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ABSTRACT 
We discuss the stability of run-of-river (ROR) hydropower plants. Despite this problem 
has been tackled for  a long time, the relevant literature usually disregards important 
mechanisms such as: (i)  backlash  in  mechanical actuators and components, (ii) delays in 
data processing and transmission, (iii) measurement uncertainties occurring in sensors, (iv)  
finite velocity of actuators, and (v) pressure surges within the penstock and in the head-
race tunnel. The aim of this paper is to show the relevance of these (nonlinear) mechanisms 
on the stability of water-level controls in ROR plants. 

1 INTRODUCTION  

We discuss a classical problem of hydraulic and control engineering: the stability of run-
of-river (ROR) hydropower plants. ROR hydropower plants are widely adopted worldwide 
[1] and represent a typical example of engineering systems that exhibit stability issues. For 
this reason, they have been a relevant research subject [2-6]. This problem has been mainly 
tackled by linear stability analyses (LSA). LSA are a key tool in this type of studies since, 
in most of the cases, they are simple to be implemented and correctly assess the stability 
properties of the controlled system, both in terms of asymptotic stability and transient 
responses [7]. A drawback of this type of analyses is that non-linear mechanisms and 
processes involving time delays and piecewise or threshold behaviours cannot be 
accounted for. This analytical difficulty explains why important mechanisms in controlled 
hydraulic systems such as backlash in mechanical actuators and components, data 
processing and transmission delays, level sensors measure uncertainties, finite velocity of 
actuators, and hydraulic transient within the penstock have seldom been considered in the 
stability analysis of ROR plants. The aim of this paper is to shed light on the relevance of 
these mechanisms in the context of the stability of water-level controls in ROR plants. 



 

 

2 RUN-OF-RIVER HYDROPOWER PLANTS DESCRIPTION 

2.1 Main characteristics of the plant 
ROR plants (Figure 1) are made up of hydraulic and control components. Hydraulic 
components usually consist of a river uptake that feeds a forebay. The forebay is connected 
by the head-race tunnel to the surge tank. From the surge tank, a penstock feeds the 
turbine(s). Control components are a level sensor (that measures the water elevation in the 
forebay) and a governor, that adjusts the opening of (and thus the flow rate through) the 
turbine(s). The governor operations are function of the water level dynamics and are 
usually set by a proportional-integral (PI) control algorithm which is adopted to keep the 
water level of the forebay at a constant value.  

 
Figure 1: Schematic of a ROR plant (see text for description). Gray insets highlight 

the novel mechanisms here discussed. 

The forebay diverts the flow rate Qr from the river, and is characterized by a cross-section 
area Af and a head Hf. The surge tank has a cross-section area As, and a head Hs. The flow 
in/out of the surge tank is Qs. The forebay and the surge tank are connected by a head-race 
conduit of length Lt and cross section At. Downstream the surge tank, the penstock (cross 
section Ap) connects the turbine. The head-race conduit conveys the flow rate Qt. In the 
final section of the penstock (flow rate Qp), a turbine equipped with a governor regulates 
the flow rate, so that the flow rate through the turbine and in the penstock is Qv.  

The governor can adjust the relative opening of the turbine, X. Values X = 0 and X = 1 
mean that the turbine is fully closed or it is at nominal opening, respectively. The relative 
opening can be  X>1 when the flow rate is larger than the rated flow rate. The limit Qmax is 
the maximum flow attained in the penstock when the turbine is fully open. An algorithm 
implemented in the valve PLC (Programmable Logic Controller) determines the relative 
opening of the valve, X. The aim of valve-regulation algorithms is to set X, as a function 
of the dynamics of the water level in the forebay. The water level in the forebay, Hf, is 
measured by a sensor that sends the signal to the turbine programmable-logic-controller 
(PLC). The algorithm implemented in the PLC compares Hf to a target value, Htrg. 
Regulation is performed to keep Hf as close to Htrg as possible. To this aim, a PI 
(proportional-integral) control algorithm is usually adopted [2-6]. 



