCsym[(K−1K̇)C−1] = −C−1devH +C−1devZ, in B, (42d)

2JKcνskew[(K−1K̇)C−1] = 0, in B, (42e)

K−T : K̇ = Rγ(ph), in B, (42f)

K(X, tin) = K in(X), in B, (42g)

JK%ν ω̇ −Div
(
JK%νDGradω

)
= −JK%νrnω − JK%νRγ(ph)ω, in B, (42h)

ω = ωb, on ∂ωDB, (42i)

[−JK%νDGradω]N = b, on ∂ωNB, (42j)

ω(X, tin) = ωin(X), in B, (42k)

where the operator devC is defined by devCT := T − 1
3tr(CT )C−1, for all second-order, contravari-531

ant tensors T . Note that Equations (42d) and (42e) are obtained by left-multiplying Equation (34d)532

by C−1, employing Equation (40) for the constitutive representation of Yu, and extracting once533

the symmetric part and once the skew-symmetric part of the resulting expression. Moreover, we534

remark that Equation (42d) is equivalent to535

JKbν dev{CK−1K̇C−1 + (K−1K̇)T} = −devH + devZ, in B. (43)

Once the IBVP (42a)–(42k) is solved, the Lagrange multipliers µK and µT can be computed a536

posteriori as prescribed by Equations (33c) and (30b), respectively, i.e.,537

µK = 1
3trZ − 1

3trH − 1
3JK [aν + 2bν ]tr(K−1K̇) = 1

3trZ − 1
3trH − 1

3JK [aν + 2bν ]Rγ(ph), in B,

(44a)

µT = −µKRγ(ph) = −
{

1
3trZ − 1

3trH − 1
3JK [aν + 2bν ]Rγ(ph)

}
Rγ(ph), in B.

(44b)

Also the internal generalized force conjugated with Ṫ, i.e., Yu, can be determined a posteriori by538

means of Equation (31), with Z = 0, as539

Yu = −µT = µKRγ(ph) =
{

1
3trZ − 1

3trH − 1
3JK [aν + 2bν ]Rγ(ph)

}
Rγ(ph). (45)

In our opinion, Equations (44a), (44b), and (45) deserve specific comments, which we summarize540

in Remarks 8.1 and 8.2 of section 8.541

6.4 The limit case of spherical growth tensor542

In several problems addressing the growth of a tumor in the so-called “avascular stage” [25], the543

growth tensor is often assumed to be spherical from the outset [9, 11, 100, 59, 58]. By considering544

the decomposition K = JK
1/3K̃ (see e.g. [20] in which such decomposition is used for F to545
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study incompressibility in finite deformations), which implies detK = JK and, thus, necessarily546

det K̃ = 1, the hypothesis of spherical growth tensor amounts to set K̃ = I and, thus, K = JK
1/3I.547

Consequently,K features one free component only, i.e., JK , which, in turn, is restricted by Equation548

(3) to fulfill the constraint549

J̇K = Rγ(ph)JK , (46)

as can be seen by employing the identity tr(K−1K̇) = J̇K/JK .550

Since, in the present case, it holds true that K−1K̇ = 1
3(J̇K/JK)I, and, accordingly, K−1δK =551

1
3(δJK/JK)I, the non-spherical parts of the growth-conjugated, stress-like generalized forces Yu and552

Z are filtered out from the PVW stated in Equations (27) and (28), so that Equation (29d), or,553

equivalently, Equation (32a), reduces to554

(yu + µK)− z = 0, (47)

with yu := 1
3trYu and z := 1

3trZ being the scalar coefficients of the spherical parts of Yu and Z,555

respectively (cf. Equation (33c)). Note that all the other equations of the boundary value problem556

(29a)–(29h) remain unchanged, and that Equation (29g), or its explicit form (32b), simply returns557

Equation (46). A direct consequence of these facts is that Equation (33a) is eliminated from the558

model and, consistently with what is usually done in some works (see e.g. [8, 11, 100, 99, 58] and559

the references therein), JK is entirely defined by Equation (46), which, however, is here understood560

as a constraint. As such, it requires the Lagrange multiplier µK , which is computed by the force561

balance (47), i.e.,562

µK = z − yu, (48)

similarly to Equation (33c). There remains to determine yu. To do this, we go through the563

dissipation inequality, for example in the form of Equation (37), which we reformulate for the case564

at hand by assuming ΨR = Ψ̂R ◦ (F , JK). Hence, after some calculations, we obtain565

yu = yu,d + JK

[
∂Ψ̂R

∂JK
◦ (F , JK)

]
, (49)

where the second summand on the right-hand-side of Equation (49) is the scalar coefficient of the566

spherical part of Eshelby stress tensor and yu,d is the dissipative part of yu, and must comply with567

Equation (39), which now reads568

DR =yu,d(J̇K/JK) ≥ 0. (50)

