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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

This paper presents an intelligent cloud-based platform for workers healthcare monitoring and risk prevention in potentially hazardous 
manufacturing contexts. The platform is structured according to sequential modules dedicated to data acquisition, processing and decision-
making support. Several sensors and data sources, including smart wearables, machine tool embedded sensors and environmental sensors, are 
employed for data collection, comprising information on offline clinical background, operational and environmental data. The cloud data 
processing module is responsible for extracting relevant features from the acquired data in order to feed a machine learning-based decision-
making support system. The latter provides a classification of workers’ health status so that a prompt intervention can be performed in 
particularly challenging scenarios.  
© 2020 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

The fourth industrial revolution combines the physical, 
digital, and biological spaces and it is changing the healthcare 
related contexts [1, 2]. In line with ‘Industrie 4.0’, operator 
4.0 requires careful understanding and consideration to ensure 
productivity is met in modern manufacturing paradigms [3]. 

Smart personal technology systems are able to provide a 
wide range of important information, possibly in real-time, 
enabling for the recognition of critical parameters and prevent 
human risks as well as supporting crucial decisions in 
unplanned or critical scenarios.  It is important to ensure that 
biometric monitoring can be utilized in real-time to identify 
when health hazards will occur and can be avoided. This 
enables to carry out a better-informed monitoring, resulting in 

more efficient processes and increased sustainability over 
time, by reducing occupational hazards. 

The concept of sustainable manufacturing must include the 
viability of workers health via elimination of agents hazardous 
to human health [4, 5]. In this context, Santochi and Failli [6] 
highlighted process sustainability requirements such as the 
elimination or reduction of waste, chemical or physical agents 
hazardous to human health and environment since 
manufacturing is generally based on human work. 

Relevant Industry 4.0 Key Enabling Technologies are 
widely functional to deal with healthcare issues within 
manufacturing scopes. In this respect, cloud computing is able 
to provide remote and broad access capabilities to large data 
[7]. Literature reports a large range of cloud computing 
approaches for healthcare purposes, analyzing the storage 
systems, the communication techniques and the technological 
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innovations to overcome the gap between centralized data 
localization and end-user [8]. 

The growing increase of connected devices, the limitations 
related to the network bandwidth and the uncertain latency in 
cloud data transmission call for innovative cloud 
manufacturing architectures capable of reducing the cloud 
connectivity issues through new layers like fog computing [9–
11]. Fog computing aims at offering data processing and 
storage capabilities closer to the end devices instead of 
directly transferring the raw data collected by sensors to the 
cloud. At the fog layer, small scale cloud functionality is 
ensured by the so-called fog nodes, i.e. devices with 
computing, storage, and network connectivity [10, 11]. The 
objective is to improve efficiency and performance and 
reduce the amount of data transmitted to the cloud for 
processing, analysis and storage, hence reducing network 
traffic and latency [9, 12].  

Concerning the hardware and data acquisition devices, Yan 
et al. carried out a survey on wearable sensor modality 
centered human activity recognition in health care [13] while 
[14] provides a comprehensive review of commercial sensors 
used in wrist-wearable devices and their suitability for 
intelligent analysis. Islam et al. [15] proposed a sensor-based 
healthcare system aimed at real-time monitoring of patients’ 
basic health parameters along with their room condition.  

The monitoring of environmental conditions within a 
factory plant has been proposed by [16], using a temperature 
and humidity monitoring system to investigate the 
manufacturing environment in a tea factory showing the 
distribution of temperature and humidity in the factory 
collected by a sensor system. With more specific application 
to factory worker health, Thomas et al. developed a sensor 
network [17] endowed with dust sensor, carbon monoxide 
sensor, oxidizing gas sensor, temperature and humidity sensor 
and noise level sensor to measure and assess airborne hazards 
in a manufacturing facility. Hariri et al. [18] analyzed 
spectroscopy data from welding fumes exposure towards 
operator to be correlated with the working posture. Choi et al. 
[19] developed a prototype for combined monitoring services 
of air-quality and healthcare integrated into a steering wheel 
cover to provide real-time measurement of three 
environmental sensor signals and two healthcare 
physiological signals with the results displayed on a 
smartphone. 

The use of accelerometers is explored in [20], which 
reports a detailed analysis of wearable technologies adoption 
in occupational risk prevention focusing on the data 
measurement precision and uncertainty issues. With special 
focus on physical activity monitoring, specifically healthcare 
oriented behavior monitoring within a building, Magistro et 
al. [21] developed and implemented an innovative algorithm 
combining proximity sensors with Bluetooth beacons placed 
in fixed locations within a multilevel, mixed-use building 
along with 4 receiver-mode wearable sensors. 