 

 

2.2 Error sources in the level control system 
In the level control system, some undesired mechanisms affect the dynamics of the turbine 
opening X. They are: uncertainties in level sensors, delays in data treatment, backlash, and 
finite velocity in turbine’s mechanics. These mechanisms cause the actual opening of the 
turbine X to be different from the optimal opening of the turbine X set by an ideal control 
system. 

In the previous section, it was highlighted that the dynamics of the system strongly depends 
on the measurement of the water level of the forebay. However, true value Hf,true is never 
known. Instead, it is only possible to determine a measured value Hf,meas, that – due to 
measurement errors  - departs from the true value. 

In the context of this work, delays are defined as the interval of time taken by the control 
system from the measure of the water level in the forebay to the activation of the actuator. 
This time interval is referred as delay since control operations are not performed exactly 
at the time the forebay level is measured. 

Backlash (see inset in Figure 1)  is a clearance or loss of motion in a mechanism due to 
gaps between the parts or insufficient torque due to friction [8]. Considering backlash in 
control systems is an important issue because it prevents an operation requested by the 
controller to be completely performed. 

It should also be noted that the actuator needs some time to modify the opening of the valve 
X. If the actuator has an infinite velocity, any opening adjustment ΔX set by the PLC can 
be instantaneously achieved. This is not the case, because the actuator does have a finite 
velocity. 

3 MATHEMATICAL MODEL AND NUMERICAL METHODS 

3.1 Model 
3.1.1 Hydraulics 
Hydraulics in the conduits (penstock and head-race tunnel) is modelled through the 
dynamic and the continuity equations suitable for studying pressure surges [9] 
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where Q=flow rate, H=pressure head, t=time, x=spatial coordinate along the conduit (x=0 
is the upstream end, x=L is the downstream end, where L is the length of the conduit). The 
other symbols stand for: g = gravity acceleration, D = diameter of the conduit, A = cross-
section of the conduit, f = friction factor according to the Darcy-Weisbach formula and a 
= wave speed in the conduit. The subscripts “t” and “p” were used to refer to the head-race 
tunnel and the penstock, respectively. 

Boundary conditions for the forebay, surge tank, and downstream valve are implemented 
according to [9]. In the forebay, the flow Qt(t, xt=0) enters the head-race tunnel. The head 
Ht(t, xt=0)  at the entrance of the tunnel can be computed as 
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where ke = 0.5 = coefficient of entrance loss. The water level in the forebay varies over the 
time according to the mass balance equation (2b). This equation states that the forebay 
level changes over time when the flow entering the head-race tunnel Qt(t, xt=0) and the 
flow taken from the river Qr(t) are different.  

In the surge tank, the head losses are usually neglected. It follows that the head in the node 
in which the tunnel, the penstock and the surge tank converge is given by (3a). The water 
level in the surge tank varies over the time according to the mass balance equation (3b) 
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where Qs = flowrate in the surge tank. This flow is defined as positive if it enters the surge 
tank, and is given by the continuity equation   ( , ) ( , 0)s t t t p pQ t Q t x L Q t x    . 

The downstream turbine is modelled as a flow through an orifice [9]. Considering the 
datum at the free surface of the tailrace (approximately equal to the level of the turbine), 
the discharge flowing through the needle valve is described by the equation 

     2v v v vQ t A t c gH t , (4) 

where the head at the valve is taken as the head at the end of the penstock, i.e.,                          
Hv(t) = Hp(t, xp = Lp) . The opening of the valve varies through time and is determined by 
equations (5a,b) described in the following subsection. 

3.1.2 Controls 
The turbine opening Av(t) is regulated by the PI controller. In this control, the level in the 
forebay Hf(t) is measured and compared with a target value. If the measured level is 
different from the target value, the turbine opening is modified using the equation [2] 
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where the subscript “rated" means “rated value”, while Ti and k are the integral and 
proportional constants of the PI controller, defined as 
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where α and K1 are parameters of the PI controller. The integration over a finite time Δt of 
(5a) gives the turbine opening adjustment ΔX. 

