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Abstract

Elastic wave theory has been widely applied in many engineering fields. Meanwhile, with
the development of material science, designing and producing composite materials with
wave propagation properties becomes possible which is not easily achieved by traditional
materials, which makes the research of wave propagation in inhomogeneous media a hot
issue in the field of theory and engineering. Moreover, defects and structures with depression
or convex on the surface are very common in natural media and artificial materials, while
local defects or structures often cause wave scattering and affect wave energy distribution.
Excessive aggregation of forces often leads to increased deformation or stress concentration
for material failure. Therefor investigating the scattering by surface depression or convex
in inhomogeneous media is of theoretical significance and practical engineering valueace.
Based on the elastic wave theory, this thesis researches elastic waves scattering by surface
depression and convex on the surface of the radially continuous inhomogeneous media with
variable wave velocity and density by using the complex function method and emphatically
analyzes the influence of the existence of the depression or convex on the surface and internal
displacement distribution of the inhomogeneous media.

In this thesis, the complex function method is employs to transform the wave equation of
the radial inhomogeneous media with density, and the standard Helmholtz equation that is
available directly solved analytically is acquired, thus the expressions of the incident wave
field and the scattering wave field in the semi-infinite space could be obtained. Meanwhile,
the scattering wave field expression of SH wave in the semi-infinite space from the surface
semi-cylindrical depression is ably constructed. By calculating the surface and inside
displacement amplitude distribution under the action of various parameters, the influence of
various parameters on the displacement distribution is discussed, and the surface depression
amplification effect on the displacement distribution under the influence of inhomogeneous
parameters is emphatically analyzed.

Considering the influence of surface convex on the dynamic response, this thesis investi-
gates scattering SH wave by the surface convex and surface convex with cylindrical cavity
in a density radially inhomogeneous media. The research region is divided into suitable
sub-regions which could be applied to construct wave field expressions by utilizing the region-



x

matching technique (RMT) and the auxiliary boundary. Based on the surface depression
scattering problem, the wave field expressions in each sub-region are constructed. Through
the boundary conditions at the auxiliary boundary and the free boundary, the wave field
expression in the whole research area is solved. The distribution of displacement amplitude
and dynamic stress concentration coefficient under the action of various parameters are given.
The influence of surface convex on the distribution of displacement amplitude and dynamic
stress concentration coefficient (DSCF) under different inhomogeneous parameters is mainly
analyzed.

Subsequently, the effect of research region range on the displacement amplitude of the
surface under elastic wave incidence is considered, and the dynamic response to SH waves
is demonstrates for two forms of density inhomogeneous wedge with vertex angle as cusp
and cylindrical depression. The vertex angle is taken to be in the range from 0 to 2π , which
can describe a variety of region forms. Based on the acquired standard wave governing
equations, the analytical solution of the free wave field expressions in the inhomogeneous
wedge space is proposed based on the free boundary conditions at both boundaries and the
Sommerfeld radiation conditions. Then, the scattering wave field expressions in the wedge
region are constructed based on the previous research of surface depressions. The effects of
inhomogeneous parameters on the displacement amplitudes inside the surface and wedge
regions are calculated and discussed for the forms of cusp and cylindrical depressions at the
vertex angle, respectively.

In addition, the finite element method (FEM) based on the Carrera Unified Formulation
(CUF) framework is extended to the analysis and application of elastic wave problems in
three-dimensional models in semi-infinite space. The Fortran program self-compiled by
MUL2 is expanded to complete the establishment of artificial boundary, input of external
waves, and research on wave propagation in layered media.
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Chapter 1

Introduction

1.1 Background

Elastodynamics, as an important component of solid mechanics, originated from the inter-
pretation of light wave phenomena. Its main research content is the dynamic response of
elastic media under external loads. Generally, there are two forms of wave and vibration
solutions, as the propagation of elastic waves and the vibration of elastic bodies. Wave and
vibration have the same basic governing equations, and the difference between the two forms
is caused by the different initial and boundary conditions of the elastic body. The research
on elastodynamics can be traced back to the 17th century. With Hooke’s discovery of the
relationship between deformation and restoring force in elastic bodies and the establishment
of the three laws of Newton’s mechanics, the establishment of vibration equations in beams
and plates by scholars such as Germain, Euler, Bernoulli, and Timoshenko has promoted the
development of vibration mechanics.

Retrospect on the development of elastic wave propagation is traced back to the early 19th
century when Navier established the general equations of equilibrium and motion for elastic
bodies, and the research on elastic waves began. Possion decomposed the displacement into
two parts: irrotational and dissipative, and obtains the solution of the wave equation. It also
discussed issues related to initial values. In the mid-19th century, the mathematical theory of
elastic wave propagation matured. Lamé proposed the concepts of scalar potential and vector
potential. Stocks proved that longitudinal waves are expansion waves, and shear waves are
shear waves. By the end of the 19th century, Rayleigh given the scattering theorem and the
wave scattering solution for a finite spaced, which was an important achievement. Elastic
wave scattering had become an important research topic in elastodynamics. In the early 20th
century, scholars such as Love, Stonely, and Lamb conducted some research on the wave
problem at the interface, as well as the wave problem caused by the action of line sources and
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point sources. Thus, the theory of wave problems is established and solutions are obtained,
making elastic wave problems a hot research field in geophysics. Since the 20th century,
with the gradual improvement of elastic wave theory, classic works on wave theory have
emerged [2, 54, 130], and the research of elastic wave theory in the engineering field has
become active.

1.1.1 Application of elastic wave theory

Elastic wave theory is widely applied in nondestructive testing of structures and materials,
geophysical exploration, and acoustics. In the related engineering field, the study of elastic
wave propagation characteristic was paid much attention if the media has defects or structures.
For example, the propagation characteristics in materials containing cracks or other defects
are employed as the basic principle of ultrasonic nondestructive testing techniques and
structural health testing to satisfied the need for safety inspection of large structures or
components subjected to external loads during assembly or service[3, 34, 53]. SH waves
have less energy loss than other types of waves, so they were used in nondestructive testing
applications from the early research in infinite space composite board [15] to the current
research in more complex interfaces and materials based on SH guided waves [71, 132].
Ultrasonic detection has a scanning speed block, good resolution, and detection ability used
in the field, according to the information carried by the ultrasonic detection, obtain the
crack location, size, direction, and other characteristic parameters [110]. Therefore, provides
a diversified theoretical basis for ultrasonic detection and reconstruction after damage by
investigating the scattering of internal and surface defects with different wave forms [45].

Meanwhile, the process of seismic wave propagation is approximated as the process
of wave propagation in elastic media, so the elastic wave theory was widely applied in the
field of earthquake engineering. Based on the scattering of elastic waves, many scholars
conducted a large number of researches on seismic waves scattering by underground structure,
local topography and geological conditions, which confirmed that the structure, topography
and geological conditions have a relatively obvious influence on ground motion. These
achievements provided the corresponding theory for seismic engineering design. Among
them, the plane shear wave (SH wave) is not coupled with P and SV wave when it incident
in space, and the damage generated at the interface is relatively strong, so in the process of
analytical solution, SH wave is often taken as the research object. For instance, in terms
of topography, Trifunac [159] first proposed the analytical solution for the scattering of
SH wave by semi-cylindrical canyon. It was the research target of many scholars to make
employ of the propagation characteristic of elastic wave to conduct geophysical exploration,
to conduct earthquake disaster early warning according to the simulation data of seismic
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wave, and to improve the earthquake early warning system, [84]. The study on the interaction
between underground media (soil mass as the main research object) and ground structure
under dynamic load was a hot topic in the field of earthquake engineering[108, 178, 205].

In addition, in the field of civil engineering, due to the demand of urbanization con-
struction rock site blasting, directional blasting of adjacent buildings, aboveground and
underground construction of high-rise buildings will cause the elastic wave interaction be-
tween the underground media and adjacent buildings [43, 107]. Therefore, the interaction
between adjacent buildings and geological conditions under the action of elastic waves was
widely studied in vibration isolation of civil engineering.

Furthermore, elastic wave theory also has important applications in the field of acoustics.
At present, as a kind of material with special physical properties, new acoustic functional
materials realize the regulation of sound wave and elastic wave within a certain scale [66, 24],
so as to achieve sound insulation and noise reduction, directional transmission [28] and
stealth [209] and other purposes. By setting a series of functional primitives on the surface of
the media, some functional controls of sound wave and electromagnetic wave can be realized.
However, due to the coupling of P-wave and S-wave in solid media, and the speed of the two
wave forms is different, the research of elastic wave regulation is still very limited.

1.1.2 Wave problems in inhomogeneous media

The parameters of inhomogeneous media affect the path, velocity, and frequency of wave
propagation, thereby affecting the propagation process of elastic waves to a certain extent.
This makes it of important theoretical significance and application prospects to investigate the
propagation characteristics of elastic waves in different media, conduct elastic wave regulation
and material selection, and analyze the material properties of media. In traditional theoretical
research, in order to simplify the problem, it is often assumed that the media is homogeneous
and isotropic. On this assumption, some elastic wave propagation characteristics are obtained.
However, media in nature often exist in inhomogeneous forms, such as air, ocean, soil, etc.
In some studies, using homogeneous media forms for analysis may lead to deviations in
results. The research on the influence of the inhomogeneity of natural media on the wave
propagation characteristics included early research on the propagation features of light waves
in air with refractive index, atmospheric pressure, or sound velocity varying with depth, and
the impact of soil stiffness varying with depth on the wave response. In current research, wave
propagation in various natural media is discussed based on the physical parameters of the
media detected and the approximate functions that correspond to the changing characteristics
of the media.
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On the other hand, with the continuous development of material science, complex
materials continue to emerge, such as phononic crystals, micro and nano materials, and
the improvement of artificial material preparation technology, allowing the design and
product of materials with special characteristics. In order to break through the functional
limitations of traditional materials and realize that elastic wave propagation have specific
characteristics, such as negative refraction[29, 131], spontaneous emission control[125],
and anomalous tunneling effects [145], bringing new topics to the research of elastic wave
propagation in these materials. By determining an appropriate media inhomogeneous function
to design a continuous material cladding layer, which is used to achieve a smooth transition
of the dielectric parameters of the structure and external materials required for stealth, and
to eliminate the dielectric fault between the structure and external materials, the goal of
structural non reflection and stealth would be achieved. Realizing dynamic and intelligent
regulation of elastic waves was also a key research issue in the field of elastic wave theory,
and the emergence of artificial materials also brought opportunities to this goal. Adjust the
inhomogeneous area layout and parameter settings of artificial materials to achieve elastic
wave propagation according to a predetermined path, wave velocity control, and energy
redistribution, meeting the requirements for vibration reduction and isolation, structural
stealth, and other wave characteristics in engineering. The inhomogeneous media could be
seen as the characteristics of complex or artificial materials. Investigating the propagation
features of elastic waves in inhomogeneous media provides a corresponding theoretical basis
for applying elastic waves and analyzing material properties.

1.2 Research progress in elastic wave scattering

In natural media, artificial materials, and engineering structures, media containing defects
(such as internal cavities, cracks ), surface depressions, convexities, and internal structures
(such as inclusions, linings) are very common. When elastic waves propagate to the location
of a defect or internal structures along the incident direction, the propagation path will
be disturbed, and secondary wave sources will appear at that location, thereby affecting
the wave energy distribution. Excessive accumulation of forces often leads to increased
deformation or stress concentration, leading to damage to the material or structure. Therefore,
the scattering of elastic waves, especially the scattering of elastic waves by simple forms
of defects or internal structures, was always a concern of scholars. This type of wave
scattering problem is available to be solved by analytical methods to analyze and understand
the physical significance, as well as to analyze more complex scattering situations in the
model. The study of elastic wave scattering begins with acoustic waves. Rayleigh utilized the
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wave function expansion method to study the scattering of acoustic waves by rigid spherical
inclusions. Subsequently, Sezawa based on special function to provide solutions to the
scattering problem of spherical, cylindrical, and elliptical cylinders in an infinite domain
under P-wave incidence. Later, with the rise of the engineering field in the 1950s, the
scattering of elastic waves by internal structures and defects received more attention. Many
scholars conducted many researches on the scattering of elastic waves by simple cavities such
as cylindrical and spherical shapes, as well as inclusions in infinite fluids and solids. The
achievements achieved so far deepened the theoretical understanding of the impact of internal
structures and defects on elastic wave scattering, and also promoted relevant engineering
practices.

1.2.1 Research progress on scattering problems within media

In the process of research in recent decades, scholars were deeply demonstrating scattering
problems and gradually mature research methods, which complicate the research model
and make it more close to the practical application. The research of elastic wave scattering
by in-plane defects and internal structures can be divided into two main the study of the
complexity of the media and the complexity of the boundary between defects and internal
structures. The complexity of the media mainly includes the complexity of the media region,
the physical properties of the media and the internal structures.

In the process of the research of media complexity, the first is the complexity of the media
region. The research area develops from the scattering of internal structures and defects in
the infinite space to the semi-infinite space and the angular space. Lee et al.[82] took the
lead in using the mirror method to satisfy the boundary conditions of the free stress at the
horizontal free surface in the semi-infinite space, constructed the expression of the scattering
wave generated by the cylindrical cavity, and gave the analytical solution for the scattering
of SH wave by the cylindrical cavity in the semi-infinite space, extending the study of the
scattering problem from the infinite space to the semi-infinite space. It is more close to the
practical application model of engineering, and the mirror method is still widely employed in
dealing with regional boundary problems, which lays a foundation for the follow-up research
on the scope of the region. With the help of mirror image method, Green function and special
function, the scattering of cavities, inclusions and lining structures in the semi-infinite space
and angular space [68] to different elastic waves (P wave, SV wave, SH wave) attracted the
attention of many scholars [67, 74]. Then, based on the great arc approximation method, the
defect scattering problem in the semi-infinite space of cylindrical arc and parabola boundary
was discussed [79]. Meanwhile, Liu [93, 94] extended the complex function method to
the wave wave problem. By using the conformal mapping transformation in the complex
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function method, the complex boundary space on the plane is mapped to the corresponding
region on the complex plane according to the appropriate mapping function, so the complex
boundary problem can be solved. The superiority of complex function method expands
its application area. It is available to conveniently solve the scattering problem caused by
cylindrical cavity under SH wave incident and scattering problem of arbitrary cavity in
anisotropic media. Moreover, the complex function method providing a simplify path for the
transformation relationship between multiple coordinate systems in the model and provide
convenient analytical solution for scattering problems with multiple scatters in the media. In
combination with Green function, complex function and wave function expansion method,
Liu investigated the scattering of SH wave by cylindrical cavity in wedge region [96]. For
finite space, such as the scattering of SH waves by cylindrical cavities in the plate, Hayir [62]
also analyzed.

During this period, much attention was paid to the scattering of defects and internal
structures in different media. For example, in the research of scattering in porous media,
since Biot established the porous media model, the research of wave propagation in porous
media was gradually carried out in the past few decades. In recent years, the continuous
development of the solving theory of porous medium model (saturated porous elastic media,
unsaturated porous elastic media, etc.) makes the study of wave in porous media become a
hot topic [36, 156, 186, 185]. Based on the complex function method, Wang [170] proposed
a method for solving the scattering of plane waves by arbitrary shape cavities in porous media.
The dynamic stress response of cylindrical cavity in saturated soil under incident wave was
demonstrated by using wave function expansion and boundary integral method.[183]. The
anisotropy of media is also reflected in commonly used materials, such as concrete, wood, etc.,
and the research on the fluctuation in the characteristics of such media was continuing. The
influence of anisotropy of media on anisoplast, defect or other structure resulting in elastic
wave scattering and its solution method were extensively studied [5, 14, 42, 44, 76, 109, 144].

On this basis, the physical properties of internal structures in the research area were
also paid attention to. Smerzini [146] investigated the response of the arbitrary rigid packed
inclusion to plane wave and cylindrical wave. According to the wave function expansion
method, Bostrom [16] gave the anisotropic hole to solve the problem of elastic wave scattering
. Based on the proposed equivalent transformation relation, Wang et al. investigated the effect
of inhomogeneous lining on elastic wave scattering [171]. Research on elastic wave scattering
at nanoscale is also being carried out. Ghanei [52] demonstrated the dynamic response
of circular nanoinclusion to P and SV wave scattering. In addition, many achievements
were made in the research of elastic wave scattering in piezoelectric, layered, and layered
piezoelectric media with functions. In earlier researches, a series of analytical methods
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were applied to study the related wave problems in piezoelectric and layer media. For more
complex cases, semi-analytical or numerical methods provide a way to solve such problems.
For example, transfer matrix method was proposed by Thomson and applied in the wave
problem of layered media [157], this method is still one of the commonly used methods to
solve the wave problem of layered media, based on this method to solve and analyze the
elastic wave scattering problem of circular holes, lining and other heterogeneous bodies
[151]. In recent, more and more scholars pay attention to the elastic wave scattering problem
in complex media such as composite materials and heterogeneous media [103].

In the study of the complexity of internal structure and defect models, the scattering
of elastic waves by single circular and elliptical cylindrical, cavity, lining, and inclusion
is developed to the interaction of multiple internal structures and the scattering waves by
complex boundaries such as semi-cylindrical and square. By using the mirror image principle
and Graf’s addition theorem, Balenda [10] researched the dynamic response of two linings
under SH wave incidence and gave the relevant analytical solution. Yuan [195] extended
Graf’s addition theorem and constructed the formula for cylindrical coordinate wave function
in global transformation, which solved the limitation of Graf’s addition theorem in scattering
problem and made the theorem more widely applied in these problem. Based on this
method, Lee [80] used the weighted residual method in the process of solving the problem of
scattering plane SH waves by arbitrary holes (ellipse and square for example) . In addition,
the application of the complex function method in the wave problem is proposed, using
the complex function in the convenience of transformation between multiple coordinate
systems, a series of studies were made on the elastic wave scattering problem in the case
of multiple internal structures combinations [135]. After the region-matching technique
(RMT) is introduced into this kind of problem, the complex boundary is partitioned by
auxiliary boundary, which is divided into regular and solvable simple boundary, and the
corresponding boundary conditions are satisfied at the auxiliary boundary to obtain the
final result. According to RMT, the analytical solution of elastic wave scattering by many
complex boundaries was solved. For example, Tsaur [164] deduced the series solution of
truncated cylindrical cavity scattering problem when SH wave incident, Gao [47] established
the solution method for horseshoe cavity scattering problem. Liu [101] gave an analytical
solution to the scattering problem of square cavity, Zhang [202] analyzed the scattering
problem of semicircular lining with straight boundary, Liu [100] explored the scattering
situation of SH wave around the slope in the variable slope wedge area.

With the gradual progress of numerical methods, combined with the engineering needs, it
was widely used in the research of solving more complex models in engineering practice. For
example, based on the finite element method, the dynamic response of an arched square lined
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tunnel under P wave incident, an irregularly arched lined tunnel under P wave incident, a
three-dimensional column group under SV wave incident, [117] and some practical models to
seismic wave scattering are investigated. Meanwhile, other numerical methods were applied
to elastic wave scattering problems. For example, the boundary element method is used to
simulate the advantages of more concise and accurate boundary. The scattering problem
caused by single or multiple linings in the semi-infinite space and the arbitrary wedge of the
top angle is effectively simulated[64, 105, 128]. Wave scattering by a triangular projection
with a horseshoe lining is studied [106], the influence of the relative position between the
horseshoe lining and the triangular projection on the dynamic response is analyzed and so on.

1.2.2 Research progress on wave scattering by surface depression and
convex

The investigation for the influence of surface or interface depression, convex, and structures
on wave propagation is of great significance in both theory and practical engineering ap-
plications. In the analytical method, the scattering of elastic waves by simple depression
boundary is taken as the research basis, based on which the complex depression and convex
boundary could be detected later. Retrospected the research on elastic wave scattering by
surface defects or structures, Trifunac [159] based on wave function expansion method to
construct scattering wave expression by applying the free stress condition of semi-cylindrical
depression boundary and Hankel function to express the property of diverging wave, and
gave the analytical solution of SH wave scattering by two-dimensional semi-cylindrical
depression. Using elliptic coordinate system and Mathieu function, Wong [179, 180] gave
the analytical solution of SH wave scattering by semi-elliptic depression and analyzed the
influence of each parameter on surface displacement. With the application of Green function,
complex function, Graf’s addition theorem and other analytical solutions to wave problems,
the analytical results of elastic wave scattering by surface depression were developed rapidly,
solving the problem of elastic wave scattering by arc depression [60, 78, 92, 184, 196]. In
addition, according to the free wave field constructed by Sanchez [152] in the wedge space,
Lee [81] gave the solution for the scattering of SH wave by circular arc depression at the
vertex.

In recent years, due to the needs of engineering background and the gradual improvement
of analytical methods, more achievements were obtained in the research of elastic wave
scattering in more depression boundaries and different media surface depressions. Liu
[89] derived the analytical solution of the scattering of planar P waves in the two-layer
cylindrical arc alluvial valley based on the series expansion method, and analyzed the
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influence of parameters of each layer on the scattering with this solution. Liang [175–177]
gave a solution to the scattering problem of P wave, SV wave and SH wave in cylindrical
arc sedimentary depression by using the great arc hypothesis. Then, the method of RMT
enables scholars to break through the limitation of arc depression boundary, and obtain the
corresponding subregion of constructible wave field through reasonable regional division of
complex boundary. Graf’s addition theorem is employed to complete coordinate conversion,
and finally, the solution is carried out according to auxiliary boundary conditions. Based on
this method, a large number of analytical studies were carried out on the wave scattering by
surface depressions with straight boundaries. Tsaur [160, 166] applied the RMT method to
derive series solutions for SH wave scattering by symmetric deep V and shallow V-shaped
depression. Based on the analytical solution of semi-cylindrical depression, and according to
the suitable partition fit, the scattering problem of fan shape, truncated semicircle, semicircle
containing sedimentary layer, U shape, symmetrical tridacidal depression and so on complex
depression boundary is given [22, 48, 161, 163, 198, 199]. The SH wave scattering by elliptic
depression at the vertex angle of rectangular space is studied by applying Green function
[165]. Qi [133] utilized Mathieu function addition theorem and multi-elliptic coordinate
system to give an analytical expression for asymmetric semi-elliptic depression. It can be
seen that the analytical solution of elastic wave scattering by semi-cylindrical depression is
the foundation of the research on elastic wave scattering analysis by depression boundary.

Furthermore, the scattering of elastic wave by surface depression is demonstrated by
numerical method. In order to satisfied engineering applications, it is always an important
research topic to solve the problem of irregular depression boundary or complex media
surface depression. Since the early days, some scholars made application of the advantages
of the boundary element method (BEM) at the boundary to simulate the scattering of SH
wave by two-dimensional arbitrary depression and the combination boundary of depression
and convex in the frequency domain and time domain[41, 153, 154]. The finite element
method (FEM) is also applied to the simulation of wave problems. By coupling the wave
equation in differential form with discrete domain, the node or element solution are utilized
to approximate the solution of the differential equation. This process has clear physical
meaning, and is available in mathematical derivation and program implementation[116, 147].
Therefore, finite element method has a long history of development and discuss in the wave
problem. In the process of using FEM to investigate the scattering problem of surface
depression. Zhang [200] earlier simulated the dynamic response of arbitrary depression
under the incidence of seismic waves, and gave a variety of depression boundary simulation
results. Kashiba [73] simulated the scattering behavior of Lamb waves from a depression
defect in a plate. Casadei [19] investigated the scattering of elastic waves by local defects on



10 Introduction

surfaces. At present, the development of finite element method based on the simulation of
actual large-scale depression terrain ground motion is more rapid[123].

For analytical research on elastic wave scattering by surface convex boundaries, the
analytical solution of SH wave scattering by semicircular convex and the region-matching
technique (RMT) presented by Yuan and Men [197] laid the foundation for subsequent
exploration on surface convex boundary scattering, providing a solution idea for surface
convex boundary researches. In [197], the convex boundary was divided into semi-infinite
space with cylindrical arc depression and cylindrical closed region through an auxiliary
boundary. After constructing wave field expressions in each region, the solution is solved
applying the unified coordinates of the Graf’s addition theorem. Therefore, the basis of
the analytical solution of the elastic waves scattering problem by surface boundary is still
the semi-infinite cylindrical depression problem. Based on RMT, the scattering problem
by cylindrical convex and the interaction between surface convex and internal structures is
further investigated. For the demonstration of elastic wave scattering by convex boundary
with straight boundary, the method of partition is still employed. Meanwhile, the method
of complex variable function is introduced to facilitate coordinate transformation between
coordinate systems. The fractional Bessel function is used to satisfy the boundary conditions
of straight boundary. Thus, the SH wave scattering problem of isosceles triangular convex
in semi-infinite space is solved [138]. Then, according to this method, a series of scattering
problems, such as double isosceles triangle convex, isosceles triangle convex and circular
convex, isosceles triangle convex and internal structures, were solved, and the specific
analysis of scattering effect was illustrated[38, 39, 137, 139]. Guo [134] considered the
scattering problem of angular domain surfaces with isosceles triangular bumps. In order to
further study the surface convex scattering problem, Tsuar [162] proposed the series solution
of the cylindrical arc convex scattering problem through the wave function expansion method
combined with the RMT, which improved the computational accuracy of the traditional
analytical results. For a more complex anisosceles, Lin [91] detected a preliminary analytical
result of anisosceles triangle scattering with an obtuse vertex angle .

For a period afterwards, due to the limitations of existing methods on the elastic wave
scattering problems by complex convex boundary, many scholars’ analytical solutions to
scattering by convex boundary mainly focus on the influence of the relative position of internal
structures and convex or concave on elastic wave scattering [59, 95], and the scattering by
internal structure contained in convex boundaries [88, 85]. However, convex boundary
on complex surface is more satisfied actual situation, so it is of practical significance to
demonstrate this problems. The multi-region-matching technique (MRMT) proposed by
Song [148, 149, 188, 189] broken through this situation. By utilizing the flexibility of the
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multilevel partitioning technique, the more complex convex surface boundary is partitioned
several times to construct corresponding wave field expressions respectively, and then the
complex function method is used to solve the problem in accordance with the convenience
of coordinate transformation. And then, the SH wave scattering problem of semi-infinite
surface isosceles trapezoidal convex and multistage gradient isosceles triangular convex was
demonstrated. Research on convex boundary scattering problems is also being carried out in
other engineering fields, such as the analysis of dam by edge waves propagation along the
coast [201].

The numerical method is also applied to detect the boundary scattering of convex surfaces
in semi-infinite space. The numerical method is utilized to simulate the scattering problems
by a more complex convex boundary. With the convenience of boundary element description,
BEM is often applied to analyze the scattering problem of convex, depression and internal
structures combination [129], and investigate the three-dimensional dynamic response of
convex [8], etc. Moreover, FEM and finite difference method (FDM) also have many
applications in these scattering problems. Such as, in the field of earthquake engineering,
many researches were carried out on the ground motion response of the actual raised boundary
(mountain, dam, etc.) [26, 27, 40, 50].

1.3 Research progress in inhomogeneous media

Investigating wave propagation in inhomogeneous media attracted the attention of many
scholars, since the large influence of media properties on wave propagation characteristics.
The inhomogeneous properties of media are significant both reflected in natural materials and
the design of artificial materials. However, the research of wave problems in inhomogeneous
media is more complicated, and its solution methods are divided into analytical methods
(including semi-analytical methods) and numerical methods. Analytical methods reveal
intuitively analyzing the physical significance of the influence of wave propagation properties,
while numerical methods provide the possibility to simulate complex situations.

1.3.1 Analytical method

The essence of analytical solution of wave problems in inhomogeneous media is to ana-
lytically solve differential equations with variable coefficients, which is usually difficult.
However, the analytical method has a clear physical meaning and is fast in calculation. Mean-
while, the analytical solution provides a theoretical foundation for the numerical method
and a benchmark for verifying the simulation results. Based on the properties of the me-
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dia, employing analytical methods to solve wave problems in inhomogeneous media is
divided into two main aspects: the research of layered media and the research of continuous
inhomogeneous media.

The research and application development of functionally graded materials (FGM) makes
the investigation of the wave problem in them become a hot topic. Early, the inhomogeneous
of FGM posed greater difficulties for discussing their kinetic response using analytical
methods. The FEM parameters have a more pronounced effect on the scattering caused by
defects or internal structures, which tend to cause significant concentrations of dynamic
stresses and displacements, thus causing premature destruction of the material in service.
Therefore, many scholars divided FGM into layered homogeneous media for the research.
And, the wave propagation characteristic is also approximated in the early studies of wave
problems in continuously inhomogeneous media by the method of layering and setting the
material parameters of each layer as constants to analyze the wave propagation characteristic.
Naderi [122] presented an analytical solution for a sector-shaped functional gradient plate
under flexural loading. Through the Green function method, Kumar [75] demonstrated the
propagation characteristic of shear waves in inhomogeneous layers. Chattopadhyay [23]
discussed the propagation of SH waves caused by point sources in transversely isotropic
layers.

Moreover, the semi-infinite space with overburden layer approximately simulated the soil
layer formed through long-term deposition, which has practical engineering significance in
the field of seismic engineering. Exploring the elastic wave propagation characteristic in
such media through analytical methods will provide theoretical foundation for engineering.
Using the complex variable function and wave function expansion method, combined with
the orthodrome assumption, Zhao [206, 207] conducted research and analysis on the dynamic
stress around internal structures such as cylindrical cavity in a semi-infinite space with a
covering layer under the incidence of SH waves. Based on this assumption, some scholars
also considered the scattering problems by depression or convex boundaries on the surface
of a media. Liu [97] analyzed the scattering problem of surface depressions with a covering
layer under the incidence of SV waves. Gupta [56, 57] applied analytical methods to discuss
the propagation laws of torsional surface waves in a inhomogeneous semi-infinite space with
a covering layer and Love waves in a inhomogeneous dual porous layer. Chaki [20] deduced
the dispersion equation for SH waves with an irregular dielectric layer on a functionally
graded piezoelectric layer.

The application of semi-analytical methods provides more avenues for the study of layered
problems. Employing the transfer matrix method, Love wave and SH wave propagation in
functionally graded piezoelectric media and structure features carried out extensive research
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and analysis [37, 46, 49, 72, 127]. Later, Zhang [203] applied the transfer matrix method
and the wave function expansion method to investigate the elastic wave scattering by a
dielectric surface depression with a single or multiple radial inhomogeneous layer. Rokhlin
[142] proposed a stiffness matrix method based on the idea of the transfer matrix method to
analyze the wave propagation problem in multi-layer anisotropic media. Chen [25] presented
the dispersion behavior of waves in laminated FGM plates based on the developed echo
matrix method. Han [61] proposed a semi-analytical method to study the scattering behavior
of waves by cylinders in functionally gradient piezoelectric materials. Utilizing the WKB
approximation method, Qian [136] discussed the propagation characteristics of Love waves
in FGM. Li [87] studied the characteristics of Love waves in layered functionally gradient
piezoelectric structures. With the deepening of the research on FGM, more scholars consider
the continuous variation of material parameters. Cao [17] solved the Lamb wave problem in
FGM plates using the power series method.

