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Abstract—In the latest years, multi-domain Kubernetes archi-
tectures composed of multiple clusters have been getting more
frequent, so as to provide higher workload isolation, resource
availability flexibility and scalability for application deployment.
However, manually configuring their security may lead to incon-
sistencies among policies defined in different clusters, or it may
require knowledge that the administrator of each domain cannot
have. Therefore, this paper proposes an automatic approach
for the automatic generation of the network security policies
to be deployed in each cluster of a multi-domain Kubernetes
deployment. The objectives of this approach are to reduce of
configuration errors that human administrators commonly make,
and to create transparent cross-cluster communications. This
approach has been implemented as a framework named Multi-
Cluster Orchestrator, which has been validated in realistic use
cases to assess its benefits to Kubernetes orchestration.

Index Terms—security automation, cloud orchestration, Ku-
bernetes

I. INTRODUCTION

In recent years, containerization has been emerging as a
dominant cloud technology in the field of software develop-
ment. The advent of this paradigm has changed how users
perceive the development, deployment, and maintenance of
software applications [1]. Indeed, the success of container
technologies has determined a general shift from monolithic
applications to cloud-native applications, composed of loosely-
coupled microservices which can be deployed and managed
independently from each other. In a microservice-based ar-
chitecture, orchestrators are the element in charge of au-
tomating operations related to cloud service management, e.g.,
microservice deployment, resource optimization, and security
managament.

Among the different orchestrators that have been proposed,
Kubernetes is nowadays considered the de-facto tool for con-
tainer orchestration, and it is widely adopted by organizations
such as Adidas, Nokia, Spotify, and the U.S. Department
of Defense [2]. Since its first release, the design of the
orchestration provided by Kubernetes mainly focused on the
management of a single group of computing nodes, named
cluster. The security management of the pods (i.e., single
containers or a group of them) deployed by Kubernetes in
a cluster is based on the definition of application-centric
constructs, named network policies. These expressions specify
how a pod is allowed to communicate with other network
entities [3].

Even if a single Kubernetes cluster is extremely flexible
by itself, as a multi-tenant Kubernetes environment may be

created inside it with various techniques, over the years multi-
cluster Kubernetes architectures have started to be more fre-
quently created, so as to take advantage of the best features this
technology can offer. Some benefits are improved workload
isolation, resource availability flexibility and scalability. Multi-
cluster Kubernetes architectures are therefore common when
the clusters composing them belong to different companies,
whose services must communicate with each other. These
architectures are also known as multi-domain architectures,
where a domain is a set of clusters managed by the same
company.

However, if the complexity of setting up network policies
for a single Kubernetes cluster is already high, it is even
increased for a multi-cluster architecture [4]. On the one
hand, as a specific security configuration must be set up in
each cluster, inconsistencies may be introduced in the policy
definition, and they may lead to service disruptions. On the
other hand, inter-domain communication would require that
the person in charge of a domain knows IP addresses, routing
rules, and DNS settings related to services in other clusters.
Otherwise, such sharing of knowledge is not always feasible.

In light of these open problems, this paper proposes a
novel approach for automating the security configuration of a
multi-cluster and multi-domain Kubernetes environment. This
approach is based on the creation of a top-level entity, named
Multi-Cluster Orchestrator, which refines user-specified secu-
rity requirements into the concrete configuration, comprised of
Kubernetes network policies, to be deployed on each cluster of
the involved domains. The presence of this entity contributes to
the reduction of configuration errors that human administrators
commonly make, and to the creation of transparent cross-
cluster communications. A Java-based implementation of this
module has been implemented and validated in use cases,
showcasing the benefits of this approach in such environment.

The remainder of this paper is structured as follows. Section
II discusses related work. Section III presents the approach
that we propose for automatic security orchestration in multi-
cluster environments managed by Kubernetes. Section IV
describes the implementation of the Multi-Cluster Orchestrator
and discusses its validation. Finally, Section V draws conclu-
sions and outlines future work.