3.1.3 Error mechanisms in the level control system 
In an ideal situation, no sensor uncertainties, errors, or delays affect the control system. 
This means that: (i) the exact value of forebay level Hf(t) is known; (ii) the PI algorithm 
(5a,b) can instantaneously determine the adjustment of the turbine opening ΔX; (iii) this 
adjustment is performed instantaneously, and (iv) no mechanical issues exist, and the new 
opening adjustment prescribed by the algorithms, ΔX is attained by the actuator with a 
perfect precision. This is not the case because sensor uncertainties, electronic delays, and 
mechanical issues occur. As a result of all these mechanisms, the opening adjustment of 
the turbine attained is different from the opening adjustment of the turbine that an ideal 
control system would have attained. Now, we describe how all these error mechanisms 
have been modelled in this work.  

Level sensor uncertainties can be accounted for in the mathematical model by considering 
the measured value Hmeas as a random extraction from a population of measures described 



 

 

by a probability distribution function. In the present study, the Standard Normal 
Distribution is used. It reads [10] 
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where Z=(Hf,meas-Hf)/σHf is the standardized normal random variable and σHf is the standard 
deviation of the forebay level. In this work, uncertainties are applied to the forebay level 
as follows: the true water level in the forebay Hf is modelled through the deterministic 
equations (1-4). Then, a population of possible measurement - centred around the modelled 
value Hf - is built according to (7), and a random extraction of a measurement is performed. 
This extraction gives the measured value Hf,meas. This value is used by the level controller 
as an input, and it is thus used in place of Hf in (5a) to determine the turbine opening 
adjustment. 

The delay in the system is considered assuming that the operation performed by the 
actuator is carried out tdelay seconds after the measure in the forebay. In this work, delays 
occurring in signal treatment are applied as follows: when the adjustment opening ΔX is 
evaluated, the new turbine opening Av(t) is not implemented in (4) until tdelay seconds have 
passed. 

Backlash is modelled in terms of gaps between mechanical parts and friction losses. The 
gaps G+ and G- are modelled as a percentage of the rated area [11], namely 
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where ΔAv,open(t) (or ΔAv,close(t)) is the time-dependent valve opening which is lost due to 
gaps between mechanical parts when the actuator drives in the opening (or closing) 
direction (see Figure 2a). If the actuator starts from a neutral position (see Figure 2b), the 
gaps occurring in the opening and closing direction are G+,max and G-,max, so  the total gap 
that occurs when the actuator reverses direction is  

,max ,maxtotalG G G   . (9) 

Friction losses are considered by setting a parameter µ that quantifies the percentage of 
valve opening that is lost due to frictional forces. From µ follows the parameter b=1-µ.  

Starting from these definitions, it is possible to estimate the actual change of valve opening 
ΔXreal that is attained over the time Δt when the PI controller imposes a valve opening 
adjustment ΔX. Because of gaps between mechanical parts and friction forces, ΔXreal is 
always lower than ΔX. From a quantitative point of view, focusing on an increment of 
turbine opening, ΔXreal can be modelled as 

if  < 0;   if  > ( )real realX G X X G X dX G b         . (10a,b) 
The first equation (10a) states that if the prescribed adjustment ΔX is lower than the 
minimum prescribed adjustment for which all gaps between mechanical parts are closed 
(MPA henceforth), no opening adjustment takes place (arrow A in Figure 2b). The second 
equation (10b) holds when the prescribed adjustment ΔX is larger than MPA. In this case, 
the real adjustment ΔXreal is larger than zero, but lower than the prescribed adjustment ΔX, 
because of the occurrence of gaps (if any left) and friction forces within the actuator (arrow 
B in Figure 2b). It should be noted that the gaps between mechanical parts evolve over 
time according to the rules 

  (if  < ( ) ) ( ) ;   if  > ( 0() )X G t G t t G t X X G t G t t              . (11a,b) 

Equation (11a) states that if (over the time interval Δt) the prescribed adjustment is lower 
than the MPA, the MPA at the following time (t+Δt) is reduced (arrow C in Figure 2b). 



 

 

The second equation (11b) states that if the prescribed adjustment is higher than the MPA, 
all the gaps are closed (all mechanical parts are in contact) and remain closed until the 
direction of motion is reversed (arrow D in Figure 2b). Motion in the opposite direction is 
modelled in the same way, and leads to the schematic representation of backlash motion 
reported in Figure 2b.  