Subsequently, in investigation continuous inhomogeneous media, among the factors that
affect the properties of the media, such as density and modulus, scholars first pay attention to
the variable wave velocity caused by these properties. Changes in wave velocity will lead to
changes in the propagation path or characteristics of waves, resulting in differential dynamic
responses. Based on the Green function method, Manolis [111] considered the characteristic
of plane wave propagation when the wave velocity varies with depth, and presented a solution
to the Helmholtz equation under this condition. The vertical variation of medium parameters
in accordance with some natural features has engineering significance. Therefore, employing
the Green function method, Guzina [58] derived the response of a inhomogeneous elastic
semi-infinite space in the vertical direction under a point source. Muravskii [120, 121]
demonstrated the time harmonic vibration problem in a semi-infinite space where the shear
modulus linearly increases with depth. Subsequently, Manolis [112, 114, 115] presented
a series of basic solutions for elastic wave propagation problems in vertical and layered
inhomogeneous media, and applied them to numerical methods such as BEM. For other forms
of inhomogeneous media, the Green function method was also applied to solve. Watanabe
[172] obtained Green function solutions for SH waves in heterogeneous media with power
function changes in wave velocity, and Green function solutions for wave number changes
in anisotropic heterogeneous media[173]. According to Manolis’s solution, Daros [30]
proposed the foundation solution for SH waves in anisotropic density inhomogeneous media.
In combination with Radon transformation, Rangelov [141] gave a fundamental solution
for anisotropic density varying with depth in media. In other analytical methods, Abd [1]
applied the Fourier transform method to solve the dispersion equation of Love waves in
anisotropic media with inhomogeneous shear modulus. Ting [158] demonstrated an analytical
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expression for the anti plane wave problem in a semi-infinite space with inhonogeneous
density anisotropy. Meirbekova [118] applied periodic geometric transformation to solve
the scattering of plane shear waves by multiple heterogeneous bodies in radially anisotropic
inhomogeneous shells.

As complex variable function methods are applied to wave problems, they also provide
new ideas for solving wave problems in heterogeneous media. Vrettos [167, 168] solved
the wave propagation in inhomogeneous media with shear modulus varying with depth
problem utilizing complex function method. Shaw [143] gave the fundamental solution of
the generalized Helmholtz equation in variable wave velocity media based on the complex
variable function method and conformal mapping. For the scattering of elastic waves in
inhomogeneous media, Zhou [208] investigated the dynamic stress concentration around
double elliptical cavities in inhomogeneous media with exponential changes in density and
modulus applying the complex variable function method. Similarly, the problem of dynamic
stress concentration around cylindrical and elliptical cylindrical cavities in a semi-infinite
space of exponentially varying inhomogeneous media was solved [51, 102, 103]. Achenbach
[4, 11] explored the surface wave situation in a inhomogeneous semi-infinite space where
the shear modulus and density vary with depth under different sources. However, in early,
only inhomogeneous parameters was preserved, and the wave velocity was simplified to a
constant wave velocity for research. In order to continue exploring the scattering of elastic
waves by heterogeneous bodies in heterogeneous media under variable wave velocities,
Hei [63] combined with the mapping method, proposed the foundation solution of the
Helmholtz equation for density inhomogeneous media, and analyzed the dynamic response
of cylindrical cavity in inhomogeneous media with density varying with depth to SH wave
scattering. Based on this investigation, SH wave scattering by a series of internal structures
in inhomogeneous media with varying density was studied [65, 187, 192]. Subsequently, a
related research was carried out in varying modulus media, and the distribution of dynamic
stress concentration coefficients due to scattering from internal structure within the media was
analyzed[193]. Moreover, on the basis of this study, the inhomogeneous media parameters
were extended and the relevant solution to the scattering problem related to variable wave
velocity under simultaneous modulus and density variations were given in the subsequent
exploration. In addition, based on the proposed equivalent transformation relation, Yang
[191] proposed another method for the analytical solution of the wave problem in one-
dimensional inhomogeneous media. A summary of relevant literature on using analytical
methods to solve wave problems in non-uniform media is shown in Table 1.1.

The analytical investigation of inhomogeneous media, most of it focuses on wave scat-
tering by internal structures within the media and the propagation characteristics of waves.
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Table 1.1 Summary of main references for researching wave problems in inhomogeneous
media by analytical methods

Type Reference

Analytical method

Layered media

the propagation characteristic of shear
waves in inhomogeneous layers [75]
propagation of SH waves caused by point
sources in layered media[23]
wave propagation in anisotropic layered
media [142]
propagation of Love wave in layered media
[136] and structures [87]
scattering of elastic waves by internal cavi-
ties [206, 207] and surface depressions in
a semi-infinite space with a covering layer
[97]
propagation of surface waves in inhomoge-
neous semi-infinite space with a covering
layer [57]
scattering of SH waves by surface depres-
sions in layered media with single or multi-
ple covering [203]

Inhomogeneous media

elastic wave propagation characteristic with
wave velocity varying with depth [111]
analytical solution of SH wave in medium
with power function wave velocity [172]
basic solutions of the generalized helmholtz
equation in variable wave velocity media
[143]
Green’s function solution to wave problems
in density varying media [30, 141, 158]
surface wave propagation in media with
shear modulus varying with depth [167,
168]
dynamic stress concentration around cavi-
ties in constant wave velocity media with
density and shear modulus varying [51, 102,
103]
dynamic stress concentration around scat-
tering bodies such as cavities and lining in
variable wave velocity media with varying
density [63, 65, 187, 192]
scattering problem of cavities in variable
wave velocity media with changing modu-
lus [193]
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However, there are few types of research on the scattering of defects and structures with
surface depression or convex, especially in continuously inhomogeneous media.

1.3.2 Numerical method

The numerical method provides an efficient and feasible solution tool for solving complex
and heterogeneous media fluctuation problems or practical engineering problems. Based
on the basic solution given by Green function method, BEM is applied to the study of
inhomogeneous media fluctuation problem. BEM was used to considered wave in continuous
inhomogeneous media problems. Leung [83] discussed the dynamic response of internal
structures scattering in inhomogeneous media with shear modulus varying with depth. Daors
[32] proposed a BEM for SH waves in heterogeneous anisotropic media with the same
variation of stiffness and density and carried out crack modeling and stress intensity factor
analysis. In the follow-up researches, the propagation characteristics of SH wave under
the condition of variable media parameters are discussed based on BEM [31, 33]. Dineva
[35] studied the problem of crack scattering in inhomogeneous semi-infinite space with
parabolic media parameter. Wei [174] simulated the antiplane wave motion in two continuous
inhomogeneous media. Mojtabazadeh [119] proposed the complete formula of BEM for the
analysis of transient SH wave scattering in the anisotropic semi-infinite space. BEM was also
employed to discuss scattering problems by internal structures and surface defects in layered
media. Lee [77] analyzed the scattering of SH wave in anisotropic media with multiple layers
of anisotropic anisoplasty. Ba [6] proposed the indirect BEM to investigate the scattering
and diffraction by surface depression in multilayer transverse isotropic semi-infinite space,
and the dynamic response of local periodic layers under P wave and S wave [7, 9]. Liu [104]
further considered the problem of three-dimensional elastic wave scattering in multi-layer
semi-infinite space. When BEM is employed to solve the wave problem in inhomogeneous
media, it needs to give the foundation solution of the corresponding media parameters, so it
is difficult to solve in some complicated cases.

As a widely used numerical method, FEM has experienced many years of development
and acquired many research results in the application of inhomogeneous wave problems. FEM
is used for numerical calculation of wave problems in layered media, is available to simulate
more complex media situations and provide high accuracy simulation results. Sullivan [150]
proposed plane strain and axisymmetric finite element formulas for multilayer anisotropic
media and viscous damping, which effectively reduced model freedom and calculation
time. Yazdi [194] developed a finite element model that considers the fluid saturation
continuum in the rigid semi-infinite space under the action of harmonics, which is employed
to consider the inhomogeneity of complex geometric boundaries and media. In order to
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simulate the parameters of continuous inhomogeneous media, many scholars investigated
FEM. For example, based on static problems in inhomogeneous media, inhomogeneous
isoparametric element [204] and gradient finite element [70] are proposed. Then, in order to
explored dynamic analysis problem in inhomogeneous media, Yang [190] proposed dynamic
inhomogeneous isoparametric element format; Chakraborty [21] proposed a spectral layer
element for wave propagation in anisotropic inhomogeneous layered media caused by high
frequency impact loads. For the finite element solution of models with local shapes or
media changes, larger degrees of freedom and calculation cost are often needed, Carrera [18]
proposed a finite element method based on the framework of Carrera Unified Formulation
(CUF), which proposed path for effectively saving the degree of freedom required by the
model, greatly reduce the calculation time. Based on this method, the multi-field coupling
mechanics of layered and nonlinear media structures are investigated [12, 126, 140, 181].

Another significant point to solve wave problem in inhomogeneous media in infinite or
semi-infinite space by FEM is to set the artificial boundary at the truncation boundary. Most of
the commonly applied artificial boundaries, such as Higdon boundary, transmission boundary
and viscous-spring boundary, are established based on the parameters of homogeneous
media. However, the artificial boundaries based on the parameters of inhomogeneous
media with better establishment effect and faster calculation often require the analytical
foundation solutions of relevant problems. Currently, the research on artificial boundaries
of inhomogeneous media is still in progress. There are related solutions in one- and two-
dimensional separable waves.

Other numerical methods, such as the finite difference method, can be used to analyze the
propagation characteristics of Love waves in inhomogeneous functionally gradient materials
[69]. The scattering problem [155] caused by inhomogeneous media with variable wave
velocity and irregular surface defects was studied, as well as the spectral element method
(SEM) [55], the meshless methods (MMs) [169], and the combination of different numerical
methods [90, 113, Xiao et al.] is employed for investigating wave in inhomogeneous media
problems. Similar to the FEM, these methods also necessary to set the artificial boundary to
satisfied the radiation condition at the truncated boundary as solving the infinite space wave
problem.

From the above research progress introduction, it can be found that the analytical research
methods for elastic wave scattering problems in homogeneous media are relatively mature
and have rich achievements. Because the variable coefficient wave equation caused by the
inhomogeneous media is difficult to solve analytically, the current research work is limited
to the SH waves scattering by inclusions such as cavities and lining in the media, and the
research on the dynamic response of complex boundary on the surface of inhomogeneous
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media is less. Considering that the actual material surface often has irregular boundaries
such as defects and structures, this thesis approximates these boundaries to circular or wedge-
shaped boundary forms, and studies the displacement and stress situations of these boundaries
and nearby areas under SH wave action. From an analytical perspective, this provides a
theoretical reference for the damage and failure analysis of inhomogeneous materials. In
addition, the analytical solution of the SH wave scattering problem caused by the depression
and convex types surface arc-circular boundary can serve as the basis for researching complex
boundary problems, providing ideas and inspiration for subsequent more complex analytical
research work.

1.4 Outline

Analytical solutions for the scattering of SH waves by surface defects or structures in
continuously inhomogeneous media with variable wave velocities are of great significance
for both theoretical and practical engineering applications. Therefore, the purpose of this
thesis is to investigate SH incident propagation characteristics on the surface depression
and convex boundaries in inhomogeneous media with variable wave velocity, in Harbin
Engineering University. Meanwhile, during the joint training in Politecnico di Torino, the
FEM under the CUF framework is expanded to exploration the elastic wave problem utilizing
the CUF method. The dynamic response of the superstructure is analyzed considering the
oblique input of elastic waves. The main research content of this article is as follows:

(1) In Chapter 2, based on the elastic wave theory, the wave equation of inhomogeneous
media with density and shear modulus varying with coordinate components is derived,
and the solution idea is proposed. In order to be able to perform analytical solutions and
ensure the variable wave velocity characteristics in the media, this thesis mainly considers
inhomogeneous media with radial variations in density and constant shear modulus. The
Helmholtz equation with variable coefficients is successfully reduced to standard form by
using the complex variable function method and introducing a transformation function.

(2) The scattering of SH waves by a radial inhomogeneous media with a semi-cylindrical
depression surface boundary is investigated in Chapter 3, and the expressions of free and
scattering wave field are constructed. The validation of the proposed method is verified
by comparing the results with existing results by reducing the influence of parameters. By
calculating the displacement amplitude results under each parameter, the influence of each
parameter on the dynamic response under SH wave incidence is analyzed.

(3) Convex boundaries on the surface of a media also have a significant impact on the
scattering of elastic waves. Chapter 4 is mainly detected SH wave scattering by considering
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semi-cylindrical convex boundary and semi-cylindrical convex boundary with cylindrical
cavity. In order to explore the comparison of the scattering characteristic of SH waves
by convex and depression boundary in the same inhomogeneous media, the density radial
inhomogeneous media is still employed in this chapter. According to the solved standard
Helmholtz equation and the idea of region-matching, the wave field expressions in each
region after the model division are constructed, and the displacement and stress boundary
conditions are applied at the auxiliary boundary to solve the problem. Taking the parameters
closer to the existing result parameter settings, the validation in this chapter is verified through
calculation and comparison. The surface and internal displacement amplitudes are calculated
under various parameters, and the effects of various parameters on the distribution of dynamic
stress concentration coefficients (DSCF) around the cylindrical cavity are analyzed.

(4) Based on the consideration range of the research media, SH waves propagation in
the inhomogeneous wedge space is investigated in Chapter 5, and the effect on the dynamic
response is considered for both the cases of the wedge domain with cusps and circular
depressions. The inhomogeneous media parameters are still in the form of density variation
along the radial direction under the condition of retaining the variable wave velocity, and the
results are analyzed in comparison with the first two problems. From the governing equations
obtained after the transformation, the expressions for the free wave field, as the incident
and reflected waves, in the density radial inhomogeneous wedge space are derived for the
cylindrical depression scattering problem, while the expressions for SH wave scattering wave
field in the wedge space are constructed. The wedge vertex angle takes the value range from
0 to 2π , which can correspond to a variety of regional boundary forms. The validation in this
chapter verified by setting the media parameters to calculate and compare with the existing
results for similar cases. Then the displacement distribution on the surface and inside of the
wedge space is calculated and the effect of each parameter on the displacement distribution
is discussed.

(5) FEM often requires more degrees of freedom and computational time when simulating
the dynamic response of large-scale models under elastic wave input. During the joint training
period, FEM based on the CUF framework effectively reduces the advantages of the finite
element model’s degrees of freedom and calculation time. In Chapter 6, by establishing
the viscous-spring artificial boundary, the method is applied to the calculation model with
truncated boundaries. This process is implemented using the MUL2 team’s self-developed
Fortran code. The validation of artificial boundary is verified applying the classical Lamb
problem. Subsequently, the input process of external waves oblique incident and external
waves in layered media is completed, and the dynamic response of external waves under
oblique incident in various underground media with upper structures is considered, with
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Fig. 1.1 Structure diagram of this thesis

emphasis on the influence of incident angle. Fig. 1.1 shows the structural relationship of
each chapter.



Chapter 2

Theory of analytical methods for wave
propagation in inhomogeneous media

The research of traditional elastic wave problems is more based on the assumption of isotropic
media, under which the solution of the equation is only applicable to discussing the elastic
waves propagation characteristic in isotropic media. For complex media, such as anisotropic
media, inhomogeneous media, porous media, etc., it is necessary to further expand the
original theory to analytically solve related problems.

2.1 Wave equation in inhomogeneous media

2.1.1 Establishment of equation of motion

For an elastomer with a volume of V and a surface area of S, let its density be ρ and its
physical strength be fi (excluding inertial force), the dynamic governing equation can be
obtained through Gauss formula

σi j, j +ρ fi = ρ üi (2.1)

εi j =
1
2
(
ui, j +u j.i

)
(2.2)

σi j = λεkkδi j +2µεi j (2.3)

where ui, ρ fi, εi j and σi j represents displacement, physical force for unit volume, strain, and
stress, respectively. λ and µ are Lame constants. In addition, εkk is the expansion coefficient.
For two-dimensional problems, the range of the lower subscript is from 1 to 2, δi j represents
the Kronecker symbol. Collate the above equations to obtain the displacement equation of
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elastodynamic motion
(λ +µ)u j, ji +µui, j j +ρ fi = ρ üi (2.4)

2.1.2 Derivation of wave equation in inhomogeneous media

If the continuous elastic body is a inhomogeneous media, the material parameters are related
to the coordinate components, such as λ = λ (x), µ = µ(x), ρ = ρ(x). By introducing the
vector operator Eq. (2.4), it can be written as

(λ (x)+µ (x))∇∇ ·u+µ (x)∇
2u+ρ (x) f = ρ (x) ü (2.5)

where ∇ is Laplace operator.
In order to rewrite Eq. (2.5) into a suitable solution form that does not involve material

parameter derivatives, the following transformation is established for the displacement vector
u

u(x, t) = P(x)U(x, t) (2.6)

where the exact form of the function P(x) is yet to be determined.
The derivative of ui relative to spatial coordinates is as follows

ui, j = PUi, j +P, jUi (2.7)

ui, j j = PUi, j j +2P, jUi, j +P, j jUi (2.8)

u j,i j = PU j,i j +P, jU j,i +P,iU j, j +P,i jU j (2.9)

Bring Eqs. 2.7 and (2.8) into Eq. (2.5) to obtain the transformed displacement vector U.
The equation is as follows

(λ +µ)PU j,i j +µPUi, j j +
(
2µP, j +µ , jP

)
Ui, j

+
(
λP, j +µP, j +µ , jP

)
U j,i +(λP,i +λ,iP+µP,i)U j, j

+
(
µP, j j +µ, jP, j

)
Ui +

(
λP,i j +λ,iP, j +µP,i j +µ , jP,i

)
U j

+ρfi = ρPÜi

(2.10)

From the above equation, an accurate form of the function P(x) can be constructed,
thereby simplifying Eq. (2.10) into mutually independent wave equations. Further sorting
out and transforming the simplified wave equations can yield analytical solutions to the
corresponding equations.
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In this thesis, we mainly research inhomogeneous media with varying density, λ (x), µ(x)
are constants, so we directly bring them into Eq. (2.1) for simplification

(λ +µ)∇∇ ·u+µ∇
2u+ρ (x) fi = ρ (x) üi (2.11)

Since only density is a function in the equation, the usual displacement decomposition
can be introduced, and the displacement vector ucan be expressed as the sum of two vector
fields

u(x, t) = φ (x, t)+ϕ (x, t) (2.12)

where φ and ϕ represent scalar and vector displacement potentials, respectively, while
satisfying the following relationships ∇∧φ = 0, ∇ ·ϕ = 0.

Taking the above decomposition into governing equation Eq. (2.11), ignoring physical
strength

(λ +2µ)∇
2
φ +µ∇

2
ϕ = ρ (x) φ̈ +ρ (x) ϕ̈ (2.13)

If each wave equation is independent of each other, we can obtain

∇
2
φ =

1
c2

p
φ̈ (2.14)

∇
2
ϕ =

1
c2

s
ϕ̈ (2.15)

where cp =
√

(λ +2µ)/ρ (x) , cs =
√

µ/ρ (x) represent the longitudinal wave velocity and
the transverse wave velocity, respectively. Under the condition of simple harmonic time, the
following Helmholtz equation can be obtained

∇
2
φ + k2

pφ = 0 (2.16)

∇
2
ϕ + k2

s ϕ = 0 (2.17)

where kp = ω/cp , ks = ω/cs represents the longitudinal wave number and the transverse
wave number, respectively.
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2.2 Basic solution of wave equation in density inhomoge-
neous media

2.2.1 Standardization of wave equation in density inhomogeneous me-
dia

The two-dimensional wave equation includes the basic concept of elastic wave propagation,
so it can reflect the basic propagation characteristic of elastic wave problems and is the
basis for exploring elastic wave problems. This section takes the two-dimensional wave
problem as an example. Under the condition of simple harmonic time, the two-dimensional
density inhomogeneous wave equation can be expressed as a constant form in the Cartesian
coordinate system

∂ 2w
∂x2 +

∂ 2w
∂y2 + k2 (x,y) = 0 (2.18)

Eq. (2.18) is a Helmholtz equation with variable coefficients, which is currently difficult
to directly solve analytically. To solve the equation is transformed into a standard Helmholtz
equation, and the transformed solvable equation is solved to obtain an analytical solution to
the original equation. Firstly, based on the theory of complex variable functions, the wave
equation can be transformed into a complex field by introducing complex variables z = x+ iy,
z̄ = x− iy

∂ 2w
∂ z∂ z̄

+
1
4

k2 (z, z̄)w = 0 (2.19)

Secondly, continue to introduce the variable (ξ1,ξ2), and set the function ζ = ζ (z) =
ξ1 + iξ2 is an analytic function of complex variable z, then Eq. (2.19) is converted to

∂ 2w
∂ξ 2

1
+

∂ 2w
∂ξ 2

2
+

1
4

∣∣∣∣ dz
dζ

∣∣∣∣2k2 (ξ1,ξ2)w = 0 (2.20)

where |dz/dζ |2 is the determinant of a transformation matrix between the coordinate system
(x,y) and (ξ1,ξ2). This matrix is called the Jacobian matrix J(x,y;ξ1,ξ2) in computational
mechanics, and its determinant is called the Jacobian matrix |J(x,y;ξ1,ξ2)|. Therefore,

J (x,y;ξ1,ξ2) =
∂ (x,y)

∂ (ξ1,ξ2)
=

[
∂x/∂ξ1 ∂x/∂ξ2

∂y/∂ξ1 ∂y/∂ξ2

]
(2.21)

|J (x,y;ξ1,ξ2)|= (∂x/∂ξ1 )(∂y/∂ξ2 )− (∂x/∂ξ2 )(∂y/∂ξ1 ) (2.22)
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To ensure that ζ (z) is a parsing function of z, and dζ/dz is unique, it needs to satisfy
J(x,y;ξ1,ξ2) ̸= 0. According to the Kohlmann condition ∂x/∂ξ1 = ∂y/∂ξ2, ∂x/∂ξ2 =−∂y/∂ξ1,
Eq. (2.22) can be rewritten to

|J (x,y;ξ1,ξ2)|=
(

∂ξ1

∂x

)2

+

(
∂ξ2

∂y

)2

(2.23)

For using the Green’s function or separation variable method to solve the equation, in
order to make the two-dimensional Helmholtz equation separable and have a separation form
of w = F(ξ1)G(ξ2), the following conditions must be satisfied

∂ 2

∂ξ1∂ξ2

[∣∣∣∣ dz
dζ

∣∣∣∣2
]
= 0 (2.24)

The governing differential equation used to establish a coordinate system for separating
Helmholtz equations is

d2

dζ 2

(
dz
dζ

)
= χ

(
dz
dζ

)
(2.25)

where χ is a constant.
According to Eq. (2.21), the wave number k is expressed as

k2 (z, z̄) =
∂ (ξ1 (x,y) ,ξ2 (x,y))

∂ (x,y)
= k2

0

∣∣∣∣dζ

dz

∣∣∣∣2 (2.26)

where k0 is the reference wave number, k0 = ω0/c0 , c0 is the corresponding reference wave
velocity.

Bringing Eq. (2.26) into Eq. (2.20) yields the standard Helmholtz equation

∂ 2w
∂ξ 2

1
+

∂ 2w
∂ξ 2

2
+

1
4

k2
0w = 0 (2.27)

The standardization process of variable coefficient partial differential equations in this
section is essentially a process of converting a two-dimensional coordinate system (x,y)to
another two-dimensional coordinate system (ξ1,ξ2). The converted coordinate system can
be represented as ξ1(x,y)and ξ2(x,y), the conversion relationship between two coordinate
systems can be determined through the complex variable function ζ = ζ (z) = ξ1 + i(ξ2)

given. Moreover, this complex variable function must be an analytic function of the complex
variable function z = x+ iy. The partial differential equation between two complex variable
functions can be expressed as ∂/∂ z = (dζ/dz)/(∂/∂ζ ) and ∂/∂ z̄ =

(
dζ̄/dz̄

)
/
(
∂/∂ ζ̄

)
.
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2.2.2 Solution of wave equation in density inhomogeneous media

A two-dimensional density inhomogeneous continuous medium with a density of ρ(x,y) and
a constant elastic modulus. In the case of time harmonic, the basic equation for controlling
the free propagation of waves is one with a variable coefficient, as a variable wave number
of k(x,y) = ω/c Helmholtz equation, where c represents

√
(λ +2µ)/ρ; or

√
µ/ρ;. The

equation can be expressed as
∇

2w+ k2 (x,y)w = 0 (2.28)

Stress component form

According to the previous section, this equation can be written in the form of Eq. (2.27) by
introducing variables. In order to determine the unique solution of the displacement field for
a given stress boundary condition in subsequent research, this section provides the expression
of the stress component in the corresponding coordinate system. In the complex plane z, the
corresponding stress component can be expressed as

τxz = µ

(
∂w
∂ z

+
∂w
∂ z̄

)
(2.29)

τyz = iµ
(

∂w
∂ z

− ∂w
∂ z̄

)
(2.30)

In cylindrical coordinate by using z = reiθ , the above equations can be rewritten into
radial and circumferential stress forms

τrz = µ

(
∂w
∂ z

eiθ +
∂w
∂ z̄

e−iθ
)

(2.31)

τθz = iµ
(

∂w
∂ z

eiθ − ∂w
∂ z̄

e−iθ
)

(2.32)

Introduce a coordinate variable ξi and parsing function ζ = ζ (z) = ξ1 + iξ2, which
can ultimately convert the Helmholtz equation with variable coefficients into a standard
Helmholtz equation, as Eq. (2.27). The key step here is to specify the spatial variation of the
Jacobian matrix |J(x,y;ξ1,ξ2)|, which offsets the spatial variation of the wave number

k2 (x,y;ξ1,ξ2) = k2
0|ds/dz |2 = k2

0|J (x,y;ξ1,ξ2)|−2 (2.33)
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According to the above formulation, it can be deduced that the applicable density form
distribution is

ρ (x,y) = ρ0|J (x,y;ξ1,ξ2)|−1 (2.34)

In this way, the form of the solution to Eq. (2.28) depends on the selected density
distribution form of the inhomogeneous medium that satisfies the above conditions.

In the form of Eq. (2.27), based on Eqs. (2.31) and (2.32) and the coordinate transforma-
tion function ζ = ζ (z) = ξ1 + iξ2, the corresponding stress component expression in the ζ

plane can be obtained

τrz = µ

[
∂ϕ

∂ζ
ζ
′ (z)eiθ +

∂ϕ

∂ ζ̄
ζ̄ ′ (z̄)e−iθ

]
(2.35)

τθz = iµ
[

∂ϕ

∂ζ
ζ
′ (z)eiθ − ∂ϕ

∂ ζ̄
ζ̄ ′ (z̄)e−iθ

]
(2.36)

Solution based on separation of variables

The analytical solution of the Helmholtz equation can be obtained by using the separation
of variables method, Green’s function method, energy method, etc. In this thesis, the wave
function expansion solution of the separation of variables method is used. Under polar

coordinates (r,θ), r =
√

(ξ 2
1 +ξ 2

2 ) = |ζ |, θ = tan−1(ξ2/ξ1), Eq. (2.28) can be converted to

∂ 2w
∂ r2 +

1
r

∂w
∂ r

+
1
r2

∂ 2w
∂θ 2 + k0

2w = 0 (2.37)

Based on the following separated variable form

w(r,θ ,z) = R(r)Θ(θ) (2.38)

Substituting the above equation into Eq. (2.37) has

Θ
d2R
dr2 +

Θ

r
dR
dr

+
R
r2

d2Θ

dθ 2 + k2
0RΘ = 0 (2.39)

Simplify the equation and introduce the constant λ to decompose the equation into

Θ+λΘ = 0 (2.40)

r2 d2R
dr2 + r

dR
dr

+
(
k2

0r2 −λ
)

R (2.41)
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The eigenfunction of Eq. (2.40) is

Θ(θ) = Acos
√

λθ +Bsin
√

λθ (2.42)

where in the process of solving wave problems, the constant λ can be calculated based on
stress boundary conditions, which is generally an array of n terms. To facilitate subsequent
representations, let λ = n2, A, B are unknown coefficients to be determined.

Eq. (2.41) is a Bessel equation of order n, and the form of its solution can be written as
follows

R(r) = Jn (k0r) (2.43)

Then, according to the form of the solution shown in Eq. (2.42) and (2.43), the return Eq.
(2.38) has

w(r,θ) =
∞

∑
n=0

AnJn (k0r)cosnθ +BnJn (k0r)sinnθ (2.44)

In the ζ coordinate system

w(r,θ) =
∞

∑
n=0

AnJn (k0 |ζ |)

{(
ζ

|ζ |

)n

+

(
ζ

|ζ |

)−n
}

+BnJn (k0 |ζ |)

{(
ζ

|ζ |

)n

−
(

ζ

|ζ |

)−n
} (2.45)

where the unknown coefficient to be determined is An, Bn can be obtained by substituting
boundary conditions.

2.3 Summary

This chapter first introduces the kinematic governing equations of elastomers in detail,
and then derives the general form of the governing equations for inhomogeneous media.
Taking a two-dimensional density inhomogeneous media as an example, the corresponding
wave equation is given. Based on the theory of complex variable functions, the process
of converting variable coefficient partial differential equations into standard Helmholtz
equations is presented in detail. Meanwhile, the stress component forms in each plane are
given. By using the wave function expansion method, the fundamental solution of the wave
equation in inhomogeneous media is established.



Chapter 3

Scattering of SH waves by a
semi-cylindrical depression in
inhomogeneous media

Traditional homogeneous materials are no longer satisfied the demand of engineering appli-
cation with the engineering demand constantly updated. Designable functionality inhomoge-
neous materials have been widely researched and applied with the continuous development
of materials science, meanwhile, the propagation characteristics of elastic waves in the
inhomogeneous media are also concerned. Investigating the propagation of the elastic waves
in inhomogeneous media is necessary to analyze the dynamic responses of natural and
artificial materials. The scattering of elastic waves on the material surface plays an important
role in many engineering applications, such as soil exploration, nondestructive testing, and
earthquake engineering. The scattering of SH waves by a semi-cylindrical depression can be
regarded as the research foundation of the effect of surface shapes on elastic wave scattering,
and therefore is of theoretical and practical engineering significance to investigate.

3.1 Model and governing equation

3.1.1 Model establishment

The scattering of SH waves by semi-cylindrical depression on the surface of inhomogeneous
media is the main research content of this chapter, a semi-infinite mechanical model was
established, as shown in Fig.3.1. There are many factors affecting the assumption of material
parameters in inhomogeneous media. The focus of consideration is the variable wave velocity
due to the inhomogeneous media, as researching the propagation characteristic of elastic
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Fig. 3.1 Model for scattering SH wave by a surface semi-cylindrical depression in density
inhomogeneous media.

waves in the inhomogeneous media. Therefore, in order to ensure that the wave velocity
various with the spatial coordinates, the model media parameters are in the form of density
ρ (x,y) varying with the spatial coordinates and elastic modulus µ is constant. The radius
of the semi-cylindrical depression in this model is ra, and the origin of the coordinates of
the Cartesian coordinate system is located at the center of the semi-cylindrical. The x-axis
is vertically down, the y-axis is horizontally to the right, and the SH wave is incident at an
angle α to the x-axis.