Within the linear theory, we can take yu,d = κν J̇K , with κν > 0, so that Equation (48) becomes569

µK = z − JK
[
∂Ψ̂R

∂JK
◦ (F , JK)

]
− κν J̇K = z − JK

[
∂Ψ̂R

∂JK
◦ (F , JK)

]
− JKκνRγ(ph). (51)

For completeness, we recall that Yu and µT are determined by adapting Equation (45) to the case570

under study. In conclusion, a theory of the type just described permits to compute χ and JK by571

solving Equations (42a)–(42c) and (46), whereas the Lagrange multiplier µK can be determined a572

posteriori, since it is decoupled from the rest of the model equations.573
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7 Comparison with Gurtin’s derivation of Cahn-Hilliard equation574

A rather different situation from that depicted in the previous section arises when the mass balance575

law accounts for diffusion. We consider this circumstance by adhering to the framework developed576

by Gurtin [74], in which the evolution of the mass density of a body is studied under the assumption577

that such mass density describes an order parameter7. We notice that, in the context of tumor578

growth, Cahn-Hilliard based models have been proposed, e.g., in [1, 2], whereas a model involving579

the curvature induced by the growth tensor was proposed in [36].580

To model diffusion, we rewrite the mass balance law as %̇R = −DivIR + Jrγ , where IR is a581

diffusive mass flux vector, and the mass density %R is now regarded as a body’s order parameter582

[74]. In fact, by using the relation %R = JK%ν , and assuming %ν to be constant, one may regard583

JK as the “effective” order parameter of the theory and rewrite the mass balance law as584

J̇K
JK

= − 1

JK
Divv +Rγ(ph), (52)

with v := %−1
ν IR being a normalized mass flux vector having physical dimensions of velocity.585

Equation (52) is the new form of the constraint on JK , and is a partial differential equation, in586

which v has to be determined constitutively. To accomplish this task, we briefly review Gurtin’s587

approach [74], and slightly modify it in order to match our growth problem. To start with, we recall588

that Gurtin’s fundamental hypothesis is that the mass balance law described by Equation (52) has589

to be studied in conjunction with an additional balance of forces [74], dual to the variations of590

the order parameter. In this respect, the force balance in Equation (47) has to be re-interpreted591

accordingly, and, by introducing the virtual variations of the mass density %R and of JK , i.e., δ%R592

and δJK/JK , we write it in the following two equivalent forms593

−Divξ + π = γ, work-conjugate with δ%R (see [74]), (53a)

−Divf +

(
f
GradJK
JK

+ qu + µK

)
= z, work-conjugate with

δJK
JK

. (53b)

Thus, a comparison of Equation (53b) with Equation (47) allows to identify the internal generalized594

force yu with the combination595

yu ≡ −Divf +

(
f
GradJK
JK

+ qu

)
= −Divf + qu,eff , (54a)

qu,eff := f
GradJK
JK

+ qu, (54b)

where qu is the generalized internal force associated with growth, while qu,eff describes an effective596

internal force, in which the term fJK
−1GradJK accounts for the inhomogeneity of JK , and is indeed597

remnant of the “inhomogeneity force” introduced by Epstein and Maugin [41] in the context of598

growth mechanics (see also [101] for a more general context). We remark that Equations (53a) and599

(53b) can be found by adapting the PVW in Equation (27) to a theory of grade one in JK . This, in600

general, also requires prescribing fN on the portions of ∂B on which contact forces dual to δJK/JK ,601

or to δ%R, are assigned. However, by assuming for simplicity no contact forces of this type, the602

7The content of this section has been partially inspired by Fried and Sellers [50].
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adapted expression of the PVW is obtained by adding the internal virtual work
∫
B(f/JK)GradδJK to603

the left-hand side of Equation (27), replacing the second, fourth and sixth integrand on the same side604

with quδJK/JK , µK{δJK/JK + [J−1
K Divv−Rγ(ph)]δT }, and δµKtc{J̇K/JK + [J−1

K Divv−Rγ(ph)]},605

respectively, and substituting the third integrand on the right-hand side with zδJK/JK . This way,606

the Lagrange multiplier µT is equal to the product of µK with the negative of the right-hand side607

of Equation (52).608

Note that, up to the sign convention, we used Gurtin’s notation in Equation (53a) for the609

vectorial generalized force ξ as well as for the scalar-valued, internal generalized force π and external610

generalized force γ [74]. Moreover, the forces f, qu, and z, which we introduced in Equation (53b)611

for our problem, are connected with ξ, π, and γ, respectively, through the conversion formulae612

f ≡ %Rξ, (55a)

qu + µK ≡ %Rπ, (55b)

z ≡ %Rγ. (55c)

We emphasize that the Lagrange multiplier µK does not feature explicitly in the derivation of613

