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ABSTRACT

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based
methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden)
chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full
state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part
of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the
full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations
with the integral formulation of the dynamical system’s evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyze a
chaotic partial differential equation, the Kuramoto–Sivashinsky, and the Lorenz-96 system. We show that the proposed networks can forecast
the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize
the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by
successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan–Yorke dimension
of the attractor. The performance is also analyzed against noisy data. This work opens new opportunities for reconstructing the full state,
inferring hidden variables, and computing the stability of chaotic systems from partial data.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159479

It has been shown that the chaotic dynamics of complex sys-
tems can be inferred by machine learning from data when all
the dynamics are observed, but questions remain when only par-
tial observations are available. We design data-driven approaches
that can accurately infer hidden chaotic dynamics from partial
data and correctly learn the chaotic attractor, its tangent space,
and its stability properties.

I. INTRODUCTION

Chaotic dynamics appear in applications in various fields, from
meteorology,1 through engineering and chemistry,2 to propulsion.3,4

Chaos emerges due to the system’s exponential sensitivity to initial
conditions, as is the case with turbulent fluid dynamics.5 However,
the accurate prediction of chaotic spatiotemporal behavior is chal-
lenging because numerical computations can be computationally
expensive, and sensor measurements are often limited, providing

only a partial observation of the dynamic behavior. These partial
observations can lead to a misrepresentation of the unobserved (hid-
den) variables, or other long-term physical properties, which further
challenges the modeling and prediction of the systems.

The predictability and stability of a chaotic system are char-
acterized by its tangent space, which can be computed using the
linearized dynamics provided by the Jacobian. This computation
allows for the derivation of quantities, such as the Lyapunov expo-
nents (LEs), which measure the exponential rate of separation of
trajectories. A geometric characterization is provided by the covari-
ant Lyapunov vectors (CLVs), which constitute a covariant basis of
the tangent space, and point to directions of asymptotic expansion
and contraction of the dynamical system.6 Preserving these stability
properties is crucial when building surrogate models from limited
observations to a more comprehensive dataset.7

Neural Networks are expressive nonlinear representations of
continuous functions, which can extract patterns from data and,
once trained, provide computationally cheap predictions. Suitable
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for time series and dynamical evolutions are recurrent neural net-
works (RNNs), which have shown promising performance in the
inference of dynamical systems with multi-scale, chaotic, or tur-
bulent behavior.8 There are several classes of RNNs, the main
classes being reservoir computing, such as echo state networks
(ESNs),9 and networks using backpropagation through time, such
as long short-term memory networks (LSTMs).10 Both networks
have been extensively applied to short-term prediction tasks when
trained on complete observations.8,11–13 Additionally, ESNs have
been employed for predicting from noisy, undersampled observa-
tions and for crossprediction,14,15 whilst LSTMs have been trained
on incomplete observations16,17 with a focus on short-term time
metrics, such as the root-mean-square error. In the context of learn-
ing stability properties for prototypical chaotic systems, ESNs have
demonstrated accurate inference capabilities when trained on the
full state.11,18,19 This work proposes two approaches to infer the hid-
den chaotic dynamics from partial observations (data) with LSTMs.
The first approach considers the scenario in which the full-state
data are only available for a limited period, and partial data are
available for the remaining time. This scenario arises when generat-
ing high-resolution data is computationally expensive. For this, the
goal is to analyze how well LSTMs can infer the full-state dynam-
ics from partial data, especially in capturing small-scale statistics
in partial differential equations. The second approach analyzes the
case in which only partial state data are available, and the aim is to
reconstruct (i.e., infer) the hidden dynamics. To achieve this, knowl-
edge of the underlying physical system has to be incorporated by
adding constraints based on the governing equations. We propose a
physics-informed loss function based on integral formulation of the
dynamical system, which is versatile and suitable for the architecture
of the RNN.

This paper has a threefold goal. First, we perform reconstruc-
tion of the full-state vector from partial data and forecast the entire
state in the future. Second, we infer the Jacobian of the system,
enabling the analysis of the tangent space both geometrically (with
CLVs) and spectrally (with LEs and CLVs) from data only, i.e.,
without computing the Jacobian of the physical systems’ govern-
ing equations. Last, both approaches are compared on partial inputs
from two prototypical chaotic systems: the Lorenz-96 system20 and
the Kuramoto–Sivashinsky equation.21,22

This paper is structured as follows. Section II introduces the
LSTM architecture to address the state reconstruction problem
of a chaotic dynamical system. We propose a data-driven and
physics-informed loss formulation in Sec. III. In Sec. IV, we pro-
vide an overview of the computation of LEs and CLVs, emphasiz-
ing their importance for physically accurate modeling. We derive
the Jacobian of the LSTM. Section V discusses the results for the
Kuramoto–Sivashinsky system, followed by the findings for the
Lorenz-96 system. Finally, in Sec. VI, we summarize our work and
discuss future directions.

II. LONG SHORT-TERM MEMORY

A dynamical system’s solution is a time series, which provides
an ordered sequence of data over time. Recurrent neural networks
(RNNs) are a data-driven approach for modeling time series that uti-
lize hidden states to encode the input’s information history. Among

RNNs, long short-term memory (LSTM) networks are a common
tool due to their internal gating mechanisms, which mitigate the
vanishing gradient problem.

LSTMs are commonly employed for time series forecasting as
they embed the time-delayed inputs in their higher-dimensional
hidden states. From a dynamical systems perspective, a delay
embedding can provide a structure that is topologically equivalent
to the attractor.5 Given their architecture, LSTMs have the poten-
tial to be a powerful tool for representing the dynamics of a chaotic
system. This enables them to be utilized for reconstructing and fore-
casting dynamical systems, even in cases in which we lack part of
the system’s full-state information, as will be demonstrated in the
following.