3.1.2 Solution of governing equation

According to the model and the form of boundary conditions, the polar coordinate system
was used to establish the equation. The density of the inhomogeneous media ρ(r,θ) varies
with the coordinates in the following form, and satisfy the condition that Eq. (2.34).

ρ (r,θ) = ρ0β
2r2(β−1),β > 0 (3.1)

where ρ0 is the reference density of the media, β is the inhomogeneous parameter, represents
the various of density radial inhomogeneous media. The media density is proportional to β

in the case of radius is r, The density of media increases with the deepening of the radius r,
when β > 1. The density of media decreases with the deepening of the radius r, when β < 1 .
In particular, ρ (r,θ) = ρ0 as β = 1, which means homogeneous media situation. According
to the above formalism, c =

√
ρ0β 2r2(β−1)/µ = β r(β−1)

√
ρ0/µ .

According to the density form set, the corresponding wave number form can be obtained
as following by bringing it into Eq. (2.33).
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k (r,θ) = k0β rβ−1,β > 0 (3.2)

where k0 is the reference wave number.
The governing equation of the two-dimensional density inhomogeneous plane SH wave

in cylindrical coordinates can be written as:

r2 ∂ 2w
∂ r2 + r

∂w
∂ r

+
∂ 2w
∂θ 2 + r2k2 (r,θ)u = 0 (3.3)

Bring Eq. (3.2) into

∂ 2w
∂ r2 +

1
r

∂w
∂ r

+
1
r2

∂ 2w
∂θ 2 + k2

0β
2r2(β−1)w = 0 (3.4)

According to the transformation method in the previous chapter, complex variables are
introduced, z and z̄ are equal to reiθ and re-iθ , respectively. The Eq. (3.4) is transformed into:

∂ 2w
∂ z∂ z̄

+
1
4

β
2(zz̄)β k2

0w = 0 (3.5)

According to the transformation method in the section 2.2.2, variate ξi are introduced,
hence ζ , ζ (z) and ξ1 + iξ2 are equal. The transformation form can be derived from Eq.
(2.26) and Eq. (3.1)

ζ = zβ , ζ̄ = z̄β (3.6)

Then Eq. (3.5) can be transformed into the standard Helmholtz equation:

∂ 2w
∂ζ ∂ ζ̄

+
1
4

k2
0w = 0 (3.7)

This equation is the standard Helmholtz equation, and there is no variable coefficient
before the function term. Thus, this equation can be solved analytically using the separation
variable method in the section 2.2.
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3.2 Wave field in the region

3.2.1 Displacement field expression

In this model, the total wave field w in the inhomogeneous semi-infinite space can be
composed of free wave field w( f ) and scattering wave field w(s):

w = w( f )+w(s) (3.8)

With SH wave incident at an angle α to the x-axis, based on the symmetry of the
inhomogeneous media and the model used in this chapter, the incident wave in the ζ plane
can be written as:

w(i) = w0 exp
[
ik0

(
−ζ eiα − ζ̄ e-iα

)
/2
]

(3.9)

where w0 is the displacement amplitude of the incident wave.
The problem of inhomogeneous semi-infinite space is demonstrated in this chapter, so the

incident wave will produce a reflected wave at the horizontal boundary of the semi-infinite
space, and the reflecting wave can be expressed as:

w(r) = w0 exp
[
ik0

(
ζ e-iα + ζ̄ eiα

)
/2
]

(3.10)

The free wave field w( f ) in the semi-infinite space is the superposition of the incident
wave field w(i) and the reflected wave field w(r):

w( f ) = w(i)+w(r) (3.11)

The expression of the free wave field satisfies the stress free condition at the horizontal
boundary on both sides of the semi-infinite domain, and it is expanded into the form of
cylindrical wave:

w( f ) =
∞

∑
n=0

(−1)n
εnw0J2n/β (k0 |ζ |)cos2nα ·

{(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
}

+2
∞

∑
n=0

(−1)nw0J(2n+1)/β (k0 |ζ |)sin(2n+1)α

·

{(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
} (3.12)
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where Jn (·) is Bessel function of order n, εn =

{
1, n = 0

2, n > 0
There will be corresponding scattering wave field due to the defect of semi-cylindrical

depression at the horizontal interface of semi-infinite space, since the incident wave reaches
the boundary of the semi-cylindrical depression. Therefore, it is necessary to construct
the scattering wave field satisfying the governing equation of the inhomogeneous media,
according to the standardized Helmholtz equation.

In order to ensure the existence of a unique solution of the constructed wave field, the
Sommerfeld radiation condition should be satisfied, and the scattering wave field can be
expressed as:

w(s) (
ζ , ζ̄

)
= w0

∞

∑
n=0

{
An

(1)H(1)
2n/β

(k0 |ζ |)

[(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
]

+ An
(2)H(1)

(2n+1)/β
(k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
]} (3.13)

where H(1)
n (·) is the first Hankel function of order n, A(1)

n and A(2)
n are the unknown coefficient

to be solved. The unknown coefficient can be solved by boundary conditions, and then the
final wave field expression can be obtained.

3.2.2 Stress field expression

In order to obtain the wave field, the stress boundary conditions should be used at the
semi-cylindrical depression boundary to solve the unknown coefficients in the scattering
wave.

Therefore, it is necessary to give the stress expression forms corresponding to the free
wave field and the scattering wave field. According to Eqs. 2.35 and 2.36 and the transforma-
tion form Eq. (3.6), there is:

τrz = β µ

(
∂w
∂ζ

zβ−1eiθ +
∂w
∂ ζ̄

z̄β−1e−iθ
)

(3.14)

τθz = iβ µ

(
∂w
∂ζ

zβ−1eiθ − ∂w
∂ ζ̄

z̄β−1e−iθ
)

(3.15)
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The expression of the free wave field Eq. (3.11) brings into the above equation, and the
expression of the stress field is as follows:

τ
( f )
rz =

β µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

+2
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

] (3.16)

τ
( f )
θz =

iβ µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

−2
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

] (3.17)

where

Pt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

+ Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Qt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ + Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

− Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Based on the scattering wave field expression Eq. (3.12), the corresponding stress field is
given as:

τ
(s)
rz =

β µk0w0

2

∞

∑
n=0

[
A(1)

n U2n/β (ζ )+A(2)
n V(2n+1)/β (ζ )

]
(3.18)

τ
(s)
θz =

iβ µk0w0

2

∞

∑
n=0

[
A(1)

n U2n/β (ζ )−A(2)
n V(2n+1)/β (ζ )

]
(3.19)

where

Ut (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

zβ−1eiθ

+H(1)
t−1 (k0 |s|)

[
s
|s|

]1−t

z̄β−1e-iθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

z̄β−1e-iθ
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Vt (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ +H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

zβ−1eiθ

−H(1)
t−1 (k0 |s|)

[
s
|s|

]1−t

z̄β−1e-iθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

z̄β−1e-iθ

3.3 Boundary conditions and equations solving

3.3.1 Boundary conditions

The stress free condition of the model in this chapter has been automatically satisfied at the
horizontal boundary when constructing the free wave field. The stress free condition needs
to be satisfied at the boundary of the semi-cylindrical depression, that is:

τ
( f )
rz + τ

(s)
rz = 0, r = ra (3.20)

Plugging the Eqs. (3.15)-(3.18) into the boundary conditions Eq. (3.19),
∞

∑
n=0

A(1)
n E2n =−

∞

∑
n=0

F2n

∞

∑
n=0

A(2)
n E2n+1 =−

∞

∑
n=0

F2n+1

(3.21)

where E2n =U2n/β (ζ ), E2n+1 =V(2n+1)/β (ζ ),
F2n = (−1)n

εn cos2nα ·P2n/β , F2n+1 = 2(−1)n sin(2n+1)α ·Q(2n+1)/β .

3.3.2 Solution of wave motion equation

There are many methods to solve above infinite algebraic equations, while different methods
bring slightly different accuracy and computational cost, such as convergence results can
be obtained quickly at high frequencies. At present, solving infinite equations with high
precision is still a direction of mathematical research. The Fourier series expansion method
is used to solve the above infinite algebraic equations in this work. This method is widely
used in solving the infinite algebraic equations with well convergence and calculation speed.
Multiply both sides of the equation by e−imθ and integrate from −π/2 to π/2 , the equation
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can be expanded into the following form:
∞

∑
n=0

E(1)
mn A(1)

n =−
∞

∑
n=0

F(1)
mn

∞

∑
n=0

E(2)
mn A(2)

n =−
∞

∑
n=0

F(2)
mn

(3.22)

where E(1)
mn =

∫ π

2
− π

2
E2ne−imθ dθ , E(2)

mn =
∫ π

2
− π

2
E2n+1 (ζ )e−imθ dθ ,

F(1)
mn =

∫ π

2
− π

2
F2ne−imθ dθ , F(1)

mn =
∫ π

2
− π

2
F2n+1e−imθ dθ .

3.4 Examples analysis

Dimensionless frequency η is defined for presentation.

η = 2ra/λ = k0ra/π (3.23)

where λ is the wavelength. The dimensionless frequency η can be used to represent the
magnitude of the wave number and the ratio of wavelengths in the span domain of the
depression.

The displacement amplitude |w| can be calculated by the following formula:

|w|=
√

[Re(w)]2 +[Im(w)]2 (3.24)

3.4.1 Convergence analysis

This research requires to truncate the infinite series in order to obtain the corresponding
numerical results, since the series expansion method is used to solve the infinite system
of equations. Two typical positions, point 1 (0,−1.5) and point 2 (1,0), are chosen to
analyze the convergence of the free and scattering wave fields, as shown in Fig. 3.2. The
dimensionless frequency η = 1.5 incident angle α = 90◦, inhomogeneous parameters β = 0.5
and β = 1.5 are set in order to satisfy the convergence requirements of all examples in this
section. Truncating terms N = m = n are considered to build the standard solution matrix.
The results of the free wave field and the scattering wave field can already converge, as
truncation terms reaches 5 in Fig. 3.2. Therefore, the stability and reliability of the numerical
results have been ensured through a large number of convergence analyses. The convergence
requirement can be satisfied if m and n are taken to be 15 for the subsequent examples.
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(a) β = 1.5 (b) β = 0.5

Fig. 3.2 Convergence analysis of five typical position displacement amplitudes increasing
with truncation term N

3.4.2 Validation

In order to verify the validation of the obtained standardized Helmholtz equation and the
constructed scattering wave field in this chapter, the present results is compared with the
previous work. The horizontal axis represents the relative position coordinates of the semi-
cylindrical depression and the horizontal boundary, where [−3,−1) and (1, 3] represents
the horizontal boundary and [−1, 1] represents the semi-circular depression, in Fig. 3.3.
The dimensionless frequency η is set to 1.25. The inhomogeneous parameter β is set to
0.999 in order to ensure that the media still has certain inhomogeneous and approaches the
homogeneous media, and the results of four incident angles are calculated and compared with
those of the existing result, given in Fig. 3.3(a). Fig. 3.3(b) illustrates the displacement of
the six observation points selected at the same position as in the reference as changing with
the dimensionless frequency under horizontal incident. Fig. 3.3 dedicates that the calculation
results are basically consistent with the results of Trifunac [159], thus verifying the validation
of the method used in this section. Meanwhile, two sets of inhomogeneous parameters (β=
0.94, 0.96, 0.98 and β= 1.02, 1.04, 1.06), which approximate the homogeneous media, were
used for calculation under horizontal and vertical incident with the dimensionless frequencies
were 1.25 and 0.75, respectively, are shown in Fig. 3.4. The corresponding displacement is
basically consistent with the results of the existing homogeneous media, when the value of
the inhomogeneous parameter is close to 1, and the overall trend is consistent. This trend is
reasonable in theory and further verifies the validation of the normalized and constructed
wave field expressions.
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(a) η = 1.25 (b) α = 90◦

Fig. 3.3 Results of approximately homogeneous medium for comparison with the existing
displacement results

3.4.3 Numerical Discussion

In this section, a series of numerical examples are carried out to explore the influence of
inhomogeneous media on the propagation of elastic waves in the semi-infinite space and
whether the amplification effect of surface depression on SH waves still holds. The first
group of examples gives the displacement amplitudes of four different incident angles from
the left at the dimensionless frequency η is 1.5 and the inhomogeneous parameters are 0.5,
0.75, 1.25 and 1.5, as shown in Fig. 3.5.

The displacement amplitude and the vibration frequency is proportional to inhomoge-
neous parameter, and the maximum displacement amplitude generally appears near the
intersection of the horizontal boundary and depression. Notable is, under horizontal incident,
the displacement amplitude of left side plane boundary at β < 1 is greater than β > 1, as
shown in Fig. 3.5 (d). Due to the same radius, the media density at β < 1 is less than at β > 1.
Therefore, horizontal incident at the same position, the displacement amplitude with small
media density is slightly larger than that with large media density. However, this situation
will change with the various incident angle in inhomogeneous media, the displacement on the
left side of the semi-cylindrical depression still proportion in β . From the comparison of the
four below figures that the inhomogeneous parameters have a great influence on the displace-
ment distribution in different locations under different incident angles. The displacement
amplitudes of different inhomogeneous parameters at the horizontal boundary are greatly
different when the incident angle is less than 60◦, while different inhomogeneous parameters
have great influence on the displacement amplitudes at the depression as α > 60◦.
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(a) η = 1.25 (b) η = 0.75

Fig. 3.4 Displacement distribution corresponding to different inhomogeneous parameters

(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.5 Displacement amplitude with inhomogeneous parameter at dimensionless frequency
η = 1.5
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According to the results of the previous set of examples, the inhomogeneous parameters
of 0.75 and 1.25 were selected as the values of the subsequent examples for the convenience
of observation. The influence of inhomogeneous parameters on the surface displacement
is further explored, and the results of a set of homogeneous result were adjunction for
comparative analysis. Figs. 3.6 and 3.7 indicate the displacement amplitude at four incident
angles with dimensionless frequencies η = 0.75,1.25, β = 0.75,1.0,1.25, respectively.
The displacement amplitude in inhomogeneous media can be observed more intuitively
by introducing the results of homogeneous media. The displacement of the left side of
the semi-cylindrical depression in the two sets of dimensionless parameter examples still
indicates inversely proportional of density under horizontal incident, as shown in Figs. 3.6
(a) and 3.7 (a). At η = 1.25, the displacement amplitude at the junction of the depression and
horizontal boundary is almost zero, which means, the displacement has a sudden change at
this point. This phenomenon is also conformed with the characteristic that boundary between
the horizontal and depression is prone to failure, and with dimensionless frequency rises, the
displacement amplitude near the junction boundary is more obvious. Compared with the
displacement amplitude results of the homogeneous media in the two sets of examples, the
value and vibration of displacement amplitude with position change are basically smaller in
the case of inhomogeneous media, at β < 1. While β > 1, it is larger than the homogeneous
media, and the special case is the horizontal incident. The displacement amplitude of the
depression surface increases obviously under β > 1, and decreases obviously if β < 1. At
60◦ and 90◦ incident, the displacement amplitude of the semi-cylindrical depression indicates
large vibrations, while at incidence angle is 0◦ and 30◦, the displacement of the horizontal
boundary displays large variation.

As the incident angle changes from 0◦ to 90◦, compared with the displacement amplitude
in the homogeneous case, the influence of the displacement amplitude on the corresponding
side of the wave surface increases first and then decreases as β > 1. Otherwise, if β < 1,
it first decreases and then increases. With the dimensionless frequency η from Fig. 3.6 to
Fig. 3.7, the displacement amplitude advanced and the vibration intensified. At vertical and
30◦ incident, for both sets of dimensionless frequencies, the position where the maximum
displacement occurs moves from the lowest point of the depression to the junction with
inhomogeneous parameters increasing. Under horizontal and 60◦ incident, the surface
displacement of the horizontal boundary on the right side of the depression finally basically
stabilized at an amplitude of about 1.

In order to explore the amplification effect of semi-cylindrical depression in density
inhomogeneous media on the displacement amplitude, five observation points with different
incident angles under β = 1.25,0.75, respectively, are presented in Fig. 3.8 and Fig. 3.9.
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.6 Displacement amplitude with inhomogeneous parameter at dimensionless frequency
η = 0.75

The amplification effect of surface depression in density inhomogeneous media on
displacement amplitude is not more than 2 times, under the SH wave incident with β = 1.25
and η < 3. This amplification effect is higher than the 1.5 times amplification effect in
homogeneous medium, as shown in Fig. 3.8(a). Although the amplification effect of point 3
shows vibration mode at vertical incident, the overall amplification effect is 0.5 times, and
the amplification effect increases to 2 times with incident angle growing. For point 2, as the
junction point between the depression and the horizontal boundary, the amplification effect
is not proportion in incident angle as the incident angle varying from vertical to horizontal.
However, the amplification effect reaches to 2.5 times at α = 30◦, in Fig. 3.8(b), and is not
more than 2 times at the other incident angles. The amplification effect is always in the form
of vibration and not greater than 2, which is also higher than the homogeneous case at point
1. Fig. 3.8(d) illustrates that although the amplification effect is in the form of vibration, it
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.7 Displacement amplitude with inhomogeneous parameter at dimensionless frequency
η = 1.25

gradually reaches 0.5 times with the dimensionless frequency rising at the horizontal incident
of points 1,4 and 5. The amplification effect of points of the back wave surface, as points
4 and 5, reaches the maximum under horizontal and vertical incident, and weakens under
oblique incident.

Fig. 3.9 displays the amplification effect is weakened as a whole, and its amplification
is basically no more than 1.5 times, when the inhomogeneous parameter is 0.75. Point
3 amplification is obviously different from that of the previous set of examples. As it
amplification is inversely proportional of incident angle. Especially, it almost approaches to
no amplification at horizontal incident. However, the displacement of points 1 and 2 increases
sharply to 2.5 times under horizontal incident, from Fig.3.9 (d). Point 2 amplification effect
begins to increase with the ascender of dimensionless frequency, as η > 0.5. However, the
amplification effect will take the form of vibration as the dimensionless frequency variation at
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.8 Displacement amplitude of five selection observation points under inhomogeneous
parameter β = 1.25

other points. Points 4 and 5 present the same effect as the previous set of examples, and still
the horizontal and vertical incident have the largest effect. In general, the amplification effect
of semi-cylindrical depression on displacement amplitude is weaker than that in homogeneous
media in this kind of density inhomogeneous media. The most obvious amplification effect
is observed at 30◦ incident for β > 1 and at vertical incident for β < 1.

In order to further explore the influence of surface depression on the displacement
amplitude in inhomogeneous media with different parameters. Meanwhile, in order to
more clearly explain the surface amplification of the depression boundary, the displacement
amplification factor w∗ is defined:

w∗ =
|w|
w̄

(3.25)

where, w̄ is the homogeneous surface displacement amplitude under quasi-static conditions.
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.9 Displacement amplitude of five selection observation points under inhomogeneous
parameter β = 0.75

It can be seen more clearly from the table that with inhomogeneous parameter increasing,
the amplification effect of the depression gradually aggravates. Which illustrates that surface
depression has a significant effect on the displacement for observation point 2under all
parameters. Compared with the amplification by the interface depression in homogeneous
media in literature [4], the amplification effect is weakened as β < 1 while is increased as
β > 1. And the maximum amplification effect of point 2 has reached 1.3 times for β = 1.5.
In particular, for the four inhomogeneous parameters, the amplifying effect is consistent
for point 3 under vertical incident and point 2, 5 under horizontal incident. The displace-
ment amplification coefficients of points 1 and 5 is inversely proportional of dimensionless
frequency with vertical incident. However, the above phenomenon is observed for points
2 and 4 when β < 1 and vertical incident. Consequently, considering horizontal cases, w∗

of point 3 decreases as β < 1, and increases as β > 1. At the same time, w∗ of points 3,
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4, and 5 vary very little under the inhomogeneous parameter of 0.75. This means that the
displacement amplitude hardly changes as a function of the dimensionless frequency under
this condition. The inhomogeneous parameters as well as the surface depression have little
effect on the displacement amplitude in the quasi-static case. Meanwhile, for β < 1 the
maximum of displacement amplification occurs at vertical incident, for β > 1 the maximum
of displacement amplification occurs at 30◦ oblique incident.

In order to clearly observe the distribution of the surface displacement amplitude of the
depression and the horizontal boundary, Fig. 3.10 and 3.11 illustrate the surface displacement
amplitude distribution at β = 0.75,1.25 respectively. The displacement amplitude increases
as a whole and vibrations more obviously with dimensionless frequency as the incident
angle various from vertical to horizontal, as shown in the figure. The point of maximum
displacement amplitude appears at the low point of the depression as β < 1 , given in Figs.
3.10 (a) and 3.11 (a) under vertical incident. While the point of maximum displacement
amplitude appears at the junction as β > 1. The point of maximum displacement amplitude
appeared at the junction of the depression and the left horizontal boundary for both oblique
and horizontal incident. And the position of the maximum displacement amplitude point
moves from the junction at left side to the horizontal boundary under horizontal incident.
The maximum points also advanced with the growth of dimensionless frequency. The
displacement amplitude at the horizontal boundary is significantly inversely proportional of
inhomogeneous parameters, especially in the direction of the left wave front at the horizontal
incident. It increases the displacement amplitude as oblique incident. The back wave surface
at the dimensionless frequency over 3 and β > 1, appears a region with displacement almost
zero, from Fig. 3.11(d). In the two sets of surface displacement amplitude, the maximum
value of the displacement is inversely proportional of inhomogeneous parameter, the surface
displacement amplitude is more prone to abrupt changes in large inhomogeneous parameters.

The above example gives the effect of inhomogeneous parameters and surface depression
in inhomogeneous media on the surface displacement amplitude. Then we explore the effect
of inhomogeneous parameters on the distribution of internal displacement amplitude. Figs.
3.12-3.14 demonstrate the displacement amplitude distribution in the semi-infinite space
with dimensionless frequency η = 1.5, and the inhomogeneous parameters are 0.75, 1.0 and
1.25 respectively.

By comparing the three sets of figures, the displacement amplitude distribution in the
inhomogeneous semi-infinite space has a certain similar characteristic with the internal
displacement amplitude distribution in the homogeneous case (Fig. 3.12). The included
angle between the connecting line and the x-axis of the position where the larger internal
displacement amplitude occurs under the three inhomogeneous parameters is about 45◦,
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.10 Spectral variations in surface displacement amplitude with inhomogeneous parame-
ter β = 0.75
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.11 Spectral variations in surface displacement amplitude with inhomogeneous parame-
ter β = 1.25
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.12 Distribution of internal displacement under inhomogeneous parameter β = 0.75

as shown in Figs. 3.12(a), 3.13(a) and 3.14(a). And the values slightly increase with the
ascender of β , and the number of locations with large values increases, which means, the
vibration is aggravated. The inhomogeneous parameters have a certain influence on the
internal displacement amplitude distribution. While, under the vertical incident, there is no
large displacement amplitude at the bottom of the depression if β > 1 , and the displacement
amplitude in the area near the bottom of the depression is in a small state. In the case of 30◦

oblique incident, as in the three groups figure (b), the maximum point of the displacement
amplitude all appears at the intersection point between the depression and the left side of
the horizontal boundary as β > 1, while the maximum point appears on the surface of the
depression as β < 1. Moreover, at β = 1.25, the displacement amplitude inside the wave
face declines along the positive direction of the x-axis, and some large areas occur directly
below the depression.

However, the internal displacement amplitude distribution decreases along the positive
x-axis under the situation of homogeneous and inhomogeneous parameters are 1.25 and
0.75. For horizontal incident, such as the three groups figure (d), the distribution of internal
displacement amplitude indicates a circular distribution along the depression boundary of the
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.13 Distribution of internal displacement under inhomogeneous parameter β = 1.0

wave face, and the point of maximum displacement amplitude moves from the left junction
and the horizontal boundary to the bottom of the depression surface with inhomogeneous
parameter growing. As β > 1, the displacement amplitude at the left horizontal boundary
is also small, while the internal displacement amplitude with the ascender if x coordinate
then increase when the angle with the x-axis is approximately 60◦. As β < 1, the internal
displacement amplitude decreases rapidly along the positive direction of the x-axis. In a
homogeneous media, the internal displacement presents a relatively stable distribution along
the positive x-axis. There still is a distribution region with small displacement amplitude
for all three inhomogeneous parameters near the right horizontal boundary under horizontal
incident.

3.5 Summary

This chapter mainly solves the scattering problem of SH wave by a semi-cylindrical depres-
sion in density radial inhomogeneous media. The governing equation is transformed into the
standard Helmholtz equation through the complex function method and auxiliary function,
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 3.14 Distribution of internal displacement under inhomogeneous parameter β = 1.25

and the expressions of the free wave field and the scattering wave field in the model are
constructed. The unknown coefficients in the constructed wave field expression are obtained
by using Fourier series expansion through the boundary conditions, so as to acquire the
whole wave field expression form. The validation of the method used in this chapter and
the construction of the wave field expression are verified through convergence analysis and
comparison with the existing results. Furthermore, the effects of different inhomogeneous
parameters, incident angles and dimensionless frequencies on SH wave scattering were
calculated, and the effects of these parameters and the surface depression in inhomogeneous
media on SH wave scattering were analyzed.



Chapter 4

Scattering of SH wave by surface convex
in inhomogeneous media

The scattering of elastic waves by the surface convex has always been the focus of many
scholars. The surface boundary will lead to the elastic wave reflection, resulting in the
irregular distribution of energy, and the surface displacement in some areas will increase
significantly. In the past few decades, a large number of researches have been carried out on
wave scattering problems caused by convex boundaries such as semi-cylindrical, triangle,
trapezoid and complex slope in homogeneous media. The development of material design
science provides technical support for the realization of elastic wave regulation. Moreover, it
also attracts more attention to the wave problem in complex media. The wave propagation
characteristic at the interface between complex media and homogeneous media as well as
in complex media has been discussed. However, there is still a lot of research space for the
scattering of elastic waves by surface defects in complex media. As a typical analytical model,
the semi-cylindrical depression or convex surface has attracted much attention. Therefore,
this chapter researches the scattering of SH waves by the surface semi-cylindrical convex in
inhomogeneous media.

4.1 Scattering of SH waves by surface semi-cylindrical con-
vex in density inhomogeneous media

First of all, this section investigates the scattering of SH wave by the surface semi-cylindrical
convex in density inhomogeneous media and discusses it with the semi-cylindrical convex
model. Semi-cylindrical boundary is a relatively simple form of convex, and the research of
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Fig. 4.1 Model for scattering SH wave by a semi-cylindrical convex in density inhomogeneous
media

this model can provide the corresponding theoretical basis for the subsequent more complex
models.

4.1.1 Model and wave equation

The model of a semi-cylindrical convex on the surface in density radially inhomogeneous
half space under SH waves incident is shown in Fig. 4.1. The coordinate origin o is set at the
center of semi-cylindrical convex with a radius of ra. The x-axis is vertically downward and
the y-axis is horizontally right. In order to divide the model into two regions, the auxiliary
boundary Sa is introduced. Region I is a semi-infinite space with semi-cylindrical boundary,
and Region II is a closed cylindrical region with boundary Sa and L. The function of density
along the radius is still selected in the same form as in section 3.1.2:

ρ (r,θ) = ρ0β
2r2(β−1), β > 0 (4.1)

The meaning of each parameter is the same as that of section 3.1.2. Therefore, the solving
process of the control equation of the problem is the same as that of section 3.1.2. Finally,
the dynamic control equation of the inhomogeneous media with the density radially varies as
the above function is transformed into:

∂ 2w
∂ξ 2

1
+

∂ 2w
∂ξ 2

2
+

1
4

k2
0w = 0 (4.2)
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Fig. 4.2 Schematic of semi-cylindrical convex model division

4.1.2 Displacement field expression in each region

In the problem of elastic wave with surface convex boundary in semi-infinite space, the
whole region is usually divided into several constructional regions by auxiliary boundary by
using region matching technique (RMT). After the wave field expressions satisfying their
boundary conditions are constructed in each region, the corresponding boundary conditions
are satisfied at the auxiliary boundary. Then the unknown coefficients to be solved for each
expression are obtained. Finally, the wave field in each region is available to be obtained,
and the problem will be solved. The whole region can be divided into a semi-infinite space
with a semi-cylindrical depression on the surface (Region I) and a closed cylindrical region
(Region II), from Fig. 4.2. When constructing the wave field, the free wave field in Region I,
the scattering field generated by the semi-cylindrical depression and the standing wave field
in Region II are constructed respectively.

Displacement field expression in Region I

Region I can be seen as a semi-cylindrical depression on the surface in an inhomogeneous
semi-infinite space. Under SH wave incident with the angle α , there is a free wave field w( f )

and a scattering field w(s) generated by the semi-cylindrical depression in Region I. The free
wave field w( f ) can be expressed as:

w( f ) =
∞

∑
n=0

(−1)n
εnJ2n/β (k0 |ζ |)cos2nα ·

{(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
}

+2
∞

∑
n=0

(−1)nJ(2n+1)/β (k0 |ζ |)sin(2n+1)α

·

{(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
} (4.3)
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The scattered wave w(s) generated by depression boudary:

w(s) (
ζ , ζ̄

)
= w0

∞

∑
n=0

{
AnH(1)

2n/β
(k0 |ζ |)

[(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
]

+ BnH(1)
(2n+1)/β

(k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
]} (4.4)

where An, Bn are unknown coefficients to be solved. Then, the total wave field in Region I
can be obtained:

w1 = w( f )+w(s) (4.5)

Displacement field expression in Region II

The wave field in Region II can be regarded as the cohesive wave generated by the boundary
Sa and L. When constructing the wave field form, the stress free condition of the upper
semi-cylindrical convex part should be satisfied while satisfying Eq.4.2. The form of Bessel
function construction is as follows:

w2
(
ζ , ζ̄

)
=

∞

∑
n=0

CnJ2n/β (k0 |ζ |)

[(
ζ

ζ̄

)2n/β

+

(
ζ

ζ̄

)−2n/β
]

+
∞

∑
n=0

DnJ(2n+1)/β (k0 |ζ |)

[(
ζ

ζ̄

)(2n+1)/β

−
(

ζ

ζ̄

)−(2n+1)/β
]

+
∞

∑
n=0

EnJ(2n+1)/β (k0 |ζ |)

[(
ζ

ζ̄

)(2n+1)/β

+

(
ζ

ζ̄

)−(2n+1)/β
]

+
∞

∑
n=1

FnJ(2n+1)/β (k0 |ζ |)

[(
ζ

ζ̄

)2n/β

−
(

ζ

ζ̄

)−2n/β
]

(4.6)

where Cn, Dn, En, Fn are unknown coefficients to be solved.