Equation (53a) done by Gurtin [74]. Rather, another multiplier, with different sign and different614

physical dimensions, is introduced when the dissipation inequality is investigated. In fact, Gurtin’s615

Lagrange multiplier is a rescaled version of µch featuring in Equation (35).616

Before going further, we deem appropriate to recall that Gurtin [74] considered a body that617

can be described as a “lattice”, or as a “network”, whose sites are free to experience relative618

motions with respect to their underlying lattice structure [74]. A physical interpretation of ξ, π,619

and γ, which are said to be “microforces” [74], is provided also by Podio Guidugli [109]. Here, by620

slightly reformulating Gurtin and Podio Guidugli’s words [74, 109], we say that ξ models contact621

interactions that a given region R ⊂ B of the body exchanges with the neighboring regions through622

its boundary ∂R, π describes the interactions exchanged between the lattice and the particles623

occupying the lattice sites within R (given that the particles and the lattice are subsystems of the624

system realized by the complex made of particles and lattice, the force π is internal to the latter625

system), while γ accounts for non-contact interactions between R and its environment.626

To motivate the employment of the above outlined framework for a problem of growth, and627

especially of tumor growth, we remark that, as anticipated above, the external force denoted by γ628

or z may represent, for instance, genetic or epigenetic interactions that are capable of modifying629

the tumor mass through changes of its density %R, or, equivalently, of the descriptor JK , while the630

complex consisting of lattice and particles (cf. [109]) may be taken as a representation of the system631

comprising the cells (which play the role of the particles) and the network of collage filaments (i.e.,632

the “lattice”).633

Next, we turn to the dissipation inequality. Hence, we modify Equation (35) to account for the634

powers associated with the mass flux v and the force f, thereby obtaining635 ∫
R
DR,new =

∫
R
DR,old +

∫
∂R

f[J̇K/JK ]N −
∫
∂R

µchJ
−1
K vN ≥ 0, (56)

where
∫
R DR,old coincides with the right-hand-side of Equation (35) in which, however, the iden-636

tification Z : K−1K̇ = zJ−1
K J̇K is made. By localizing this result, setting µch = −µK , and using637

the force balance (53b) and the mass balance (52), we find638

DR,new =− Ψ̇R + P : Ḟ + quJ
−1
K J̇K + fJ−1

K GradJ̇K + vGrad(J−1
K µK) ≥ 0. (57)
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To complete the study of the dissipation inequality (57), we choose F , JK , GradJK , J̇K , J−1
K µK ,639

and Grad(J−1
K µK) as independent variables, and we express ΨR, P , qu, f, and v as functions of640

these variables. Then, by following the Coleman-Noll procedure, and exploiting the fact that the641

constitutive expressions of ΨR, P , and f can be proven to be independent of J̇K , J−1
K µK , and642

Grad(J−1
K µK), we obtain643

P ≡ P̂ ◦ (F , JK ,GradJK) :=
∂Ψ̂R

∂F
◦ (F , JK ,GradJK), (58a)

qu := qu,d + JK

[
∂Ψ̂R

∂JK
◦ (F , JK ,GradJK)

]
, (58b)

f ≡ f̂ ◦ (F , JK ,GradJK) := JK

[
∂Ψ̂R

∂GradJK
◦ (F , JK ,GradJK)

]
, (58c)

where qu,d is referred to as the dissipative part of qu, in analogy with the definition of the force yu,d644

in Equation (49). Thus, we are left with the residual dissipation645

DR,new =qu,dJ
−1
K J̇K + vGrad(J−1

K µK) ≥ 0, (59)

which allows to take646

qu,d ≡ q̂u,d ◦ (F , JK ,GradJK , J̇K , J
−1
K µK ,Grad(J−1

K µK)) := κν J̇K , (60a)

v ≡ v̂ ◦ (F , JK ,GradJK , J̇K , J
−1
K µK ,Grad(J−1

K µK)) := MGrad

(
µK
JK

)
, (60b)

where κν > 0 can be understood as a strictly positive, bulk generalized viscosity, and the positive647

semi-definite, second-order tensor field M is said to be the medium’s mobility tensor [74].648

Now, the growth law Rγ(ph) is prescribed phenomenologically, the normalized mass flux v is649

given by Equation (60b), and the Lagrange multiplier µK can be expressed as a combination of650

the other forces featuring in the force balance (53b), i.e.,651

µK =z − qu − f
GradJK
JK

+ Divf = z − κν J̇K − JK EJKΨR, (61)

where we introduced the notation652

EJKΨR :=
∂Ψ̂R

∂JK
◦ (F , JK ,GradJK)−Div

[
∂Ψ̂R

∂GradJK
◦ (F , JK ,GradJK)

]
. (62)

Thus, we have enough information to determine JK and µK , which, indeed, are obtained by solving653

the system of equations654

J̇K
JK

= − 1

JK
Div

[
MGrad

(
µK
JK

)]
+Rγ(ph), (63a)