Within the scope of remote health monitoring, Vitabile et 
al. [22] reviewed data collection and fusion methods, with 
special regard to data ownership and privacy issues along with 
a number of  models and technologies for medical (big) data 
processing and analysis. Big data are further discussed by 

Thuemmler et al. [23] in terms of virtually delivering 
healthcare outside hospitals being tailored to individuals 
rather than being designed on statistical indicators. 

Machine learning is another attractive technology for 
applications in (healthcare) operations management due to its 
ability in building reliable models from a large number of 
weak predictors, and its ability to identify key factors in 
complex feature sets [24] In this scope, applications range 
from disease Prediction over Big Data within Healthcare 
Communities [25] to unsupervised characterization for 
estimating duration of each repetitive assembly operation 
process [26].  

It is acknowledged that one of the major challenges 
concerning the application of internet and cloud-based 
technologies for healthcare as well as industrial monitoring is 
represented by data security. The reason has to be found in the 
weak links used to connect the things to the Internet, leading 
to security issues in various levels of the Internet of Things 
(IoT). In this respect, Neerugatti et al. [27] analyzed various 
security issues and novel security architecture for the IoT-
enabled personalized healthcare systems.  

1.1. Research and industrial practice gap 

A literature and industrial practice review highlighted an 
interesting gap in knowledge around how modern 
manufacturing tools can be integrated with factories and 
manufacturing staff, especially in terms of systematic 
approach, data processing algorithms and decision-making. A 
gap is present for operator monitoring, in line with the new 
Operator 4.0 typology [3], as automation is becoming more 
commonly used to replace manual processing. However, the 
operator is still required to complete inherent tasks in this new 
age of cyber-physical systems. From this new typology, the 
concept of a ‘Healthy Operator’ requires exploration within 
hazardous work environment, through the use of wearable 
trackers for real-time monitoring, as well as an ‘Analytical 
Operator’ using big data interaction to monitor safety and 
predict risks [28]. Integration of IoT and biometric sensors 
have shown to monitor health information as part of a 
healthcare case study, which can apply to health in 
manufacturing environments [28], as well as integration of 
information for ongoing care [29]. While contributions 
regarding the development of sensor systems and IoT 
underline a wide availability of commercially available 
solutions, an attracting research direction arises from the lack 
of a systematic approach for the development of an integrated 
system to be employed within the manufacturing 
environment. Moreover, the limited contributions available in 
the literature in terms of decision-making support systems 
push towards the development of an intelligent system. 

The research work presented in this paper aims at filling 
the mentioned gap by proposing an integrated and intelligent 
cloud-based architecture for healthcare monitoring and risk 
prevention in hazardous manufacturing contexts 
encompassing the latest sensors, internet-based and cloud/fog 
computing technologies together with machine learning. The 
proposed cloud-based architecture combines the advantages 
of local decentralized data acquisition at the factory level, 
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fog-level data pre-processing based on fog nodes close to the 
end devices and remote intelligent decision-making at the 
cloud level.  This is aimed at enabling a better and automated 
use of data, finalized at classifying the health state and predict 

imminent risk. This allows a prompt action in conjunction 
with factory medical staff. 

 

Fig. 1. Cloud-based platform flow-chart 
 

2. Cloud-based framework 

The cloud-based platform conceptualized in this paper is 
structured according to the scheme reported in Fig. 1. 

The platform is composed of three main modules, namely 
Data Generation, Data Processing and Decision-Making 
Support modules. 

Acquisition and storage of sensor data from various 
sources such as worker’s health and position within the 
factory facilities, along with environmental data and processes 
related data are carried out within the first module. Here, data 
pre-processing is performed to prepare the data for further 
analysis. The output results in a structured and homogeneous 
dataset. 

Subsequently, data are sent to the processing module with 
the aim of extracting useful information. The output of this 
step is a set of statistical indicators and features which will be 
inputted to the decision-making module.  

Here, information coming from the processed sensor data 
and from the clinical background files are matched with the 
knowledge-based expert system. Such combined information 
dataset is inputted into a pre-trained machine learning 
classifier with the aim of estimating the worker health status 
in terms of risk class to support the medical staff to provide a 
tailored action based on the worker’s specific needs. 

The following sections describe the various modules in 
terms hardware and data requirements, data processing 
methodologies and information retrieval as well as machine 
learning approaches for classification tasks. 