4.1.3 Stress field expression in each region

According to Eqs. (2.35) and (2.36) , the stress field expressions in each region can be
obtained by substituting the wave field expressions in the two regions. The stress field in
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Region I can be expressed as:

τ
(1)
rz =

β µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

+
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

+
∞

∑
n=0

AnU2n/β (ζ )+
∞

∑
n=0

BnV(2n+1)/β (ζ )

] (4.7)

τ
(1)
θz =

iβ µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

−
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

+
∞

∑
n=0

AnU2n/β (ζ )−
∞

∑
n=0

BnV(2n+1)/β (ζ )

] (4.8)

where

Pt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

+ Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Qt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ + Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

− Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Ut (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

zβ−1eiθ

+H(1)
t−1 (k0 |s|)

[
s
|s|

]1−t

z̄β−1e-iθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

z̄β−1e-iθ

Vt (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ +H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

zβ−1eiθ

−H(1)
t−1 (k0 |s|)

[
s
|s|

]1−t

z̄β−1e-iθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

z̄β−1e-iθ
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The stress field in Region II is:

τ
(2)
rz =

β µk0w0

2

∞

∑
n=0

[
CnP2n/β (ζ ) +DnQ(2n+1)/β (ζ )

+EnP(2n+1)/β (ζ )+FnQ2n/β (ζ )
] (4.9)

τ
(2)
θz =

iβ µk0w0

2

∞

∑
n=0

[
CnP2n/β (ζ ) −DnQ(2n+1)/β (ζ )

+EnP(2n+1)/β (ζ )−FnQ2n/β (ζ )
] (4.10)

4.1.4 Boundary conditions and solutions

Since the original surface convex in semi-infinite space is divided into two solution regions.
The stress and displacement continuity conditions should be satisfied at the auxiliary boundary
Sa:

w1 = w2, r = ra, −π/2 ≤ θ ≤ π/2 (4.11)

τ
(1)
rz = τ

(2)
rz , r = ra, −π/2 ≤ θ ≤ π/2 (4.12)

Stress free condition of semicircular convex:

τ
(2)
rz = 0, r = ra, π/2 ≤ θ ≤ 3π/2 (4.13)

In order to solve the equation and obtain the unknown coefficients in the wave field
expression, multiply e−imθ and integrate the two ends of Eqs. (4.11)-(4.13) to obtain the
following two sets of infinite algebraic equations:

∞

∑
n=0

Cnβ
(1)
mn +

∞

∑
n=0

Enλ
(1)
mn = 0

−
∞

∑
n=0

Anβ
(2)
mn +

∞

∑
n=0

Cnλ
(2)
mn +

∞

∑
n=0

Enϕ
(2)
mn =

∞

∑
n=0

ς
(2)
mn

−
∞

∑
n=0

Anβ
(3)
mn +

∞

∑
n=0

Cnλ
(3)
mn +

∞

∑
n=0

Enϕ
(3)
mn =

∞

∑
n=0

ς
(3)
mn

m = 1,2,3, ..., (4.14)
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

∞

∑
n=0

Dnβ
(4)
mn +

∞

∑
n=0

Fnλ
(4)
mn = 0

−
∞

∑
n=0

Bnβ
(5)
mn +

∞

∑
n=0

Dnλ
(5)
mn +

∞

∑
n=0

Fnϕ
(5)
mn =

∞

∑
n=0

ς
(5)
mn

−
∞

∑
n=0

Bnβ
(6)
mn +

∞

∑
n=0

Dnλ
(6)
mn +

∞

∑
n=0

Fnϕ
(6)
mn =

∞

∑
n=0

ς
(6)
mn

m = 1,2,3, ..., (4.15)

where β
(·)
mn, λ

(·)
mn, ϕ

(·)
mn, ς

(·)
mnare the corresponding expressions expanded by Fourier series.

β
(1)
mn =

∫ 3π/2

π/2
P2n/β (ζ )e−2miθ dθ

λ
(1)
mn =

∫ 3π/2

π/2
P(2n+1)/β (ζ )e−2miθ dθ



β
(2)
mn =

∫
π/2

−π/2
H(1)

2n/β
(k |ζ |)

[
(ζ/|ζ | )2n/β +(ζ/|ζ | )−2n/β

]
e−2miθ dθ

λ
(2)
mn =

∫
π/2

−π/2
J2n/β (k |ζ |)

[
(ζ/|ζ | )2n/β +(ζ/|ζ | )−2n/β

]
e−2miθ dθ

ϕ
(2)
mn =

∫
π/2

−π/2
J(2n+1)/β (k |ζ |)

[
(ζ/|ζ | )(2n+1)/β +(ζ/|ζ | )−(2n+1)/β

]
e−2miθ dθ

ζ
(2)
mn =

∫
π/2

−π/2
(−1)n

εnJ2n/β (k |ζ |)cos2nα

[
(ζ/|ζ | )2n/β +(ζ/|ζ | )−2n/β

]
e−2miθ dθ



β
(3)
mn =

∫
π/2

−π/2
U2n/β (ζ )e−2miθ dθ

λ
(3)
mn =

∫
π/2

−π/2
P2n/β (ζ )e−2miθ dθ

ϕ
(3)
mn =

∫
π/2

−π/2
P(2n+1)/β (ζ )e−2miθ dθ

ζ
(3)
mn =

∫
π/2

−π/2
(−1)n

εnP2n/β (ζ )cos2nαe−2miθ dθ


β
(4)
mn =

∫ 3π/2

π/2
Q(2n+1)/β (ζ )e−(2m+1)iθ dθ

λ
(4)
mn =

∫ 3π/2

π/2
Q2n/β (ζ )e−(2m+1)iθ dθ
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

β
(5)
mn =

∫
π/2

−π/2
H(1)
(2n+1)/β

(k |ζ |)
[
(ζ/|ζ | )(2n+1)/β − (ζ/|ζ | )−(2n+1)/β

]
e−(2m+1)iθ dθ

λ
(5)
mn =

∫
π/2

−π/2
J(2n+1)/β (k |ζ |)

[
(ζ/|ζ | )(2n+1)/β − (ζ/|ζ | )−(2n+1)/β

]
e−(2m+1)iθ dθ

ϕ
(5)
mn =

∫
π/2

−π/2
J2n/β (k |ζ |)

[
(ζ/|ζ | )2n/β − (ζ/|ζ | )−2n/β

]
e−(2m+1)iθ dθ

ζ
(5)
mn =

∫
π/2

−π/2
2(−1)nJ(2n+1)/β (k |ζ |)sin(2n+1)α

[
(ζ/|ζ | )(2n+1)/β − (ζ/|ζ | )−(2n+1)/β

]
e−(2m+1)iθ dθ



β
(6)
mn =

∫
π/2

−π/2
V(2n+1)/β (ζ )e−(2m+1)iθ dθ

λ
(6)
mn =

∫
π/2

−π/2
Q(2n+1)/β (ζ )e−(2m+1)iθ dθ

ϕ
(6)
mn =

∫
π/2

−π/2
Q2n/β (ζ )e−(2m+1)iθ dθ

ζ
(6)
mn =

∫
π/2

−π/2
2(−1)nQ(2n+1)/β (ζ )sin(2n+1)αe−(2m+1)iθ dθ

4.1.5 Convergence analysis

In order to express the relationship between the incident wave length and the model size, and
to facilitate the analysis of subsequent examples, the dimensionless frequency η in the form
of Eq. (3.23) is still used. The ra represents the convex radius. The displacement amplitude
|w| is shown in Eq. (3.24).

Based on the use of Bessel functions and Fourier series expansion in the process of
solving the equation, the equation is transformed into infinite algebraic equations. There-
fore, it is necessary to truncate the infinite series and perform convergence analysis when
finally obtaining the unknown coefficient. Four typical locations are selected to analyze the
convergence of free, scattering and standing wave field. In order to ensure the convergence
requirements of all calculation examples in this chapter, dimensionless frequency η = 1.5,
incident angle α = 90◦, inhomogeneous parameter β = 0.5 and β = 1.5 are set, and the
truncation term N = m = n is considered to establish the standard solution matrix. According
to a large number of convergence calculations as shown in Fig. 4.3. When 10 items are
taken, the results have converged. Therefore, in subsequent calculations, taking can ensure
the convergence of the results and save calculation time.
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(a) β = 1.5 (b) β = 0.5

Fig. 4.3 Convergence analyses of displacement amplitudes at four typical positions with
increasing N

4.1.6 Verification

In order to verify validation of the method in this section, two sets of numerical examples
are calculated. Fig. 4.4 shows the comparison between the present results in this section
and the existed results [162]. Taking inhomogeneous parameters β = 0.99 for ensuring
the existence of inhomogeneous parameters in the formula, and it similarly simulates the
situation of homogeneous media. Fig.4.4 (a) shows the surface displacement amplitude
under four incident angles with a dimensionless frequency η = 1.0. Fig.4.4 (b) indicates the
displacement amplitude of two observation points with dimensionless changes. From the two
figures, it can be seen that the calculated results in this section are in good agreement with
the existed results, which can verify the validation of the wave field and calculation method
constructed in this section.

Fig. 4.5 gives the displacement amplitude of horizontal and vertical incident at two
dimensionless frequencies when the values of two groups of inhomogeneous parameters
are approximate to 1.0. Fig. 4.5 (a) presents the result of approaching 1.0 when the
dimensionless frequency η = 1.25, β < 1. And the calculation result of β approaching 1.0 as
the inhomogeneous parameter β > 1 (η = 0.75) is shown in Fig. 4.5 (b). The two groups of
results indicate a continuous close to the β = 1, which verifies the continuity of calculation
results and thus reflects the validation of method.
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(a) η = 1.0 (b) Two observision point

Fig. 4.4 Results of approximately homogeneous medium for comparison with the existed
displacement results

4.1.7 Numerical results and discussion

In order to explore the influence of inhomogeneous media on the displacement amplitude in
the semi-infinite space with a surface semi-cylindrical convex under the SH wave incident,
the displacement amplitude of five groups of selected inhomogeneous parameters under
different incident angles is calculated, as shown in Fig. 4.6. Figs. 4.6 (a)-(d) display the cases
with incident angles of 0◦, 30◦, 60◦, and 90◦, which means vertical incidence, two kinds
of oblique incident, and horizontal incident. Among them, the results under homogeneous
conditions are calculated by adding the inhomogeneous parameter β = 1 for comparison.
Owing to the change of inhomogeneous parameters has a great impact on the density of
media, the selected parameters have a small change, which is available to clearly observe the
variation of displacement amplitude under a similar change of parameters. The abscissa in
the figure represents the relative coordinates of the surface position of the model. Since the
ra unit is 1, the coordinates [−1,1] are the convex part. [−3,−1) and (1,3] are the horizontal
boundaries.

From Fig. 4.6 (d), the displacement amplitude is inversely proportional of inhomogeneous
parameters, especially at the horizontal boundary. While the inhomogeneous parameter
reaches 1.4, the surface displacement at the left horizontal boundary, as the wave front, is
almost equal to the surface displacement at the right horizontal boundary, as the wave back.
However, in the case of vertical incident and oblique incident, as shown in Figs. 4.6 (a)-(c),
the displacement amplitude illustrates an increasing trend as the acsender of inhomogeneous
parameters, especially in 30◦ incident. Comparing with the homogeneous media situation,
the displacement amplitude under β > 1 has a significant increase. In vertical incident, given
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(a) η = 1.25 (b) η = 0.75

Fig. 4.5 Displacement distribution corresponding to different inhomogeneous parameters

in Fig. 4.6 (a), the displacement amplitude at the horizontal boundary with β = 0.6,1.2 has a
significantly vibration with the position various comparing with the displacement amplitude
at β = 0.8,1.4. Meanwhile, the maximum point of displacement amplitude from the convex
crest to the junction of convex and horizontal boundary with inhomogeneous parameter
growing.

Set the dimensionless frequency η = 0.75, and observe the influence of inhomogeneous
parameters on displacement amplitude under dimensionless frequency changes, as displayed
in Fig. 4.7. Compared with Fig. 4.6 and Fig. 4.7, in vertical incidence and 30◦ incident,
the surface displacement and the vibration frequency with the position are proportional
of dimensionless frequency. However, at horizontal and 60◦ incident, with dimensionless
frequency declining, the displacement amplitude increases, and the vibration frequency has no
obvious weakening trend. Meanwhile, in horizontal incident and η = 0.75, the displacement
amplitude at the horizontal boundary is weakened by inhomogeneous parameters various.
Moreover, under η = 1.25, the most obvious impact of inhomogeneous parameters on
displacement amplitude is 30◦, while η = 0.75, the most obvious impact is 0◦, which is
the same as the characteristic reflected in the surface depression in the previous chapter.
In particular, in Figs. 4.7 (c) and (d), the maximum displacement amplitude under the
homogeneous condition is significantly higher than that under the inhomogeneous condition at
the horizontal incidence and 60◦ incident. In Fig. 4.7 (a) of vertical incident, the displacement
amplitude is advanced gradually with the growth of inhomogeneous parameters. And the
position where the maximum displacement amplitude occurs is at the convex vertex at this
dimensionless frequency.
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.6 Displacement amplitude with inhomogeneous parameter at dimensionless frequency
η = 1.25

Subsequently, in order to explore the amplification effect of surface convex on displace-
ment amplitude under SH wave incident in inhomogeneous media β = 1.2 and β = 0.8, the
displacement amplitudes of six typical observation points under four incident angles are
calculated, the result are given in Fig. 4.8 and Fig. 4.9 respectively. The coordinates of
the six observation points are point 1 (2,−π/2), point 2 (1,−π/2) , point 3 (1,−5π/6) ,
point 4 (1,5π/6), point 5 (1,π/2), and point 6 (2,π/2). From Figs. 4.8 (a)-(d) that under
β = 1.2, the displacement amplitude decreases as the incident angle various from vertical to
horizontal. Especially in horizontal incident, the displacement amplitude of all observation
points reduces with the growth of dimensionless frequency. It can be considered that under
this inhomogeneous parameter, the semi-cylindrical convex has the effect of reducing the
displacement amplitude, and the displacement amplitude decreases to about 0.5 times. Point
3 amplifies the displacement amplitude reaches 2.5 times when the incident angle is 30◦, and
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.7 Displacement amplitude with inhomogeneous parameter at dimensionless frequency
η = 0.75

the vibration amplitude is obvious. The amplification effect of points 2 and 5 on displace-
ment demonstrates an vibration mode with the frequency variation, and its amplification
factor is 2 times. Points 1 and 6 amplify the displacement amplitude is not more than 1.5
times under incident vertically or obliquely. While point 1 at 60◦ incident, it tends to be
stable with dimensionless frequency increasing. While point 4 is at horizontal and oblique
incident of 60◦, the amplification effect on displacement amplitude is most obvious if η < 1.
However, with the dimensionless frequency increasing continuously, its amplification effect
on displacement amplitude decreases sharply to 0.5 times.

When the inhomogeneous parameter β = 0.8, the surface convex amplifies the displace-
ment amplitude increasing with the incident angle from vertical to horizontal, as shown in
Fig. 4.9. Compared with Fig. 4.8, the amplification effect of surface convex on displacement
amplitude tends to decrease with the inhomogeneous parameter declining, except for horizon-
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.8 Displacement amplitude of six selection observation points under inhomogeneous
parameter β = 1.2

tal incident. However, in horizontal incident, when the inhomogeneous parameter decreases,
the amplification effect increases instead. Especially at point 1, the amplification effect
reaches 1.9 times, while at other angles of incidence, the amplification effect is stable within
1.5 times. When the point 4 at 30◦ incident, the amplification effect is the most obvious
and the maximum is 2 times, and with the ascender of dimensionless frequency, it shows a
trend of increasing. As points 2 and 3 are incident at different angles, the amplification effect
reflected is basically stable at 1.5 times. Meanwhile, the inhomogeneous parameter is 0.8,
the phenomenon that the displacement amplitude of point 2 changes with the dimensionless
frequency is more obvious than β = 1.2.

Table 4.1 demonstrates the displacement amplification coefficients of six typical ob-
servation points on the surface at multiple frequencies and incident angles. It is observed
from the table that in vertical and oblique incident, the observation points of the maximum
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.9 Displacement amplitude of six selection observation points under inhomogeneous
parameter β = 0.7

displacement amplification coefficient are points 3 and 4, which are the observation points
on the convex surface, and the amplification coefficient with the ascender of inhomogeneous
parameters then increases. However, at horizontal incident, the observation point with the
maximum |w∗| appears on the horizontal boundary, and decreases with the inhomogeneous
parameters growing. As β > 1 and 60◦ incident, |w∗| is inversely proportional to the dimen-
sionless frequency, for horizontal incident, the inversely proportional phenomenon is more
obvious. With the comparing of influence of four incident angles on the displacement ampli-
fication coefficient, at β < 1 the maximum value of |w∗| appears at the 30◦ incident, while at
other inhomogeneous parameters it appears at the vertical incident. Meanwhile, from the data
in the table that under some parameter conditions, the displacement amplification coefficient
is close to 0.1, which means that it has an obvious reduction effect on the displacement, and
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the displacement amplitude is close to zero, which will also lead to the obvious vibration of
the displacement amplitude with the frequency variation.

Compared with the displacement amplification coefficient in the case of surface depres-
sion with the same parameters given in Table 3.1. In addition to the maximum displacement
amplification coefficient, the coefficient in the case of surface convex is slightly smaller than
surface depression, especially at the horizontal incident situation. And, in the case of surface
depression, |w∗| is proportional to the dimensionless frequency, while for the surface convex,
this situation is only applicable to the situation of β < 1. Compared with the minimum value
of |w∗|, the median value of apparent convex on the surface is smaller. Based on the above
results, it can be considered that the amplitude of surface displacement will be weakened to a
certain extent when the surface of this type of inhomogeneous media with convex compared
with a depression defect.

For clearly observing the displacement amplitude distribution of the convex and its
adjacent horizontal surface, the three-dimensional displacement amplitude of its surface is
given. Fig.4.10 and Fig.4.11 indicate the three-dimensional displacement amplitude of the
surface varying with the dimensionless frequency when the inhomogeneous parameters β are
set as 0.75 and 1.25 at four incident angles. Similar to the plan view, the axis y/ra represents
the relative position, [−1,1] is the corresponding position of the convex surface. [−3,−1) and
(1,3] is the corresponding position of the horizontal boundary. According to the two groups
of figures that the vibration of surface displacement amplitude is significantly intensified
when the inhomogeneous parameter increases. And, it can be clearly observed that in vertical
incident, as shown in Fig. 4.10 (a) and Fig. 4.11 (a), the maximum value of the surface
displacement amplitude of β > 1 mostly occurs at the junction of the convex and horizontal
boundary. However at β < 1, the maximum value of surface displacement amplitude appears
at the top of the depression, and its value is advanced significantly with the growth of
dimensionless frequency. But its change is not obvious when the dimensionless frequency is
greater than 1.0. Obviously, at 30◦ incident, as shown in Fig. 4.10 (b) and Fig. 4.11 (b), the
position of the maximum point is still similar to that of the vertical incidence. However, when
the incident angle varies to 60◦ , as Fig. 4.10 (c) and Fig. 4.11 (c), the maximum value of
the surface displacement amplitude appears near the convex vertex. Under the action of two
inhomogeneous parameters, the maximum displacement amplitude has the same result. In
case of horizontal incidence, from Fig. 4.10 (d) and Fig. 4.11 (d), it can be clearly observed
that at β > 1, the amplitude of surface displacement decreases significantly with the growth
of dimensionless frequency, especially at the horizontal boundary on both sides, and at the
right horizontal boundary, the amplitude of surface displacement in some areas is almost
zero. At β < 1, the amplitude of surface displacement with the dimensionless frequency’s
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ascender then increase, and the displacement on the left side of the horizontal boundary
increased more obviously. In particular, under this condition, the maximum displacement
amplitude of β = 0.75 is greater than β = 1.25. Meanwhile, from two sets of figures that
when the dimensionless frequency reaches 2.0, the amplitude of surface displacement will
suddenly increase, especially at the horizontal boundary.

(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 990◦

Fig. 4.10 3D surface displacement of inhomogeneous parameter β = 1.25

Meanwhile, the influence of internal displacement amplitude distribution of semi-cylindrical
convex in inhomogeneous media under the inhomogeneous parameters is analyzed and
discussed. The results displayed in Figs. 4.12-4.14 can be obtained by calculating the
displacement amplitude of the semi-cylindrical convex semi-infinite region of the interface
at four incident angles, with the dimensionless frequency of 2.0 and the inhomogeneous
parameters β set as 0.75, 1.0 and 1.25 respectively. Among them, when the inhomogeneous
parameter is set to 1.0, the homogeneous media can be simulated. From Fig. 4.12, with the
incident angle increasing, the maximum point of displacement amplitude is larger than the
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.11 3D surface displacement of inhomogeneous parameter β = 0.75

surface displacement amplitude from the top of convex to horizontal boundary. These areas
with large internal displacement amplitude are connected with the maximum area, and the
included angle between the line and the x-axis is close to the incident angle. With horizontal
incident, the maximum displacement amplitude appears on the horizontal boundary surface
of the wave front and the right side of the convex, and there is an obvious decrease trend
along the positive direction of the y/ra axis. Compared with the concave boundary, it can be
found that the maximum displacement amplitude of the convex boundary is located on the
side of the back wave surface, while the concave boundary is located on the side of the front
wave surface.

In the case of homogeneous media β = 1, as given in Fig. 4.13, the area with large internal
displacement amplitude increases significantly. However, from Fig. 4.13 (d), under horizontal
incident although the region with large internal displacement amplitude is almost full of the
entire semi-infinite region. But the displacement amplitude in the convex is the smallest of
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.12 Internal displacement amplitude of inhomogeneous parameter β = 0.75

the four incident angles. With the incident angle increasing, the displacement amplitude
reduces significantly. At 60◦ and horizontal incident, the maximum point of displacement
amplitude appears in the region. At 30◦ and vertical incident, the maximum displacement
amplitude appears on the convex surface. Increase the inhomogeneous parameter to 1.25 for
calculation, and the resulting internal displacement amplitude is shown in Fig.4.14. That the
position of the maximum displacement amplitude point moves from the convex surface to
the horizontal boundary and inside with the increase of the incident angle. Under horizontal
incident, it can be clearly seen that the amplitude of surface displacement at the horizontal
boundary decreases significantly, and the internal displacement presents a certain vibration.

According to these three groups of figures, the displacement amplitude distribution under
the three inhomogeneous parameters has a certain similarity. The maximum displacement
amplitude increases with the growth of inhomogeneous parameters. With the gradual increase
of the incident angle, the maximum points of displacement amplitude move from the position
of the convex surface to the junction with the horizontal boundary and the interior of region.
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.13 Internal displacement amplitude of inhomogeneous parameter β = 1.0

However, different inhomogeneous parameters still have some influence on the internal
displacement distribution. Under vertical incident, the displacement amplitude of the area
directly below the surface convex at β = 1.25 decreases significantly when compared with
the other two inhomogeneous parameters. At β = 0.75 and β = 1.0, there are areas with
large displacement amplitude directly below the surface convex. As the incident angle is
30◦, the internal displacement increases gradually along the negative direction of y/ra when
β = 1.25 and β = 1.0, but decreases first and then increases when β = 0.75. At 60◦ oblique
incident, the displacement amplitude on the horizontal interface is larger ( β ≥ 1.0 ), while
it is smaller on the horizontal interface ( β < 1 ). Finally, at horizontal incidence, with the
increase of three groups of inhomogeneous parameters, the distribution of displacement
amplitude changes significantly. It can be considered that at β < 1, the internal displacement
amplitude is reduced, and at β > 1, the displacement amplitude at the horizontal boundary is
reduced.
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(a) α = 0◦ (b) α = 30◦

(c) α = 60◦ (d) α = 90◦

Fig. 4.14 Internal displacement amplitude of inhomogeneous parameter β = 1.25

Compared with the internal displacement amplitude under the surface depression bound-
ary, as given in Fig. 3.12-3.13, the internal displacement distribution under the two surface
defects has certain similarity. However, compared with the surface depression, the maximum
displacement amplitude of the surface convex occurs at the vertical incident, while the surface
depression occurs at the horizontal incident. This can be understood as the energy absorption
of SH wave by the convex at horizontal incident, thus weakening the displacement amplitude
in the surface convex boundary. While with the vertical incident, the surface convex boundary
has a certain converging effect on the SH wave, so the displacement amplitude in this part
is larger. In addition, the surface depression boundary has an absorption effect on the SH
wave at the wave front with horizontal incident, so that the displacement amplitude of the
wave back surface is significantly reduced. However, in the convex boundary, there is no
absorption effect, so there is still a large area of the internal displacement amplitude of the
wave back surface.
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4.2 Scattering of SH waves by surface semi-cylindrical con-
vex with a cylindrical cavity in density inhomogeneous
media

The media contains cavities and inclusions, which are common media defects. Under
the action of dynamic load, the local dynamic stress concentration around the cavity or
inclusion will increase, and will have a greater impact on the distribution of the surrounding
displacement amplitude. As a relatively simple model of various defects, cylindrical cavity
can be regarded as the basis of other complex models. Meanwhile, in the dynamic analysis
of tunnels and reserved pipeline cavities in the project, they can be simplified to cylindrical
cavity for research, and the corresponding theoretical basis can be provided by analyzing the
dynamic stress concentration and displacement amplitude distribution around them.

4.2.1 Model and wave equation

The model of a surface semi-cylindrical convex with a cylindrical cavity in a density radial
inhomogeneous half space under the incidence of SH waves is shown in Fig. 4.15. The
coordinate origin o is set at the center of the semi-cylindrical convex with radius ra. The
radius of the cylindrical cavity is rb. Its center is the same as the center of the semi-cylindrical
convex. The x-axis is vertically downward and the y-axis is horizontally right. θ is the angle
of r counterclockwise rotation. In order to construct the wave field form in the infinite
space subsequently, the model is divided into two regions, and the auxiliary boundary Sa

is introduced. Then, Region I is a semi-infinite region with semi-cylindrical boundary Sa,
and Region II is a closed cylindrical region with boundary Sa, L and Sb. The function of
the media density along the radius is still selected in the same form as in Section 4.1, Eq.
(4.1). Thus, the standard Helmholtz equation can be obtained according to the transformation
process in Chapter 2, as shown in Eq. (4.2).

4.2.2 Displacement field expression in each region

In order to express the entire wave field in the construction area, the semi-cylindrical
convex semi-infinite region with a cylindrical cavity is divided into two regions, a semi-
infinite region with a surface semi-cylindrical depression and a closed cylindrical region, as
shown in Fig. 4.16. After the corresponding wave field expressions in the two regions are
constructed respectively, the final results satisfying the control equation are obtained through
the corresponding boundary conditions.
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Fig. 4.15 Model of SH wave scattering by a semi-cylindrical convex with a cylindrical cavity
in a density radial inhomogeneous media

Fig. 4.16 Schematic of semi-cylindrical convex with a cylindrical cavity model division
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Displacement field expression in Region I

The wave field w(1) in Region I can be regarded as superposition of free wave field w( f ) and
scattered wave field w(s):

w(1) = w( f )+w(s) (4.16)

where the free wave field w( f ) is composed of the incident wave and the reflecting wave
generated by the semi-infinite interface, which can be written as:

w( f ) =
∞

∑
n=0

(−1)n
εnJ2n/β (k0 |ζ |)cos2nα ·

{(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
}

+2
∞

∑
n=0

(−1)nJ(2n+1)/β (k0 |ζ |)sin(2n+1)α

·

{(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
} (4.17)

According to Chapter 3, the scattering field generated by the semi-cylindrical depression
can be expressed as:

w(s) (
ζ , ζ̄

)
= w0

∞

∑
n=0

{
AnH(1)

2n/β
(k0 |ζ |)

[(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
]

+ BnH(1)
(2n+1)/β

(k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
]} (4.18)

where An, Bn are unknown coefficients to be solved.

Displacement field expression in Region II

The construction of the annular internal wave field of the inhomogeneous medium in Region
II is one of the main works to solve this problem. The standing wave field w(2) in Region II
can be seen as a cohesive wave w(a) generated by the auxiliary boundary Sa and a divergent
wave w(b) generated when the wave reaches the free boundary Sb.

w(2) = w(a)+w(b) (4.19)

where w(2) must satisfy the condition of free circular stress at boundary L and Sb.
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With the condition that the control equation of inhomogeneous media used in this chapter
is satisfied, the constructed convergence wave w(a) can be written as:

w(a) (
ζ , ζ̄

)
= w0

{
∞

∑
n=0

CnJ2n/β (k0 |ζ |)

[(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
]

+
∞

∑
n=0

DnJ(2n+1)/β (k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
]

+
∞

∑
n=0

EnJ(2n+1)/β (k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

+

(
ζ

|ζ |

)−(2n+1)/β
]

+
∞

∑
n=1

FnJ2n/β (k0 |ζ |)

[(
ζ

|ζ |

)2n/β

−
(

ζ

|ζ |

)−2n/β
]}

(4.20)

where Cn, Dn, En, Fn are unknown coefficients to be solved.
Similarly, the divergent wave w(b) generated by the free boundary Sb can be expressed as

Hankel function of the first kind:

w(b) (
ζ , ζ̄

)
= w0

∞

∑
n=0

{
GnH(1)

2n/β
(k0 |ζ |)

[(
ζ

|ζ |

)2n/β

+

(
ζ

|ζ |

)−2n/β
]

+ InH(1)
(2n+1)/β

(k0 |ζ |)

[(
ζ

|ζ |

)(2n+1)/β

−
(

ζ

|ζ |

)−(2n+1)/β
]} (4.21)

where Gn, In are unknown coefficients to be solved.