II. RELATED WORK

Automation has been investigated in literature for improv-
ing security configuration in computer networks, as it con-



tributes to avoiding human errors and sub-optimizations. It
has been also leveraged to enable “Security as a Service” in
security orchestration, e.g., in the European Union projects
projects INSPIRE-5Gplus [5], MonB5G [6] and FLUIDOS
[7]. A paradigm that is commonly pursued within automa-
tion is policy-based management. The main idea behind this
paradigm is that human users should only specify network
security requirements with sentences expressed with a user-
friendly high-level language, as automatic tools are later in
charge of refining those expressions into concrete security
configurations. In the wake of this idea, automatic approaches
have been presented in literature for the automatic configura-
tion of different virtual function types: packet filtering firewalls
[8]–[12], channel protection systems such as VPN gateways
[13], [14], IoT devices [15], [16], SDN switches [17], [18].
However, all these approaches have been designed to work
either in physical networks, or in virtual networks based on
the Network Functions Virtualization and Software-Defined
Networks technologies. Therefore, they are not suitable for
the management of cloud-based networks, especially in the
context of multi-cluster Kubernetes architectures.

At the same time, even if some solutions exist for multi-
cluster Kubernetes network interconnection, they are lim-
ited in managing network security configuration in a user-
friendly and efficient way. Three main classes of solutions
are currently used for network management of multi-cluster
architectures: solutions related to a specific Container Network
Interface (CNI) such as Ciulium Cluster Mesh [19], CNI-
agnostic technologies such as [20] and [21], and service mesh
technologies such as Istio [22] and Linkerd [23]. However, all
these solutions require coordination from all domain managers
of the clusters participating in the mesh, but a mutual share of
knowledge about their domains is not always feasible. In fact,
they do not implement a cross-cluster control plane and they
lack a single management point for the whole architecture.

The top-level entity proposed in this paper, i.e., the Multi-
Cluster Orchestrator, has the objective to overcome the limita-
tions of the state of the art of both network security automation
for cloud architectures and security management for multi-
cluster architectures. On the one hand, it aims to leverage
a policy-based management approach, while customizing it
for the peculiar features of cloud environments. On the other
hand, it represents a single management point that multiple
domain managers can interact with, so as to express security
requirements related to cross-cluster communications.

III. THE PROPOSED APPROACH

The approach proposed in this paper for the automation
of security management in a multi-cluster environment or-
chestrated by Kubernetes envisions the presence of a top-
level entity, named Multi-Cluster Orchestrator. This entity is
in charge of automatically computing the network policies
for each cluster, by refining high-level security requirements
defined by a network manager. These requirements express
how clusters are interconnected and how the services deployed
in those clusters must be protected from all unwanted requests

Fig. 1. Multi-Cluster Orchestrator interactions with other entities

for incoming and outgoing service connections. The Multi-
Cluster Orchestrator can speed up operations that would have
to be performed manually otherwise, and at the same time it
prevents human errors that commonly occur during the con-
figuration operations. Furthermore, it allows communications
to service in clusters where some pieces of knowledge are
missing, e.g., the position of a service in terms of cluster or
namespace may be unknown.

In our vision, the clusters whose security is managed by the
Multi-Cluster Orchestrator can be grouped into entities named
domains. We define domain a group of clusters belonging
to the same company and under the control of a single
network manager, called domain manager. Grouping clusters
into domains is helpful in differentiating security require-
ments expressed for intra-domain communications and those
expressed for inter-domain service communications. Indeed,
these two classes of requirements have different objectives.
On the one hand, requirements expressed for intra-domain
communications are useful to manage clusters belonging to
different sections of the company (e.g., to express that the
cluster of the testing department must be able to communicate
with the cluster of the development department, but not with
the cluster of the human resources section). In this way, the
security of these clusters can be automatically managed in a
way that is independent of other domains that may belong
to the environment handled by the Multi-Cluster Orchestrator.
On the other hand, requirements expressed for inter-domain
communications are also useful to allow each domain manager
to specify how their clusters must communicate with clusters
of other domains, even if the manager does not have full
information about them (e.g., the domain manager may not
know in which cluster of an external domain the service whose
communication must be allowed is located). In its refinement
process, the Multi-Cluster Orchestrator has full knowledge of
all the managed domains, and it can thus create all required
network policies, which could not be directly written by
domain managers because of their partial knowledge.