A. State reconstruction for the inference of hidden

dynamics

We consider a nonlinear autonomous dynamical system

d

dt
x(t) = f(x(t)), (1)

where x(t) ∈ R
D is the state vector of the physical system and

f : R
D → R

D is a smooth nonlinear vector function. Experimental
observations often come with a limited amount of information on a
system’s full state; for example, if in a wind tunnel experiment O(10)
sensors are placed in different positions, they may provide adequate
but scarce spatial information of the system’s evolution.23 Mathe-
matically, if x(t) = [y(t); ξ(t)] is the full state of a chaotic dynamical
system, then y(t) ∈ R

Dy are the scarce observations and ξ(t) ∈ R
Dξ

are the unobserved (hidden) variables with D = Dy + Dξ . Specifi-
cally, let us assume that y(ti) is measured at times ti = i1t with
i = 0, . . . , Nt and constant time step 1t. Based on these obser-
vations, we wish to reconstruct and predict the full state
x(ti) = [y(ti), ξ(ti)].

LSTMs have been successfully applied to time series forecasting
of dynamical systems when full observations are available.8,11,24 In
this work, we use the LSTM as a model of partially observed chaotic
time series to both reconstruct the full state and perform accurate
autonomous temporal evolution (forecasting).

B. Architecture

The long short-term memory networks are characterized by a
cell state ci ∈ R

Nh and a hidden state hi ∈ R
Nh that are updated at

each step. In the case of partial observations, the states are updated
by using the observed variables y(ti) as

ii+1 = σ
(

W i[y(ti); hi]+ bi
)

,

fi+1 = σ
(

W f[y(ti); hi]+ bf
)

,

oi+1 = σ
(

Wo[y(ti); hi]+ bo
)

, (2)

c̃i+1 = tanh
(

Wg[y(ti); hi]+ bg
)

,

ci+1 = fi+1 ∗ ci + ii+1 ∗ c̃i+1,

hi+1 = tanh (ci+1) ∗ oi+1,
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FIG. 1. Schematic representation of the LSTM cell structure.

where ∗ denotes the elementwise multiplication and σ refers to the
sigmoid activation function.10 In the LSTM, ii+1, fi+1, oi+1 ∈ R

Nh are
the input, forget, and output gates (Fig. 1). The matrices W i, W f, Wo,
Wg ∈ R

Nh×(D+Nh) are the corresponding weight matrices, and bi, bf,
bo, bg ∈ R

Nh are the biases. The full prediction on the next time step,

x̂(ti+1) =
[

ŷ(ti+1), ξ̂(ti+1)
]

, is obtained by applying a dense layer to

the hidden state hi+1; i.e.,

[

ŷ(ti+1)

ξ̂(ti+1)

]

=Wdensehi+1 + bdense,

where Wdense ∈ R
D×Nh and bdense ∈ R

D.
LSTMs are universal approximators for a continuous tar-

get function;25,26 however, practically, the network’s performance
depends on the parameters, such as weights and biases. To deter-
mine these parameters, the available data are divided into three
subsets: training, validation, and testing. The training and validation
data are split into batches of fixed-length time windows. The train-
ing data are used for backpropagation through time,27 and during
the forward pass, the network output is computed and compared
to a training label using a loss function. In the backward pass, the
network parameters are optimized by computing the gradient of the
loss function with respect to the parameters with a gradient update
via the Adam optimizer.28 The validation data are employed to opti-
mize hyperparameters and determine parameters before training
(e.g., the dimension of the hidden and cell state Nh), while test data
are used to evaluate the final performance of the model.

The network works in an open-loop configuration during
training and validation (Fig. 2) with the output at each time step
depending on current and previous inputs within the time win-
dow, and the LSTM’s states are reset to zero at the start of each
input sequence. This is also known as “teacher-forced learning,”29

which facilitates a straightforward formulation of the loss, as elabo-
rated in Sec. III. After training, the network is evaluated on test data

FIG. 2. LSTM in an open-loop configuration: Each cell receives input from the
training data.

with fixed weights and biases, operating in a closed-loop configu-
ration (Fig. 3). After a warm-up of one time window, the network
can make long-term predictions in a closed-loop mode, even if no
data are available, and the states of the LSTM are retained across
time steps. The network predicts both the observed and unobserved
(hidden) variables. Subsequently, the observed variables are pro-
vided as inputs for the next time step, which allows the autonomous
evolution of the LSTM.

III. TASKS AND LOSS FUNCTIONS

The LSTM’s internal dynamics, and, therefore, its prediction,
are determined by the weights and biases of the model, which are
updated during the training. The loss function plays a critical role
in this process by defining the optimization problem that guides

FIG. 3. LSTM in a closed-loop configuration: The network prediction is used as
an input for the next cell.
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the updating of these parameters. The choice of the loss function
depends on the specific application and can greatly impact the accu-
racy and generalization performance of the model. In the following,
we propose two loss functions to guide the LSTM training: (i) a
data-driven loss and (ii) a physics-informed loss.

A. Low-to-high resolution loss (LH-LSTM)

The first task is to infer the high-resolution dynamics from
low-resolution inputs, thereby reducing the cost of acquiring full
measurement data. In fluid dynamics, in which problems display
turbulent behavior, this task becomes especially difficult as the pre-
diction is sensitive due to the chaotic nature of the data. The network
predicts the full state x̂(ti) = [ŷ(ti); ξ̂(ti)] given a partial input y(ti).
In this section, we assume that the full label x(ti) = [y(ti); ξ(ti)] is
only available for a short amount of time, which can be employed
for training and validation, and partial data are available for the
remaining time. Hence, we can define a data-driven loss using a
mean-squared error (MSE),

Ldd

(

x, x̂
)

=
1

Nt

Nt
∑

i=1

∥

∥x(ti)− x̂(ti)
∥

∥

2
, (3)

where || · || is the L2-norm. Although simple to implement, data-
driven loss functions have limitations. Specifically, they are sensitive
to overfitting, especially when the training data are noisy. To mit-
igate overfitting, we employ Tikhonov regularization by adding
αtikh‖x̂‖

2, αtikh ∈ R
+ to Eq. (3).30 When data are limited, these loss

functions may struggle to generalize to regions of the attractor that
are sparsely sampled during training. To regularize the problem, the
incorporation of the physical knowledge or constraints into the loss
function is an effective means,31,32 which favor physical solutions (in
contrast to traditional Tikhonov regularization).