4.2.3 Stress field expression in each region

There are many unknown coefficients to be solved when constructing the wave field, which
need to be solved by using the stress boundary condition, so the corresponding expression of
the stress field is given. By substituting the wave field expressions in the two regions into
Eqs. (2.35) and (2.36), the stress field expressions in each region can be obtained. The stress
field in Region I can be expressed as:

τ
(1)
rz =

β µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

+
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

+
∞

∑
n=0

AnU2n/β (ζ )+
∞

∑
n=0

BnV(2n+1)/β (ζ )

] (4.22)
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τ
(1)
θz =

iβ µk0w0

2

[
∞

∑
n=0

(−1)n
εnP2n/β (ζ )cos2nα

−
∞

∑
n=0

(−1)nQ(2n+1)/β (ζ )sin(2n+1)α

+
∞

∑
n=0

AnU2n/β (ζ )−
∞

∑
n=0

BnV(2n+1)/β (ζ )

] (4.23)

where

Pt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

+ Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Qt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ + Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

− Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

Ut (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ −H(1)
t+1 (k0 |s|)

[
s
|s|

]−t−1

zβ−1eiθ

+H(1)
t−1 (k0 |s|)

[
s
|s|

]1−t

z̄β−1e-iθ −H(1)
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[
s
|s|

]−t−1

z̄β−1e-iθ

Vt (s) = H(1)
t−1 (k0 |s|)

[
s
|s|

]t−1

zβ−1eiθ +H(1)
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s
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t+1 (k0 |s|)
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s
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The cohesive wave in Region II is substituted into Eqs. (2.35) and (2.36), and the
corresponding stress field is:

τ
(a)
rz =

β µk0w0

2

∞

∑
n=0

[
CnP2n/β (ζ ) +DnQ(2n+1)/β (ζ )

+EnP(2n+1)/β (ζ )+FnQ2n/β (ζ )
] (4.24)

τ
(a)
θz =

iβ µk0w0

2

∞

∑
n=0

[
CnP2n/β (ζ ) −DnQ(2n+1)/β (ζ )

+EnP(2n+1)/β (ζ )−FnQ2n/β (ζ )
] (4.25)
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Similarly, the corresponding stress field of divergent wave in Region II can be obtained
as:

τ
(b)
rz =

β µk0w0

2

∞

∑
n=0

[
GnV2n/β (ζ ) + InU(2n+1)/β (ζ )

]
(4.26)

τ
(b)
θz =

iβ µk0w0

2

∞

∑
n=0

[
GnV2n/β (ζ ) − InU(2n+1)/β (ζ )

]
(4.27)

Thus, the stress field in Region II can be obtained:

τ
(2)
rz = τ

(a)
rz + τ

(b)
rz (4.28)

τ
(2)
θz = τ

(a)
θz + τ

(b)
θz (4.29)

4.2.4 Boundary conditions and solutions

In the process of constructing the wave field, the semi-infinite region is divided into two
regions using the auxiliary boundary Sa. Therefore, the equations established for the dis-
placement and stress continuity conditions at the auxiliary boundary Sa are as follows:

w1 = w1, r = ra, −π/2 ≤ θ ≤ π/2 (4.30)

τ
(1)
rz = τ

(2)
rz , r = ra, −π/2 ≤ θ ≤ π/2 (4.31)

The stress free condition of semi-cylindrical convex:

τ
(2)
rz = 0, r = ra, π/2 ≤ θ ≤ 3π/2 (4.32)

The stress free condition should be satisfied at the boundary Sb of the cylindrical cavity,
which can be expressed as:

τ
(2)
rz = 0, r = rb, 0 ≤ θ ≤ 2π (4.33)

In order to solve the equation and obtain the unknown coefficients in the wave field
expression in each region, multiply e−imθ and integrate the two ends of Eqs. (4.30) - (4.33)
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to obtain the following two sets of infinite algebraic equations:

∞

∑
n=0

Cnβ
(1)
mn +

∞

∑
n=0

Enλ
(1)
mn +

∞

∑
n=0

Gnκ
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mn = 0

∞

∑
n=0

Cnβ
(2)
mn +
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where β

(·)
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(·)
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(·)
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(·)
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(·)
mn is the corresponding expression expanded by Fourier series.
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The model in this section contains a cylindrical cavity, thus its dynamic stress concentra-
tion under the incidence of SH wave is considered. Based on the stress field expression and
the solved coefficient, the dynamic stress concentration factor (DSCF) around the cylindrical
cavity can be expressed as:

τ
∗
θz =

∣∣∣τ(1)
θz + τ

(2)
θz /τ0

∣∣∣ (4.36)

where τ0 = µk0w0.

4.2.5 Convergence analysis

Similarly, the solution method in this section is still based on the use of special functions
and Fourier series expansion in the process of solving the equation to convert the equation
into infinite algebraic equations. Therefore, it is necessary to truncate the number of infinite
terms and conduct convergence analysis to obtain the number of finite terms for deriving the
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(a) β = 1.5 (b) β = 0.5

Fig. 4.17 Convergence analyses of displacement amplitudes at four typical positions with
increasing N

unknown coefficient. The truncation term can not only satisfy the convergence requirements,
but also save the calculation cost. According to the calculation model, six typical locations
are selected to analyze and verify the convergence of free, scattering and standing wave
field. In order to ensure the convergence requirements of all the calculation examples in
this section, the dimensionless frequency η = 2.0, incident angle α = 90◦, inhomogeneous
parameters are set to 1.5 and 0.5 respectively, and the ratio of the radius of cylindrical
cavity to the radius of the semi-cylindrical convex rb/ra = 0.6, and the truncation term
N = m = n is considered to establish the standard solution matrix. According to a large
number of convergence calculations, as shown in Fig. 4.17, as N = 10 is taken, the results
have converged. Therefore, in the subsequent calculation, the convergence of results can be
guaranteed and the calculation time can be saved in N = 15.

4.2.6 Validation

Before analyzing the influence of various parameters on displacement amplitude and dynamic
stress concentration coefficient, it is still need to verify the validation of the constructed
standing wave and scattering wave fields in this section. This section shows the comparison
of the results of two groups and two methods in homogeneous media, in Fig. 4.18. In order
to ensure the function of the inhomogeneous parameter in the formula and better simulate
the homogeneous medium, the inhomogeneous parameter β = 0.99 is taken. In these figures,
the abscissa y/ra is still used to represent the relative position of the semi-cylindrical convex
and the horizontal plane, the position of the convex surface [−1,1], and the position of
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the horizontal plane on both sides [−3,−1) and (1,3]. Fig. 4.18 (a) demonstrates the
comparison of the surface displacement amplitude under three incident angles when the
dimensionless frequency η = 1.25 and the ratio of the radius between cylindrical cavity
and semi-cylindrical convex is 0.2. Fig. 4.18 (b) is a comparison of surface displacement
amplitude with dimensionless frequency η = 1 and the ratio of radius equals to 0.1, 0.2
and 0.5 respectively under horizontal incident. From the two comparison results that the
calculation record in this section is in well agreement with the existed results, which can
verify the validation of the structural wave field and the calculation method in this section.
Fig. 4.19 gives two groups of dynamic stress concentration coefficient (DSCF) comparison.
Fig. 4.19 (a) indicates the comparison between the calculated results and the existed results
when the inhomogeneous parameter is 0.99. There is a well agreement with the known
results. Fig. 4.19 (b) shows a group of inhomogeneous parameters approaching 1.0 and
comparing with the existed results. The calculated results are close to the results when the
inhomogeneous parameters are 1.0, and have a good consistency with the existed results.
The validation of the method is verified by two sets of examples.

(a) η = 1.25 (b) η = 1.0

Fig. 4.18 Results of approximately homogeneous medium for comparison with the existed
results

4.2.7 Numerical results and discussion

The model in this section has a cylindrical cavity, so the influence of the ratio of the
radius between cavity and convex on the surface displacement amplitude under different
inhomogeneous parameters is considered primary. Three kinds of incidence cases (horizontal
incidence, oblique incidence and vertical incidence) are calculated under the dimensionless
frequency is 1.0. The results are displayed in Figs. 4.20-4.22.
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(a) η = 0.625 (b) η = 1.25

Fig. 4.19 Comparison of DSCF with existed results

According to the results of Fig. 4.20, under the same radius ratio, the surface displacement
amplitude is decreased with the growth of the inhomogeneous parameter as a whole. With
rb/ra ≤ 0.6 and β = 0.6, the surface displacement amplitude at the junction of the convex and
the plane (y/ra =±1) has a significant increase effect compared with other inhomogeneous
parameters. Meanwhile, with the inhomogeneous parameters increasing, the vibration
frequency of surface displacement amplitude rises and the amplitude descends. From the
comparison of the radius ratio variation, it indicated that at the radius ratio is rb/ra ≤ 0.6,
the value of surface displacement amplitude varies slightly with the increase of radius ratio,
while its vibration amplitude grows with the change of position, and the displacement
amplitude raises with the increase of radius ratio at y/ra = 1. At the radius ratio is 0.8, the
maximum value of surface displacement amplitude advanced obviously at y/ra = 1, and the
effect of increasing the displacement amplitude is most obvious at the situation of β = 0.8.
At this dimensionless frequency and horizontal incident, the maximum value of apparent
displacement amplitude moves from the left junction point of the convex and horizontal
junction to the right junction point with the ascender of radius ratio .

Under SH wave oblique incident, the influence of inhomogeneous parameters on surface
displacement amplitude demonstrates different effects at the convex surface and horizontal
boundary, as shown in Fig. 4.21. Still, if the radius ratio rb/ra ≤ 0.6, the distribution charac-
teristics of surface displacement amplitude is almost the same. At the semi-cylindrical convex,
the surface displacement amplitude of β ̸= 1 is larger than β = 1, and the displacement
amplitude decreases at inhomogeneous parameter approaches to 1. However, the surface
displacement on the horizontal plane on both sides is also increasing with β , while the
vibration amplitude is inversely proportional to inhomogeneous parameters. When the radius
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(a) rb/ra = 0.2 (b) rb/ra = 0.4

(c) rb/ra = 0.6 (d) rb/ra = 0.8

Fig. 4.20 Displacement amplitude distribution with inhomogeneous parameters under four
groups of rb/ra at horizontal incident and dimensionless frequency is 1.0

ratio reaches to 0.8, the inhomogeneous parameter that has the greatest influence on the
surface displacement amplitude of the convex boundary is 0.8. And at the same situation, the
surface displacement amplitude on the horizontal plane is proportional to inhomogeneous
parameter. At oblique incident, as β < 1, the surface displacement amplitude of the convex
boundary is slightly greater than the displacement amplitude of the two sides plane. While
β > 1, the displacement amplitude of the two sides of the plane is greater than the convex
part with the increase of the radius ratio. In particular, from Fig. 4.21 (d), the displacement
amplitude of the convex part and the horizontal plane on both sides almost keeps continuous
variation under the inhomogeneous parameter is 1.4.

In vertical incident, the surface displacement amplitude with the ascender of inhomoge-
neous parameters then increases, especially on the two sides of the plane. While, the vibration
frequency of displacement amplitude aggravates gradually with inhomogeneous parameters
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(a) rb/ra = 0.2 (b) rb/ra = 0.4

(c) rb/ra = 0.6 (d) rb/ra = 0.8

Fig. 4.21 Displacement amplitude distribution with inhomogeneous parameters under four
groups of rb/ra at oblique incident and dimensionless frequency is 1.0

increasing. Especially at β ̸= 1 , the surface displacement amplitude distribution is almost
the same on both sides of the plane. It can be observed that the distribution characteristic
of surface displacement amplitude under various inhomogeneous parameters is basically
the same when the radius ratio is 0.4 and 0.6. The displacement amplitude increases on
both sides of the plane is advanced with the growth of inhomogeneous parameter. And the
inhomogeneous parameter has a relatively obvious effect on the reduction of the displacement
amplitude of the convex vertex to the surface when the inhomogeneous parameter is less
than 1. When rb/ra is 0.2 and 0.8, the inhomogeneous parameter has a great influence on
the surface displacement amplitude of the convex part, while the displacement amplitude of
the convex vertex and the junction point on both sides have a great vibration. Based on the
above three sets of incident examples, the amplitude of surface displacement is proportional
to inhomogeneous parameters.
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(a) rb/ra = 0.2 (b) rb/ra = 0.4

(c) rb/ra = 0.6 (d) rb/ra = 0.8

Fig. 4.22 Displacement amplitude distribution with inhomogeneous parameters under four
groups of rb/ra at vertical incident and dimensionless frequency is 1.0

Then, the 3D surface displacement amplitude distribution with the dimensionless fre-
quency various under the two groups of radius ratios is given as β = 1.2,0.8. Figs. 4.23 (a)
and (b) illustrate that under SH wave horizontal incident, the surface displacement amplitude
under the two radius ratios declines gradually with the dimensionless frequency grows on the
whole, and the displacement amplitude under the two radius ratios reaches the maximum
value and appears at the convex position at η = 1. Under oblique incident, as shown in Figs.
4.23 (c) and (d), the radius ratio reaches to 0.4, the position of the maximum displacement
amplitude gradually moves from the convex vertex to the junction with the dimensionless
frequency rises, and the maximum displacement amplitude has a trend of increasing gradually.
While the radius ratio is 0.8, the maximum displacement amplitude appears near η = 0.5
and declines with the dimensionless frequency increasing. As β = 1.2, and the radius ratio is
0.4, the smaller dimensionless frequency has a greater impact on the displacement amplitude
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under the incident is horizontal, and the larger dimensionless frequency has a greater impact
under the incident is vertical. It should be noted that at the radius ratio reaches to 0.4, the
amplitude of surface displacement will suddenly expands when the dimensionless frequency
is around 1.6. At the radius ratio reaches to 0.8, both horizontal and vertical incident should
pay attention to the smaller dimensionless frequency. Moreover, the increase of radius ratio
has a greater amplification effect on the amplitude of surface displacement.

(a) rb/ra = 0.4 α = 90◦ (b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 0◦ (d) rb/ra = 0.8 α = 0◦

Fig. 4.23 3D displacement of inhomogeneous parameter β = 1.2

Similar, the 3D displacement distribution under the inhomogeneous parameter set as 0.8
is shown in Fig. 4.24. Figs. 4.24 (a) and (b) demonstrates SH wave horizontal incident the
surface displacement under the two groups of radius ratios is proportional to dimensionless
frequency, and the effect on left plane displacement increasing is obvious. The surface
displacement still has a sudden altering underv this radius ratio when the dimensionless
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frequency is near 2. Consider vertical incidence, as shown in Figs. 4.24 (c) and (d), the
surface displacement is similar to that of β = 1.2. The maximum displacement is also
proportional to dimensionless frequency, when the radius is relatively small. While, the
maximum displacement amplitude appears at the lower frequency, at radius is relatively
large. Moreover, the amplification effect of the radius ratio increasing on the displacement
amplitude at β = 0.8 is weaker than β = 1.2.

(a) rb/ra = 0.4 α = 90◦ (b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 0◦ (d) rb/ra = 0.8 α = 0◦

Fig. 4.24 3D displacement of inhomogeneous parameter β = 0.8

In order to explore the influence of semi-cylindrical convex with a cylindrical cavity on
the surface displacement amplitude in inhomogeneous media, six typical observation points 1
(2,−π/2), 2 (1,−π/2), 3 (1,−5π/6), 4 (1, 5π/6), 5 (1, π/2), 6 (2, π/2) and two radius
ratios rb/ra = 0.4,0.8 were selected for calculation under the horizontal incidence conditions
with inhomogeneous parameters of 1.2, 1.0 and 0.8 respectively. Figs. 4.25 (a), (c) and (e)
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show the radius ratio is 0.4, it can be observed that under three inhomogeneous parameters, six
observation points have a sudden growth in the amplification effect of surface displacement
within the range of 1.5-2, especially point 3. As β = 0.8,1.2, the amplification effect of point
3 and point 4 at the abrupt change of displacement amplitude declines compared with 1.0.
The displacement amplitude of each point is inversly proportional to dimensionless frequency
on the whole under β > 1. The displacement amplitude is proportional to dimensionless
frequency, while β < 1. In Figs. 4.25 (b), (d) and (f), the amplification effect of points 3 and
4 under three inhomogeneous parameters on the displacement amplitude grows suddenly
in the range where the dimensionless frequency is 0.5. With the inhomogeneous parameter
decreasing and the dimensionless frequency increasing, the amplification effect of each point
on the displacement amplitude rises, especially at the observation point 1. At β ≥ 1 the
displacement of point 1 has been vibrating around 2, the maximum amplification effect
reaches 1.25 times. At β < 1 the displacement of point 1 is gradually increasing and reaches
1.75 times at most. Moreover, the displacement amplification at the four observation points
dropped rapidly to 0.5 times after reaching the maximum of 2 times at β = 1.2, reached 1.75
times at β = 1, and then still showed a rapid decline to about 0.3 times, while at β = 0.8,
the amplification gradually increased to 1.5 times and then tended to stabilize at around 1.5
times.

Further explore the amplification effect of each point on the surface displacement under
different incidence angles, setting the vertical incident for calculation. The numerical results
are shown in Fig. 4.26. Figs. 4.26 (a), (c) and (e) indicate the ratio of radius is 0.4, the
amplification effect of each observation point on the surface displacement gradually decreases
with the reduction of the inhomogeneous parameters. Moreover, the abrupt change of surface
displacement amplitude can still be observed in the range of 1.5-2 in the dimensionless
frequency. This phenomenon is mainly manifested in points 3 and 4, as the observation
points of the convex surface. Meanwhile, this phenomenon is reduced with the ascender
of inhomogeneous parameters. Under the action of three inhomogeneous parameters, the
displacement amplitude distribution of points 1, 2, 5 and 6 is similar. The amplification
effect of the four points on the displacement amplitude decreases slightly with the decrease
of the inhomogeneous parameter. When the β = 1.2, the amplification effect of the four
observation points on the displacement amplitude reaches 2 times and decreases gradually
with the dimensionless frequency growing. However, when the inhomogeneous parameters
set as 1.0 and 0.8, the amplification effect of the four observation points is 1.5 times the
maximum, and the vibration mode is displayed at 1.5 times. At the radius ratio is 0.8, in the
case of vertical incident, the displacement amplitude still rises sharply at points 3 and 4 under
dimensionless frequency is 0.5, and this sudden advanced with the growth of inhomogeneous
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(a) rb/ra = 0.4 β = 1.2 (b) rb/ra = 0.8 β = 1.2

(c) rb/ra = 0.4 β = 1.0 (d) rb/ra = 0.8 β = 1.2

(e) rb/ra = 0.4 β = 0.8 (f) rb/ra = 0.8 β = 0.8

Fig. 4.25 Six selection observation points displacement amplitude with dimensionless fre-
quency varies under the radius ratio rb/ra=0.4, 0.8 and horizontal incident
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parameters. The amplification effect of the other four points on the displacement amplitude
still shows an proportional trend to inhomogeneous parameters, and the vibration frequency
has a slight proportional trend. Moreover, it can be seen that when the radius ratio is 0.8, the
displacement amplitude amplification effect at the abrupt change is significantly greater than
when the radius ratio is 0.4.

Continue to explore the influence of semi-cylindrical convex with cylindrical cavity on
the internal displacement amplitude distribution in inhomogeneous media. Two typical radius
ratios and incident angles are calculated under the action of three inhomogeneous parameters.
The results of internal displacement amplitude are shown in Figs. 4.27-4.29. Fig. 4.27
illustrates the distribution of internal displacement under horizontal and vertical incident
when the inhomogeneous parameter is 1.2 and the radius ratio is 0.4 and 0.8, respectively,
under dimensionless frequency is 2.0. Under horizontal incident , the displacement below the
cylindrical cavity is larger at situation of the radius ratio is 0.8 than 0.4, and the distribution
area of the larger displacement is also significantly increased. However, the displacement
amplitude at the right side of the cylindrical cavity and near the right plane has significantly
decreased. In the case of vertical incident, as shown in Figs. 4.27 (c) and (d), the displacement
amplitude under the cylindrical cavity with a large radius is significantly larger than that with
a small radius, and a strip-shaped area with an increased displacement amplitude appears
directly below the cylindrical cavity with a large radius. The vibration of displacement
amplitude around the cylindrical cavity and the convex is intensified. In the case of vertical
incident, the maximum displacement amplitude at the radius ratio of 0.4 is greater than that
at the radius ratio of 0.8, while in the case of horizontal incident, it is greater at the radius
ratio of 0.8.

The internal displacement amplitude distribution under the condition of β = 1.0 is
calculated, as shown in Fig. 4.28. From the figure under horizontal incident, there is still a
larger area of displacement amplitude at the lower part of the radius ratio of 0.8 compared
with that at the radius ratio of 0.4, and the displacement amplitude is significantly reduced
at the right plane and its lower part. Meanwhile, there is a certain weakening effect on the
displacement amplitude at the lower left part of the cylindrical cavity. Compared with the
calculation results that only have semi-cylindrical convex on the surface, given in Fig. 4.13,
the existence of a cylindrical cavity makes the internal displacement amplitude distribution
offset to a certain extent, and the area of offset with ascender of the radius ratio then increase.
At this time, the maximum displacement amplitude occurs when the radius ratio is 0.8. The
maximum displacement amplitude occurs at the radius ratio of 0.4 at vertical incident. As the
radius ratio is 0.8, the internal displacement amplitude is smaller than that when the radius
ratio is 0.4. However, directly below the cylindrical cavity, the displacement amplitude is
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(a) rb/ra = 0.4 β = 1.2 (b) rb/ra = 0.8 β = 1.2

(c) rb/ra = 0.4 β = 1.0 (d) rb/ra = 0.8 β = 1.0

(e) rb/ra = 0.4 β = 0.8 (f) rb/ra = 0.8 β = 0.8

Fig. 4.26 Six selection observation points displacement amplitude with dimensionless fre-
quency varies under the radius ratio rb/ra=0.4, 0.8 and vertical incident
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(a) rb/ra = 0.4 α = 90◦ (b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 0◦ (d) rb/ra = 0.8 α = 0◦

Fig. 4.27 Internal displacement amplitude of inhomogeneous parameter β = 1.2

still a larger area with a radius ratio of 0.4 when the radius ratio is 0.8. It can be seen that the
displacement amplitude of vertical incidence is significantly higher than that of horizontal
incident.

Consequently, the inhomogeneous parameter is less than 1 is considered, as shown in
Fig. 4.29. Similar to the above two sets of numerical examples, in the case of horizontal
incident, the displacement amplitude distribution of the two sets of radius ratio is compared.
The lower part of the cylindrical cavity shows a larger value area, and the right horizontal
surface and its lower part show a distribution trend of decreasing displacement amplitude, as
the radius ratio becomes to 0.8. Comparing with the radius ratio is 0.4, as the value reaches
to 0.8, the displacement amplitude under the cylindrical cavity increases obviously, and the
maximum displacement amplitude still occurs.

Through the comparison of three calculation groups results, the distribution frequency of
internal displacement amplitude is advanced with the growth of inhomogeneous parameter.
The maximum displacement amplitude region appears when the radius ratio is 0.8, and the
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larger radius ratio has a significant weakening effect on the displacement amplitude near the
right plane under horizontal incident. However, in the case of vertical incident, it occurs when
the radius ratio is 0.4, and there is a large displacement amplitude distribution zone directly
below the cylindrical cavity with a large radius ratio, and the value of this displacement
amplitude zone will be inversly proportional to inhomogeneous parameter.

Based on the cylindrical cavity in the model, the dynamic stress concentration factor
(DSCF) around the cylindrical cavity under different inhomogeneous parameters is calculated
in this part. Figs. 4.30 and 4.31 present the distribution of DSCF around the cylindrical
cavity when the dimensionless frequency is 1.0 and 2.0 respectively. The parameters are
set to be inhomogeneous, β taking 0.6, 0.8, 1.0, 1.2 and 1.4. The incidence angle α is
horizontal incident, 45◦ oblique incident and vertical incident, and the radius ratio ra/rb is
0.4 and 0.8 respectively. As can be observed from Fig. 4.30, the DSCF is proportional to
inhomogeneous parameters, especially in large radius. Under horizontal incident, the larger
values of the two groups of radius ratio DSCF appear near 0◦ (the bottom position of the
cylindrical cavity) and 145◦ (the upper right position of the cylindrical cavity). Compared
with the calculated results of the radius ratio is 0.4, the DSCF at the radius ratio of 0.8 is
significantly increased. In oblique incident, the displacement of the larger value changes to
120◦ and 240◦ at ra/rb = 0.4, while the larger value gradually moves from 270◦ to 60◦ at
ra/rb = 0.8 with inhomogeneous parameter increasing. Compared with horizontal incident,
inhomogeneous parameters variation under oblique incident has greater impact on DSCF. In
contrast, in vertical incident, the result are presented in Figs. 4.30 (e) and (f), the maximum
DSCF value appears at β = 1.0 when the radius is relatively small. The DSCF distribution
presents a horizontal and vertical symmetrical distribution. The maximum DSCF value
gradually moves from the upper half to the lower half of the cylindrical cavity, with the
inhomogeneous parameter increasing. As the radius is relatively large, the maximum value
of DSCF appears at 150◦ and 210◦. DSCF is symmetrical in the vertical direction, and the
maximum value of DSCF moves from the lower half of the cylindrical cavity to the upper
part of the cylindrical cavity with inhomogeneous parameter growing.

The DSCF distribution around the cylindrical cavity becomes more complex at η = 2.0,
especially when the radius is relatively large, as displayed in Fig. 4.31. The maximum
value of DSCF appears at 0◦ under horizontal incident and radius ratio is 0.4, and if the
β = 1.0 DSCF is almost symmetrically distributed along the horizontal. While the radius
ratio is 0.8, the maximum appears at 120◦ if β < 1, otherwise appears at 0◦. In the case of
oblique incident, when the radius ratio is 0.4 and β ≤ 1.0, the maximum value of DSCF
appears in the range of 30◦ to 60◦, while if β > 1 , it occurs in the range of 240◦. And this
phenomenon is the opposite when the radius ratio is 0.8. At the situation of radius ratio is 0.8
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and β ≤ 1.0, the maximum value of DSCF appears between 210◦ and 240◦, while at β > 1
it appears between 30◦ and 60◦. Under vertical incident and two radius ratios, the maximum
value of DSCF is concentrated in the upper half of the cylindrical cavity, and the maximum
value of DSCF tends to growth with inhomogeneous parameter. Compared with that if the
dimensionless frequency is 1.0, the increase of dimensionless frequency has little effect on
the distribution of DSCF when the radius is smaller. When the radius is large, the change
of dimensionless frequency has a great impact on the DSCF distribution. With the incident
angle from horizontal to vertical, the DSCF extreme points gradually rises.

4.3 Summary

Based on the complex function and auxiliary function method, this chapter investigated
the dynamic response of surface semi-cylindrical convex and semi-cylindrical convex with
cylindrical cavity in density radial inhomogeneous media under SH wave incident. The
model is divided into regions by region matching technique (RMT). With the help of the
solution of the control equation in the density inhomogeneous media in Chapter 2, the
wave field expressions in the sub-regions are constructed, and the analytical solutions of the
displacement and stress fields are given by using the boundary conditions at the auxiliary
boundary and the free boundary. By comparing with the existed results and analyzing the
convergence, the validity of the wave field expression in this chapter is verified. Furthermore,
the effects of different parameters on the displacement field on the surface of the media, the
displacement field inside the media and the dynamic stress concentration distribution around
the cylindrical cavity are discussed. Meanwhile, compare the calculated results of the surface
depression boundary with the results of surface concave boundary, and analyze the influence
of different surface boundary on the dynamic response under SH wave incident.
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(a) rb/ra = 0.4 α = 90◦

(b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 0◦ (d) rb/ra = 0.8 α = 0◦

Fig. 4.28 Internal displacement amplitude of inhomogeneous parameter β = 1.0
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(a) rb/ra = 0.4 α = 90◦

(b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 0◦ (d) rb/ra = 0.8 α = 0◦

Fig. 4.29 Internal displacement amplitude of inhomogeneous parameter β = 0.8
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(a) rb/ra = 0.4 α = 90◦ (b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 45◦ (d) rb/ra = 0.8 α = 45◦

(e) rb/ra = 0.4 α = 0◦ (f) rb/ra = 0.8 α = 0◦

Fig. 4.30 Distribution of DSCF around the circular cavity with different inhomogeneous
parameter under ra/rb = 0.4,0.8 respectively η = 1
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(a) rb/ra = 0.4 α = 90◦ (b) rb/ra = 0.8 α = 90◦

(c) rb/ra = 0.4 α = 45◦ (d) rb/ra = 0.8 α = 45◦

(e) rb/ra = 0.4 α = 0◦ (f) rb/ra = 0.8 α = 0◦

Fig. 4.31 Distribution of DSCF around the circular cavity with different inhomogeneous
parameter under ra/rb = 0.4,0.8 respectively η = 2





Chapter 5

Dynamic response of inhomogeneous
wedge space under SH wave incident

The propagation characteristics of elastic waves in inhomogeneous media can be applied
to nondestructive testing, wave control and composite material performance research, et al.
Meanwhile, the progress of composite production technology makes it possible to design and
produce composite materials specific elastic wave propagation characteristics . Therefore,
the propagation characteristics of elastic waves in complex media is still a hot topic. At
present, the researches on the analytical solutions of the wave problem in inhomogeneous
media have explored the infinite space, semi-infinite space and right-angle space, but the
researches on the wave problem in the wedge space are less. The change of wedge vertex
angle can flexibly simulate various regional shapes. Moreover, according to the research, the
boundary has a significant impact on the propagation of elastic waves, so it is necessary to
discuss the characteristics of elastic wave propagation in the inhomogeneous wedge space
under arbitrary vertex angle. Therefore, this chapter demonstrates the dynamic response of
SH waves in inhomogeneous wedge space.

