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ABSTRACT

A new formulation of the density eigenvalue problem for the neutron transport equation is pre-
sented. This formulation is particularly adequate to study the definition of the material composi-
tion in the criticality design process of a multiplying system. The method is then applied for the
study of classical problems such as the critical moderation ratio and the poison concentration to
control the reactor. Some results are presented in one dimensional configuration using the multi-
group spherical harmonics approach. This eigenvalue formulation proves to be a convenient and
useful way to attain criticality, also for complex, realistic systems.

KEYWORDS: transport theory, eigenvalue problem, PN approximation, density eigenvalue

1. INTRODUCTION

The eigenvalue formulation of the neutron transport balance model is a classic physico-mathematical prob-
lem of large interest in the reactor physics field, as the eigenvalue, in its various formulations, is an integral
parameter that provides rich physical information on the behavior of a nuclear reactor, with direct applica-
tions useful in the reactor engineering field.

The study of the different formulation of the eigenvalue problem for neutron transport has been treated
in previous works [1,2], starting from the well-known multiplication eigenvalue k and considering other,
physically significant, forms such as the α time-eigenvalue. The analyses have been performed in the con-
text of the transport PN model, focusing the attention on aspects related to the convergence of the solution
with respect to the angular and spatial variable, also suggesting the application of specific acceleration
techniques [3].

All the formulations of the eigenvalue problem can be given a physical interpretation, but all the applicative
studies have always been focused on k and α. Instead, the mathematical formulation of the eigenvalue
problem can be elaborated in alternative ways, aiming at a form of the problem that is relevant and useful in
the engineering design field. This objective requires formulating the eigenvalue problem in a rather unusual
form, for instance highlighting aspects related to the control of a multiplying system. All the resulting
alternative formulations can be qualified as a novel interpretation of the δ eigenvalue [4], which in the
past, in its traditional form, was considered somewhat exotic and not very informative, as it simultaneously
modifies all the densities of the nuclides within the system [5].



The approach adopted in this work and its final aim fits, in the Authors’ opinion, into the spirit of the legacy
that Massimo Salvatores left us, as he was always attentive to the basic physical and mathematical aspects
of a reactor physics problem, without losing sight of the application to realistic situations. We therefore
hope that this contribution will honour the memory of one of the most important scientists in the world in
the field of reactor physics, Massimo Salvatores.

2. THE THEORY OF THE ζ EIGENVALUE

Suppose to study a system defined in a bounded spatial domain V , composed by a mixture of nuclides,
each characterized by a local density Nm(r⃗), for m = 1, . . . ,M . As a first step towards an alternative
formulation of the density eigenvalue problem, let us suppose to introduce such eigenvalue to act only on
the density of a chosen nuclide, identified by index m⋆, in a specific zone Z , constituting a sub-domain
of V . It is not required that such zone is geometrically simply connected. The general time-dependent
source-driven neutron transport equation reads:
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where the symbols have their usual meaning in reactor physics, see for instance [2]. Vacuum boundary
conditions and an initial condition are needed to complement this equation. To construct the needed eigen-
value problem, the time dependence and the external source are removed. Consequently, an eigenvalue ζ
may be introduced to act on the density of nuclide m⋆ in zone Z only. Therefore, the transport equation to
be solved for r⃗ ∈ Z takes the following form:
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while for the r⃗ /∈ Z:
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Of course, the continuity of the angular flux on any internal interface is required.

The choice of the nuclide and region depends on the application envisaged, as this formulation of the
problem allows to evaluate the effect on the balance problem of a specific nuclide and on its positioning
within the reactor. In general, the eigenvalue ζ could be introduced in a more general way to filter a
specific volume in phase space, thus including also the possibility to act on a specific energy range. This
generalization is not considered in the present work.

3. APPROXIMATE TRANSPORT MODEL AND DISCUSSION OF PROBLEMS ANALYSED

It is well known that, for a given off-critical system, the criticality condition can be attained adjusting
its material composition or its geometrical size and arrangement or both [6]. The search for criticality is
usually performed evaluating the effective multiplication factor of the system, keff . The distance of this
parameter with respect to unity suggests what has to be done to approach criticality, e.g. when keff < 1
the multiplication should be enhanced and/or the particle loss should be reduced. However, no quantitative
information is provided on how criticality can be achieved, except that the number of neutrons emitted by
fission, ν, should become ν/keff . Nevertheless, this variation cannot be practically obtained, since adjusting
ν means changing the composition of the fissile material and, thus, Σf .

Assuming that the rough system dimensions and arrangement are determined by constraints other than
criticality, i.e. thermo-hydraulics and structural requirements, the designer can achieve criticality acting
only on the atomic density of one or more nuclides. Therefore, the design process is restricted to the choice
of the type of nuclide whose density needs to change, i.e. fissile, absorber or moderator if the system is
thermal.