B. Physics-informed loss (PI-LSTM)

Physics-informed losses have shown success in feed-forward
neural networks, in which automatic differentiation can be exploited
to accurately compute the derivative with respect to time and space
to machine precision.33,34 Unlike feed-forward neural networks,
RNNs have a dynamic temporal structure that makes it difficult to
accurately differentiate the prediction with respect to time because
of the recurrence and the type of inputs. As a result, the govern-
ing equations have to be incorporated in a manner that accounts for
the temporal structure of the RNN architecture. This approximation
is typically achieved by discretizing the time derivative in the loss
function using finite differences, which allows the physics-informed
loss to be computed, but it relies on the numerical differentiation
scheme.32 Hence, the autonomous dynamical system defined by
Eq. (1) is reformulated with its formal solution through the integral

x(ti+1) =

∫ ti+1

t0

f(x(t))dt = x(ti)+

∫ ti+1

ti

f(x(t))dt, i ≥ 0, (4)

which enables the use of numerical quadrature methods to approx-
imate the integral

∫ ti+1
ti

f(x(t))dt, instead of approximating the

derivative dx(t)
dt

to construct an accurate surrogate model. This
approach is naturally compatible with explicit numerical schemes

of different orders of accuracy, including the explicit Runge–Kutta
family or pseudo-spectral methods, thereby providing a flexible
framework for modeling physical constraints into RNNs. Based on
Eq. (4), we define the residual of the dynamical system

R(x(ti+1)) = x(ti+1)−

(

x(ti)+

∫ ti+1

ti

f(x(t))dt

)

. (5)

The true solution, x(t), of the dynamical system is such that
R(x(ti)) = 0 for all ti > t0. In this manner, the predictions x̂ of
the network favor physical solutions by minimizing the physics-
informed loss,

Lpi(x̂) =
1

Nt

Nt−1
∑

i=0

∥

∥R
(

x̂(ti+1)
)
∥

∥

2
. (6)

The proposed loss function addresses a distinct task from the
data-driven loss (3) by not requiring a full label, x(ti), making it
particularly advantageous in situations in which full labels are not
available. Alternatively, it enables the network’s prediction to be
constrained based on the governing equations, which allows the
reconstruction and forecasting of unobserved (hidden) variables. By
providing regularization during the training of the LSTM, we also
ensure that the predictions satisfy the governing equation defined
in (1) within numerical tolerance. Furthermore, this regularization
helps constraining the parameter space of the weights, which can
mitigate overfitting and improve generalization. We also include
a data-driven loss for the available data by computing the MSE
between the network prediction on the partial input ŷ(ti+1) and the
partial label y(ti+1),

Ldd(y, ŷ) =
1

Nt

Nt
∑

i=1

∥

∥y(ti)− ŷ(ti)
∥

∥

2
. (7)

The loss of the physics-informed LSTM is computed by combining
the data-driven loss and weighing the physics-informed loss as

L(y, x̂) = Ldd(y, ŷ)+ αpiLpi(x̂), αpi ∈ R
+, (8)

where αpi is a penalty hyperparameter, which acts as a regulariza-
tion factor. In the systems under investigation, there is no obvious
a priori choice for the selection of an appropriate regularization
hyperparameter. Poor selection of αpi can result in suboptimal mod-
els. If αpi is too large, it may lead to overfitting of the physics
while disregarding the observations. Conversely, if αpi is too small,
the models may overfit the measurements and fail to generalize.
To select the regularization factor, αpi, we employ a grid search as
detailed in the Appendix.

IV. INFERRING THE STABILITY OF THE DYNAMICAL

SYSTEM FROM DATA

Thanks to its recurrent nature, the LSTM can use its own pre-
diction as input in the closed-loop mode, which allows it to predict
the system’s full state in time beyond the input. This autonomous
evolution of LSTMs defines a dynamical system. Mathematically,
we assess the LSTM stability properties by studying their tangent
space.18 By introducing small perturbations to the system’s trajectory
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and linearizing the system’s equations, we can compute its stabil-
ity in different directions. We determine the properties of its linear
tangent space, such as Lyapunov exponents (LEs) and covariant Lya-
punov vectors (CLVs). To gain insight into the network’s dynamical
behavior, we apply these concepts to the LSTM by mathematically
deriving the LSTM Jacobian.

A. Lyapunov exponents

The solution of the dynamical system in Eq. (1) is x(t), which
defines a trajectory in the phase space of dimension D. To analyze
the properties of the dynamical system and its attractor, we impose
infinitesimal perturbations to the trajectory of the system as

x+ u, x ∼ O(1), u ∼ O(ε), ε→ 0. (9)

By substituting (1) and linearizing the system, the perturbation is
governed by the tangent equation

du(t)

dt
= J(x(t))u(t), (10)

where Jij =
∂fi(x)

∂xj
are the components of the Jacobian J(x(t)) ∈ R

D×D,

which is time-dependent on chaotic attractors. This shows that the
perturbation u(t) evolves along the tangent space with respect to x(t)
and must, therefore, be integrated alongside Eq. (1). Considering
K random perturbations, we numerically integrate K ≤ D tangent
vectors ui ∈ R

D as columns of U ∈ R
D×K,

dU

dt
= J(x(t))U. (11)

In chaotic systems, the tangent vectors align exponentially fast with
the leading Lyapunov vector, which can lead to an ill-conditioned
matrix U.6,35 For practical purposes, U is periodically orthonormal-
ized through the Gram–Schmidt procedure.36 Hence, we decompose
U into an orthogonal matrix Q and an upper triangular matrix R
with QR decomposition; i.e., U(t) = Q(t)R(t). The columns of Q
form an orthonormal basis for the tangent space and are known
as Gram–Schmidt vectors (GSVs). The diagonal entries Rii(t) corre-
spond to the local growth rates of the corresponding GSV qi(t). The
Lyapunov exponents (LEs) are computed by taking the time average
of the logarithms of Rii(t),

λi = lim
T→∞

1

T− t0

∫ T

t0

ln (Rii(t)). (12)

The Lyapunov spectrum, λ1 ≥ · · · ≥ λD, provides fundamental
insights into the chaotic properties and geometry of an attractor.3,6

If the leading Lyapunov exponent λ1 < 0, the perturbation decay
and the attractor are a fixed point. If λ1 = 0 and the remaining
exponents are negative, the attractor is a periodic orbit. If λ1 > 0,
the perturbation grows exponentially, and typically, the attractor is
chaotic. In this case, the Lyapunov time τλ =

1
λ1

defines a charac-

teristic timescale for two nearby trajectories to separate, which gives
an estimate of the system’s predictability horizon.37,38 Furthermore,
the LEs provide an estimate for the attractor dimension through the

Kaplan–Yorke dimension39,40

DKY = k+

∑k
i=1 λi

|λk+1|
, (13)

with
∑k

i=1 λi > 0 and
∑k+1

i=1 λi < 0.