5.1 SH wave propagation in wedge space inhomogeneous
media

This section mainly gives the research process of the propagation characteristics of SH wave
in wedge space inhomogeneous media. This model is relatively simple because it only
contains inhomogeneous wedge space. As the basis for other problems in the wedge space, it
can provide a basis for the subsequent more complex models.
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Fig. 5.1 Model of inhomogeneous wedge space under SH wave incident

5.1.1 Model and wave equation

Model of inhomogeneous wedge space with radial density variation under SH wave incidence
is shown in Fig. 5.1. The coordinate origin o is set at the wedge vertex. Setting the coordinate
origin at the wedge vertex can reduce the stress singularity when the top angle is too large.
The x-axis is horizontally to the left, the y-axis is vertically downward, and the wedge vertex
angle is φ = γπ (0 < γ ≤ 2). Sa and Sb are the two boundaries of the wedge space. The
wedge vertex angle varying can simulate the sharp angle wedge to the infinite space. SH
wave is incident at an angle of α from the horizontal direction. In order to show the contrast
relationship between the incident wave length and the model size, and to dimensionless the
parameters in the subsequent calculation example, select the reference point A (a,0) in the
positive direction of the x-axis and its distance from the origin is a. This chapter still mainly
considers the influence of variable wave velocity on the propagation characteristics of SH
wave in inhomogeneous wedge space. Therefore, in the medium parameter setting, only the
media density is set as a function to ensure the condition of variable wave velocity, and its
form is still the form used in the previous chapter

ρ (r,θ) = ρ0β
2r2(β−1),β > 0 (5.1)

where, ρ0 is the reference density, β is the inhomogeneous parameter, and when β is
1, it is the case of homogeneous media. The corresponding wave number expression can
be obtained by substituting the medium density equation into Eq. (2.34). According to the
solution process in Section 3.1.2, the wave equation that can be directly used for solution can
be obtained

∂ 2w
∂ζ ∂ ζ̄

+
1
4

k2
0w = 0 (5.2)
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5.1.2 Boundary condition and wave field expressions

In this model, after SH wave incident, it will cause reflected waves at the boundary Sa and
Sb, that is, there is only free wave field w( f ) in the wedge space. The free wave field should
satisfy the boundary condition of free circumferential stress at the two boundaries, which can
be expressed as

τθz = iβ µ

(
∂w
∂ζ

zβ−1eiθ − ∂w
∂ ζ̄

z̄β−1e−iθ
)
= 0, θ = 0,θ = γπ (5.3)

Based on the above boundary conditions, we assume that the form of free wave field is

w( f ) =
∞

∑
n=0

Fn (α)Rn (|ζ |)

[(
ζ

|ζ |

)nγ/β

+

(
ζ

|ζ |

)−nγ/β
]

(5.4)

where, Fn (α) can be written as

Fn (α) =
εn

γβπ
cos(nγβα) (5.5)

Substitute Eqs. (5.4) and (5.5) into the control Eq. (5.2)

∞

∑
n=0

εn
γβπ

cos(nγβα)
{

∂ 2Rn (|ζ |)
[
(ζ/|ζ | )nγ/β +(ζ/|ζ | )−nγ/β

]
/∂ζ ∂ ζ̄

+1
4k2

0Rn (|ζ |)
[
(ζ/|ζ | )nγ/β +(ζ/|ζ | )−nγ/β

]}
= 0

(5.6)

It can be obtained by rewriting the equation into cylindrical coordinates and simplifying
it (

∂

∂ r2 +
1
r

∂

∂ r
− (n/γβ )2

r2 + k2
0

)
Rn = 0 (5.7)

According to Eq. (5.7), the corresponding solution of Rn is

Rn =
iπ
2

Jn/γβ (kr<)H(1)
n/γβ

(kr>) (5.8)

where, r< is the minimum distance between r and the initial position of incident wave r0 , and
r> is the maximum distance between r and the incident wave initial position r0. Substitute
Eqs. (5.5) and (5.8) into Eq. (5.5), and the expression under the series expression can be
obtained

w( f ) =
i

2γ

∞

∑
n=0

εn cos
(

nθ

γβ
+

nπ

2

)
cos(nγα)Sn/γβ (5.9)
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where Sn/γβ = Jn/γβ (kr<)H(1)
n/γβ

(kr>).
In ζ coordinates, Eq. (5.9) can be written as

w( f ) =
i

2γ

∞

∑
n=0

εn

[(
ζ

|ζ |

)nν

+

(
ζ

|ζ |

)−nν
]

cos(nγα)Sn/γβ (5.10)

This chapter considers the incident condition of incident wave as two-dimensional plane
SH wave. According to Sommerfeld radiation condition, the displacement field is

w(i) =
i

4µ
H(1)

0 (k0 |ζ |) (5.11)

Normalize Eq. (5.12) to make w0 = w(i) have

w( f )

w0
=

2
γ

∞

∑
n=0

εn

[(
ζ

|ζ |

)nν

+

(
ζ

|ζ |

)−nν
]

cos(nγα)Sn/γ (5.12)

Based on the plane SH wave incident considered in this chapter, there is r0 → ∞. Accord-
ing to the progressive expression of Hankel function, Sn/γβ can be simplified as

Sn/γβ = e−
inπ

2γβ Jn/γβ (kr) (5.13)

According to the above equation, the free wave field w( f ) in the inhomogeneous wedge
space can be constructed as follows

w( f ) = 2pw0

∞

∑
n=0

εne−
inνπ

2 Jnν (k0 |ζ |)

[(
ζ

|ζ |

)nν

+

(
ζ

|ζ |

)−nν
]

cos(npα) (5.14)

where ν = p/β , p = 1/γ , Jnν (·) is a fractional Bessel function. The constructed free wave
field w( f ) does not contain unknown coefficients and can be directly analyzed and calculated.
It can also be obtained from the equation that the displacement amplitude of the wedge tip is
only related to the wedge tip angle, and its value is 2/γ .

In order to facilitate the subsequent parameter representation to dimensionless parameters,
in this section, the dimensionless frequency η(1) can be expressed as

η
(1) = k0a/π = 2a/λ (5.15)



5.1 SH wave propagation in wedge space inhomogeneous media 109

where, a is the distance from the reference point to the origin, and η(1) used to represent the
ratio of the reference distance to the half wavelength, and also represent the amplitude of the
reference wave number.

5.1.3 Convergence analysis

The special function is used for the displacement amplitude in the region constructed in this
section. It is necessary to carry out the convergence analysis to obtain the number of infinite
terms. According to the model, this section selects two typical points, point 1 (1.5,0) and
point 2 (1.5,γπ), to analyze the convergence of the free wave field under four top angles.
In order to ensure the convergence requirements of all the examples in this section, the
dimensionless frequency η(1) = 1.2, the incident angle α = 0◦, and the inhomogeneous
parameter β = 1.5 are set, and the truncation term N = m = n is considered to establish the
standard solution matrix. According to a large number of convergence calculations, as shown
in Fig. 5.2, when 20 items are taken, the results have converged. Therefore, in subsequent
calculations, taking N = 25 ensure the convergence of the results and save calculation time.

(a) β = 1.5 (b) β = 0.5

Fig. 5.2 Convergence analyses of displacement amplitudes at four typical positions with
increasing N

5.1.4 Validation

Before discussing the inhomogeneous parameter influence on SH wave propagation in
wedge space, the constructed free wave field in the space is verified. In order to make the
calculation results dimensionless, the horizontal coordinates are normalized here, and the
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surface displacement amplitude is given in the form of x/a relative to the displacement
amplitude of the free zone. Fig.5.3 indicates the comparison between the present results in
this section and the existed result in homogeneous media. Taking inhomogeneous parameters
not only ensures the existence of inhomogeneous parameters in the formula, but also can
better simulate the situation of homogeneous media. The displacement amplitude under
three angles of incidence at the top angle φ=2π/3 in Fig. 5.3 (a) and under four angles of
incidence at the top angle φ=3π/2 in Fig. 5.3 (b). From the two figures, present results
in this section are in well agreement with the existed results, which can verify validation
of the wave field and calculation method constructed in this section. Fig. 5.4 displays the
displacement of symmetrical and horizontal incident under two wedge vertex angles when the
values of two groups of inhomogeneous parameters are approximate to and the dimensionless
frequency is 1.0. Fig. 5.4 (a), wedge vertex angle φ = 2π/3, the result of reaching 1.0 when
the inhomogeneous parameter is less than 1 under symmetrical incident, and Fig. 5.4 (b)
is the calculation result of wedge vertex angle φ = 4π/3, reaching 1.0 when the horizontal
incident is greater than 1. The two groups of results show a continuous close to the value of
1, which verifies the continuity of the calculation results and thus reflects the validation of
the results.

(a) φ = 2π/3 (b) φ = 3π/2

Fig. 5.3 Results of approximately homogeneous medium for comparison with the existed
displacement results

5.1.5 Numerical results and discussion

In this section, the influence of inhomogeneous parameters on SH wave in the wedge region
with different apex angles is first discussed. Figs. 5.5-5.7 shows the surface displacement
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(a) φ = 2π/3 (b) φ = 4π/3

Fig. 5.4 Displacement distribution corresponding to different inhomogeneous parameters

amplitude when the inhomogeneous parameters β = 0.5,0.75,1.0,1.25,1.5, the wedge
vertex angle φ = π/3,2π/3,4π/3,5π/3, respectively, and the incident angle is horizontal,
symmetric and oblique.

The displacement amplitude of wedge surface under horizontal incident is given in Fig.
5.5. From the figure that under different inhomogeneous parameters, the wedge vertex
displacement is the same value and the value is 2/γ , which is consistent with the results
obtained by the equation. The surface displacement amplitude at φ = π/3, is symmetrically
distributed under horizontal incident, in Fig. 5.5 (a). The displacement with the ascender
of inhomogeneous parameters then increases. With wedge vertex angle increasing, the
displacement amplitude decreases as a whole. Moreover, the displacement amplitude near
the vertex has an obvious trend of declining first and then growing, and the minimum value
of displacement amplitude appears at the horizontal axis of 0.5. As the vertex angle reaches
to 2π/3, the wedge left plane displacement is inversely proportional to the inhomogeneous
parameter in the horizontal incident. While on the right plane, the displacement amplitude
is also proportional to inhomogeneous parameter. And, it can be clearly seen that the
displacement amplitude of the right plane of the wedge is larger than that of the left plane
as a whole at horizontal incidence, and this phenomenon is more obvious with the increase
of inhomogeneous parameters, and the amplification factor of the right plane is about 2
β . Considered the situation of φ > π , as 4π/3 and 5π/3, under horizontal incident, the
displacement amplitude of the right plane is significantly reduced compared with that of the
left plane, and the wave absorption is proportional to the wedge space. However, compared
with Figs. 5.5 (a) and (b), as φ > π the displacement amplitude of the two planes is almost
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constant under horizontal incident, and only slightly declines in the right plane, especially
when the inhomogeneous parameter is less than 1.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.5 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave horizontal incident

Change the incident angle to symmetrical incident, α = 2/φ . At this time, the plane
displacement on both sides of the wedge under different inhomogeneous parameters is
shown in Fig. 5.6.The displacement amplitude at the wedge vertex angle is still 2/γ in
various inhomogeneous parameters and top angles. The minimum displacement position at
each wedge vertex angle almost occurs at the abscissa of 0.5. The wedge space both side
displacement at φ = π/3 under symmetrical incident of β ≥ 1 is significantly greater than the
value of β < 1. At β ≥ 1, the impact on the plane displacement on both sides is small, and
the impact on the distribution of the surface displacement is large. With the inhomogeneous
parameter increasing continuously, the displacement is more obvious with the vibration of
the surface position, as shown in Fig. 5.6 (a). The plane displacement presents symmetrical
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distribution, and vibration around 2 on the whole, at φ = 2π/3. While β ≥ 1, the plane
displacement will be slightly greater than the displacement at the vertex position, as shown
in Fig. 5.6 (b). The surface displacement under the symmetrical incident of 4π/3 wedge
vertex angle is shown in Fig. 5.6 (c). The plane displacement is significantly greater than the
vertex displacement amplitude under β ≥ 1. Considering φ = 5π/3, the plane displacement
is smaller than that of the homogeneous media.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.6 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave symmetrical incident

For discussing the distribution of plane displacement amplitude on both sides when
the incident angle is approximately vertical, Fig. 5.7 illustrates the approximate simulated
vertical incident with α = 85◦ . The characteristic of vertex displacement amplitude 2/γ still
exists. Under this incident angle, with wedge vertex angle is π/3, the plane displacement
amplitude on both sides is still symmetrically distributed. Meanwhile, at the situation of
β ≥ 1, the influence of the inhomogeneous parameter on the displacement amplitude is
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reflected in the vibration distribution that changes with the horizontal ordinate, while at the
situation β < 1 changes to β ≥ 1, the displacement amplitude is significantly increased. The
left plane displacement is greater than that of the right plane when the wedge space of other
vertex angles is inclined at 85◦, and with the wedge vertex angle increasing, the displacement
amplitude declines significantly and the vibration with abscissa varying decreases. From
Figs. 5.7 (c) and (d), it can be found that the displacement amplitude of the left plane of the
two large wedge vertex angles is almost the same when the incident angle is approximately
vertical, but the displacement amplitude of the right plane decreases slightly with the ascender
of vertex angle.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.7 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave vertical incident

By analyzing and comparing the results of three sets examples, it can be observed that the
vertex displacement of 2/γ still exists in the inhomogeneous media. The surface displacement
presents symmetrical distribution at any incident angle with φ = π/3. Meanwhile, the
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displacement amplitude is proportional to inhomogeneous parameter and the displacement
increases with the abscissa vibration, especially when the inhomogeneous parameter changes
from less than 1 to greater than or equal to 1, the displacement amplitude increases more
obviously. While with incident angle changing from horizontal, symmetrical to nearly
vertical, the maximum displacement amplitude distribution ranges from the right plane of
the wedge to the left plane at φ = 2π/3. At this time, the inhomogeneous parameter has
a significant impact on its value on the side with the largest distribution of displacement
amplitude, while on the other side, it has a significant impact on the amplitude of displacement
vibration with abscissa.

In order to consider the wedge space surface displacement distribution at φ > π , the
discussion of the wedge vertex angle of 4π/3 and 5π/3 are carried out. From the three
sets results that when the incident angle is horizontal, the left plane displacement is inverse
proportional in inhomogeneous parameter. However, the left plane displacement amplitude
is proportional to inhomogeneous parameter under oblique and symmetric incident. The
right plane displacement is small at horizontal and oblique incident. Through three sets of
examples, it can be demonstrated that if φ < π , the minimum displacement amplitude of the
wedge surface generally appears at the x/a =±0.5.

Continue to explore the influence of inhomogeneous parameters varying with dimension-
less frequency on the wedge surface displacement amplitude. Four groups of typical wedge
vertex angles are still selected for calculation, all of which adopt horizontal incident. The
surface displacement amplitude distribution is given in Figs. 5.8-5.10 under the condition
of β = 1.5,1.0,0.5.The surface displacement vibration with the dimensionless frequency
growing at β = 1.5. Meanwhile, if the wedge vertex angle is less than 180◦, the maximum
displacement amplitude gradually approaches the wedge vertex with dimensionless frequency
increasing. As at φ > π , the distribution of surface displacement amplitude with the change
of dimensionless frequency is almost the same at the time of horizontal incident, and the
displacement amplitude is concentrated at the vertex position, and the plane displacement
amplitude on both sides is small.

The inhomogeneous parameter of 1.0, similar to the homogeneous media, is introduced
for calculation, and the displacement amplitude distribution diagram with the change of
dimensionless frequency under the same conditions is obtained, as shown in Fig. 5.9. The
displacement amplitude distribution on both sides is symmetric with the vertex angle is π/3.
The vibration frequency is advanced with the growth of dimensionless frequency, but the
oscillation amplitude remains unchanged, and the maximum displacement amplitude is 2/γ .
the displacement amplitude still vibration with the dimensionless frequency, with φ = 2π/3,
and it can be observed that the maximum and minimum values of displacement amplitude



116 Dynamic response of inhomogeneous wedge space under SH wave incident

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.8 Surface displacement amplitude distribution of four types wedge space vertex angle
with the dimensionless frequency varied under horizontal incident and β = 1.5
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appear near both sides of the vertex. If the wedge vertex angle is greater than 180◦, the
displacement amplitude distribution is similar.

The calculation is carried out as the inhomogeneous parameter is less than 1 as shown
in Fig. 5.10 with the displacement amplitude distribution at β = 0.5. The displacement
amplitude is still symmetrically distributed at φ = π/3. However, there is a distribution area
of larger displacement amplitude on the plane on both sides of the wedge at dimensionless
frequency is 2.5, and gradually moves towards the wedge vertex with dimensionless frequency
increasing. When the wedge vertex angle is 2π/3, the amplitude vibration of displacement
on both sides is proportional to dimensionless frequency. The right plane displacement
amplitude with the ascender of dimensionless frequency then gradually grows at wedge
vertex angle is 4π/3 under this inhomogeneous parameter.

From the comparison of three sets of examples that the wedge surface displacement
amplitude vibration is intensified while the inhomogeneous parameter is increasing. The
displacement amplitude of wedge space both sides decreases from left to right with the
inhomogeneous parameter rises, as φ > π . At φ < π , with the inhomogeneous parameter
increasing, the vibration frequency of displacement is proportion in dimensionless frequency
while the amplitude of displacement is inverse proportional.

The above calculation examples are the wedge surface displacement amplitude distri-
bution of the plane on both sides. Considering the influence of inhomogeneous parameters
on the internal displacement amplitude distribution, Figs. 5.11-5.13 illustrate the internal
displacement distribution of the horizontal and symmetrical incident of the three wedge
vertex angles with a dimensionless frequency of 1.0.

From Fig. 5.11, as the wedge top angle is π/3, the internal displacement amplitude
shows symmetrical distribution along φ = 30◦ under various inhomogeneous parameters
and incident angle. With the inhomogeneous parameters varying, not only the surface
displacement amplitude distribution, but also the internal displacement both changes greatly.
It can be observed from Figs. 5.11 (a) and (c) that if β > 1, the internal displacement
amplitude vibration obviously and the maximum value of the displacement will not only
appear on the two sides of the plane, but also exist in the area with large displacement
amplitude, and the larger value linear area is basically parallel to the radius of φ = 30◦.
Otherwise if β < 1, the internal displacement amplitude vibration is weakened, and the
minimum band region of internal displacement appears in the circumferential direction
near the vertex. While symmetrical incident, if β > 1, the internal displacement amplitude
vibration is still obvious and the radial vibration frequency gradually increases, else, the
maximum displacement appears at the vertex, and there are two annular regions with almost
zero circumferential displacement.
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(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.9 Surface displacement amplitude distribution of four types wedge space vertex angle
with the dimensionless frequency varied under horizontal incident and β = 1.0
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(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.10 Surface displacement amplitude distribution of four types wedge space vertex angle
with the dimensionless frequency varied under horizontal incident and β = 0.5
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(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.11 Internal displacement amplitude distribution of vertex angle π/3 under two inho-
mogeneous parameters and incident angles

While the wedge vertex angle arrives to 2π/3 under horizontal incident, the maximum
displacement amplitude is almost not reduced since β > 1, compared with the maximum
displacement amplitude at the wedge vertex angle over π/3, and the internal displacement
distribution has varied greatly. The larger value area of internal displacement amplitude
under horizontal incident appears near the right plane, the θ -axis is between 90◦ and 120◦,
and its linear is parallel to the right plane. However, if β < 1, the maximum displacement
occurs near the left plane, θ -axis is between 0◦ and 30◦, and the maximum value appears
at the wedge boundary while the internal displacement amplitude is small, in Figs. 5.12 (a)
and (c). In the case of symmetrical incident, the displacement amplitude decreases obviously.
The maximum displacement amplitude appears on both sides of the wedge, and the internal
displacement vibrates violently, and its vibration frequency increases radially, while β > 1.
For β < 1, the maximum displacement amplitude appears at the vertex, and a circular region
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with almost zero circumferential displacement amplitude also appears near the vertex, and
the displacement amplitude in the middle of wedge is small.

(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.12 Internal displacement amplitude distribution of vertex angle 2π/3 under two
inhomogeneous parameters and incident angles

Considering that φ > π , this sub example gives the internal displacement distribution
when the top angle is 4π/3. It can be illustrated from Fig. 5.13 while β > 1, the maximum
displacement amplitude appears in the internal region radially distribution with θ -axis of
35◦ and 135◦, and the larger value of the internal displacement is distributed between θ -axis
of 30◦ and 150◦. In other regions, the displacement amplitude is small, and the minimum
value of the displacement amplitude appears in the right plane. However, if β < 1, the
maximum displacement amplitude appears on the left plane of the wedge, and gradually
increases along the radial direction. The right plane displacement is relatively high, and the
minimum displacement amplitude appears in the internal region with θ -axis of 50◦. In the
case of symmetrical incident, in Figs. 5.13 (b) and (d), the displacement amplitude is smaller
near the incident angle while β > 1 and larger while β < 1, relative to other displacement
amplitudes in the region.



122 Dynamic response of inhomogeneous wedge space under SH wave incident

(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.13 Internal displacement amplitude distribution of vertex angle 4π/3 under two
inhomogeneous parameters and incident angles

From the above three sets of examples indicated that the inhomogeneous parameters have
a great influence on the displacement distribution, and different inhomogeneous parameters
cause the diametrically opposite phenomenon of displacement distribution in the internal
region. When the wedge vertex angle is 2π/3 and 4π/3, if β > 1, the smaller value of
displacement amplitude appears in the area near the incident angle. Otherwise, the maximum
displacement amplitude appears in the area near the incident angle.
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5.2 Scattering of SH wave around cylindrical depression
in inhomogeneous wedge space

According to the research on the SH wave propagation characteristics in the inhomogeneous
wedge space in the previous section, this section investigates the scattering of SH wave
around cylindrical depression in inhomogeneous wedge space. Due to the flexibility of the
wedge vertex angle, the vertex angle φ can be taken as 0 to 2π , so it can simulate a variety
of shape space, such as rectangular space and semi-infinite space. The wedge vertex has a
cylindrical depression, which has certain engineering significance. Cylindrical treatment
of the wedge vertex can reduce the displacement and stress concentration at its vertex. At
the same time, the foundation of the building structure built on the ridge can be modeled as
a cylindrical depression at the wedge vertex. And taking the cylindrical depression as the
wedge surface defect as the basis of research, more complex surface defects can be explored.

5.2.1 Model and wave equation

The model of the scattering of SH waves by the cylindrical depression in density radial
inhomogeneous wedge space is shown in Fig. 5.14. The radius of the cylindrical depression is
ra, its center is the wedge vertex, and it is set as the coordinate origin o, the x-axis is horizontal
to the left, y-axis is vertical to the right, and the wedge vertex angle is φ = γπ (0 < γ ≤ 2).
Setting φ = π/2, the model simulates the right angle space with a cylindrical depression,
and setting φ = π , it simulates the semi-infinite space with a semi-cylindrical depression.
SH wave is incident at an angle α with the horizontal direction. Owing to this section still
mainly considers the influence of variable wave velocity on the propagation characteristics
of SH wave in wedge inhomogeneous media. Therefore, the density form is shown in Eq.
(5.1). Through the transformation method in Chapter 2, the control equation shown in Eq.
(5.2) can be directly solved.

5.2.2 Displacement field and stress field in the model

In this model, the total wave field is composed of free wave field w( f ) and scattering wave
w(s) caused by cylindrical depression, w = w( f )+w(s), according to the above section, the
free wave field w( f ) satisfying the control equation and free boundary conditions on both
sides of the wedge can be shown as
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Fig. 5.14 Model scattering of SH wave around cylindrical depression in inhomogeneous
wedge space

w( f ) = 2pw0

∞

∑
n=0

εne−
inνπ

2 Jnν (k0 |ζ |)

[(
ζ

|ζ |

)nν

+

(
ζ

|ζ |

)−nν
]

cos(npα) (5.16)

where, ν = p/β , p = 1/γ , Jnν (·) is a fractional Bessel function.
The scattering wave field w(s) excited by the cylindrical depression can be constructed by

Hankel function, and the scattering wave excited by it must satisfy the condition of free hoop
stress at the two wedge boundaries,

τ
(s)
θz = 0,θ = 0,θ = γπ (5.17)

According to the above requirements, the fractional Hankel function is still used to satisfy
the stress free conditions at different angles, and the scattering wave field in the following
form is constructed

w(s) = w0

∞

∑
n=0

AnH(1)
nv (k |ζ |)

[(
ζ

|ζ |

)nv

+

(
ζ

|ζ |

)−nv
]

(5.18)

where, An is the unknown coefficient to be solved.
In order to solve the coefficient An, the free condition of radial stress at the cylindrical

depression is needed, so the expression of free wave field and scattered wave field is given

τ
( f )
rz = pw0β µk0

∞

∑
n=0

εne−
inνπ

2 Pnv (ζ )cos(npα) (5.19)
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τ
(s)
rz =

pw0β µk0

2

∞

∑
n=0

A(n)Pnv (ζ ) (5.20)

where,

Pt (s) = Jt−1 (k0 |s|)
[

s
|s|

]t−1

zβ−1eiθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

zβ−1eiθ

+ Jt−1 (k0 |s|)
[

s
|s|

]1−t

z̄β−1e-iθ − Jt+1 (k0 |s|)
[

s
|s|

]−t−1

z̄β−1e-iθ

5.2.3 Boundary conditions

According to this model, the free wave field and scattered wave field constructed have
automatically satisfied the free condition of hoop stress at the boundary of both sides of
the wedge. The boundary condition of zero radial stress shall be satisfied at the cylindrical
depression,

τ
( f )
rz + τ

(s)
rz = 0,r = a (5.21)

Substituting Eqs. (5.19) and (5.20) into Eq. (5.21)

∞

∑
n=0

AnEn =−
∞

∑
n=0

Fn (5.22)

where, En = Pnv (ζ ), Fn = εne−
inνπ

2 Pnv (ζ )cos(npα).
And multiply e−imθ on both sides of the equation to expand it into Fourier series in the

range of [0,γπ]
∞

∑
m=0

∞

∑
n=0

AnEmn =−
∞

∑
m=0

∞

∑
n=0

Fmn (5.23)

where, Emn =
∫ γπ

0 Ene−imθ dθ , Fmn =
∫ γπ

0 Fne−imθ dθ .
According to the above equation, the unknown coefficient An can be obtained to acquire

the wave field in the whole space.
In the calculation of this section, the dimensionless frequency η(2) is defined to represent

the relationship between the incident wave length and the model size, and to facilitate the
dimensionless representation of the parameters in calculation example analysis

η
(2) = 2ra/λ = k0ra/π (5.24)



126 Dynamic response of inhomogeneous wedge space under SH wave incident

5.2.4 Convergence analysis

Based on this section, the special function is also used to construct the wave field expression
and the Fourier integral method is used to solve the unknown coefficient. Therefore, the finite
term needs to be truncated in the calculation process. The convergence analysis can obtain
the limited number of terms. According to the model, five typical location points are selected,
point 1 (2,0), point 2 (1,0), point 3 (1,φ/2), point 4 (1,φ ), and point 5 (2,φ ), to analyze the
convergence of free wave field and scattering wave field under two vertex angles. In order to
ensure the convergence requirements of all the examples in this section, the dimensionless
frequency η(2) = 2.0, incident angle α = 0◦ and inhomogeneous parameters β = 1.5 are set,
and the truncation term N = m = n is considered to establish the standard solution matrix.
According to a large number of convergence calculations, as shown in Fig. 5.15, when 20
items are taken, the results have converged. Therefore, in subsequent calculations, taking
N = 25 can ensure the convergence of the results and save calculation time.

(a) φ = π/3 (b) φ = 5π/3

Fig. 5.15 Convergence analysis of five typical position displacement amplitudes increasing
with truncation term N

5.2.5 Validation

The inhomogeneous parameter is set to 0.99 to simulate the displacement results under
homogeneous conditions as above section. Compare the calculated results with the existed
results to verify the validation. As shown in Fig. 5.16, set the dimensionless frequency
η(2)= 2.0, three wedge vertex angles φ = π/2,2π/3,5π/6, and the two figures are horizontal
incident and 30◦ oblique incident. The horizontal axis x/ra [−1,1] in the figure corresponds
to the position of the cylindrical depression and the position of wedge both sides. The results
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calculated by the method in this section are in well agreement with the existed results, thus
verifying the effectiveness of the construction of scattered waves in this section. At the same
time, two groups of inhomogeneous parameters close to 1.0 are taken for calculation, as
shown in Fig. 5.17. The dimensionless frequency is 2.0, and the horizontal incidence and the
symmetric incidence. The sacrificial trend of displacement amplitude results also verified
this method validation.

(a) α = 0◦ (b) α = 30◦

Fig. 5.16 Results of approximately homogeneous medium for comparison with the existed
displacement results

(a) φ = π/3 (b) φ = 5π/3

Fig. 5.17 Displacement distribution corresponding to different inhomogeneous parameters
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5.2.6 Numerical results and discussion

The influence of inhomogeneous parameters on displacement amplitude of wedge space
surface with cylindrical depression is primarily explored, and the surface displacement
amplitude distribution of inhomogeneous parameters under four wedge vertex angles and
three incident angles is calculated, given in Figs. 5.18-5.20.

The displacement amplitude under horizontal incident inverse proportional in inhomo-
geneous parameters at the junction of the concave and the left plane, and proportional in
inhomogeneous parameters at the junction of depression and right plane at φ = π/3. And
the displacement distribution of the two sides is almost symmetric, as shown in Fig. 5.18
(a). The minimum value of displacement appears at the lowest point of the depression, the
maximum value appears at the junction of the right side of the depression while β = 1.5,
and appears at the junction of the left side of the depression under other inhomogeneous
parameters. And with the inhomogeneous parameters increasing, the vibration frequency
of displacement changes with the position goes further. The displacement amplitude of the
left wedge plane declines obviously, and the displacement amplitude of the right wedge
plane declines and tends to be stable with the vertex angle growing at φ = π/2,2π/3. The
displacement at β < 1 is larger than β > 1, under these parameter settings. Meanwhile, the
maximum point of displacement moves from the depression surface to the right wedge plane.
As the wedge vertex angle is 4π/3 , the maximum displacement appears at the junction of
the depression and the left side. Concurrently, the displacement amplitude of the right side
decreases and drops to near zero since inhomogeneous parameter increasing. Compared with
the displacement amplitude of wedge space under horizontal incident, Fig. 5.5, it can be seen
that the existence of cylindrical depression makes the displacement amplitude of the left side
of the wedge rises, while the displacement amplitude of the right side of the wedge declines.

While oblique incident and the wedge vertex angle is π/3 , the amplitude of surface
displacement at the depression is inversely proportional to the inhomogeneous parameter.
Moreover, the displacement vibrations more obviously at wedge space both sides than at the
depression position. The maximum value appears at the junction of the concave and wedge
planes if β < 1, otherwise β ≥ 1,it appears on the wedge plane. For φ = π/2 , the left plane
displacement amplitude at β = 1 is greater than that of other inhomogeneous parameters,
while the maximum displacement occurs in the right plane as β > 1 are taken. While
φ = 2π/3 , the left place displacement at the incident angle side decreases significantly, and
the surface displacement amplitude at β = 1 is greater than the value of other inhomogeneous
parameters, and the maximum value appears at the left junction position. For 4π/3 , the left
plane displacement is almost the same as that of 2π/3 , while on the right side it decreases to
near zero.
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(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.18 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave horizontal incident

Similarly, symmetrical incident is given. The surface displacement amplitude under each
parameter is symmetrically distributed, as shown in Fig. 5.20. Under the four wedge vertex
angles, the inhomogeneous parameters have a great influence on the surface displacement,
which vibration with the change of position. At vertex angle setting as π/3 and π/2 , the
plane two sides displacement amplitude tends to reduced with the ascender of inhomogeneous
parameters. Compared with the pure wedge Fig. 5.6, the plane displacement with cylindrical
depression is reduced under symmetrical incident.

Compared with three sets of numerical examples, under the same wedge vertex angle,
the displacement amplitude is inversely proportional to incident angle.The displacement
amplitude at the bottom of the depression increases with the incident angle from horizontal to
symmetrical, while at the junction of the depression and the two sides of the plane decreases
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(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.19 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave oblique incident

at φ = π/3,π/2. At the same time, the amplitude of surface displacement tends to vibration
at the same incident angle with β growing.

To further investigate the influence of inhomogeneous wedge with cylindrical depression
on the surface displacement, six observation points were selected, point 1 (2, 0), point 2
(1, 0), point 3 (1, φ/3), point 4 (1, 2φ/3), point 5 (1,φ ), point 6 (2,φ ). The displacement
of each point was calculated under the different incident angles with the inhomogeneous
parameter of 1.25, and the effect of cylindrical depression on surface displacement in the
inhomogeneous wedge space was analyzed.