µK
JK

=
z

JK
− κν

J̇K
JK
− EJKΨR. (63b)
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8 Conclusions655

In this work, we have proposed a formulation of the mechanics of bulk growth in which the rate656

of variation of the mass of a body is assigned from the outset through a growth law prescribed657

phenomenologically. To better capture the implications of our approach, we summarize our results658

as follows.659

8.1 Main results within the theory of null grade in the growth tensor660

In Section 3, and, in particular, by means of Equations (3), (4), (7), and (8), we have shown the661

phenomenological assignment of the growth law and the rephrasing of the mass balance law in light662

of the BKL decomposition, which allows to interpret the mass balance law itself as a non-holonomic663

and rheonomic constraint on the growth tensor. This constraint has then been put in Pfaffian form664

[95] in Equation (20a), thereby establishing the basis for introducing the virtual variations δK, δT ,665

and δT, where T is the fictitious Lagrangian parameter representing time [106]. The main result of666

this formulation is given by Equations (19) and (20b), in which the constraint on the growth tensor667

is expressed in terms of the generalized virtual displacements δK, δT , and δT, and is attached to668

the “constrained version” of the PVW. This version of the PVW constitutes the crux of our work,669

and is presented in detail in Section 5, where we revise the PVW, and obtain the boundary value670

problem (34a)–(34e) of interest for the study at hand.671

In Section “Constitutive laws and final form of the initial and boundary value problem”, after672

presenting the constitutive framework, studying the dissipation inequality, and showing the final673

form of the initial and boundary value problem in Equations (42a)–(42k), we obtain the first results674

concerning the generalized internal forces Yu and Yu,d as well as the Lagrange multipliers µT and675

µK . These results serve as comments to Equations (44a), (44b), and (45), and can be summarized676

in the following remarks:677

Remark 8.1 (The case of no mass variation, i.e., Rγ(ph) = 0)678

If we set Rγ(ph) = 0, thereby switching off the variation of mass, we find Yu = −µT = 0. This679

result, which trivially follows from Equation (45), is consistent with the fact that, for Rγ(ph) = 0, the680

constraint (7) becomes holonomic, and amounts to requiring that the growth-induced distortions are681

isochoric, i.e., J̇K = 0 (see also Equation (34e)). In this case, the fictitious Lagrangian parameter682

T need not be introduced at all, and, accordingly, Equations (29e) and (30a) disappear from the683

model, while the Lagrange multiplier µK reduces to µK = 1
3trZ − 1

3trH, with −1
3trH acquiring684

the meaning of a generalized, “configurational” pressure [64], and H being evaluated for admissible685

tensors K. On the other hand, the evolution of K−1K̇, which is a deviatoric tensor, is governed by686

Equation (34d). Thus, in general, even for vanishing devZ, the configurational force −devH may687

trigger the evolution of non-trivial, plastic-like distortions, described by the isochoric tensor field688

K, as shown in Equation (42d). In this respect, some linear models of the biomechanical process689

known as “remodeling” are recovered [7, 64, 105, 68]. Finally, we notice that, since it holds true690

that trYu,d = JK [aν +2bν ]tr(K−1K̇) and tr(K−1K̇) = Rγ(ph), the vanishing of Rγ(ph) also implies691

the vanishing of the volumetric part of the dissipative generalized force Yu,d. Still, the converse is692

not true, as highlighted by Remark 8.2.693

Remark 8.2 (The case of vanishing trYu,d)694

Since it descends from Equation (40) that trYu,d = JK [aν + 2bν ]tr(K−1K̇), one may consider the695
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case aν + 2bν = 0, thereby characterizing the situation in which the spherical component of the696

dissipative generalized force Yu,d vanishes identically, regardless of the values taken by tr(K−1K̇).697

Also in this situation, the Lagrange multiplier µK reduces to the configurational pressure µK =698

1
3trZ− 1

3trH, but, as long as the condition Rγ(ph) 6= 0 is fulfilled, growth persists and the evolution699

of K is fully determined by Equations (34d) and (34e). Growth, thus, continues to be a dissipative700

process.701

In Section 6.4, we showed how our approach can be used to recover systematically the situation,702

often encountered in the modeling of tumor growth, in which the growth tensor is assumed to be703

spherical from the outset [8, 11, 59, 56]. Also for this situation, which can be described in terms of704

the determinant of the growth tensor, i.e., JK , we discussed separately the limit cases of no growth705