B. Covariant Lyapunov vectors

Because LEs are scalars, they cannot describe the geometry of
the tangent space. For this, we need to find a suitable basis that spans
the tangent space. The GSVs Q(t) provide an orthogonal basis of the
tangent space, which is not time-reversible because of the frequent
orthogonalizations. On the other hand, there exists coordinate-
independent, local decomposition of the phase space into subspaces
spanned by the covariant Lyapunov vectors (CLVs).41,42 Unlike
the GSVs, which are orthonormal by construction, the subspaces
spanned by the CLVs are generally non-orthogonal to each other,
which provide information on the local geometric structure of
the chaotic attractor. If the CLVs V =

[

v1, v2, . . . , vk

]

are uniquely

defined (i.e., nondegenerate), then each CLV vi ∈ R
D describes the

individual expansion and contraction associated with the LE λi. The
CLVs can be recovered from the local growth rates R(t) and the
GSVs Q(t) by evolving backward in time after the forward-in-time
simulation is completed. We provide a brief overview of the com-
putation of the CLVs in Appendix A 2; for further details on the
computation, we refer the reader to Refs. 6, 18, and 43.

Two key pieces of information are contained in the CLVs.
First, CLVs provide information on the hyperbolicity of the chaotic
attractor.44 An attractor is hyperbolic if there is splitting of tangent
space at every point of the trajectory x(t) into three subspaces: unsta-
ble EU

x , neutral EN
x , and stable ES

x. These subspaces contain CLVs
associated with positive, zero, and negative LEs, respectively. This
splitting has profound implications for the geometric structure of
the attractor and in hyperbolic systems when there are no tangencies
between these subspaces.3 Therefore, the distribution of the angles
between these subspaces is bounded away from zero, which is a
property that can be analyzed with the CLVs. Second, CLVs provide
information on the most important directions in phase space, which
is useful for reduced-order modeling. CLVs can split the tangent
space of spatially extended dissipative systems into a decomposi-
tion of a fixed, finite number of “physical” modes and a remaining
set of “spurious” modes.7 The physical modes contain the relevant
dynamics of the phase space and define a finite-dimensional mani-
fold in the tangent space, while the spurious modes correspond to
the negative LEs and increase in number with increasing resolu-
tion. These spurious modes are hyperbolically decoupled from the
physical modes because perturbations along them decay quickly and
do not propagate to the physical modes. A way to characterize the
transition between physical and spurious modes is by analyzing the
statistics of the CLV angles and locating a clear absence of tangencies
in pairs of adjacent CLVs.7 The number of physical modes provides
a lower bound for the degrees of freedom in the simulation.
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C. Jacobian of the LSTM

We perform stability analysis on the dynamical system defined
by the LSTM. Key to the analysis is the Jacobian of the system; there-
fore, the Jacobian of the LSTM is required. To compute the Jacobian,
we express in a compact form the LSTM equations (2) during a
closed-loop as

[ci+1, hi+1]
T = LSTM

(

x̂(ti), ci, hi

)

, (14)

x̂(ti+1) =Wdensehi+1 + bdense. (15)

The Jacobian is the gradient of the internal states at a single time
step,

JLSTM(ci, hi) =









∂ci

∂ci−1

∂ci

∂hi−1

∂hi

∂ci−1

∂hi

∂hi−1









, (16)

which analytically is

∂ci

∂ci−1
= I ∗ fi,

∂ci

∂hi−1
= ci ∗ fi ∗ (I− fi)W

f+ ii ∗ (I− ii)W
i ∗ c̃i+ ii ∗

(

I− C̃
2

i

)

Wg,

∂hi

∂ci−1
=

(

I− tanh2
(ci)

)

∗ oi ∗ fi, (17)

∂hi

∂hi−1
= oi ∗ (I− oi) ∗ tanh (ci)+

(

I− tanh2
(ci)

)

∗ oi∗

×
(

ci ∗ fi ∗ (I− fi)W
f + ii ∗ (I− ii)W

i ∗ c̃i

+ ii ∗
(

I− C̃
2

i

)

Wg
)

,

where I∈R
Nh×Nh is the identity matrix and JLSTM∈R(Nh+Nh)×(Nh+Nh).

In chaotic systems, the Jacobian matrix varies at each time step. To
analyze the stability from partial observations, the idea is to ana-
lyze the LSTM Jacobian for the computation of the LEs and CLVs.
With this, we can compute the stability properties in the network
in a closed-loop mode. From Eq. (17), we expect a maximum of
2Nh > D Lyapunov exponents, of which the first D exponents are
physically relevant, whereas the remaining are spurious (i.e., they
depend on the network’s architecture). We provide a pseudocode
for the calculation in Algorithm 1 in Appendix A 1.