Fig.5.21 shows the displacement amplitude of six observation points with dimensionless
frequency under horizontal incident and β = 1.25. Discussing the situation of φ = π/3 ,
the amplification effect of point 5 on the displacement amplitude is about 1.2 times, and
the displacement amplitude of point 5 is stable around 7 after the dimensionless frequency
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(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.20 Surface displacement amplitude of different inhomogeneous parameter under four
types wedge space vertex angle with SH wave symmetric incident

reaches 1. And the observation point 2 reduces the displacement. The surface displacement of
points 3 and 4 at the depression drops obviously, and vibrates at the displacement amplitude
of about 3 with dimensionless frequency variation. The displacement amplitudes of points 1
and 6 show a regular vibration mode with dimensionless frequency increasing. Then at 2π/3 ,
the amplification characteristic of points 1, 4, 5 and 6 on the displacement is almost the same
as φ = π/2 . However, points 2 and 3 indicate that the amplitude of surface displacement
tends to be stable while the dimensionless frequency reaches to 1.5, as shown in Fig. 5.21
(b). Subsequently, at 2π/3 , it can be observed from Fig. 5.21 (c) that the point 6 has the
largest amplification effect on the surface displacement amplitude, and the displacement
amplitude of points 2, 3, and 6 tends to be stable and almost equal to 4 as the dimensionless
frequency reaches 1.5. At point 5, after the dimensionless frequency is greater than 0.25,
the displacement gradually decreases as it increases. Point 1 still presents a similar effect to
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Figs. 5.21 (a) and (b), and its surrounding vibration value is 2. The displacement of point
4 is stabilized at 3 when the dimensionless frequency is 1.5. Considering the vertex angle
as 4π/3 , compared with 2π/3 , the effect of points 1, 2 and 3 are similar. However, the
displacement of points 4, 5 and 6 drops to near zero with dimensionless frequency growing
and tends to be stable. From the four figures, the displacement of point 1 vibration with
dimensionless frequency variation, and its amplitude is inversely proportional in vertex angle.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.21 Displacement amplitude of six selection observation points under inhomogeneous
parameter β = 1.25 and horizontal incident

Change the incidence angle to oblique incident. Fig. 5.22 (a) indicates 15◦ oblique
incident, and (b) (c) (d) shows 30◦ oblique incident. Primarily still discussing φ = π/3 ,
the six observation points displacement decreases compared with the horizontal incident,
and the maximum amplification is 1 time. Among them, point 1 displacement drops most
obviously, and the other points show the same phenomenon as the horizontal incident on
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the whole. While φ = 2π/3, point 5 displacement vibrates with dimensionless frequency,
and the amplification effect on the displacement is 1.1 times. The displacement of points 3
and 6 also declines, while for points 1, 2 and 4 it various with dimensionless frequency in a
similar manner to that at horizontal incident. At φ = 2π/3 , the amplification effect of point
3 and 6 decreases compared with the horizontal incidence, while point 5 shows the form of
vibration with dimensionless frequency. The amplification effect of point 2 is still 1.3 times.
Under φ = 4π/3 and 30◦ oblique incident, the effect is almost the same as that of horizontal
incident.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.22 Displacement amplitude of six selection observation points under inhomogeneous
parameter β = 1.25 and oblique incident

Symmetrical incident also taken for investigating the effect, results are given in Fig.
5.23. For the situation of π/3 , the displacement of each point further decreases, and
the point displacement tends to zero at a certain dimensionless frequency. The maximum
amplification effect is still 1 times, appearing at points 2 and 5. Next for π/2 , and the
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maximum amplification effect is 1.25 times. Then is 2π/3 , the amplification effect of point
2 only increases to the same as that of point 5 while compared with 30◦ incident. While the
vertex angle is 4π/3 , the displacement basically tends to a stable change mode. Among
them, points 1, 3, 4, and 6 stabilize around 2 after the dimensionless frequency reaches
0.5, while points 2 and 5 gradually declines to 1 when the dimensionless frequency is over
0.25. In addition, the amplification of displacement amplitude at points 1 and 6 can reach
a maximum of 1.4 times under symmetrical incident. The comparison of the four figures
illustrates that with the increase of the vertex angle, the displacement amplitude of each point
decreases, while the maximum amplification effect on the displacement amplitude gradually
increases. If φ < π , points 2 and 5 have the greatest amplification effect on the displacement
amplitude; else the points 1 and 6 is the largest.

(a) φ = π/3 (b) φ = 2π/3

(c) φ = 4π/3 (d) φ = 5π/3

Fig. 5.23 Displacement amplitude of six selection observation points under inhomogeneous
parameter β = 1.25 and symmetrical incident



5.2 Cylindrical depression in inhomogeneous wedge space 135

In order to explore the amplification effect of each point on the displacement amplitude
under different inhomogeneous parameters and incident angles, the displacement amplifi-
cation coefficient w∗ of each observation point under different vertex angles and various
parameter settings is given, and w∗ is given by Eq. (3.25), as shown in Table 5.1-5.4. The
inhomogeneous parameters are setting as 0.75, 1.0 and 1.25. w∗ corresponding to different
dimensionless frequencies under horizontal, oblique and symmetric incident. Table 5.1
exhibits the result for vertex angle at π/3. From the calculation results, the maximum w∗ of
each observation point is inversely proportional to inhomogeneous parameters and incident
angle. At the same time, the maximum value of w∗ generally occurs at points 2 and 5, that
is, the junction of the depression and wedge planes. However, w∗ of points 3 and 4 in the
cylindrical depression are similar under the action of different inhomogeneous parameters,
and w∗ changes gently with the dimensionless frequency in the case of oblique symmetrical
incident. Under the influence of inhomogeneous parameters and incident angle, w∗ at points
1 and 6 at two wedge planes presents an vibration mode with dimensionless frequency.

From Table 5.2 as the vertex angle is π/2, the w∗ of the six points still has a decreasing
trend with the inhomogeneous parameters rising, and has increasing trend compared with
π/3. Comparing with w∗ of each point under different inhomogeneous parameters, the
overall value only changes, and the vibration trend with dimensionless frequency is almost
the same. Most of w∗ still appear at point 5 under various parameter settings, and w∗ of point
5 is similar with the action of different dimensionless frequencies under horizontal incident.

Table 5.3 and 5.4 correspond to the calculation results for the wedge vertex angles
are 2π/3 and 4π/3. In the two sets of results, the w∗ is still inversely proportional to
inhomogeneous parameters. At the vertex angle 2π/3 and horizontal incident, w∗ of points
2, 3 and 6 under three inhomogeneous parameters are basically stable at these dimensionless
frequency. When β = 1, the w∗ of point 5 also remains stable, at β ̸= 1, the maximum
value w∗ appears at point 6, while β = 1, the maximum value of w∗ appears at point 5. The
maximum displacement amplification coefficient moves to observation point 2 under oblique
incident. However, since the vertex angle reaches to 4π/3 , the w∗ appears at point 2 at
the maximum level under oblique incident, and at points 1 and 6 under symmetric incident.
However, according to the above results, w∗ is inversely proportional of inhomogeneous
parameters at the same wedge vertex angle. Under the same inhomogeneous parameters,
it inverse proportion in incident angle. While under horizontal and oblique incident, the
maximum w∗ value appears at point 5 under φ < π , and appears at point 2 under φ > π . For
symmetrical incident, the maximum w∗ value appears at points 2 and 5 under φ < π , and
occurs at points 1 and 6 under φ > π .



136 Dynamic response of inhomogeneous wedge space under SH wave incident

Ta
bl

e
5.

1
D

is
pl

ac
em

en
ta

m
pl

ifi
ca

tio
n

co
ef

fic
ie

nt
of

si
x

po
in

ts
un

de
rt

hr
ee

in
ho

m
og

en
eo

us
pa

ra
m

et
er

s
at

ve
rt

ex
an

gl
e

is
π
/3

α
0◦

15
◦

30
◦

β
η

po
in

t
1

2
3

4
5

6
1

2
3

4
5

6
1,

6
2,

5
3,

4

0.
75

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

28
0.

42
0.

50
0.

71
0.

82
0.

81
0.

20
0.

47
0.

53
0.

67
0.

75
0.

66
0.

34
0.

60
0.

60
1.

0
0.

83
1.

02
0.

50
0.

86
1.

39
0.

51
0.

54
0.

70
0.

43
0.

72
1.

08
0.

46
0.

45
0.

40
0.

46
1.

5
1.

06
1.

00
0.

65
0.

24
0.

99
0.

56
0.

34
0.

78
0.

53
0.

35
0.

51
0.

27
0.

92
0.

30
0.

50
2.

0
0.

68
0.

10
1.

09
0.

35
1.

42
0.

95
0.

75
0.

80
0.

52
0.

30
0.

34
0.

59
0.

22
1.

15
0.

27
2.

5
0.

79
1.

04
0.

55
0.

56
1.

01
0.

72
0.

53
0.

43
0.

72
0.

31
0.

12
0.

47
0.

52
0.

87
0.

17
3.

0
0.

75
0.

71
0.

54
1.

22
1.

47
1.

13
1.

08
0.

76
0.

81
0.

40
0.

61
0.

56
0.

18
0.

90
0.

34

1.
0

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

62
0.

37
0.

48
0.

73
0.

87
0.

80
0.

41
0.

43
0.

51
0.

69
0.

79
0.

60
0.

13
0.

60
0.

60
1.

0
0.

23
1.

05
0.

56
0.

74
1.

19
0.

61
0.

32
0.

75
0.

50
0.

63
0.

98
0.

35
0.

83
0.

40
0.

47
1.

5
0.

86
1.

04
0.

72
0.

15
1.

12
0.

77
0.

18
0.

83
0.

55
0.

33
0.

51
0.

15
0.

23
0.

43
0.

53
2.

0
1.

22
0.

34
1.

06
0.

38
1.

17
0.

60
0.

27
0.

76
0.

49
0.

31
0.

27
0.

59
0.

46
1.

13
0.

14
2.

5
0.

79
1.

20
0.

41
0.

79
1.

23
0.

60
0.

73
0.

28
0.

85
0.

37
0.

26
0.

78
0.

84
0.

96
0.

21
3.

0
0.

18
0.

54
0.

77
1.

10
1.

16
1.

15
0.

71
0.

97
0.

68
0.

36
0.

58
0.

46
0.

29
0.

74
0.

38

1.
25

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

97
0.

29
0.

44
0.

77
0.

95
0.

70
0.

71
0.

37
0.

48
0.

72
0.

85
0.

46
0.

71
0.

37
0.

48
1.

0
0.

62
0.

98
0.

53
0.

68
1.

09
1.

05
0.

28
0.

70
0.

49
0.

60
0.

96
0.

27
0.

28
0.

70
0.

49
1.

5
0.

58
0.

86
0.

82
0.

16
1.

16
0.

46
0.

95
0.

84
0.

56
0.

33
0.

50
0.

75
0.

95
0.

84
0.

56
2.

0
0.

55
0.

41
0.

96
0.

35
1.

09
0.

91
0.

94
0.

72
0.

52
0.

33
0.

20
0.

65
0.

97
0.

72
0.

52
2.

5
0.

55
1.

00
0.

36
0.

79
1.

14
0.

40
0.

43
0.

40
0.

78
0.

23
0.

27
0.

37
0.

43
0.

40
0.

78
3.

0
0.

67
0.

52
0.

67
1.

02
1.

13
0.

87
0.

61
0.

85
0.

56
0.

34
0.

60
0.

23
0.

61
0.

98
0.

56



5.2 Cylindrical depression in inhomogeneous wedge space 137

Ta
bl

e
5.

2
D

is
pl

ac
em

en
ta

m
pl

ifi
ca

tio
n

co
ef

fic
ie

nt
of

si
x

po
in

ts
un

de
rt

hr
ee

in
ho

m
og

en
eo

us
pa

ra
m

et
er

s
at

ve
rt

ex
an

gl
e

is
π
/2

α
0◦

15
◦

30
◦

β
η

po
in

t
1

2
3

4
5

6
1

2
3

4
5

6
1,

6
2,

5
3,

4

0.
75

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

84
0.

79
0.

56
0.

89
1.

36
1.

47
0.

56
0.

56
0.

53
0.

75
0.

89
0.

66
0.

28
0.

58
0.

61
1.

0
0.

75
0.

83
1.

06
0.

36
1.

23
1.

29
0.

08
1.

06
0.

56
0.

30
0.

36
0.

69
0.

68
0.

92
0.

28
1.

5
0.

80
1.

30
0.

76
1.

05
1.

36
1.

18
0.

96
0.

76
0.

64
0.

43
1.

05
0.

52
0.

96
1.

21
0.

45
2.

0
0.

05
0.

65
1.

24
1.

31
1.

37
1.

12
0.

85
1.

24
0.

33
1.

16
1.

31
0.

70
0.

63
0.

73
0.

35
2.

5
0.

27
1.

23
0.

69
0.

81
1.

24
0.

88
0.

40
0.

69
0.

41
0.

97
0.

81
1.

21
0.

72
1.

15
0.

61
3.

0
0.

63
0.

97
1.

24
0.

68
1.

27
0.

57
0.

24
1.

24
0.

60
0.

85
0.

68
0.

42
0.

26
0.

97
0.

97

1.
0

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

72
1.

02
0.

69
0.

85
1.

37
1.

35
0.

59
0.

69
0.

59
0.

72
0.

85
0.

35
0.

26
0.

57
0.

62
1.

0
0.

94
0.

69
1.

15
0.

47
1.

35
1.

00
0.

75
1.

15
0.

53
0.

28
0.

47
0.

92
0.

14
1.

11
0.

19
1.

5
0.

39
1.

19
0.

67
1.

10
1.

33
0.

68
0.

01
0.

67
0.

70
0.

56
1.

10
0.

12
1.

08
1.

02
0.

43
2.

0
0.

65
1.

01
1.

19
1.

23
1.

33
0.

96
0.

34
1.

19
0.

22
1.

14
1.

23
0.

97
0.

77
0.

67
0.

35
2.

5
0.

15
0.

84
0.

82
0.

75
1.

35
1.

32
0.

60
0.

82
0.

42
1.

04
0.

75
0.

36
0.

28
1.

24
0.

72
3.

0
0.

54
1.

14
1.

15
0.

66
1.

37
1.

37
0.

59
1.

15
0.

51
0.

73
0.

66
1.

25
0.

74
0.

85
0.

99

1.
25

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

21
1.

06
0.

74
0.

77
1.

26
1.

07
0.

53
0.

74
0.

63
0.

68
0.

77
0.

22
0.

57
0.

57
0.

62
1.

0
0.

22
0.

83
1.

11
0.

53
1.

25
0.

74
0.

89
1.

11
0.

55
0.

23
0.

53
0.

97
0.

54
1.

10
0.

12
1.

5
0.

80
0.

96
0.

87
1.

07
1.

23
1.

19
0.

92
0.

87
0.

53
0.

60
1.

07
0.

57
0.

19
0.

96
0.

41
2.

0
0.

55
1.

04
1.

00
1.

10
1.

21
1.

18
0.

50
1.

00
0.

08
1.

03
1.

10
0.

41
0.

72
0.

81
0.

39
2.

5
0.

32
1.

01
0.

95
0.

71
1.

19
0.

73
0.

99
0.

95
0.

47
1.

01
0.

71
0.

81
0.

93
1.

03
0.

67
3.

0
0.

83
0.

97
0.

95
0.

69
1.

17
1.

05
0.

89
0.

95
0.

53
0.

57
0.

69
0.

40
0.

90
0.

89
1.

01



138 Dynamic response of inhomogeneous wedge space under SH wave incident

Ta
bl

e
5.

3
D

is
pl

ac
em

en
ta

m
pl

ifi
ca

tio
n

co
ef

fic
ie

nt
of

si
x

po
in

ts
un

de
rt

hr
ee

in
ho

m
og

en
eo

us
pa

ra
m

et
er

s
at

ve
rt

ex
an

gl
e

is
2π

/3

α
0◦

15
◦

30
◦

β
η

po
in

t
1

2
3

4
5

6
1

2
3

4
5

6
1,

6
2,

5
3,

4

0.
75

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

95
1.

50
1.

18
0.

68
1.

33
1.

50
1.

01
1.

31
0.

92
0.

56
0.

87
0.

76
0.

81
0.

82
0.

50
1.

0
0.

39
1.

32
1.

13
1.

05
1.

25
1.

57
0.

47
1.

12
0.

73
0.

22
0.

57
0.

83
0.

51
1.

39
0.

50
1.

5
0.

94
1.

12
1.

45
1.

28
1.

12
1.

55
1.

06
1.

37
0.

07
0.

95
1.

12
1.

26
0.

56
0.

99
0.

65
2.

0
0.

51
1.

18
1.

15
0.

76
0.

98
1.

49
0.

80
1.

35
0.

24
0.

77
1.

15
0.

49
0.

95
1.

42
1.

09
2.

5
0.

49
1.

35
1.

34
1.

12
0.

85
1.

42
0.

30
1.

16
1.

03
0.

70
0.

66
0.

76
0.

72
1.

01
0.

55
3.

0
0.

89
1.

44
1.

36
1.

25
0.

76
1.

35
0.

84
1.

36
1.

08
0.

51
0.

68
0.

76
1.

13
1.

47
0.

54

1.
0

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

96
1.

36
0.

92
1.

14
1.

83
1.

42
0.

52
1.

30
0.

93
0.

49
0.

73
0.

48
0.

80
0.

87
0.

48
1.

0
1.

25
0.

92
1.

53
0.

63
1.

81
1.

52
0.

88
1.

18
0.

72
0.

29
0.

64
0.

93
0.

61
1.

19
0.

56
1.

5
0.

52
1.

59
0.

89
1.

47
1.

77
1.

55
0.

46
1.

18
0.

24
0.

96
1.

15
0.

51
0.

77
1.

12
0.

72
2.

0
0.

86
1.

34
1.

59
1.

64
1.

77
1.

53
0.

87
1.

30
0.

49
0.

70
1.

07
0.

88
0.

60
1.

17
1.

06
2.

5
0.

20
1.

12
1.

10
1.

00
1.

80
1.

47
0.

73
1.

34
0.

98
0.

60
0.

67
1.

09
0.

60
1.

23
0.

41
3.

0
0.

72
1.

52
1.

54
0.

88
1.

83
1.

38
0.

77
1.

29
1.

22
0.

49
0.

88
0.

56
1.

15
1.

16
0.

77

1.
25

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

55
1.

26
1.

22
0.

61
1.

15
1.

38
0.

32
1.

26
0.

92
0.

47
0.

68
0.

29
0.

70
0.

95
0.

44
1.

0
0.

51
1.

27
1.

19
1.

06
1.

03
1.

36
0.

78
1.

27
0.

62
0.

39
0.

71
0.

88
1.

05
1.

09
0.

53
1.

5
1.

04
1.

29
1.

20
0.

94
0.

90
1.

35
0.

91
1.

28
0.

18
0.

82
0.

96
0.

46
0.

46
1.

16
0.

82
2.

0
0.

76
1.

31
1.

24
0.

92
0.

79
1.

34
0.

33
1.

27
0.

55
0.

75
0.

83
1.

15
0.

91
1.

09
0.

96
2.

5
0.

36
1.

32
1.

25
0.

93
0.

69
1.

35
0.

92
1.

27
0.

96
0.

55
0.

77
0.

10
0.

40
1.

14
0.

36
3.

0
0.

97
1.

32
1.

26
0.

90
0.

61
1.

35
0.

84
1.

28
1.

18
0.

44
0.

79
1.

17
0.

87
1.

13
0.

67



5.2 Cylindrical depression in inhomogeneous wedge space 139

Ta
bl

e
5.

4
D

is
pl

ac
em

en
ta

m
pl

ifi
ca

tio
n

co
ef

fic
ie

nt
of

si
x

po
in

ts
un

de
rt

hr
ee

in
ho

m
og

en
eo

us
pa

ra
m

et
er

s
at

ve
rt

ex
an

gl
e

is
4π

/3

α
0◦

15
◦

30
◦

β
η

po
in

t
1

2
3

4
5

6
1

2
3

4
5

6
1,

6
2,

5
3,

4

0.
75

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
1.

43
2.

35
1.

79
0.

76
0.

56
0.

56
1.

58
2.

28
1.

22
0.

55
0.

43
0.

44
1.

50
1.

33
1.

18
1.

0
1.

05
2.

48
1.

93
0.

67
0.

46
0.

49
0.

74
2.

43
0.

46
0.

29
0.

20
0.

21
1.

57
1.

25
1.

13
1.

5
2.

10
2.

55
2.

00
0.

62
0.

37
0.

44
1.

94
2.

53
1.

36
0.

55
0.

26
0.

28
1.

55
1.

12
1.

45
2.

0
1.

12
2.

59
2.

04
0.

56
0.

30
0.

38
1.

75
2.

58
1.

87
0.

57
0.

34
0.

41
1.

49
0.

98
1.

15
2.

5
1.

26
2.

61
2.

05
0.

60
0.

27
0.

34
0.

58
2.

63
1.

46
0.

52
0.

31
0.

42
1.

42
0.

85
1.

34
3.

0
2.

15
2.

62
2.

05
0.

60
0.

25
0.

31
1.

74
2.

65
0.

84
0.

27
0.

22
0.

33
1.

40
0.

76
1.

36

1.
0

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
0.

74
2.

39
1.

84
0.

76
0.

41
0.

42
0.

91
2.

32
1.

19
0.

50
0.

29
0.

30
1.

42
1.

22
1.

21
1.

0
2.

06
2.

55
1.

94
0.

58
0.

25
0.

28
1.

90
2.

48
0.

51
0.

40
0.

18
0.

20
1.

52
1.

18
1.

06
1.

5
0.

60
2.

60
1.

99
0.

50
0.

18
0.

22
1.

12
2.

54
1.

49
0.

57
0.

21
0.

26
1.

55
1.

14
1.

25
2.

0
2.

09
2.

62
2.

02
0.

46
0.

13
0.

18
1.

72
2.

58
1.

88
0.

52
0.

16
0.

20
1.

53
1.

10
1.

33
2.

5
0.

62
2.

64
2.

04
0.

41
0.

11
0.

13
1.

50
2.

60
1.

28
0.

34
0.

09
0.

10
1.

51
1.

06
1.

21
3.

0
1.

82
2.

64
2.

06
0.

36
0.

08
0.

06
1.

40
2.

61
0.

64
0.

39
0.

09
0.

27
1.

23
1.

03
1.

27

1.
25

0.
00

1
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
0.

5
1.

01
2.

44
1.

81
0.

62
0.

21
0.

21
0.

83
2.

35
1.

14
0.

42
0.

17
0.

18
1.

38
1.

15
1.

22
1.

0
1.

09
2.

58
1.

86
0.

37
0.

09
0.

10
1.

55
2.

49
0.

59
0.

41
0.

08
0.

08
1.

36
1.

03
1.

19
1.

5
2.

04
2.

62
1.

87
0.

19
0.

04
0.

06
1.

89
2.

53
1.

46
0.

36
0.

06
0.

08
1.

35
0.

90
1.

20
2.

0
1.

48
2.

64
1.

86
0.

08
0.

03
0.

03
0.

65
2.

56
1.

71
0.

23
0.

02
0.

05
1.

34
0.

79
1.

24
2.

5
0.

70
2.

65
1.

85
0.

07
0.

01
0.

03
1.

84
2.

57
1.

15
0.

22
0.

02
0.

03
1.

36
0.

69
1.

25
3.

0
2.

13
2.

65
1.

84
0.

09
0.

01
0.

15
1.

62
2.

57
0.

77
0.

16
0.

01
0.

13
1.

40
0.

61
1.

26



140 Dynamic response of inhomogeneous wedge space under SH wave incident

Subsequently, continue to explore the influence of cylindrical depression and various
parameters on the internal displacement amplitude of the wedge space, and give the corre-
sponding calculation results, as shown in Figs. 5.24-5.27, the internal displacement amplitude
distribution of different inhomogeneous parameters and incident angles under four wedge
vertex angles.

Fig. 5.24 indicates the distribution of internal displacement amplitude under horizontal
and symmetrical incident with the inhomogeneous parameters of 0.75 and 1.25 respectively
under the vertex angle is π/3. The internal displacement under the action of two groups
of inhomogeneous parameters presents an approximate symmetrical distribution compared
with that of a simple wedge under the action of a cylindrical depression at horizontal
incident. At the same time, the maximum area of the internal displacement is distributed
on the right plane of the wedge, in Figs. 5.24 (a) and (c). Moreover, with the escalation
of inhomogeneous parameters , the internal displacement becomes more complex, and the
vibration frequency aggravates with position. For symmetrical incident situation, the area
of maximum displacement is distributed on the symmetry axis as β < 1, while with β > 1,
the area of maximum displacement is distributed on the planes, as shown in Figs. 5.24 (b)
and (d). In addition, the displacement with the ascender of inhomogeneous parameters then
rise compared with the upper and lower groups. Comparing with the model where vertex
angle is a sharp point, ad Fig. 5.11, that the internal displacement is no longer completely
symmetrical under incident horizontally from the depression.

The result of π/2 are demonstrated in Fig. 5.25, in the same way, horizontal incident is
first considered. It can be seen from Figs. 5.25 (a) and (c) that, the maximum displacement
is distributed in the left plane of the wedge with β < 1 and is distributed in the right plane of
the wedge with β > 1. In both cases, the displacement amplitudes show certain vibrations.
Moreover, at β = 1.25, the area with large internal displacement amplitude is distributed in a
strip parallel to the right plane between the extreme angle of θ -axis 30◦ and 90◦. In the case
of symmetrical incidence, the internal displacement amplitude is symmetrically distributed.
There is still a rule that when β < 1, the maximum displacement amplitude appears on the
45◦ symmetry axis, and when β > 1, it appears on the plane on both sides of the wedge, as
shown in Figs. 5.25 (b) and (d).

In the case of horizontal incident with 2π/3, the internal displacement amplitude cor-
responding to the two inhomogeneous parameters presents a strip distribution parallel to
the right plane of the wedge. Meanwhile, the area with large displacement is located on the
right side of the wedge, as shown in Figs. 5.26 (a) and (c). Since β < 1, pay attention to the
junction between the depression and the left boundary, and its displacement is also in a large
range. Under the condition that two inhomogeneous parameters and symmetrically incident,
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(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.24 Internal displacement amplitude distribution of vertex angle π/3 under two inho-
mogeneous parameters and incident angles

the maximum displacement is distributed on the plane of both sides of the wedge, still in the
form of vibration distribution. As the vertex angle is less than or equal to π/2, the maximum
displacement distribution of symmetrical incidence moves from the symmetry center to the
plane on both sides of the wedge as β < 1. Meanwhile, from the figure that the displacement
amplitude distributed below the depression gradually is inversely proportional to incident
angle.

The distribution of internal displacement with 4π/3 is shown in Fig. 5.26. It can be
observed from the displacement is basically distributed within 180◦ under the horizontal
incident, and the band area of internal displacement distribution is parallel to the radial
direction of 150◦. Moreover, if β < 1, the distribution of the larger displacement is located
in the left plane, while β > 1, it is distributed below the left plane. Then, under symmetrical
incident, the internal displacement is also distributed in a linear area, and the distribution
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(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.25 Internal displacement amplitude distribution of vertex angle π/2 under two inho-
mogeneous parameters and incident angles

of the larger displacement under the two inhomogeneous parameters is in the plane on both
sides. Compared with the pure wedge (Fig. 5.13), the displacement distribution in the interior
is weakened, and the linear distribution is obvious.

Based on the above four sets of calculation examples of internal displacement amplitude
distribution under the wedge vertex angle, it can be found that with the wedge vertex angle
increasing, the internal displacement amplitude gradually presents a linear distribution
parallel to the right plane at horizontal incident, and with the ascender of inhomogeneous
parameters, the linear gradually narrows, that is, the vibration frequency of displacement
aggravates. If the wedge apex angle is less than π , the internal displacement amplitude is
symmetrically distributed in a blocky region, while over π , it is distributed in a linear region.
With the ascender of inhomogeneous parameters and wedge angle, the region with large
displacement amplitude gradually moves from the internal symmetry axis to the wedge plane
on both sides.
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(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.26 Internal displacement amplitude distribution of vertex angle 2π/3 under two
inhomogeneous parameters and incident angles

5.3 Summary

In this chapter, based on the complex method, the dynamic response in density inhomo-
geneous wedge space with a cusp and cylindrical depression under SH wave incident is
investigated. According to the governing equation obtained after transformation, using the
free stress condition and Sommerfeld radiation condition at the boundary of both sides, the
expression of free wave field in the density radial inhomogeneous wedge space and the
expression of scattering wave field generated by the cylindrical depression are constructed.
The validation of this method is verified by setting the medium parameters to be similar to the
existing results. Then, the displacement distribution on the surface and inside of the wedge
space is calculated, and the influence of various parameters on the displacement distribution
is analyzed.
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(a) β = 1.25 α = 0◦ (b) β = 1.25 α = 30◦

(c) β = 0.75 α = 0◦ (d) β = 0.75 α = 30◦

Fig. 5.27 Internal displacement amplitude distribution of vertex angle 4π/3 under two
inhomogeneous parameters and incident angles



Chapter 6

Simulation of 3D wave problems in
semi-infinite space based on CUF

Numerical methods have a long-term history of development in wave problems, and the
employment of numerical methods for solving complex boundary or large-scale calculations
is a cost-effective approach. Research on numerical methods for solving wave problems is
also continuously being conducted. The finite element method (FEM) has the advantages
of clear physical concepts and accurate representation of complex geometries and material
properties; therefore, it has extensive applications and long development in wave problems,
especially in scattering problems of irregular shapes and media. FEM based on Carrera
Unified Formulation (CUF) has a general framework for higher-order structure theory with
variable kinematic description, which derives a three-dimensional description of the field
variables by describing the cross section and thickness of the one- and two-dimensional
models by the two-dimensional expansion function and the one-dimensional thickness
function, respectively, and the results are satisfied the accuracy of the full three-dimensional,
but significantly reduce the computational effort. This method is effectively improved the
computational speed in large wave propagation problems. During the joint training in MUL2
group, Politecnico di Torino, based on the FEM with CUF framework, an effective absorption
boundary and external wave input process are established in the self-developed Fortran
program, in this chapter. And then, applying the proposed process simulate and analyze the
wave propagation in the superstructure and layered media considering the external wave
input.
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Fig. 6.1 Model of generalized beam element

6.1 Finite element based on CUF framework

6.1.1 CUF theory

In this section we consider a general beam model as shown in Fig. 6.1, with the Cartesian
coordinate system (x,y,z), where the x− z plane and y direction represent the cross-section
and longitudinal axes of the 3D beam model, respectively, whose displacement vector could
be defined as

u(x,y,z) =
{

ux uy uz

}T
(6.1)

where ux, uy and uz are the displacement component, the superscript T stands for the
transposition operator. Stress σ and strain ε are as follows

σp = [σzz σxx σzx]
T ,εp = [εzz εxx εzx]

T

σn = [σzy σxy σyy]
T ,εn = [εzy εxy εyy]

T (6.2)

where the subscript n represents the terms laying on the cross-section and p represents the
terms laying on planes which are orthogonal to cross-section ω . Linear strain-displacement
relations are used

εp = Dpu

εn = Dnu = (Dnω +Dny)u
(6.3)

where

Dp =

 0 0 ∂/∂ z
∂/∂x 0 0
∂/∂ z 0 ∂/∂x

 ,Dnω =

0 ∂/∂ z 0
0 ∂/∂x 0
0 0 0

 ,Dny =

 0 0 ∂/∂y
∂/∂y 0 0

0 ∂/∂y 0


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According to Hooke’s law
σ = Cε (6.4)

Applying Eq. (6.2) to the above equation, can be obtained

σp = C̃ppεp + C̃pnεn, σn = C̃npεp + C̃nnεn (6.5)

where the coefficient matrices are as follows

C̃pp =

C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66

 , C̃nn =

C̃55 C̃45 0
C̃45 C̃44 0
0 0 C̃33

 C̃pn = C̃T
np =

0 0 C̃13

0 0 C̃23

0 0 C̃36


Based on the CUF framework, displacement field u could be defined as

u(x,y,z) = Fτ (x,z)uτ(y) τ = 1,2, ...,M (6.6)

where Fτ (x,z) is the cross-sectional expansion function that defines the cross-section kine-
matics of the numerical model, M denotes the number of terms of the polynomial in the
expansion function, and uτ (y) denotes the vector of generalized displacements. The use of
the expansion function on the cross-section of a one-dimensional model generates the corre-
sponding three-dimensional displacement field and the relevant three-dimensional strain and
stress tensor. The appropriate Fτ (x,z) and M were selected in order to determine the struc-
tural theory used in the model. Various basic functions, such as exponential and trigonometric
functions, are available as expansion functions without any modification to the formulas,
among which the more used ones are Taylor Expansion and Lagrange Expansion, the specific
expressions of these two expansions are given below.