3. Data Generation Module 

3.1. Personal health data acquisition devices 

Personal health data generation and acquisition is carried 

out via wearable devices, such as smart watches, other 
commercially available devices, customized prototypes to 
collect a large variety of online relevant data such as: body 
temperature, blood pressure, heart and breath rates. Personal 
devices are divided in two main categories, namely pro-active 
and passive units. Pro-active units collect data continuously 
during working and potentially detect out of range parameters, 
enabling visualization and alert functions for the worker The 
passive units, also known as WOD (wake-up on demand) an 
energy efficient solution allowing the device to remain idle 
and triggered only upon specific signal.  

Beyond the above-mentioned data, the personal health 
background has to be available for each worker, including 
age, gender, weight, previous health problems etc. In this 
respect, workers could be required to undergo specific check-
ups based on the particular activities carried out.   

3.2. Environmental data 

A set of sensing units has to be installed at factory level to 
provide information about environmental parameters which 
are likely to affect the worker’s health conditions such as: 
temperature (heat, cold), humidity, chemical and pollution, 
biological agents, radiations, noise, dust, vibration, poor 
ventilation, fire and smoke. In this way it is possible to map 
critical environmental parameter over space and time. 

Monitoring of individuals and their health is not the first 
objective for some sensors such as air quality sensors, light 
sensors, smoke detectors, etc. However, the data they collect 
can, by cross-referencing with data from other sources, 
contribute to the production of potentially personalized health 
information, and eventually the generation of alarms [30]. 
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3.3. Manufacturing process data 

Beyond personal health and environmental variables, 
additional information can be provided according to the 
factory policy in terms of process categorization type. In this 
respect a job hazard analysis should be preliminary carried out 
[31] to characterize mechanical hazards (e.g. heavy loads), 
chemical and radiations hazards etc. 

The interaction between man and machine along with the 
harsh ambient conditions that can sometimes be present, pose 
particular challenges with respect to health and safety 
technology in manufacturing industry. Consequently, more 
and more sensors can be integrated in machine tools and 
equipment in order to provide relevant data to the users. In 
this respect, technologies such as RFID, vision sensors, 
temperature sensors, pressure, force, torque, power, machine 
status (on/off, idle/processing), limit switches, encoders, etc. 
can be adopted to collect the required data. 

4. Data Processing Module 

The high variety of sensors and data acquisition sources 
yields to a considerable diversity in data types in terms of 
nature and sampling rate. 

High velocity data acquisition from a large number of data 
sources can create a heavy burden on data transmission 
infrastructure that can limit transmission bandwidth. Varying 
latency requirements for different data can create additional 
challenges. Data compression techniques can alleviate the 
bandwidth limitation in transmitting manufacturing data, and 
techniques such as edge/fog computing complement cloud 
computing in handling data with varying requirements of 
latency [32]. 

Moreover, a data homogenization procedure is required to 
allow for an effective storage and handling.  

As the information exchange is produced by a number of 
sources dislocated in different places across the 
manufacturing facility, a twofold data storage approach can be 
adopted: 
• Local storage - Smart Chip on device, in which only 

personal sensors data are stored (short term history) along 
with the device ID for user visualization purposes. 

• Central storage – Cloud Data Center (On-Premise 
System) endowed with encryption and security 
certificates, including the device ID, user long term 
history data, clinical background, factory, operational and 
environmental data. Moreover, the KB data and the result 
of the data processing operations are stored on the cloud 
server. 

Given the large amount of data generated and the 
corresponding diversified nature, a number of data reduction 
techniques can help to facilitate the data handling for further 
processing.  

In this respect, Principal Components Analysis (PCA) is 
able to detect correlated variables in a dataset [33, 34], such 
scenario can occur in correspondence of process conditions 
and hazard level within a certain spatial unit of the factory. 
Such analysis could potentially lead to a more effective 
selection of sensing units. 

To uniform the sampling rate, filtering techniques can be 
adopted such as moving average and resampling.  

The data obtained from connected devices have no intrinsic 
value: the information value depends on both the conditions in 
which they were obtained as well as the skills and knowledge 
of the person who qualifies (and potentially filters) and 
exploits them [30]. For triggering alerts, a decision process 
based on machine learning is therefore configured. 

5. Machine learning-based decision-making support 
module 

The general goal of the proposed framework at the present 
stage of research can be configured as a classification problem 
for a qualitative assessment of the worker health status, as 
illustrated in Fig. 2. The classes correspond to various 
estimated levels of risk for the worker’s health. 

The risk class is the output of the pattern occurring 
between the personal health data, factory data and 
environment data. 

From a computational perspective, input data are made of a 
data fusion including real-time health data features, GPS data 
features, operations data indicators and environmental 
features. 