(cf. Remark 8.1) and of vanishing dissipative force yu,d (cf. Remark 8.2). These can be summarized706

as follows:707

• The case of no growth (see Remark 8.1) trivially restricts JK to remain equal to its initial708

distribution, J in
K , while µK becomes µK = z − J in

K [∂JK Ψ̂R ◦ (F , J in
K )], with z being possibly709

null. The quantity J in
K , in fact, need not be unitary, in general, because the “initial” state710

of the body may coincide with a state in which growth has occurred and has then come to a711

stop (see e.g. [36]). Clearly, also in this case, no growth implies the vanishing of yu,d, whereas712

the vice versa, in general, does not apply.713

• The discussion done in Remark 8.2 on the vanishing of yu,d is recovered for κν = 0, thereby714

yielding yu = JK [∂JK Ψ̂R ◦ (F , JK)], and µK = z − JK [∂JK Ψ̂R ◦ (F , JK)], while the evolution715

of JK remains prescribed by Equation (46).716

8.2 Main results within the Cahn-Hilliard theory717

A result that we deem particularly relevant for our formulation is the reframing of the Cahn-718

Hilliard model provided by Gurtin [74] within the context of the mechanics of bulk growth. This719

has been discussed in Section 7. In particular, we remark that Equations (63a) and (63b), which720

are obtained by adapting Gurtin’s procedure [74] to our problem, boil down to Equations (46) and721

(51), respectively, if the body’s mobility tensor M is assumed to be null and if the dependence on722

the strain energy density Ψ̂R on GradJK is suppressed. Furthermore, we think that, in order to723

highlight how our work is connected with that of others through a strongly similar physics, it could724

be interesting to evaluate again the case of vanishing growth and the case of vanishing dissipative725

force qu,d within the framework of the Cahn-Hilliard model. This can be summarized as follows:726

Remark 8.3 (Vanishing Rγ(ph) and vanishing qu,d within the Cahn-Hilliard approach)727

Equations (63a) and (63b) show that, quite differently from what has been said in Remark 8.1, the728

condition Rγ(ph) = 0 does not imply, in this case, J̇K = 0. Rather, it prescribes that JK evolves729

according to the Cahn-Hilliard equation (63a), with Rγ(ph) = 0, and that the Lagrange multiplier730

µK is determined by Equation (63b), possibly augmented with the supplementary condition z = 0,731

if required. Thus, even in the absence of “true” growth, the movement of mass within the body,732

described by the re-distribution of JK , is driven by diffusion. This result, in fact, recalls what733

has been obtained obtained by Epstein [40] in a work in which he hypothesized a sort of diffusion734

equation for a tensor-valued field representing the “material inhomogeneities” of a body [101] (see735
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also [36] for the case in which Epstein’s framework was extended to biphasic media for studying736

tumor growth). Indeed, within this scenario, a theory of growth based on the assumption of purely737

volumetric growth tensor K = J
1/3
K I boils down to a Cahn-Hilliard model of diffusion for JK , with738

the dissipative term −κν J̇K , i.e.,739

J̇K = −Div

[
MGrad

(
µK
JK

)]
, (64a)

µK
JK

= −κν
J̇K
JK
− EJKΨR. (64b)

There is, however, another nuance concealed in the Cahn-Hilliard approach. Indeed, whereas in740

the model discussed in Section “The limit case of spherical growth tensor” the case of no growth741

(Rγ(ph) = 0) also yields the vanishing of yu,d, because it implies J̇K = 0, this implication does not742

hold true in the present framework, since the condition Rγ(ph) = 0 does not require J̇K = 0, and,743

thus, it does not lead to qu,d = 0. In fact, one can compell qu,d to be null by choosing κν = 0,744

thereby re-obtaining the standard version of the Cahn-Hilliard model.745

8.3 Connections with other theories of growth746

The formulation of the mechanics of bulk growth proposed in this work may be regarded as a747

“bridge” between the perspective supplied by Epstein and Maugin [41] and the ones developed by748

DiCarlo and Quiligotti [38] and, later, by DiCarlo [37]. To explain this, let us briefly recall the749

most important results of these two approaches.750

8.3.1 Growth viewed as a “flow rule”.751

Epstein and Maugin [41] write the mass balance law in a way similar to our Equation (3)8, but,752

in their case, the source/sink of mass is not given phenomenologically. Rather, after showing how753

to determine what they call “transplant operator” [41], i.e., formally the inverse of the growth754

tensor used in our work, Epstein and Maugin [41] compute the source/sink of mass a posteriori as755

Rγ = tr(K−1K̇) (in our notation). For a comparison, the Reader is referred to Equation (9.21) of756

[41], in which our Rγ is written as “Π/%0”, and our tr(K−1K̇) replaces their “−trLK”. To show757

how to obtain K, Epstein and Maugin [41] determine an evolution law for it, in which a suitable758

rate of K is expressed as a function of its power-conjugated generalized force, i.e., Eshelby stress759

tensor. This result, in a sense, may be understood as a flow rule for a viscoplastic medium, as760

recognized by DiCarlo [37], although its range of validity within a growth theory may need further761

investigations. Indeed, in our opinion, one ought to make sure that tr(K−1K̇) does not vanish762

identically for vanishing Eshelby stress, since this would imply that stress is the only activator, or763

deactivator, of growth.764

8.3.2 The “Eshelbian coupling” pointed out by DiCarlo and Quiligotti [38].765

As anticipated in the Introduction, DiCarlo and Quiligotti [38] formulate a model of growth whose766

core is the balance of the stress-like forces dual to the virtual variations of K. In fact, this767