V. RESULTS

The objective is to assess the capabilities of the two LSTM archi-
tectures under investigation in the forecasting of both observed and
unobserved (hidden) chaotic time series. To study the forecast per-
formance of the proposed LSTMs, we employ the prediction horizon
during the closed-loop configuration,

∥

∥x
(

tNPH

)

− x̂
(

tNPH

)
∥

∥

√

1
NPH

∑NPH
i=0 ‖x(ti)‖

2
< k, (18)

with k = 0.5 as in Ref. 11. Starting from the same initial con-
ditions, the prediction horizon quantifies how far in the future

the LSTM can follow autonomously the reference chaotic solution.
We then perform a long autonomous temporal evolution of the
trained PI-LSTM and LH-LSTM networks and compare the statis-
tics with the target chaotic dynamical systems. In Sec. V A, we fix
the number of unobserved (hidden) variables in the example of the
Kuramoto–Sivashinsky equation. After reconstructing the full state,
we compute the statistics and spectrum of the kinetic energy, as well
as key stability properties, such as the Lyapunov exponents, and the
angles between selected CLVs. In Sec. V B, we employ the Lorenz
96 equation and test the capabilities of the LSTM networks when a
different number of hidden variables is considered.

A. Kuramoto–Sivashinsky

The Kuramoto–Sivashinsky equation, also known as the KS
equation, was first derived in Ref. 21 to describe diffusion-induced
space-time chaos in reaction systems. In Ref. 45, the equation was
independently derived to model small diffusive-thermal instabilities
of laminar flame plane fronts. The KS equation is a fourth-order
nonlinear partial differential equation that can be written in one
spatial dimension as

φt(t, x)+ φxx(t, x)+ φxxxx(t, x)+ φ(t, x)φx(t, x) = 0, (19)

with x ∈ [0, L) being the spatial direction. By assuming periodic
boundary conditions φ(t, 0) = φ(t, L) and setting L = 2π · 10, the
solution of the KS equation displays chaotic behavior22,46 with
λ1 = 0.08. We spatially discretize Eq. (19) with 128 degrees of
freedom, corresponding to 1x = L/128, and select a time step
1t = 0.25. The equation is then solved with a fourth-order spectral
scheme for stiff PDEs19,47 up to T = 2.5× 104, resulting in 105 sam-
ples. To eliminate transients, we disregard the initial 1000 samples

FIG. 4. Comparison of the test data’s (a) input, (b) label/reference solution,
(c) LH-LSTM’s closed-loop prediction, and (d) the absolute error between the
target and LH-LSTM prediction.
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FIG. 5. Comparison of the test data’s (a) input, (b) label/reference solution,
(c) PI-LSTM’s closed-loop prediction, and (d) the absolute error between the
target and PI-LSTM prediction.

and partition the remaining data into training, validation, and test-
ing sets with sizes 5× 104, 2× 104, and 5× 104, respectively. The
tangent space calculation follows Ref. 19, and the LEs and the CLVs
are computed, resulting in a Kaplan–Yorke dimension equal to
DKY = 15.02. We analyze the distribution of angles between the
CLVs and detect j = 29 physical modes for the selected parameters
in the present study; hence, the modes j ≥ 30 are spurious.

In the following, we present the results with Dy = 32 observed
inputs, and the network is trained to predict the full state with
D = 128. We select the window size in {10, 20, 50} and the cell and
hidden state dimensions Nh in {200, 500} with a grid search; see
Table I in Appendix A 3 for details. We do not observe significant
differences in the network performance for different choices of win-
dow sizes and the cell and hidden state dimensions. For the physics-
informed LSTM, the weighing αpi is selected from {100, 10, 1}. We
present the closed-loop prediction of the two LSTMs over 6τλ, with
the LH-LSTM in Fig. 4 and the PI-LSTM in Fig. 5. Both networks
accurately predict the KS solution over a short time horizon, with a
prediction horizon of 2.6τλ for the data-driven model and 2.86τλ for
the physics-informed model.

We investigate the long-term physical behavior of the network
prediction by examining the kinetic energy E(t) = 1

2L

∫

dx|φ(t, x)|2

of the reference solution and the networks’ predictions in Fig. 6.
Figure 6(a) shows the kinetic energy of the first 10τλ of the test set,
with an overlap of the energy during the prediction horizon. After
the prediction horizon, the kinetic energies gradually separate, due
to the chaos, but the LSTMs’ closed-loop predictions have correct
statistical behavior in the kinetic energy, suggesting that networks
produce long-term physical solutions [Fig. 6(b)].

To investigate this further, we present in Fig. 7 the time-
averaged energy spectrum, defined as E(k) = 1

T

∫

dt|φ(t, k)|2, which

FIG. 6. Kinetic energy of the Kuramoto–Sivashinsky system: Comparison of the
target (black line), PI-LSTM (red line), and LH-LSTM (blue line) for (a) short time
span on the test data and (b) the statistics over 500τλ.

is the distribution of energy at different wavenumbers k. High
wavenumbers correspond to small-scales, which are difficult to
model accurately during the numerical computation, as they involve
a large range of spatial and temporal scales. Despite passing only par-
tial spatial observations as an input, both LSTM models accurately
capture the energy of the majority of wavenumbers, showing that
the models accurately extrapolate to smaller scales.

Although the energy spectrum is a global quantity to analyze
the distribution of energy across different scales, stability analysis
provides a detailed tool to understand the chaotic and tangent
dynamics of the system. In Fig. 8, we compare the reference LEs
(in black squares) with the LEs extracted from the LH-LSTM (red
circles) and the PI-LSTM (blue crosses), computed with Algorithm 1
and hyperparameters in Table III. (As in Ref. 11, the network
does not capture two zero LEs (λ9 and λ10) and the plot is aug-
mented, accordingly.) By reconstructing the full state, the networks
effectively reconstruct the tangent space, the properties of which
are encapsulated in the LEs. Both networks infer the first 29 LEs
with high accuracy, with an error of 3.7% (LH-LSTM) and 0.2%
(PI-LSTM) in λ1. This means that the machine has inferred the cor-
rect physical modes based on the approach in Ref. 7. The PI-LSTM
case can also infer the hidden variables without fully labeled data,
which provides further evidence of the physical accuracy and correct
dynamics.