Fig. 1 shows how the Multi-Cluster Orchestrator works with
the other entities of the cloud environment for computing
the security configuration of the Kubernetes domains. First,



it receives information about the domain structure and the
network security requirements from each domain composing
the environment. This information represents the input for the
refinement process performed by the orchestrator and it will
be detailed in Subsection III-A. After elaborating the received
input, the Multi-Cluster Orchestrator automatically creates a
Global Configuration, which is then further refined into Single
Configurations composed of the network policies to be applied
to each cluster. More details about the automatically produced
output are provided in Subsection III-B.

A. Input: Domain Structure and Security Requirements

The Multi-Cluster Orchestrator requires two inputs from
each domain composing the environment it manages: 1) a
description of the domain structure; 2) a list of security
requirements expressing the allowed communications.

1) Domain structure: The description of the domain struc-
ture must specify both the list of clusters belonging to the
domain, and the list of all services that the domain exposes.
The first element (i.e., the list of clusters) is required by the
Multi-Cluster Orchestrator as the clusters are the entities to
which the orchestrator will directly apply the output Single
Configurations, computed at the end of its refinement process.
The description of each cluster must at least include the cluster
name and the API address, which represents the location where
Kubernetes has its REST service API and can be used to
create services and apply network policies. Instead, the second
element (i.e., the list of exposed services, and the informa-
tion about the clusters where they are located) is required
by the Multi-Cluster Orchestrator for completing the partial
information that it may receive from other domain managers,
when they request connections to those specific services. In
fact, some pieces of information may be unknown by domain
managers of other domains like the namespace to which a
service belongs, the used port and protocol, the cluster where
the pods linked to the service are deployed, or the selector that
links pods to that particular service. Feeding the Multi-Cluster
Orchestrator with this information, provides transparently for
starting secure communications between services.

2) Security requirements: Each security requirement that
can be specified as input to the Multi-Cluster Orchestrator rep-
resents a request for security policies that must be applied to
allow selected communications between services. By default,
all other communications must be denied. In each requirement,
the domain manager can specify three different target types for
the communications:

• Services belonging to the same domain: it is possible
to select one or more services that belong to the same
domain of the service, but that may be deployed in
different clusters.

• Services belonging to a different domain: it is possible
to select services of different domains. In this case, the
Multi-Cluster Orchestrator will add the missing informa-
tion about that service in a transparent way.

• External IP addresses not belonging to a domain: it is
possible to specify a range or a single IP address not

Fig. 2. Refinement process

belonging to any domain managed by the Multi-Cluster
Orchestrator.

The communications can be allowed for incoming and outgo-
ing traffic independently. For example, it is possible to request
that a service named service1 can start a communication
with a service named service2, but service2 cannot start a
communication with the service1.

B. Output: Global Configuration and Single Configurations

The refinement process executed by the Multi-Cluster Or-
chestrator is composed of two steps, as shown in Fig. 2. First,
the orchestrator automatically creates a Global Configuration,
characterized by general information about all the commu-
nications that must be allowed. Then, it derives a Single
Configuration for each cluster, refining the elements of the
Global Configuration that pertain the specific cluster.

1) Global Configuration: After receiving the required input
from all domains, the Multi-Cluster Orchestrator creates a
Global Configuration that keeps tracking of the following
aspects:

• the pairs of services that must be in communication;
• the pairs of clusters that must be linked together.
On the one hand, the list describing the pairs of services

that must be in communication is useful for the optimization
process of the security configuration for clusters inside the
same domain. For example, if two services are deployed
in the same cluster and both need to talk with the same
service outside their cluster, it is preferable to apply one single
configuration that works for both, as long as some conditions
are met (e.g., if the two services are in the same namespace).
The presence of this list can also help in identifying cases
the operation of creating a path between two services can be
skipped, if a path between them was previously created before
for another communication.