8In fact, this is true up to the presence of a mass flux vector, which we neglect in the first part of our work and
consider only afterwards, when we compare our approach with the one by Gurtin [74].
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force balance is obtained without any a priori constraint on the growth tensor or its rate, and,768

after establishing the constitutive framework and studying the system’s dissipation inequality, it is769

written as Yd +H = Z (in our notation), where Yd is the dissipative part of the overall generalized770

internal force Y (compare with our Equation (29d)). This way, DiCarlo and Quiligotti [38] highlight771

the interaction between Eshelby stress tensor H and the stress-like generalized force Y (“−C” in772

their notation). This interaction, referred to as “Eshelbian coupling” by DiCarlo and Quiligotti773

[38], is mentioned also by DiCarlo [37] in conjunction with the role attributed to the generalized774

force Z (“B” in his notation). Indeed, by rephrasing DiCarlo’s words [37], one may say that Z775

resolves the biochemical interactions that, possibly occurring at different scales, promote or hinder776

the growth of a biological system, and models their influence on the mechanics of the system’s777

structural evolution at the continuum scale. Thus, if we correctly interpret DiCarlo’s thoughts778

[37], it is hard to construct a biologically consistent mechanical theory of growth without Z, since779

Eshelby stress tensor alone is unable to capture the necessary biological information that guides780

growth. This, in turn, contrasts with the model of growth provided by Epstein and Maugin [41].781

Even though we agree on the fact that the picture proposed by Epstein and Maugin [41] may be782

too restrictive in “real” biological situations, since we believe that it is the force unbalance Z−H,783

rather than H, that should be considered in biological growth, our interpretation of the role of784

Eshelby stress tensor is different from that given by DiCarlo and Quiligotti [38]. Indeed, in our785

opinion, H is the “driving force” [41] of the contribution to the overall variation of mass of a body786

that is ascribable to the development and redistribution of “material inhomogeneities” [41, 101].787

On the other hand, we think that also Z −H may fail to describe some growth laws supported by788

experiments. It is exactly this observation that suggested us to reformulate growth as a constrained789

problem. This way, indeed, one is free to assign from the outset the growth law that best fits a790

given phenomenology by just paying the price of introducing the Lagrange multiplier µK . In this791

respect, this part of our approach seems to comply with the biochemical interactions discussed792

in [37]. Furthermore, the Lagrange multiplier, although being by definition the dual force of the793

variation of mass, need not feature explicitly in the mass balance, i.e., the constraint of the theory,794

unless one resorts, for instance, to diffusion models, like the Cahn-Hilliard one discussed by Gurtin795

[74], in which, besides Rγ (in our notation), the transport of mass is considered and associated with796

the gradient of µK . In addition, in our approach (here limited to the case of isotropic material),797

the deviatoric tensor devZ − devH is the “driving force”, as predicted by Epstein and Maugin798

[41], of the isochoric distortions associated with growth, but not directly related to the variation of799

mass. These distortions, indeed, make the growth tensor generally non-spherical, thereby allowing800

for models even more general than those usually encountered in the description of tumor growth. In801

this respect, we have in mind also those growth models formulated for bone, skin, arteries or heart802

mechanics, in which the growth tensor is assumed to be symmetric, but non-spherical, and with803

principal (anisotropy) directions assigned from the outset (see [6, 5] for a review). According to our804

model, instead, also in all these cases, K has to be computed by solving Equations (42a)–(42k),805

and it is a suitably modeled external force Z that determines, through its interaction with Eshelby806

stress tensor, i.e., through devZ −devH, how much K deviates from a spherical tensor and which807

symmetries it may possess (cf. Equation (42d)).808
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8.3.3 Towards a unified approach to inelastic processes.809

As a final remark, let us notice that, since our approach is based on a growth law given a priori,810

the variation of mass considered in our work need not be correlated, in principle, with any measure811

of stress, although we do let Rγ(ph) depend on ℘, as reported in Equation (4). This fact emphasizes812

that the constrained approach, although being constrained, guarantees a certain freedom in the813

choice of the growth law; a freedom that is balanced by the restrictions placed on tensor K. In814

this respect, however, we think that our approach may be used also in physical situations deeply815

different from growth, in which it is anyway necessary, or preferable, to assign the evolution of816

K a priori. Indeed, as an outlook for future research, we have in mind to reformulate in the817

context of growth and/or remodeling some models of the inelastic phenomena taken from the818

literature, like, for instance, Gurtin’s constrained plasticity [71, 72, 73], or the plastic flow rules819

suggested by Mićunović [102], and obtained experimentally for the case of non-associative plasticity.820