We examine the principal angles between the dominant CLVs
of the unstable subspace EU

x , the neutral subspace EN
x , and the stable

subspace ES
x in Fig. 9, where

θa,b =
180◦

π
cos−1(|va ∗ va|), (20)

θa,b ∈ [0◦, 90◦]. In Fig. 9, the agreement of the angle statistics
between reference and the LSTMs is within a negligible numerical
error, which reflects the robust and accurate learning of the ergodic
properties from the partial input data. Further discussion on the
CLVs is provided in Appendix A 5 and Fig. 17.
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FIG. 7. Energy spectrum of the Kuramoto–Sivashinsky system: Comparison of
the target (black line), PI-LSTM (red line), and LH-LSTM (blue line). The distri-
bution shows the energy transfer across different scales, with high wavenumbers
corresponding to small-scale behavior.

B. Lorenz-96

The Lorenz-96 model is a reduced-order model to describe the
large-scale behavior of the mid-latitude atmosphere.20 It consists of
a set of coupled ordinary differential equations, which represent the
variation of an atmospheric quantity of interest, such as temperature

FIG. 8. The first 35 Lyapunov exponents of the Kuramoto–Sivashinsky sys-
tem for the reference data (black squares), PI-LSTM (red dots), and LH-LSTM
(blue crosses). Both networks infer correctly the first 30 Lyapunov exponents,
which correspond to the physical behavior (i.e., physical modes7) of the system.

FIG. 9. The angle distribution of the Kuramoto–Sivashinsky system for the lead-
ing covariant Lyapunov vectors of three different subspaces: (a) unstable–neutral,
(b) unstable–stable, and (c) neutral–stable. The black line corresponds to the
reference data, and the red and blue lines indicate the results obtained from
the 10 000τλ long autonomous evolution of the PI-LSTM and LH-LSTM models,
respectively.

or vorticity, on a periodic lattice representing a latitude circle on the
earth

d

dt
xi(t) = (xi+1(t)− xi−2(t)) xi−1(t)− xi(t)+ F, i = 1, . . . , D,

(21)

with x =
[

x1, . . . , xD

]

∈ R
D. The periodic boundary conditions are

x1(t) = xD+1(t). Assuming constant external forcing F = 8 and
D = 20, the system exhibits chaotic behavior with six positive
LEs.48 Both the numerical solution and the reference LEs are com-
puted with the fourth-order Runge–Kutta method with a time step
of 1t = 0.01. The largest Lyapunov exponent is λ1 ≈ 1.55. The
Kaplan–Yorke dimension is equal to DKY = 13.4. The training set
consists of Nt = 16 000 points, which is equivalent to 250τλ. The
hyperparameters can be found in Table II of Appendix A 3. We
deploy the PI-LSTM to reconstruct the full state in three test cases:
reconstruction of (i) Dξ = 2, (ii) Dξ = 6, and (iii) Dξ = 10 vari-
ables. We choose test cases (i) and (ii) to highlight the capabilities of
the PI-LSTM and select (iii) to demonstrate how the network per-
forms with significantly fewer measured variables for training than
the Kaplan–Yorke dimension. When the full state is available for
training, both LH-LSTM and PI-LSTM perform equally well in pre-
dicting the long-term statistics and the LEs in a closed-loop mode,
but the PI-LSTM performs well when the training contains only
partial observations.

To assess the networks’ short-term forecasting capabilities, we
compute the mean and standard deviation of the prediction horizon
for 100 time windows sampled from the test set. These time windows
are used as a warm-up input to the network, after which it evolves
autonomously. Figure 10 shows that in all three cases, the PI-LSTM
achieves a larger mean prediction horizon and, therefore, predicts
the correct solution accurately for longer.

The statistical reconstruction is based on an autonomous
1000τλ long trajectory in a closed-loop mode. In Fig. 11, we show
the statistics of the hidden variables, i.e., those variables that are
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FIG. 10. Mean and standard deviation of the prediction horizon for PI-LSTM (red
line) and LH-LSTM (blue line) for 100 predictions in the test set with (i) Dξ = 2,
(ii) Dξ = 6, and (iii) Dξ = 10 missing variables in a closed-loop configuration.

not used in the training. Despite training with a full label, the LH-
LSTM fails to predict the solution. In particular, the corresponding
delta-like or uniform distributions (in blue) indicate fixed-point
or periodic behavior. However, the PI-LSTM (in red) provides a
markedly more accurate statistical reconstruction of the target com-
pared to the LH-LSTM, with an average Wasserstein distance49 of
(i) 0.05, (ii) 0.15, and (iii) 0.31.

In Fig. 12, we compare the reference LEs (in black squares)
with LEs extracted from the data-driven LSTM (in blue circles) and
PI-LSTM (in red circles) in the three test cases, computed with
Algorithm 1 and hyperparameters in Table IV. By reconstructing
the variables, the networks effectively reconstruct the tangent space,
the properties of which are encapsulated in the LEs. In all cases, the
LEs of the data-driven LSTM deviate significantly from the refer-
ence LEs, differing more from the target when fewer observations
are available. In test case (i), the PI-LSTM correctly infers the LEs,
with six positive LEs. In case (ii), the PI-LSTM infers five positive

FIG. 12. Lorenz-96: Comparison of the target (black squares), PI-LSTM
(red dots), and LH-LSTM (blue dots) LEs for (i) Dξ = 2, (ii) Dξ = 6, and
(iii) Dξ = 10 unobserved (hidden) variables.

LEs, decreasing to three positive LEs for test case (iii). These find-
ings indicate that the Kaplan–Yorke dimension of the target chaotic
system (here, DKY = 13.4) plays an important role in the recon-
struction capabilities of PI-LSTM: as a practical rule of thumb, at
least M & DKY independent time series are required for a sufficient
reconstruction of the full chaotic attractor such that accurate LE
statistics are extracted. This criterion is met in cases (i) and (ii),
as well as in the example of the KS equation in Sec. V A. Still, the
PI-LSTM can sufficiently reconstruct the hidden variables statistics,
as seen in Fig. 11(iii), when the number of available time series is less
than DKY.

FIG. 11. Lorenz-96: Statistics of reconstructed variables. Comparison of the target (black line), PI-LSTM (red line), and LH-LSTM (blue line) probability density functions
(PDFs) of (i) Dξ = 2, (ii) Dξ = 6, and (iii) Dξ = 10 variables over a 1000τλ trajectory in a closed-loop configuration.
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FIG. 13. Mean and standard deviation of the prediction horizon for PI-LSTM
(red line) and LH-LSTM (blue line) for 100 predictions in the test set with
(i)Dξ = 2, (ii)Dξ = 6, and (iii)Dξ = 10missing variables and two different noise
levels, kn = 0.1 (dark shade) and kn = 0.2 (light shade).