The machine learning classifier is trained offline with 
ground truth historical data available in the knowledge base, 
and subsequently retrained and updated with newly generated 
data from sensors matched and labelled with the medical staff 
reports. Various technologies can be adopted for this purpose, 
ranging from the well-established Neural Network (NN), 
Support Vector Machine, Decision Trees, and Ensemble 
Learning [35, 36]. 

 



54 Alessandro Simeone  et al. / Procedia CIRP 99 (2021) 50–56
 A. Simeone et al./ Procedia CIRP 00 (2020) 000–000 

Fig. 2. Example of data flow 

The decision-making process can be enhanced and 
supported by the introduction of expert systems. In this 
respect, Adaptive Neuro Fuzzy Inference Systems (ANFIS) 
represent an attractive technology as they combine the ability 
to learn of the NN with human-like knowledge representation 
of Fuzzy Logic. 

Such hybrid systems have been demonstrated to be 
successfully implemented for classification purposes [37, 38]. 
To boost the classification performances when using 
overlapped data, the Fuzzy paradigm can be effectively 
coupled with Deep Neural Networks [39]. 

6. Challenges for industrial implementation 

6.1. Data availability challenges 

The selection of the hardware should be carefully 
addressed in terms of ergonomics, size and wearability [40]. 
The number of devices represents another challenge from 
economic and hygienic perspective. Data availability should 
take into account the sampling rate, as every variable can have 
different significance. This can lead to different choice in the 
hardware selection. As regards the wearable devices, a 

network infrastructure should be provided, enabling the data 
acquisition and exchange via diverse technologies, such as 
Mobile networking, Bluetooth 3.0, Wi-Fi, wired networking 
and RF. 

To ensure the correct devices-user pairing, authentication 
procedures are required, possibly carried out via RSA and 
biometric approaches as illustrated in Fig. 3. 

Data storage management process for rapidly growing 
amounts of data involves performing activities, such as data 
clustering, replication and indexing, in parallel to optimizing 
the storage process. Dimensionality reduction operations can 
be useful to deal with redundant, correlated and dependent 
data.  

 

Fig. 3. Authentication process flow-chart 

6.2. Knowledge base challenges 

Knowledge in this area still needs more measurement and 
definition to enable solutions to develop. Better measurement 
and modelling of human operators in harsh or strenuous 
working environments is needed in order to define needs for 
operators and to identify appropriate inclusion of automation 
and machine learning for collaborative work [28]. 

Automation can be used to replace or support human 
operation in harsh environments [41], but this needs to be 
fully validated as there is no ‘one-size-fits-all’ approach to 
integration. This can replace hazardous tasks, but automation 
still needs maintenance and human interaction, so these 
system elements should always be considered. 

The level of complexity also requires consideration, as 
automation takes over manual tasks, errors that do arise 
become more challenging for humans to fix, due to potential 
lack of information or training at line [42]. These are key 
elements that define why human operator monitoring is 
needed. Intelligence built in to understand where operators 
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become strained, stressed or potentially endangered identifies 
where solutions to these problems can be incorporated to 
improve monitoring and sustain manufacture [43]. 

6.3. Computational challenges 

Data acquisition should be synchronized and triggered to 
facilitate the handling and processing [44]. 

Data storage issues, in terms of data memory, should be 
addressed by considering the needs as technological advances 
have enabled the measurement of data at higher sampling 
rates which were not feasible before. The faster availability of 
a large amount of data has led to questions on how to make 
effective use of data. Using these data presents challenges that 
are unique to manufacturing due to the large range of 
temporal scales over which analysis and decision-making 
must occur [32]. 

Classification learner training time can represent a 
challenge especially when a hybrid system such as ANFIS is 
used. In this case the number of rules depends on the number 
of fuzzy sets and membership functions [37], and due to the 
high number of sensing variables involved the computational 
complexity can sharply increase. However, the training is 
carried out offline, and dedicated CPU units can be utilized 
for this purpose. 

Misclassifications, such as false alarms can be minimized 
by performing periodical re-trainings. In this respect, as new 
data instances are produced and validated by the medical 
staff, the knowledge base can be expanded by appending such 
instances for improving the classification accuracy. 

7. Conclusions 

This paper proposed a conceptualization for the 
development and implementation of a cloud-based platform 
for workers healthcare monitoring in potentially hazardous 
manufacturing contexts. The key modules have been 
described in terms of hardware requirements, data flow and 
algorithms. The critical challenges for the industrial 
implementation have been analyzed considering data 
availability, knowledge base construction and computational 
issues. In this respect, an overview of the suitable data 
processing and machine learning paradigms as well as the 
main challenges for industrial implementation was reported. 
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