In this work, backlash is applied as follows: the PI algorithm prescribes a turbine opening 
adjustment ΔX (5a), then, this turbine adjustment is put in (10) and the real turbine opening 
attained after the occurrence of backlash Xreal is obtained. From ΔXreal, the new turbine 
opening X is obtained, and X(t) is then used in (5b) to compute the turbine opening Av(t). 
Gaps are updated at each time step according to (11). 

In order to take into account the finite velocity of the actuator, it is considered that the 
turbine opening has a finite maximum rate of change [dX/dt]max, expressed as %/s, i.e., 
percentual variation of opening occurring over one second. In other words, a limit of the 
value of the time derivative of X reported in (5a) is set. 
 

 
Figure 2: (a) Variation of the turbine opening Av when the controller sets an 

imposed displacement (ID) to the mechanical actuator. The dashed line is the ideal 
behaviour, in which all the ID becomes variation of opening. The dotted line is the 

real behaviour, in which part of the imposed displacement is lost (gaps and friction). 
The dot-dashed line is the rated valve opening (i.e., X=1). For a given ID, it is 

possible to evaluate the lost valve opening ΔAv,open . (b) Schematic representation of 
the turbine opening adjustment in case of backlash. The real opening adjustment 

ΔXreal is always lower than the prescribed opening adjustment ΔX. It should be 
noted that when opening/closing goes in one direction, all gaps - at some point - are 

closed. 



 

 

3.2 Simulation via MOC Extended-Period Analysis 
To simulate the dynamics of ROR plants (considering all the mechanisms listed before) 
the numerical approach described in [12] and called “Extended-Period Analysis with 
transient models” was adopted. In short, a recursive approach is adopted according to the 
following steps: 

(i) the MOC - as described in [9] and implemented in MATLAB scripts and routines - 
was applied to the whole hydraulic system, in order to solve equations (1a,b) with 
the boundary conditions (2a), (3a) and (4) that set turbine opening and water levels 
in the forebay and surge tanks. This gives the evolution of flow rates and heads from 
t0 to t0+Δt in all computational nodes.  Time steps Δt of the order of 1/100 s were 
used; 

(ii) the flow rate at the entrance of the head-race tunnel was used to update the forebay 
level according to (2b); the flow rate at the end of the head-race tunnel and the flow 
at the entrance of the penstock were used to update the surge tank level according to 
(3b); 

(iii) the water level in the forebay was read from the results obtained in step (ii); 
(iv) measurement uncertainties occurring in the forebay water level sensor were 

simulated; 
(v) the forebay-level time-series was given as an input to the PI algorithm aimed at 

keeping the level of the forebay level at a constant value by acting on the turbine 
opening according to (5a,b). The result of this PI algorithm is an adjustment (change 
of opening) of the turbine ΔX; 

(vi) from the adjustment of the turbine setting given by the PI algorithm, ΔX, the backlash 
occurring in the turbine mechanical components and the finite velocity of the 
actuator were simulated and thus the actual turbine adjustment ΔXreal was obtained; 

(vii) a delay tdelay was added to the operations. To do this, the actual turbine adjustment 
ΔXreal evaluated at t0+Δt was implemented not before the time t0+Δt+ tdelay; 

(viii) the change of turbine opening was implemented in the model. In this way, a new 
time step of the recursive numerical procedure could be started from (i) with updated 
forebay and surge tank levels in (2a) and (3a), and updated opening Av in (4). 
 

Simulations lasted up to 10 000 s. The initial conditions were set as a steady-state flow 
with level in the forebay Htrg and rated flow rate (X=1) in the plant. 

4 ASSESSMENT OF SYSTEM STABILITY 

A dynamical system is defined as “stable” if the small disturbances that naturally and 
inevitably affect the system tend to damp over time. In contrast, an unstable system exhibits 
an amplification of these small disturbances, that amplify to the extent of affecting the 
system functionality.  