On the other hand, the list describing the pairs of clusters
that must be linked together is useful for the optimization
process of the cluster mesh, i.e., the interconnection among
the clusters of the different domains. Once the cluster mesh
is initially created, it is later updated by the Multi-Cluster
Orchestrator only when actually required on the basis of
the information provided by this list, e.g., every time a new



Fig. 3. Use Case

domain must be included or a new link from a service in a
cluster that does not currently belong to the cluster mesh to a
service in another domain must be created.

2) Single Configurations: Once a Global Configuration
is created, the Multi-Cluster Orchestrator creates a Single
Configuration for every cluster and applies it to them. Each
Single Configuration includes:

• the parameters that are required to set up the presence of
the cluster in the cluster mesh;

• the network policies to be installed for the services or
pods of the cluster;

• the commands to be used to create new services in
the cluster, with the objective resolve names of services
deployed in external clusters.

First, for the connection with other clusters, some parame-
ters need to be set in the cluster and some operations need to be
executed in order to secure connections between all clusters.
These parameters and operations are different according to
the technology chosen for the specific implementation of the
cluster mesh. In this work, as we will discuss in Section IV,
the mesh creation is created using the Cilium Cluster Mesh
technology, which requires parameters such as a cluster id and
a cluster name. These names and ids may be different from the
ones specified by the domain manager in the formulation of
the input security requirements. In that case, the Multi-Cluster
Orchestrator is in charge of transparently mapping them to the
actual values.

Second, for the creation of the network policies, the Multi-
Cluster Orchestrator performs a refinement process. Starting
from the high-level security requirements, it automatically
computes the different network policies for all services or
pods that must be protected, so as to allow communications
only to the services specified by the domain manager for both
incoming and outgoing traffic. At the end of the refinement
process, the Single Configuration accordingly contains all the
network policies for that specific cluster, which can be then
applied using the Kubernetes Cluster’s API.

Third, for the name resolution of services deployed in
external clusters, Multi-Cluster Orchestrator does not require
the modification of the deployed applications. Instead, for each
cluster, the Multi-Cluster Orchestrator automatically deploys

new services, which simply refer to the original services
deployed in other clusters. In this way, applications inside
that cluster can resolve the name of the service they want to
connect, as it belongs to the same namespace, in a completely
transparent way. The Single Configuration contains all the
commands for the setup of these services, which are then
created using again the Kubernetes Cluster’s API.

IV. IMPLEMENTATION AND VALIDATION

This section describes the implementation of the Multi-
Cluster Orchestrator in Subsection IV-A. Then, it discusses
its validation in Subsection IV-B, presenting a use case that
clarifies how the Multi-Cluster Orchestrator works in a multi-
domain environment, which operations it performs and which
final configurations it applies to each cluster.

A. Implementation

The implementation of the Multi-Cluster Orchestrator has
been developed with the Java language. As an official Java
client for the interaction with the Kubernetes Cluster’s API
was already available [24], we started from that implementa-
tion, and we extended it with missing Java methods, such as
the ones for the creation of network policies.

The Multi-Cluster Orchestrator exposes REST APIs, so as
to allow interactions with human users or external tools which
may be components of a more complex architecture. Besides,
it employs the Cilium Cluster Mesh technology for the creation
of the mesh interconnecting clusters of different domains.

The security requirements that describe which communi-
cations must be allowed are formulated with an extended
version of the YAML syntax that is used for the definition of
the network policies. In particular, special labels can be used
(service, cluster, and domain) to specify services or groups of
services belonging to a cluster or a domain whose ingress or
egress traffic must be allowed, without the need to specify their
selector or namespace. These labels are used by the Multi-
Cluster Orchestrator for the refinement process described in
Section III.

B. Validation

The Multi-Cluster Orchestrator has been validated in mul-
tiple multi-domain environments. For each scenario, we have
checked that the cluster configurations automatically computed
by the orchestrator are correct by verifying if the communica-
tions to be allowed were not blocked, and vice versa. Here, we
only describe a representative use case due to page limitation.