A set of physico-engineering problems relevant in reactor physics will be presented in this section, in order
to show the main features of this generalised density eigenvalue formulation. These problems will be all
addressed discretising the PN multi-group equations in plain geometry with a finite difference scheme
and imposing Mark boundary conditions to approximate the vacuum, as done in [2]. The choice of an
approximate, one-dimensional numerical transport model instead of an analytical one allows to treat less
idealised problems, but also makes the introduction of the ζ eigenvalue easier. All the multi-group constants
employed in the calculations are obtained by collapsing a set of starting cross sections, generated with the
Serpent 2 Monte Carlo code [7] on the CASMO 70 groups grid. It is worth to mention the fact that the
effect induced by the variations in the density of the selected nuclides on the multi-group cross sections
self-shielding is neglected at this stage, leaving this aspect as a future development of this approach.

3.1. Approach to criticality for a mixture of fuel and moderator

One of the classical problems of reactor physics is the determination of the critical moderator-to-fuel ratio
in a thermal reactor. It is well known that, if the fissile enrichment and the system size are adequate, there
can be two critical moderation ratios Nm/Nf [8], as it can be seen in figure 1. When the lowest one is
selected, the critical structure is said to be under-moderated, while, when the largest one is employed, the
system is said to be over-moderated.

The existence of these two solutions is physically explained by the competition between the neutron slowing
down and absorption in the moderator.

Figure 1 shows the keff behaviour for a slab filled with a homogeneous mixture of fissile material and light
water as a function of the moderation ratio. As usual, the critical moderation ratios, i.e. the red dots in
the figure, are determined changing iteratively the moderator density. Therefore, each dot in the Figure
corresponds to the solution of a k-eigenvalue problem cast in the two-group P1 model.



Table I: Critical moderation ratios Nm/Nf to achieve criticality in a two-group homogeneous
mixture of fissile material and light water.

ζ calculation iterative calculation
Nm/Nf keff Nm/Nf keff

379.7 1.00000 384.8 1.00773
21722.5 1.00000 21583.4 0.99674
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Figure 1: Effective multiplication factor as a function of the moderation ratio for a two-group
homogeneous system.

The same solutions can be obtained introducing the ζ eigenvalue in front of the moderator density. In Table
I it is possible to observe that the ζ approach allows to determine the ”exact” values of the moderation ratio,
while the iterative method yields only approximate values.

Figures 2 and 3 show the first four higher-order ζ harmonics and the full eigenvalue spectrum for this
problem. These figures are very informative. First, it is remarkable to notice that, due to the existence of
two possible critical moderation ratios, there are two positive eigenfunctions, associated to the fundamental
eigenvalues, which are represented as blue stars in the graph. By inspection it is possible to see that the
fundamental ζ yielding the over-moderated system corresponds to the dominant eigenvalue, i.e. the largest
one, while the under-moderated solution, which is usually preferred for stability requirements, falls around
zero and it is very close to the other eigenvalues.

This behaviour seems to suggest that, in order to find all the physically meaningful solutions, the complete
spectrum should be found. In case this was not computationally affordable, a simpler transport model could
be employed to look for the approximated spectrum and, thus, fundamental eigenvalues, which then could
be used as eigenvalue shifts to enhance the eigenvalue solver convergence [9].
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Figure 2: Higher-order, two-group ζ modes for a homogeneous mixture of light water and fissile
material. Each harmonic is normalised to yield a unitary integral of the total flux corresponding to

the same spatial harmonic.
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Figure 3: ζ eigenvalue spectrum on the complex plane for a homogeneous mixture of light water and
fissile material. The blue stars are the eigenvalues associated to positive modes.
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Figure 4: Three-group fundamental k and ζ modes for a heterogeneous arrangement of fuel and
borated water layers, surrounded by a light water reflector. The k modes represent the initial

off-critical flux distribution, while the ζ modes represent the critical flux when the boron density is
adjusted with a 1/ζ factor. The fluxes are normalised to have a unitary total flux integral.

3.2. Boron concentration in a water reactor

Another fundamental problem in the physics and engineering of pressurised water reactors is the search
for the boron concentration to be diluted in the coolant to ensure criticality. Even in this case, the com-
mon approach to solve this problem is resorting to iterations. However, thanks to the generalised density
eigenvalue, it is possible to solve this problem directly, by solving for the fundamental ζ eigenvalue. Figure
4 shows the three-group k flux for a super-critical system with no boron in water and the three-group ζ
eigenfunction. This last eigenfunctions corresponds, by definition, to the critical flux of the system when
some boron with density multiplied by 1/ζ is mixed with water inside the coolant layers. This fact has also
been assessed numerically: after the addition of boron with a 1/ζ density correction, the system yields a
unitary k and the same flux distribution obtained in the ζ calculation. As one could expect, the addition of
the poison to the coolant layers composition has an important impact on the energy spectrum of the system,
featured by a strong spectrum hardening.