1. Robustness against noise

To evaluate the robustness of the networks, we examine
the impact of noise on the training data to mimic experimen-
tal measurements, which may be affected by aleatoric uncertainty.
Gaussian-distributed noise, sampled from N(0, knσx), is added onto
the training data, where σx is the standard deviation of the data
and kn is the noise level. Subsequently, the LH-LSTM and PI-LSTM
models are tested on a time window of noisy data, and their pre-
diction horizons are computed with respect to noise-free data. In
Fig. 13, we show the mean and standard deviation of short-term
predictions made by the networks trained with two different noise
levels, kn = 0.1 and kn = 0.2. Despite the introduction of additional
noise, the models’ prediction horizons remain largely consistent,
which signifies that the method is robust. The PI-LSTM consis-
tently outperforms the LH-LSTM in all three test cases, highlighting
the advantages of utilizing physics-informed regularization for a
noisy input. A similar observation can be made with respect to the
Lyapunov spectra, as shown in Fig. 14, for which the PI-LSTM Lya-
punov spectra are accurate. The probability density functions of the
time series can be found in Figs. 15 and 16 of Appendix A 4.

2. Discussion on the traditional methods

As a benchmark, we reviewed a selection of methods
for estimation of the Lyapunov spectrum based on time-delay
embeddings.50–52 Extracting LEs from time series from high dimen-
sional chaotic attractors is a significant numerical challenge,
and it is estimated53 that the number of required data points,
Nd, grows exponentially with the attractor dimension DKY as
Nd ∼ constDKY , where const ∼ O(10) encapsulates the necessary
parameters of those methods. As demonstrated in Ref. 54 for
Lorenz-96 at D = 6 with DKY = 4.2, additional care should be given
to the chosen parameters, requiring further experimentation. Based
on these estimates, Nd ≥ 1014 samples are required for an adequate
estimation of at least the leading Lyapunov exponent in the case of
Lorenz-96 at D = 20 used here. However, our approach achieves an

FIG. 14. Lorenz-96: Comparison of the target (black squares), PI-LSTM (red),
and LH-LSTM (blue) LEs for (i) Dξ = 2, (ii) Dξ = 6, and (iii) Dξ = 10 unob-
served (hidden) variables for two different noise levels, kn = 0.1 (dark shade) and
kn = 0.2 (light shade).

accurate estimate of a large portion of the Lyapunov spectrum with
significantly fewer data points [O(105)].

VI. CONCLUSION

Because of limitations with sensors, experiments typically pro-
vide information on only part of a dynamical system. With only
partial observations available, equation-based methods may struggle
to infer the full state. This is a particularly challenging task in chaotic
systems, which are the focus of this paper because infinitesimal
perturbations exponentially grow in time. We propose data-driven
methods to infer the dynamics of unobserved (hidden) chaotic vari-
ables—a task that is referred to as full-state reconstruction, time
forecast the evolution of the full state after the inference of the
hidden variables, and compute the stability properties of the recon-
structed full state. The tasks are performed from observations (data)
limited to only part of the state with long short-term memory
networks (LSTMs), which are versatile gated recurrent neural net-
works for sequential data (such as time series). First, we analyze
and propose architectures. The first architecture is the low-to-high
resolution LSTM (LH-LSTM), which takes partial observations as
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a training input, but it requires access to the full system state
(full labeled dataset). In order not to rely on the full labeled data set,
we design a physics-informed LSTM (PI-LSTM), which combines
data with the integral evolution equations. This allows for the use
of existing numerical integration methods, such as pseudospectral
time-stepping schemes. The proposed reformulation is beneficial
when automatic differentiation with respect to time is not readily
available and is, therefore, not limited to recurrent neural networks.
Second, we mathematically derive the Jacobian of the LSTM. The
Jacobian is key to computing the stability properties of the chaotic
attractor, such as Lyapunov exponents and covariant Lyapunov
vectors. Third, we test both the LH-LSTM and the PI-LSTM on
the chaotic Kuramoto–Sivashinsky system. Our results demonstrate
that both approaches correctly perform short-term predictions and
energy-spectrum inference on unseen scenarios in a closed-loop
mode. The machines correctly learn the covariant Lyapunov vectors
(measured through the angles) and infer the Lyapunov spectrum
of the attractor. Fourth, we analyze the Lorenz-96 system. Using a
purely data-driven method with the LH-LSTM leads to markedly
inaccurate long-term statistics and unphysical Lyapunov exponents.
On the other hand, the proposed PI-LSTM is able to infer long-term
statistics and chaotic properties. Fifth, the PI-LSTM outperforms the
LH-LSTM by successfully reconstructing the hidden chaotic dynam-
ics when the input dimension is smaller than the Kaplan–Yorke
dimension of the attractor. This is because the missing information
on the attractor is indirectly embedded in the equations. This work
opens new opportunities for inferring hidden variables and comput-
ing the stability of dynamical systems by combining prior knowledge
of the equations and data. Current work is focused on transferring

the methods of this paper to experimental data and larger dynamical
systems.
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ALGORITHM 1. Algorithm to compute the Lyapunov exponents of an LSTM.