In the context of ROR plants, the assessment of the level-based flow controller stability is 
crucial. The aim of the flow control system is, in fact, to keep a constant target level Htrg 
in the forebay by adjusting the opening area of the turbine. If the flow that supplies the 
forebay Qr is constant and the turbine opening, Av,eq, is such that Qp(Av,eq)=Qr, then the level 
of the upstream tank is kept constant and no valve adjustment is required. However, this 
ideal configuration of equilibrium is very uncommon in real systems because, 
perturbations occur. The effect of these perturbations  s that the flow discharged by the 
turbine is different from the flow entering the forebay, therefore the level of the forebay 
tank deviates from its target value Htrg and adjustments of the turbine opening are 
performed.  



 

 

Different mathematical techniques exist to assess the response of a dynamical system to 
perturbations depending on the mathematical models (e.g., ODE or PDE models, 
autonomous or time-dependent systems), and type of perturbations (e.g., perturbation 
occurring only at the initial instant of the time-period, or perturbations continuously 
occurring throughout time). In the following, we recall two mathematical techniques that 
we adopted to analyse the ROR system here considered. 

4.1 Linear stability analysis (LSA) 
The stability of ROR plants has been traditionally tackled with the application of linear 
stability analyses. LSA are possible only when dynamics can be reduced to the system  
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where the vector Z(t) collects the dependent variables, and the N-dimensional continuous 
and derivable function g describes the system dynamics. In the theory of dynamical 
systems, the stability of the system is assessed studying the temporal evolution of possible 
perturbations of a basic state Z0. To discern analytically the response of a dynamical 
system to external disturbances, it is standard to study its linearized dynamics [13]. To this 
aim, the ansatz 0( ) · ( )t t Z Z z is introduced in (11). Z0 is the unperturbed basic state 

(i.e., 0 0d d [ 0/ ]t  Z g Z ), z(t) are the perturbations of the basic state, and ε<1 is the 

perturbation amplitude. Taylor expansion around ε=0 is performed and terms of order of 
ε2 or higher are disregarded. When terms of the order of ε0 are collected, the basic state Z0 
is obtained, whereas terms of the order ε1 yield the linear system  
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that describes the temporal dynamics of the perturbations z(t). The system is deemed stable 
if all eigenvalues of the algebraic matrix A (that describes the linearized dynamics of 
perturbations affecting (11)) are negative. From a physical point of view, this means that 
all disturbances undergo an exponential decay over time. The advantage of this technique 
is that stability can be assessed by a simple eigenvalue evaluation and the analysis of their 
sign. The disadvantage is that models that involve time delays, piecewise functions, 
threshold behaviours cannot be considered with this approach.  

4.2 Numerical simulation of the system response to perturbation 
The stability properties of a dynamical system can be assessed also by numerical 
simulations. Examples in hydraulic engineering are provided by [7, 14-18]. In this case, 
numerical methods are used to simulate the evolution of a perturbation in a dynamical 
system at equilibrium. The perturbation can be arbitrary but should be small and physically 
meaningful. In order to study the stability of the water level control described in the 
previous sections, we studied the system response to a perturbation of the turbine opening. 
In details, Av was altered of 1%, compared to Av,eq=Av,rated. Then, the behaviour of the ROR 
plant—initially at equilibrium, and considering all processes as described in Section 
3.1.3—was simulated according to Section 3.2. Two complementary techniques were used 
to analyse the simulation results. 

The first technique consisted in the assessment of the perturbation decay or growth rate. 
This was done to obtain - from numerical simulations - a result consistent and similar to 
those obtained from LSA, where eigenvalues are exactly the perturbation decay or growth 
rates. To this aim, the time-series of the forebay tank level (obtained as described in Section 
4.2) are analysed. First, the perturbations of the forebay level γ(t)=Hf(t)-Htrg are computed 
(Figure 3a,d); then, the peaks are identified (Figure 3b,e); finally, the absolute value of  the 
peaks is evaluated, and they are fitted with the exponential curve Γ=β exp(ωt)  (Figure 



 

 

3c,f). Similar to the rationale behind LSA (Section 4.1), the system is deemed as stable if 
ω<0 (i.e., exponential decay of perturbation, panels a-c) or unstable if ω>0 (panels d-f). 
 

 
Figure 3: (a,d) Example of forebay level perturbations γ(t); (b,e) Identification of the 

peaks of γ(t); (c,f) The absolute value of the peaks of γ(t) is evaluated, and the 
exponential curve Γ= β exp(ωt) is used to fit the resulting points. The sign of ω is 
used to discern between stable (ω<1) and unstable (ω>1) cases. Panels in the first 
and second row report an example of stable and an unstable case, respectively. 