Furthermore, a natural extension of a theory of growth of grade one in the inelastic variable K821

would consist in switching to constitutive relations of grade two in the deformation. Although such822

approaches, in fact, have been proposed for the case of bone remodeling by adopting linear energy823

densities (see e.g. [54]), the framework of growth might call for the generalization of these energies824

to the nonlinear case.825
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A1: Time as a fictitious, additional Lagrangian parameter842

To explain the reasons for regarding time as a fictitious, additional Lagrangian parameter of the843

problem under investigation, let us briefly review the approach of Analytical Mechanics to a generic844

discrete mechanical system [17] subjected to non-holonomic and rheonomic constraints [87]. To this845
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end, let us consider a system of this type, described by n ≥ 1, n ∈ N, free generalized coordinates,846

which, as is customary in Analytical Mechanics, are denoted by q1, . . . , qn. For each k = 1, . . . , n,847

let qk : [tin, tfin] → R be a function of time fulfilling all the differentiability hypotheses that are848

necessary for the forthcoming discussion. Let us also consider m ∈ N, m ≤ n, linearly independent,849

non-holonomic and rheonomic constraints, i.e., restrictions on the generalized velocities q̇1, . . . , q̇n850

that, under the hypotheses of linearity in q̇1, . . . , q̇n, can be expressed as851

Či(q(t), q̇(t), t) :=
n∑
k=1

[aik(q(t), t)]q̇
k(t) + bi(q(t), t) = 0, i = 1, . . . ,m, (65)

where q denotes the array q := (q1, . . . , qn), while the coefficients aik(q(t), t) and bi(q(t), t) are852

given functions of the generalized coordinates and time. We remark that the constraints defined in853

Equation (65) are analogous, for discrete systems, to those introduced in Equations (7) and (8).854

Since the matrix constructed with the functions aik(q(t), t) has maximal rank for all t and855

q(t), only n − m generalized velocities can be taken as linearly independent in Equation (65).856

Accordingly, if the constraints are employed explicitly to select a priori the admissible motions of857

the system, the remaining m generalized velocities are to be understood as functions of the linearly858

independent ones as well as of the coefficients bi(q(t), t) and aik(q(t), t). The relations obtained this859

way must be respected also by the virtual velocities of the considered mechanical system, since, by860

definition, they must be instantaneously in harmony with the imposed constraints. In this respect,861

it can be noticed that, even when the linearly independent velocities are assumed to vanish, the862

coefficients bi(q(t), t), when they are nonzero, render the m dependent velocities (be they virtual863

or real) nonzero, too.864

On the other hand, if the constraints (65) are accounted for through the method of Lagrange865

multipliers, framed within the context of the Principle of Virtual Work, the coefficients bi(q(t), t)866

necessitate a dedicated study. Indeed, since they are not multiplied by any virtual displacement,867

they spoil the standard procedure on which the Principle of Virtual Work is based. To see this, let us868

define the virtual displacements δq1, . . . , δqn, and let us recall that, at each fixed time t ∈ [tin, tfin],869

and for each k = 1, . . . , n, the symbol δqk(t) represents a virtual variation of the value taken by qk870

at time t, i.e., qk(t). Hence, the collection δq(t) := (δq1(t), . . . , δqn(t)) represents a virtual variation871

of the system’s global configuration at time t, i.e., q(t), and the corresponding virtual work can be872

written as
∑n

k=1Qk(t)δqk(t), where Qk(t) denotes the Lagrange generalized force dual to δqk(t)9.873

Granted this background, as suggested by Lanczos [87], the constraints (65) can be reformulated874

as875

Ĉi(q(t), δq(t), δt(t), t) =
n∑
k=1

[aik(q(t), t)]δq
k(t) + bi(q(t), t)δt(t) = 0, i = 1, . . . ,m, (66)

where δt(t) (“δt”, in Lanczos’ original notation [87]) is a translation of time attached at the instant876

of time t.877

By introducing m unknown, time-dependent Lagrange multipliers µ1, . . . , µm, the quantity878 ∑m
i=1

∑n
k=1 µi(t)Ĉi(q(t), δq(t), δt(t), t) produces the term

∑m
i=1 µi(t)[b

i(q(t), t)]δt(t), which, how-879

ever, cannot be combined with any of the summands of the virtual work
∑n

k=1Qk(t)δqk(t), since880

9It is out of the scopes of this discussion to provide a thorough analysis of the constitutive expressions of Lagrange
generalized forces.
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none of those features the variation δt(t). To solve this problem, we proceed in two steps. First,881

we introduce the fictitious Lagrangian parameter T : I → I , such that T(t) = t0 + t, where882

t0 ∈ I is a given constant. We say that the map T is a “fictitious Lagrangian parameter” because883

its evolution is already prescribed and is consistent with the transformation of time of Galileian884

mechanics, thereby yielding the condition Ṫ(t) = 1, for all t ∈ I . This condition, in fact, can be885

regarded as an additional constraint, and is satisfied as δT(t) = δt(t), when it is written in terms886

of the virtual variation of T at t, denoted by δT(t).887

The second step consists of giving room to a generalized force dual to δT(t) [106], hereafter called888