Figure 5 shows the full ζ spectrum for a heterogeneous arrangement of fuel and coolant layers, surrounded
by a water reflector. In this case, there is only one fundamental eigenvalue, which is strictly positive, as
most of the spectrum degenerates around zero.

As a consequence of this spectrum degeneracy, the typical oscillating higher-order harmonics are missing,
and only numerically noisy solutions are found. In order to explain this behaviour, it should be remarked
here that, contrarily to the k fundamental eigenvalue, which is always strictly positive if some fissile mate-
rial is present, the existence and uniqueness of a positive ζ eigenvalue is not guaranteed. At a first glance,
this fact may sound as an unpleasant feature of this eigenvalue formulation with respect to the k eigenprob-
lem: however, from a practical standpoint, the ζ problem is, to the authors’ opinion, the most natural way
to approach criticality consistently.
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Figure 5: ζ eigenvalue spectrum on the complex plane for a homogeneous mixture of light water and
fissile material. The blue stars are the eigenvalues associated to positive modes.

3.3. Approach to criticality via control rod positioning

The last application presented in the paper is the calculation of the absorber density in a control rod device
needed to achieve criticality. Also in this case, the ζ eigenvalue allows to determine directly the absorber
concentration needed to achieve criticality for an initially super-critical system featured by alternate layers
of fuel and coolant. Figure 6 reports both the three-group super-critical k flux and the ζ flux which corre-
sponds to the critical flux when the two layers in green are replaced by the absorber material, i.e. the control
devices are inserted. With respect to the boron dilution in water, this reactivity control system introduces a
larger distortion in the energy spectrum, as clearly visible in Figure 6.

Figure 7 shows the eigenvalue spectrum for this study case. With respect to the boron dilution case, see
Figure 5, there are two eigenvalues larger than one. However, only one of them is associated to a positive
eigenfunction, being thus the only physical solution. The other positive eigenvalue is associated with an
oscillating eigenfunction. The two first thermal eigenfunctions are depicted in Figure 8.

It should be noticed that, if the system is sub-critical, all the non-zero ζ eigenvalues would be negative.
Despite a negative density lacks of physical meaning, a negative eigenvalue suggests that it is not possible
to attain criticality with the nuclide whose concentration is considered to be a free parameter unless its
cross sections change sign, i.e. the absorption becomes a production.

4. CONCLUSIONS

In this paper, a novel formulation to the neutron transport eigenvalue problem has been proposed, generalis-
ing the density eigenvalue. This new eigenvalue, named ζ, can be introduced freely in the transport model,
acting on a selected portion of the phase space. Despite its broader applications and its connection with the
nature of the transport operator, the ζ eigenvalue has been presented here mainly as a design-oriented tech-
nique for the efficient evaluation of the critical concentration for a specific nuclide (or mixture of nuclides).

The application of this approach to realistic problems in reactor physics provided remarkable results. First,
the ζ eigenvalue yields equivalent results to the iterative method commonly applied in such framework, but
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Figure 6: Three-group fundamental k and ζ modes for a heterogeneous arrangement of fuel, coolant
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Figure 7: ζ eigenvalue spectrum on the complex plane for a heterogeneous arrangement of coolant,
absorbers and fissile material. The blue star is the eigenvalue associated to the positive mode.
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with a strong reduction of the computational effort. More importantly, the existence of one or more design
solutions seems related to the presence, in the ζ spectrum, of one or more real and positive eigenvalues
associated to positive eigenfunctions. This is a remarkable feature, which should facilitate to rigorously
assess whether criticality can be attained or not acting on the selected nuclides, even in case of complex
systems. Finally, this study of the ζ eigenvalue spectrum suggests that, in some situations, like the study of
control systems, the eigenvalue separation is large enough to ensure an efficient numerical convergence on
the dominant one.

Due to its novelty, there are many open questions that should be addressed in future works. First of all, the
ζ spectrum should be studied thoroughly, taking into account the impact of the different spatial, angular
and energy approximations of the neutron transport equation. In particular, the issue of multiplicity of
eigenvalues associated to physically meaningful eigenfunctions should be investigated, especially for non-
thermal systems. Moreover, the physical meaning of the higher-order ζ harmonics should be investigated
more deeply. Then, also the action of the eigenvalue on more specific portions of the phase space should be
studied, involving for example only some reaction channel, e.g. the capture, and a reduced energy range,
e.g. the thermal region.
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