The second technique consisted in the statistical analysis of the time-series Hf(t) and X(t) 
obtained from numerical simulations. In particular, the standard deviations σγ and σχ of the 
perturbation time-series γ(t)=Hf(t)-Htrg and χ(t)=X(t)-Xrated were evaluated. This was done 
to quantify the amplitude of the oscillations following an initial perturbation. In order to 
quantify the effect of a single error mechanism, it was insightful to assess the ratio of the 
standard deviations σγ/σγ,BM or σχ/σχ,BM, where BM stands for “benchmark case”. The ratio 
involved a system with a single error mechanism and a benchmark case with no error 
mechanisms. It should be noted that in some cases the time-series γ(t) or χ(t) approached 
the value “0” very quickly (e.g., left panels of Figure 5). In these cases, the standard 
deviation of the time-series was evaluated only over the time interval in which γ(t) kept 
larger than a tolerance (±1 mm, see the dashed lines in Figure 5) around Htarget. This 
introduced some arbitrariness, especially in the evaluation of σγ,BM and σχ,BM. Nevertheless, 
the ratios σγ/σγ,BM or σχ/σχ,BM can still provide the order of magnitude of alterations 
comapred to a BM case. 

5 RESULTS 

The main goal of this section is to discuss the effect of the different uncertainty and error 
mechanisms on the ROR plant controller stability. To this aim we first evaluated the system 
response without any of these mechanisms, finding a benchmark (BM) system response. 
We then repeated the analysis considering one (or more) mechanism at a time. The 
comparison of the BM response with the responses obtained considering additional 
mechanisms will allow us to quantify the effect of these mechanisms on the system 
stability.   

5.1 Parameters adopted for the analysis 
The system parameters used in the simulation are shown in Table 1. They mostly refer to 
the case study reported in [2]. To assess the effect of PI? parameters on the system stability, 
α and K1 varied in the ranges within 0-100 and 0-10, according to [2]. All the other 
parameters that quantify the mechanisms here considered are set to zero in the BM case. 
Other values are set when one (or more) mechanism at a time is considered (see the specific 



 

 

sections for the adopted values). The standard formulas reported in [19] were adopted to 
estimate the pressure surge celerity of the head-race tunnel, at (circular tunnel excavated 
in rock) and of the penstock, ap (circular steel pipe). 

Table 1: Constant parameters used in the simulations 

 
 

 
Figure 4. Bode diagram for the considered ROR plant. In the horizontal and vertical 
axes the PI controller parameter α and K1 are varied. The system is stable inside the 
curve and unstable outside. The continuous line is the marginal stability curve 
evaluated considering pressure surges in the conduit, and is the benchmark (BM) 
case of this work. The dotted line is the marginal stability curve evaluated with 
analytical techniques, considering a rigid column model for transients in the head-
race tunnel and no transients in the penstock, as described in [2]. The parameters of 
Table 1 were adopted. 

5.2 Effect of flow transients within the penstock and head-race tunnel 
Flow transients in the conduits have negligible impact on the stability of the flow control 
system. In fact, the stability limit curve obtained via numerical simulations (continuous 
line in Figure 4) basically corresponds to the analytical curve obtained by [2] via 
eigenvalue analysis for a plant with the same characteristics given in Table 1 (dashed line 
in Figure 4): the numerical-simulation-based curve has just slightly shrunk, compared to 

Variable Symbol Unit Value

Forebay    

Incoming river and rated flow Q r m3/s 36.1

Surface area of the forebay A f m2
1297.3

Head target value H trg m 112

Tunnel    

Tunnel Length L t m 4005

Cross-sectional area of the tunnel A t m2
8.04

D-W Friction factor f t (-) 0.009

Tunnel wave speed a t m/s 1365.1

Penstock    

Penstock Length L p m 276

Cross-sectional area of the penstock A p m2
8.04

D-W Friction factor f p (-) 0.01

Penstock wave speed a p m/s 683.5

Surge tank    

Surface area of the surge tank A s m2
61.2



 

 

the analytical curve. In the following, we adopted the system behaviour obtained 
considering flow transients as the BM case. 
 