Input: Start state xt,
Number of time steps to compute Lyapunov times Nlyap,
Number of transient initial steps to skip for warm-up Nw,
Number of steps until QR decomposition is performed again Nnorm

Initialize:
U← random ∈ R

(Nh+Nh)×d F Initialize d Gram–Schmidt vectors
Q, R← QR(U) F Orthonormalize GSVs
U← Q
NQR ← (Nlyap − Nw)/NNorm

λ← 0 ∈ R
d×NQR

Evolve the LSTM with its cell and hidden state and GSV simultaneously for Nw steps.
for i = Nw : Nlyap do

x(ti+1), ci+1, hi+1 = LSTM(x(ti), ci, hi) F Next LSTM step
J← JacLSTM(ci+1, hi+1) FUpdate Jacobian
U← JU F The variational equation
if mod(i, Nnorm) = 0 then F Orthonormalize every Nnorm steps

Q, R← QR(U)

U← Q
λ[:, i/Nnorm]← log(diag(R))/dt

end if
end for

Output: λj ←
∑NQR

i=0 λ[j, i]/Tlyap Fjth Lyapunov exponent
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APPENDIX: LYAPUNOV ANALYSIS AND

HYPERPARAMETERS

1. Computation of Lyapunov exponents

2. Computation of covariant Lyapunov vectors

Let M(t, 1t) = exp
(

∫ t+1t

t
J(x(τ ))dτ

)

(the exponential should

be considered as a path-ordered exponential55) be the system’s tan-
gent evolution operator. Each bounded non-zero CLV vi is evolved
by the tangent dynamics J(x(t)),3

dvi

dt
= J(x(t))vi − λivi, (A1)

where the extra term −λivi ensures that the norm is bounded. The
vectors vi are covariant, meaning the ith CLV at time t1, vi(t1), maps
to the ith CLV at time t2, vi(t2) and vice versa. This translates to
M(t, 1t)vi(t) = vi(t+1t), and time-invariance follows directly as
M(t,−1t)vi(t+1t) = vi(t). The CLVs can be recovered from the
local growth rates R(t) and the GSVs, Q(t), by evolving backward in
time after the forward-in-time simulation is completed. We provide
a brief overview on the computation of the CLVs; for further details
on the computation, we refer the reader to Refs. 6 and 18. Recall that
the GSV Q(t) and growth rates R(t) are computed by solving (1) and
(11) simultaneously with periodic orthonormalization. After 1t, the
GSV evolution is given by

M(t, 1t)Q(t) = Q(t+1t)R(t, 1t), (A2)

and the corresponding CLVs V(t) can be written as

V(t) = Q(t)C(t), (A3)

where C(t) is an upper triangular matrix containing the CLV expan-
sion coefficients. From the CLV evolution equation

M(t, 1t)V(t) = V(t+1t)D(t, 1t), (A4)

we replace V(t) using (A3) and then rearrange. It then follows that
the CLV expansion coefficients can be computed by inverting the
upper triangular matrix R(t, 1t) as

C(t) = R−1(t, 1t)C(t+1t)D(t, 1t) (A5)

after the forward-in-time computation of the GSVs is com-
pleted. This equation is evolved backward in time starting from
the end of the forward-in-time simulation. We employ the
solve_triangular routine of SciPy56 to invert R(t, 1t) and
solve with respect to C(t). The diagonal matrix D(t, 1t) contains the
CLV local growth factors, similar to R(t, 1t). The C and D matrices
are initialized to the identity matrix I. We leave sufficient spin-up
and spin-down transient time at the beginning and end of our total
time window, before we compute the CLVs via Eq. (A3), to ensure
that they are converged.

3. Hyperparameters

All experiments were run on a single NVIDIA Quadro RTX
8000.

TABLE I. Kuramoto–Sivashinsky equation: LSTM hyperparameters.

Hidden and cell state Nh 200, 500
Batch size 128
Physics-informed weighing αpi 1, 10, 100 (PI-LSTM)

0 (LH-LSTM)
Tikhonov regularization 10−8, 10−9

Window size 25
Epochs (early stopping) 2000
Learning rate (Adam optimizer) 0.001

TABLE II. Lorenz-96 system: LSTM hyperparameters.

Hidden and cell state Nh 100, 500
Batch size 128
Physics-informed weighing αpi 1, 10, 100 (PI-LSTM)

0 (LH-LSTM)
Tikhonov regularization 10−8, 10−9

Window size 20, 50
Epochs (early stopping) 2000
Learning rate (Adam optimizer) 0.001

TABLE III. Kuramoto–Sivashinsky equation: Algorithm 1 input parameters (LEs and

CLVs).

Nlyap 10 000 τ λ

Nw 100τ λ

Nnorm 0.2τ λ

TABLE IV. Lorenz-96 system: Algorithm 1 input parameters (LEs).

Nlyap 100 τ λ

Nw 10τ λ

Nnorm 0.015τ λ

Chaos 33, 093107 (2023); doi: 10.1063/5.0159479 33, 093107-12

© Author(s) 2023

 11 D
ecem

ber 2024 09:50:38

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

4. Probability density functions of Lorenz-96 for different noise levels

FIG. 15. Lorenz-96: Statistics of reconstructed variables for kn = 0.1. Comparison of the target (black line), PI-LSTM (red line), and LH-LSTM (blue line) probability density
functions (PDFs) of (i) Dξ = 2, (ii) Dξ = 6, and (iii) Dξ = 10 variables over a 1000τλ trajectory in a closed-loop configuration.

FIG. 16. Lorenz-96: Statistics of reconstructed variables for kn = 0.2. Comparison of the target (black line), PI-LSTM (red line), and LH-LSTM (blue line) probability density
functions (PDF) of (i) Dξ = 2, (ii) Dξ = 6, and (iii) Dξ = 10 variables over a 1000τλ trajectory in a closed-loop configuration.

5. CLVs of the Kuramoto–Sivashinsky equation

In Sec. V A, we have demonstrated that both the LH-LSTM and PI-LSTM accurately infer the angle statistics measured between the
leading CLV for the unstable EU

x , neutral EN
x , and stable ES

x subspaces of the Kuramoto–Sivashinksy equation. Specifically, as depicted in
Figs. 17(a)–17(c) and 17(e), the angle distributions exhibit a pronounced peak at π/2 and then rapidly decline near 0 and π . A change of
this behavior can be found in Fig. 17(d), in which the angle distribution spans the whole [0, π] interval. This shows the transition between
physical and spurious modes, as discussed in Ref. 7.
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FIG. 17. The angle distribution of the Kuramoto–Sivashinsky system for the CLV pairs: (a) v1, v20; (b) v13, v21; (c) v28, v29; (d) v29, v30; and (e) v30, v32.
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