QT(t), so that the Principle of Virtual Work, augmented by the method of Lagrange multipliers,889

and accounting for all the constraints, yields890

n∑
k=1

Qk(t)δqk(t) +QT(t)δT(t)

+

m∑
i=1

µi(t)

{ n∑
k=1

[aik(q(t), t)]δq
k(t) + bi(q(t), t)δt(t)

}
+ µT(t)

{
δT(t)− δt(t)

}
= 0, (67)

where µT(t) is the Lagrange multiplier associated with the constraint δT(t) − δt(t) = 0. Hence,891

by putting together all the terms multiplied by the same virtual variation, Equation (67) can be892

rewritten as893

n∑
k=1

{
Qk(t) +

m∑
i=1

µi(t)[a
i
k(q(t), t)]

}
δqk(t)

+

{
QT(t) + µT(t)

}
δT(t) +

{ m∑
i=1

µi(t)[b
i(q(t), t)]− µT(t)

}
δt(t) = 0, (68)

and leads to the system of equations894

Qk(t) +
m∑
i=1

µi[a
i
k(q(t), t)] = 0, k = 1, . . . , n, (69a)

QT(t) + µT(t) = 0, QT(t) = −µT(t), (69b)
m∑
i=1

µi(t)[b
i(q(t), t)]− µT(t) = 0, µT(t) =

m∑
i=1

µi(t)[b
i(q(t), t)], (69c)

which, in conjunction with Equation (65), allow to determine the n Lagrangian parameters q1, . . . , qn,895

the m Lagrange multipliers µ1, . . . , µm, as well as µT and QT. Note that, for brevity, in equations896

(67) and (68), we have omitted the terms
∑m

i=1 δµi(t)tcČi(q(t), q̇(t), t) and δµTtc[Ṫ(t) − 1], with897

tc > 0 being a characteristic time. These terms, however, are identically zero.898

A2: The case of non-vanishing external time-conjugated force899

In this section, we sketch the main changes that take place in the procedure shown in section 6, if900

the hypothesis concerning the vanishing of Z is relaxed and, rather, Z is regarded as an unknown901
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of the problem. In this case, following Gurtin’s approach [74], we postulate that the dissipation902

inequality reads903 ∫
R
DR =

∫
R
DR,old +

∫
R
ZṪ−

∫
R
µTṪ ≥ 0, (70)

where
∫
R DR,old coincides with the right-hand side of Equation (35), with µch ≡ −µK , the term ZṪ904

is the external power done by Z on Ṫ, and the term −µTṪ is introduced in analogy with the last905

summand on the right-hand side of Equation (35) to account for the fact that Ṫ is constrained to906

be equal to Ṫ from the outset, thereby allowing to identify Ṫ as a “source” for Ṫ. By performing907

the same localization procedure that has led to Equation (37) from Equation (35), recalling the908

force balance Yu + µT = Z of Equation (29e), and enforcing the constraint Ṫ = Ṫ , we obtain now909

DR =− Ψ̇R + P : Ḟ + Yu : K−1K̇ + YuṪ ≥ 0. (71)

Thus, under the constitutive hypotheses presented in section 6.1, which declare Ψ̂R as independent910

of T, and by assuming that YuṪ = YuṪ = Yu is not dissipative (recall that the last equality descends911

from the identity Ṫ (X, t) = 1), we conclude that the condition Yu = 0 must hold, and, thus, that912

Equation (71) yields Equation (39), i.e., DR = Yu,d : K−1K̇ ≥ 0. Hence, the study of the residual913

dissipation inequality, the solution of the IBVP (42a)–(42k), and the a posteriori determination of914

µK and µT as shown in Equations (44a) and (44b) can proceed as shown in the main body of our915

work. However, the difference with respect to the model presented above is that Equation (29e)916

now determines Z, because Yu vanishes for constitutive reasons, so that Equations (31) and (45)917

now become918

Z = µT = −µK [R̂γ(ph) ◦ (F ,K, ω)] = −
{

1
3trZ − 1

3trH − 1
3JK [aν + 2bν ]Rγ(ph)

}
Rγ(ph). (72)

Therefore, also the conclusion reported in Remark 8.1 must be rephrased accordingly, by saying919

that, for Rγ(ph) = 0, the condition Z = µT = 0 complies with the fact that the constraint (7) turns920

into a holonomic constraint.921
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