The environment of this use case, represented in Fig. 3,
is characterized by two domains, managed by different com-
panies. The domain managers want to allow communications
from some services of their cluster to services belonging to
the other one automatically and securely, so as not to have
configuration problems that can lead to disservices or breaches.
The main characteristics of this environment are as follows:

• Both domains, i.e., domain1 and domain2, are registered
to the Multi-Cluster Orchestrator, after interacting with
its REST APS.



Fig. 4. Service Definition

Fig. 5. Service Deployment

• domani1 is composed of two clusters named cl1 and cl2,
domain2 is composed of two clusters named cl3 and cl4.

• In domain1, there are two services: service1 is located
in namespace ns1 and deployed in cluster cl1, whereas
service2 is located in namespace ns2 namespace and
deployed in cluster cl2.

• In domain2, there are two services: service3 is located
in namespace ns1 and deployed in cluster cl3, whereas
service4 is located in namespace ns2 and deployed in
cluster cl4.

Each service of this use case is defined as the one in the
YAML file of Fig. 4. For each service, the corresponding
deployment of Fig. 5 creates two pods running that service.

At the beginning of this use case, when no inter-domain
security requirement has been yet specified, services of dif-
ferent domains are not able to interact with each other. In
order to check this property and later also to test which
communications are allowed or blocked in this environment,
we used a client, created with the YAML file of Fig. 6,
describing a deployment with two pods that are able to request
HTML pages using the curl command. For example, we tried

Fig. 6. Client Deployment

Fig. 7. Request failure due to missing service in the cl3

to deploy the client in the default namespace of cluster cl3,
and we checked that it is not able to find and contact service2
of domain1, as shown in Fig. 7.

Then, we request the application of the security requirement
described in Fig. 8. The Multi-Cluster Orchestrator creates the
services and namespaces needed to start the communication
with services service1 and service2 in cluster cl3, as shown
in Fig. 9 and Fig. 10. Fig. 11 also shows the status of the
namespaces in cluster cl3, after the creation of service2.

Fig. 8. Service Deployment

Fig. 9. Service2 created in cl3

Fig. 10. Service2 External Service created in the default namespace



Fig. 11. Namespaces of cl3 after Service2 creation

At that point, the Multi-Cluster Orchestrator automatically
creates a Cilium Network Policy, named ”allow-domain1”,
which contains the labels of the pods running services service1
and service2, so as to allow only communications with these
two services for the pods of the client deployment. When the
client thus requests again to communicate with service2, it is
able to contact it and receive a response, as shown in Fig. 12.

Fig. 12. Successful request to Service2

If this Cilium Network Policy is later deleted, also the
services and namespaces created are deleted, because there
are no other policies applied in the clusters that require the
presence of those services and namespaces. Fig. 13, Fig.
14, and Fig. 15 respectively show how the services and
namespaces are deleted, after the policy removal.

Fig. 13. Services in default namespace of cl3 after policy removal

Fig. 14. Services in ns2 namespace of cl3 after policy removal

Fig. 15. Namespaces of cl3 after policy removal

V. CONCLUSION AND FUTURE WORK

This paper proposes an automatic approach, based on an
entity named Multi-Cluster Orchestrator, to simplify and au-
tomate the security operations related to the configuration
of a Kubernetes-based multi-domain environment. The Multi-
Cluster Orchestrator has a complete overview of all the clusters
composing the domains of the environment, and therefore
it can refine the security policies specified by the domain
managers into the concrete configuration. The implementation
of this entity has been validated on use cases, showcasing the
applicability of this approach for cluster mesh management.

Future work envisions an extensive validation of the Multi-
Cliuster Orchestrator, so as to assess its performance according

to measurable metrics such as deployment latency and over-
head of the communication. This validation will also allow
a comparison with existing solutions. Another future work
consists in the creation of an interface that may help domain
managers in setting the security requests in a more intuitive
way, so that they can easily decide which internal services
must be able to communicate with external services.

REFERENCES

[1] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging trends,
techniques and open issues of containerization: A review,” IEEE Access,
vol. 7, pp. 152 443–152 472, 2019.

[2] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Trans. Softw. Eng. Methodol., 2023, in press.

[3] G. Budigiri, C. Baumann, J. T. Mühlberg, E. Truyen, and W. Joosen,
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