5.3 Effect of uncertainties in the forebay water level sensor 
Uncertainties in the forebay level sensor significantly affect the behaviour of the flow 
control system. Figure 5 (right panels) shows that Hf(t) oscillates around Htrg but never 
converges to it throughout time. This means that, rigorously speaking, perturbations never 
go to zero, and is not possible to assess the system stability through the calculation of the 
exponential decay rate of perturbations.  
 

 
Figure 5: Each panel reports a portion of the time-series of the forebay level or 

turbine opening perturbation (γ(t)= Hf(t)-Htrg or χ(t)=X(t)-Xrated) and the resulting 
pdf of the time-series. All charts refer to Point B (α=45, K1=5.1) in Figure 4. Panels 

on the left are the BM case (standard deviation of the level measure σHf=0 m). 
Panels on the right were evaluated with σHf=0.1 m.  

 
Figure 6: (a) Colormap reporting the standard deviation σγ of the perturbation time-
series γ(t)= Hf(t)-Htrg as a function of the PI controller parameters α and K1. The 
darker the colour, the higher σγ. The marginal stability curves (continuous and 
dashed lines) are the same as those reported in Figure 4. Panel (b) is analogous to 
panel (a), except for reporting the standard deviation ratio σγ/σγ,BM in place of σγ. The 
parameters of Table 1 and the standard deviation of the level measure σHf=0.1 m were 
adopted. 

In order to overcome this issue, and still get some insights, we compared the time-series 
of Hf and X evaluated with and without sensor uncertainties. We focused on the standard 
deviation of the time-series. Figure 6 shows that the standard deviation of the level in the 
forebay may be up 0.1 m and, more interestingly, up to 10 times greater than the oscillation 
occurring in a system with no uncertainties. Figure 6 also shows that these increments of 
oscillation amplitude are very relevant for pairs of (α, K1) near the right boundary of the 
stability curve. 



 

 

5.4 Effect of delays in acquisition and elaboration of signals 
In order to assess the effect of delays (data acquisition and treatment) in the control 
systems, time lags in the range 1-30 seconds were considered. Delays of the order of the 
second did not show to have an important impact on the stability of the controller (Figure 
7a): the behaviours of Hf(t) and X(t) overlapped to that of the BM case. It should be noted 
that delays of around 30 seconds or more (not common in modern systems) led to a system 
instability (Figure 7b).  
 

 
 

Figure 7: Portion of the time-series γ(t)= Hf(t)-Htrg. The charts refer to Point A 
(α=65, K1=2.5) in Figure 4, and were evaluated with: (a) tdelay=0 s and tdelay=1 s (the 

two curves overlap perfectly), and (b) tdelay=30 s. 

5.5 Effect of backlash 
We considered maximum positive and negative gaps G+,max and G-,max equal to 0.15% and 
a backlash friction µ=0.005 [11]. Backlash has a significant impact on the stability of the 
flow control system. Similar to the case of sensor uncertainties, Hf  oscillates around Htrg 

without converging to it. The amplitude of these oscillations is quite small (e.g., 0.10 m in 
this case reported in the right panels of Figure 8).  Similar to the case of measurement 
uncertainties, we compare the time-series of Hf  and X evaluated with and without backlash, 
focusing on the standard deviation of Hf (t). Figure 9 shows that the standard deviation may 
be up 0.05 m and, up to 5 times greater than the oscillation occurring in a system with no 
uncertainties in level measurements. Figure 9 also shows that these increments of 
oscillation amplitude are very relevant for pairs of (α, K1) near the left boundary of the 
stability curve.  
 

 
Figure 8: Each panel reports a relevant portion of the time-series of the forebay 
level or turbine opening perturbation (γ(t)= Hf(t)-Htrg or χ(t)=X(t)-Xrated) and the 

resulting pdf of the time-series. All charts refer to Point C (α=50, K1=5)  in Figure 4. 
Panels on the left are the BM case (No backlash). Panels on the right were evaluated 

with backlash. 



 

 

 
Figure 9: (a) Colormap reporting the standard deviation σγ of the perturbation 

time-series γ(t)= Hf(t)-Htrg as a function of the PI controller parameters α and K1. 
The darker the colour, the higher σγ. The marginal stability curves (continuous and 
dashed lines) are the same as those reported in Figure 4. Panel (b) is analogous to 
panel (a), except for reporting the standard deviation ratio σγ/σγ,BM in place of σγ. 

The parameters of Table 1 and the backlash parameters G+,max = G-,max = 0.15% and 
µ=0.005 were adopted. 

5.6 Finite velocity of the actuator (FVA) 
The finite velocity of the actuator alone did not affect the stability of the controller. The 
cases with FVA (evaluated with a maximum valve velocity of 2.5%/s) exhibited the same 
behaviour of the BM case.  

5.7 Effect of combined mechanisms 
No combination of two mechanisms enhanced instability, compared to the effect of single 
mechanism, except the combination of FVA and sensor uncertainties. For this reason, we 
discuss in detail this combination only. 

In the previous subsections, we observed that the FVA alone has no impact in the stability, 
while sensor uncertainties have a moderate impact. However, the combination of these two 
mechanisms alters to a huge extent the system response. Physically, this behaviour occurs 
because when the level sensor is affected by uncertainties, significant values of ΔX 
(variation of valve opening) have to be implemented, to keep the water level at the target 
value. This was not an issue if the actuator could act with an infinite velocity, because the 
required ΔX could always be attained. However, when the actuator does have a finite 
velocity, large adjustment of valve opening, ΔX, cannot be quickly implemented. This lack 
of capacity of implementing the required adjustment is detrimental for the system stability. 
Figure 10 shows the time-series of the turbine opening and of the level in the forebay. 
Oscillations in the forebay level up to 2 meters and changes in the valve opening of about 
40% and occurring over time-periods of few hundreds of seconds can be observed. Figure 
11 demonstrates also that the behaviour reported in  Figure 10 is not an isolated worst-case 
scenario. In fact, σγ is of the order of 1.5 m in a wide portion of the parameter space (α, 
K1), suggesting that this type of behaviour is widespread.   



 

 

 
Figure 10: (a) Portion of the time-series γ(t)= Hf(t)-Htrg. (b) Portion of the time-series 

χ(t)=X(t)-Xrated) . The charts refer to Point B (α=45, K1=5.1) in Figure 4, and were 
evaluated with σHf=0.1 m and a velocity of the actuator of 2.5%/s. 

 
Figure 11: Colormaps reporting the standard deviation σγ of the perturbation time-
series γ(t)= Hf(t)-Htrg as a function of the PI controller parameters α and K1. The 
darker the colour, the higher σγ. The marginal stability curves (continuous and 
dashed lines) are the same as those reported in Figure 4. The parameters of Table 1 
and and a velocity of the actuator of 2.5%/s were adopted. Panel (a) refers to σHf=0.05 
m, whereas panel (b) refers to σHf=0.10 m. 

6 CONCLUSION 

In this study, we considered a number of mechanisms previously disregarded in analysis 
concerning the stability of the water level control of ROR plants. Realistic parameters in 
terms of backlash, delays and sensor uncertainties were considered. Different mechanisms 
were considered both once at a time or in combination of two. We focused on a typical 
plant, and we found that most of the considered mechanisms (if considered alone) altered 
to a minor extent the system behaviour, compared to a benchmark case representative of 
the analysis performed so far in the literature. At most, some mechanisms (backlash, sensor 
uncertainties) led to a permanent state of water level and valve opening oscillations tens of 
time bigger than the oscillations expected in the benchmark case. Interestingly, the 
combination of some mechanisms (finite velocity of the turbine actuator and sensor 
uncertainties) led to huge and fast oscillations of water level and valve opening. It is 
therefore clear that a robust system of level sensors has to be implemented, as it appears to 
be the key to obtain system stability. One more lesson is that the other mechanism that can 
change, at least to some extent, the actual system response to the ideal response 
(benchmark case) is backlash. It is therefore advisable to invest in actuator with a reliable 
mechanics and, if necessary, to make use of algorithms to compensate (at least to some 
extent) mechanical backlash.   
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