6.1.2 Taylor expansion

The Taylor Expansion (TE) is based on the Taylor (McLaughlin polynomial) series, the
cross-sectional expansion function Fτ (x,z) is expanded to an order of N, and its polynomial
expansion can be obtained from Pascal’s triangle, as shown in Table ??.

Then, the second order Taylor expansion (N = 2), could be written as
ux = ux1 + xux2 + zux3 + xzux4 + x2ux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + xzuy4 + x2uy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + xzuz4 + x2uz5 + z2uz6

(6.7)
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Table 6.1 Taylor polynomials

order number Fτ

0 1 F1 = 1
1 3 F2 = x F3 = z
2 6 F4 = x2 F5 = xz F6 = z2

. . . . . . . . .
N (N +1)(N +2)/2 F(N2+N+2)/2 = xN . . . F(N+1)(N+2)/2 = zN

6.1.3 Lagrange expansion

Lagrange Expansion (LE) is the use of Lagrange interpolation polynomials to describe the
cross-sectional geometry. In CUF, the LE polynomial is related in cross-section using element
form, generally denoted as Ln, where n denotes the number of nodes in the cross-section
element. If a four-node element is used, the displacement field based on the Lagrange
polynomial can be expressed as 

ux =
4

∑
τ=1

Fτ(x,z)uxτ(y)

uy =
4

∑
τ=1

Fτ(x,z)uyτ(y)

uz =
4

∑
τ=1

Fτ(x,z)uzτ(y)

(6.8)

where τ indicates the number of nodes, uxτ ,uyτ ,uzτ is the translational degrees of freedom of
the nodes. Fτ on the quadrilateral domain defined in the natural coordinate system (r,s), LE
as a function of four interpolation points (L4) is

Fτ =
1
4
(1+ rrτ)(1+ ssτ) τ = 1,2,3,4 (6.9)

where r and s are defined from -1 to 1, rτ and sτ are the coordinates of the nodes τ . If
a nine-node element is used, its corresponding Lagrange Expansion function (L9) can be
written as

Fτ =

[
1
4

rrτ(1+ rrτ)+(1− r2)(1− r2
τ)

]
[

1
4

ssτ(1+ ssτ)+(1− s2)(1− s2
τ)

]
τ = 1,2,3, ...,9

(6.10)

By mapping, the functions defined in the natural coordinate system (r,s) could be
transformed into the Cartesian coordinate system (x,y) on the cross-sectional definition field,
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and the mapping function is as follows{
x = xτFτ(r,s)

z = zτFτ(r,s)
(6.11)

where xτ and zτ represent the coordinates of the nodes within the Cartesian coordinate system.
The result of the expansion using the LE function is a pure translational degree of freedom in
global coordinates, which has an advantage over TE higher order degrees of freedom that do
not have physical significance. Moreover, by increasing the number of Lagrange element,
the cross section can be locally refined.

6.1.4 Finite element method formulations

Adopting the Finite Element method to discrete the structure along the y axis and interpolating
the displacement variables along the y direction by means of the shape functionNi, Eq. (6.1)
could be written as

u(x,y,z) = Fτ(x,z)Ni(y)qτi τ = 1,2, ...,M, i = 1,2, ...,nN (6.12)

where qτi for the nodal displacement qτi =
[
qxτi qyτi qzτi

]T
, nN stands for the order of the

shape functions, the repeated subscripts i and τ denote the sum, with a range of one to the
number of elemental nodes and functions contained in the kinematic model, respectively. The
axial shape function Ni in the y-direction is independent of the choice of the cross-sectional
expansion function Fτ , thereby providing flexibility in the modeling process. As the 3D wave
propagation problem with damping can be expressed

As the 3D wave propagation problem with damping can be expressed

∇
2u+ f = ρü+ξ u̇ (6.13)

where f is the body force vector, ρ is the mass density, ξ is the damping coefficient and ∇ is
divergence operator.

Given the Principle of Virtual Work (PVK), the internal work δLint could be related to
the works of inertial δLiner, damping δLdamp and external loads δLext

δLint =−δLiner −δLdamp +δLext (6.14)
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where δ stands for the virtual variation. The substitution of Eqs. (6.3) and (6.12) into Eq.
(6.14) leads to the following expressions

δLint = δqT
τiK

i jτs
s qs j

δLine = δqT
τiMi jτsq̈s j

δLdamp = δqT
τiCi jτsq̇s j

δLext = δqT
τiFτi

(6.15)

where Ki jτs, Mi jτs, Ci jτs, Fτi are called Fundamental Nuclei (FN) of the stiffness matrix,
mass matrix, damping matrix, and external load vector, respectively. The additional in-
dexes s and j are used to express the virtual displacement vector in the unified formulation
δu(x,y,z, t) = Fs(x,z)N j(y)qs j(t) and they have the bounds of τ and i, respectively. The
process of assembling the overall stiffness matrix from the FN is given in Fig.6.2. FN is a
3×3 matrix of the following form

Ki jτs =

Kxx
τsi j Kxy

τsi j Kxz
τsi j

Kyx
τsi j Kyy

τsi j Kyz
τsi j

Kzx
τsi j Kzy

τsi j Kzz
τsi j

 (6.16)

The expressions of the above matrices are

Mi jτs =
∫

L

∫
Ω

(
NiFτρIN jFs

)
dΩdy

Ci jτs =
∫

L

∫
Ω

(
NiFτξ IN jFs

)
dΩdy

Ki jτs =
∫

L

∫
Ω

(
NiFτDT CDN jFs

)
dΩdy

Fτi =
∫

L

∫
Ω

(NiFτF)dΩdy =
∫

L

∫
Ω

(NiFτ f)dΩdy+
∫

S
(NiFτ tn)dS

+
∫

l
(NiFτQ)dl +

N

∑
i=1

(NiFτF)Pi

(6.17)

where L,Ω are the length and cross-section area of the element, while S, l are the external
surface and line boundaries of the element where the traction vector tn and the line force
vector Q is applied, Pi is point force to the element, I is the identity matrix. The global FE
matrices and vectors related to arbitrary kinematic expansions are automatically obtained by
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Fig. 6.2 Assembly of the global stiffness matrix from the FN
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permuting the four indexes and assembling the FN [18]. Eventually, the equation of motion
in the time domain are

Mü(t)+Cu̇(t)+Ku(t) = F(t) (6.18)

The Newmark time integration scheme is employed in this work to resolve the system. For
the sake of brevity, readers are referred to [124] for details about this implicit time integration
scheme.

6.2 Artificial boundary condition based on CUF framework
FEM

6.2.1 The establishment and realization of artificial boundary

Artificial boundaries are usually considered while researching the dynamic response under
elastic waves in a local region or intercepting the dynamic response of a partial region under
external forces for ensuring the accuracy of the simulation results. The LE approach has two
main features: (1) the kinematic field approximation can be varied locally, and (2) the nodal
unknowns are the displacements of the sectional nodes. In particular, the second feature is
shared with the conventional solid finite element formulations and significantly facilitates
the application of the local artificial boundaries. Based on this feature, spring and damping
are set at artificial boundary element nodes in combination with traditional finite element
formulas to establish a viscous-spring absorbing boundary (VSAB), as shown in Fig. 6.2.
The VSAB is a stress type local artificial boundary, which has a well effect on absorbing the
scattering wave energy on the boundary. Meanwhile, VSAB is able to simulate the resilience
of a semi-infinite space [86, 99, 98]. Moreover, the it also has a good simulation effect
and convenient calculation process when inputting external waves. Therefore, the use of
viscoelastic artificial boundaries lay a foundation for the subsequent research of the dynamic
response under plane elastic wave input from the outer space.

Fig. 6.3 schematically shows a generic 3D domain discretized with cubic elements. A
mechanical analog is applied at each node belonging to the five truncated surfaces to ensure
the transmitting conditions of an infinite media. Ki and Civalues represent the elastic and
damping coefficients along the three directions i = x,y,z of the springs and damping of the
mechanical analogs and they are defined as follows:

In-plane : KN = Al ·
1

1+A
λ +G

r
, CN = Al ·Bρcp, (6.19)
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Fig. 6.3 Model for viscous-spring artificial boundary condition

(a) Model (b) Time history

Fig. 6.4 Convergence analysis of five typical position displacement amplitudes increasing
with truncation term N

Out-of-plane : KT = Al ·
1

1+A
G
r
, CT = Al ·Bρcs, (6.20)

where Al indicates the area of the node l on the artificial boundary in the element, A
and B are the modified coefficients with the value of 0.8 and 1.1, λ stands for the lame
constant, G represents the shear modulus, r is the distance between the wave source and the
artificial boundary, cp and cs are the shear wave velocity and compression wave velocity and
ρ denotes the density of the media.

6.2.2 Convergence and artificial boundary validity analysis

The finite element solution in the framework of CUF is realized by applying the self-
developed Fortran program code of the MUL2 group. In order to verify the validation of
establishing artificial boundaries, the Lamb problem with concentrated loads applied to the
semi-infinite space surface is analyzed. The computational model is shown in Fig. 6.4 (a),
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Fig. 6.5 Convergence analysis

the top surface of the model is the free boundary, the other five surfaces are set artificial
boundary, the model size is 100m×100m×100m, the media parameters are set as follows,
density ρ = 1800kg/m3, Poisson’s ratio υ = 0.25, shear wave velocity cs = 50m/s, external
concentrated load is a single pulse wave load as Eq. (6.21), where F0 = 10KN, T0 = 0.5s,
H(·) is the Heaviside step function, the time history is shown in Fig. 6.4 (b)
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(6.21)
Observe the displacement distribution of point A with time under the action of point

source load, as shown in Fig. 6.5. As can be seen, when the element at section xoz divided
using the CUF frame finite element method reaches 64L9, the calculation results converge.
Comparing this result with the analytical result, it can be seen that the artificial boundary
established based on this method has an effective absorption effect.

6.3 External wave input

6.3.1 General formulation of equivalent load

While considering the influence of external wave source inputs such as earthquakes in the
near-field wave analysis, the artificial boundary part needs to be treated. In the case of
applying artificial boundary conditions to the response analysis of the external wave source
interaction, the wave input is associated with the adopted artificial boundary conditions. For
the viscous-spring artificial boundary, the external waves are converted to equivalent nodal
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forces at the artificial boundary nodes. The equivalent nodal force fli at node l in direction i
is

fli = Kliu
f
li +Cliu̇

f
li +Alσ

f
li (6.22)

where Kli and Cli are the spring and damping coefficient corresponding to the i-direction of
node l, respectively. σ

f
li is the stress of node l in i-direction.

6.3.2 Specific expressions of equivalent nodal force

Elastic waves can be divided into P waves, SV waves, and SH waves, and waveform
conversion can occur when P and SV waves propagate to a free surface under incident
conditions. Therefore, it is necessary to discuss the equivalent nodal forces for different
wave forms of incident. The specific expression of the equivalent nodal force for SV wave
incidence is similar to that for P wave incidence. Therefore, this section only gives the
specific expression of the equivalent nodal force under the incidence of P and SH waves.

P wave incident

This section takes the oblique incidence of P-wave in isotropic homogeneous media as an
example. Fig. 6.6 gives the coordinate system setting and the finite element model of oblique
plane P-wave incident Pi. α is the angle between the plane dependent on the incident wave
and reflected wave and the x axis, and β is the angle between the Pi propagation direction
and the positive direction of the y axis. The coordinate origin is the wavefront at zero time,
and the point A (x0,y0,z0) is the node on the model truncation boundary. The incident wave
is oblique in general, so reflected P wave Pr and reflected SV wave SVr would be generated
at the free boundary.

The displacement in x,y,z directions on node A for Eq. (6.22) can be expressed as

ux =

(
ui

p sinβ +A1ur
p sinβ +A2

cp

cs
ur

sv cosβs

)
sinα (6.23)

uy =

(
ui

p sinβ +A1ur
p sinβ +A2

cp

cs
ur

sv cosβs

)
cosα (6.24)

uz =
(
ui

p −A1ur
p
)

cosβ +A2
cp

cs
ur

sv sinβs (6.25)

where ui
p,u

r
p,u

r
sv represents the displacement caused by incident P wave, reflected P wave

and reflected SV wave, respectively, A1 is the amplitude ratio of reflected P to incident
P waves, A2 is the amplitude ratio of reflected SV to incident P waves, βs is the re-
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Fig. 6.6 Model for P wave oblique incident

flection angle of the reflected SV wave, according to Snell’s law can be derived from,
A1 =

sin2β sin2βs−(sinβ/sinβs)
2 cos2 2βs

sin2β sin2βs+(sinβ/sinβs)
2 cos2 2βs

, A2 =
2sin2β cos2βs

sin2β sin2βs−(sinβ/sinβs)
2cos22βs

, sinβs =
cs sinβ

cp
.

The displacement vectors ui
p,u

r
p,u

r
sv can be describe as

ui
p =U (t −∆t1) (6.26)

ur
p = A1U (t −∆t2) (6.27)

ur
sv = A2U (t −∆t3) , (6.28)

where ∆ti (i = 1,2,3) indicates the time delay between the arrival of the incident P wave, the
reflected P wave and the reflected SV wave at node A, the expressions are given as:

∆t1 = [(x0 − x1)sinβ cosα +(y0 − y1)sinβ sinα +(z0 − z1)cosβ ]/cp,

∆t2 = [(x0 − x1)sinβ cosα +(y0 − y1)sinβ sinα +(z0 − z1)cosβ

+2(Lz − z0 + z1)cosβ ]/cp,

∆t3 = [(x0 − x1)sinβ cosα +(y0 − y1)sinβ sinα +(z0 − z1)cosβ

+(Lz − z0 + z1)cos(β +βs)/cosβs]/cp +(Lz − z0 + z1)/cs cosβs.
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Based on the stress-strain relationship, stresses on each node read

σ i
xp σ r

xp σ r
xsv

σ i
yp σ r

yp σ r
ysv

σ i
zp σ r

zp σ r
zsv

τ i
xyp τr

xyp τr
xysv

τ i
yzp τr

yzp τr
yzsv

τ i
xzp τr

xzp τr
xzsv



=



−ρcp[µ+ξ sin2
β sin2

α]
1−µ

· u̇i
p −A1ρcp[µ+ξ sin2

β sin2
α]

1−µ
· u̇r

p −A2ρcp sin2βssin2
α · u̇r

sv

−ρcp[µ+ξ sin2
βcos2α]

1−µ
· u̇i

p −A1ρcp[µ+ξ sin2
βcos2α]

1−µ
· u̇r

p −A2ρcp sin2βscos2α · u̇r
sv

−ρcp[µ+ξ cos2β ]
1−µ

· u̇i
p −A1ρcp[µ+ξ cos2β ]

1−µ
· u̇r

p A2ρcp sin2βs · u̇r
sv

−Gsin2
β sin2α

cp
· u̇i

p −A1Gsin2
β sin2α

cp
· u̇r

p −A2
2 ρcp sin2βs sin2α · u̇r

sv

−Gsin2β cosα

cp
· u̇i

p
A1Gsin2β cosα

cp
· u̇r

p A2ρcp cos2βs cosα · u̇r
sv

−Gsin2β sinα

cp
· u̇i

p
A1Gsin2β sinα

cp
· u̇r

p A2ρcp cos2βs sinα · u̇r
sv


,

(6.29)
where ξ = 1−2µ .

The presentation of equivalent loads on the boundary nodes at different locations of
the VSAB model varies, the equivalent loads on the boundary surface nodes with the outer
normal direction of x axis read

Fx = KNux +CN u̇x − (−1)kAlσx (6.30)

Fy = KT uy +CT u̇y − (−1)kAlτxy (6.31)

Fz = KNuz +CN u̇z − (−1)kAlτxz (6.32)

The equivalent loads on the boundary surface nodes with the outer normal direction of y
axis read

Fx = KNux +CN u̇x − (−1)kAlτyx (6.33)

Fy = KT uy +CT u̇y − (−1)kAlσy (6.34)

Fz = KNuz +CN u̇z − (−1)kAlτyz (6.35)

The equivalent loads on the boundary surface nodes with the outer normal direction of z
axis read

Fx = KNux +CN u̇x − (−1)kAlτxz (6.36)
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Fig. 6.7 Model for SH wave oblique incident

Fy = KT uy +CT u̇y − (−1)kAlτyz (6.37)

Fz = KNuz +CN u̇z − (−1)kAlσz (6.38)

where, if the outer normal direction is positive with axis k = 1 , else the outer normal direction
is negative with axis k = 0 .

SH wave incident

In the case of incident SH wave, Fig. 6.7 indicates the coordinate system setting and the
oblique incident plane SH wave finite element model, α and are β the incident angles, are
the included angles between SH i propagation direction and the y and z axes, respectively.
The coordinate origin is the wavefront at zero time, and the point A (x0,y0,z0) is the node on
the model truncation boundary. The incident wave is the oblique incident in general, and the
displacements expression in the direction x,y,z of node A are

ux = (ui
SH −ur

SH)cosα (6.39)

uy =−
(
ui

SH +ur
SH
)

sinβ (6.40)

uz = 0 (6.41)
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where ui
SH , ur

SH represents the displacement caused by incident SH wave, reflected SH wave,
respectively. Displacement vector ui

SH , ur
SH are

ui
SH =U (t −∆t1) (6.42)

ur
SH =U (t −∆t2) (6.43)

where ∆ti (i = 1, 2) indicates the time delay between the arrival of the incident SH wave, the
reflected SH wave at node A, the expressions are given as

∆t1 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +(z0 − z1)cosβ ]/cs

∆t2 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +(z0 − z1)cosβ

+2(Lz − z0 + z1)cosβ ]/cs
.

Based on the stress-strain relationship, the stress on the node is as follows

σ i
xSH σ r

xSH

σ i
ySH σ r

ySH

σ i
zSH σ r

zSH

τ i
xySH τr

xySH

τ i
yzSH τr

yzSH

τ i
xzSH τr

xzSH


=



ρcs sinβ sin2α · u̇i
SH ρcs sinβ sin2α · u̇r

SH

−ρcs sinβ sin2α · u̇i
SH −ρcs sinβ sin2α · u̇r

SH

0 0
ρcs sinβ cos2α · u̇i

SH ρcs sinβ cos2α · u̇i
SH

−ρcs cosβ sinα · u̇i
SH ρcs cosβ sinα · u̇i

SH

ρcs cosβ cosα · u̇i
SH −ρcs cosβ cosα · u̇i

SH


(6.44)

According to Eqs. (6.30)-(6.32), the input load of each node at the boundary could be
obtained.

6.3.3 Verification

The implementation process in this section is based on a self-developed FORTRAN program.
To verify the validation of the input method and the implementation of program, the semi-
infinite elastic space is selected as the model in this section to simulate the propagation
process of P-waves. The model size is 0 ≤ x ≤ 800, 0 ≤ y ≤ 800 and 0 ≤ z ≤ 600, its finite
element model created by utilizing 16 B2 beam element and 1024 LE4, as shown in Fig. 6.8.
Point A (400,400,600) is a selected observation point. The properties of elastic half-space
is assumed as, elastic modulus E is 1GPa, the Poisson’s ratio ν is 0.3, the density ρ is
2000kg/m3. The pulse function time history equation for P wave input is as Eq. (6.21),
F0 = 1kN, T0 = 0.5s.
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Fig. 6.8 Model for finite element

Fig. 6.9 indicates the displacement distribution in the semi-infinite space when a plane
P wave is incident at three incident angles. The reflected P wave and reflected SV wave
caused by the incident P wave on the free surface are clearly observed from Figs. 6.9 (b) and
(c). Moreover, there is no occurrence of reflected SV waves when vertical incident to the
free surface. In addition, under three incident angles, the displacement amplitude at the free
surface is twice as the incident displacement amplitude, which conforms to the propagation
characteristic of elastic waves. At t = 2.0s, the reflected wave basically travels away, and
there is no obvious presence of reflected waves caused by truncated boundaries within the
model. Moreover, the comparison between the displacement results in the z-direction and the
analytical results under the three incident conditions at observation point A is given in Fig.
6.10, which illustrates that the simulation results in this section are in well agreement with
the analytical results. The above calculation results indicate that the simulation method used
in this section has well simulation accuracy. Comparing with the traditional finite element
methods for simulation, finite element methods based on the CUF framework effectively
improves computational time, reduces element usage, and reduces computational costs.

6.3.4 Numerical results and discussion

Since analyzing the dynamic response of an external elastic wave under its incidence, it is
usually assumed that the elastic external wave is vertically incident for simulation calculations.
However, a large number of researches have demonstrated that small changes in the incident
angles of elastic waves may have a significant impact on the dynamic response of structures.
Therefore, this section mainly investigates the ground motion and dynamic response of the
superstructure under the incident of multi-angle external elastic waves. The calculation model
and finite element are shown in Fig. 6.11. The semi-infinite space used in the model is sized
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(1)
(a) t = 0.5 s (b) t = 1.0 s (c) t = 1.5 s (d) t = 2.0 s

(2)
(e) t = 0.5 s (f) t = 1.0 s (g) t = 1.5 s (h) t = 2.0 s

(3)
(i) t = 0.5 s (j) t = 1.0 s (k) t = 1.32 s (l) t = 1.72 s

Fig. 6.9 Semi-infinite space displacement contours: case (1), case (2) and case (3).

(a) case (1) (b) case (2) (c) case (3)

Fig. 6.10 Comparison of displacements of point A in the three cases.
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(a) Calculation model (b) Infinite element model

Fig. 6.11 Calculation model for half-space with surface structure

as L1 = 50m, b1 = 50m, h1 = 25m, the ground surface structure is set as L2 = 10m, b2 = 20m,
h2 = 50m. For simulate different types of space ground, three types soft, intermediate and
stiff are considered, which are characterized by different compressional wave velocities
cp1 = 120,360,600m/s, the compressional wave velocity of ground surface structure is set
as cp2 = 3.84× 103m/s. The selected observation point A is located at (25, 25, 75). The
density underground ρ1 = 2600kg/m−3, surface structure ρ2 = 4850kg/m−3, Possion’s ratio
are both υ = 0.25, elastic modulus E = ρicpi

2(1+υ)(1−2υ)/2(1−υ), i = 1,2.

Convergence analysis

Before performing the calculations, a convergence analysis of the meshing was carried out
to allow for more time efficient and accurate subsequent calculations. Fig. 6.12 illustrates
the displacement of observation point C (15, 25, 25) under three mesh conditions when a
concentrated force F = 10GPa is applied at point B (25, 25, 25) and the pulse function time
history equation for P wave input is as Eq. (6.21), F0 = 0.25kN, T0 = 0.25s. By comparing
the results of the three situation, it is evident that the requirements are satisfied when using
200 LE4-20B2 elements. Therefore, the used calculation model has been consisted of 20 2-
node beam elements along the y axis, 200L4 and 80L4 elements have been used to discretize
the sections of the space and surface structure, respectively.
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Fig. 6.12 Convergence analysis

P wave incident

In order to explore the influence of different incident angles on the displacement distribution
of the superstructure under the incident P wave, three groups of incident angles are given at
cp1 = 120m/s, (a) vertical incident α = 0◦,β = 0◦, (b) oblique incidence α = 0◦,β = 20◦,
(c) oblique incidence α = 30◦,β = 20◦, as shown in Fig. 6.13. From the three sets of
displacement distribution that at 0.45s, the incident P wave reaches the free surface and
produces a reflected wave, which bring a large displacement at the ground free surface. At
0.75s, the incident wave reaches the superstructure, and is reflected at the corresponding
position of the superstructure to form a large displacement distribution, and only the reflected
wave continues to propagate downward in the underground media. While the time reaches
0.9s, the reflected wave in the underground media gradually disappears, and almost no
reflected wave is generated at the artificial boundary, which also verifies the validity of the
artificial boundary established in section 6.2. However, the boundary in the upper structure is
more complicated, and there are still reflection phenomena, so the displacement distribution
is also more complicated. From Fig. 6.13 (a) that in the case of normal incidence of P
wave, no reflected S wave is generated, therefore the superstructure only shows compressive
deformation. In addition, when the incident wave reaches the superstructure, scattering waves
are generated at the corners of the bottom of the structure. As the incident wave becomes
obliquely incident, the deformation of the superstructure becomes more complex due to
the presence of reflected SV waves, adding shear deformation from the single compression
deformation, as shown in Figs. 6.13 (b) and (c). Moreover, under the conditions of the media
parameters, when the incident angle β is the same, at the same moment, the displacement
distribution and deformation of the superstructure are almost the same.

At the same time, Fig. 6.14 reports the displacement and stress of observation point
A changing with time under the above conditions. It can be found that when the incident
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(1)
(a) t = 0.35 s (b) t = 0.45 s (c) t = 0.75 s (d) t = 0.9 s

(2)
(e) t = 0.35 s (f) t = 0.45 s (g) t = 0.75 s (h) t = 0.9 s

(3)
(i) t = 0.35 s (j) t = 0.45 s (k) t = 0.75 s (l) t = 0.9 s

Fig. 6.13 Displacement distribution of underground media with wave velocity cp1 = 120m/s
under three P wave incident angles
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(a) Displacement (b) Stress α = 0◦ β = 0◦

(c) Stress α = 0◦ β = 20◦ (d) Stress α = 30◦ β = 0◦

Fig. 6.14 Displacement and stress of point A with cp1 = 120m/s and three incident P wave
angle
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(a) Displacement (b) Stress

Fig. 6.15 Displacement and stress of point A with cp1 = 120m/s and different α

angle situation is changed, the distribution of displacement is almost the same. As the
incident angle β increases, the maximum displacement tends to increase, and the time to
reach the maximum displacement is prolonged. However, with the change of the angle α ,
the displacement distribution hardly changes, as shown in Fig. 6.14. In Figs. 6.14(b)-(d), the
stress at observation point A changes with time. Comparison these three figures, it clearly
shows that the normal stress σz is the maximum stress, and at α equals to 0◦ the shear stress
τxy and τxz are almost zero, while when α is changed, the shear stress τxy and τxz fluctuates
greatly with time, which also verifies that the oblique In the incident case a reflected S
wave is generated. And, under the same incident angle β , the stress with time is almost the
same. This also further illustrates that in the case of higher rigidity of the superstructure, the
change of the angle α has little influence on the displacement and stress distribution of the
superstructure under P wave incident.

For further investigation the effect of incident angle α on the distribution of displacement
and stress, the displacement and principal stress σz at observation point A are calculated
for different values of incidence angle β = 0◦, and the results are reported in Fig. 6.15.
Under the same incidence angle β , the change of α has less effect on the distribution of
displacement, and the overall distribution is almost the same. With α changes from 0◦ to
other angles, the effect of the displacement distribution is reflected in the time delay, and at
α ̸= 0◦, the displacement distribution overlaps, as shown in Fig. 6.15(a). The distribution of
principal stresses σz in response to the change in α is also reflected in the time delay. The
above calculation mainly considers the effect of the incident angle on the displacement and
stress of the superstructure for a wave velocity cp1 = 120m/s in the subsurface media. The
physical properties of the subsurface media also have a significant effect on the response
of the superstructure to incident waves. Therefore, this section investigates the effect of
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(a) Displacement (b) Stress

Fig. 6.16 Displacement and stress of point A with cp1 = 360m/s and different α

(a) Displacement (b) Stress

Fig. 6.17 Displacement and stress of point A with cp1 = 600m/s and different α

incident angle on the displacement and stress of the superstructure for different subsurface
wave velocities. Compared with Fig. 6.15, there is a significant increase in displacement
at observation point A when the wave velocity in the subsurface media reaches 360 m/s.
At this wave speed, when the incident angle is 0, the change of a has a small effect on
the displacement and stress at point A. The increase of the incident angle β has a small
advanced effect on the displacement and stress values, and the more obvious effect is the
time rises of the response to wave at the location of point A, under α = 0◦. At the situation
of wave velocity in the subsurface media reaches 600 m/s, there is a further increase in the
displacement and stress at point A, as shown in Fig. 6.15. However, at this condition in the
subsurface media, the displacement and stress remain almost constant with the variation of
the incidence angles α and β , especially the stress. Figs. 6.15- 6.17 clearly demonstrate
that the larger the wave velocity in the subsurface media, the larger the elastic modulus
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(a) cp1 = 120m/s (b) cp1 = 360m/s (c) cp1 = 600m/s

Fig. 6.18 Displacement under different incident P wave angle with three wave velocity

of the subsurface media, the larger the displacement and stress of the superstructure, and
the smaller the effect of the incident angle α . To investigate further the effect of incidence
angle on the displacement of the superstructure at different wave velocities in the subsurface
media, calculations were performed for different incidence angles β . From Fig.6.18. it can
be observed that the displacement tends to decrease gradually with the increasing incidence
angle β (from vertical to horizontal incidence) under the conditions of three groups of
subsurface media wave velocities. It is noteworthy that the maximum value of displacement
occurs at β = 10◦ when the wave velocity is 120m/s and 360m/s, and occurs at β = 0◦ when
the wave velocity reaches 600m/s. Therefore, it is necessary to consider the case of oblique
incidence in researching the interaction between the subsurface media and the superstructure,
especially when the elastic modulus of the subsurface media is small.

SH wave incident

In the process of earthquake wave effects on the superstructure, out plane shear waves, SH
waves, propagate to the superstructure with more intense shear damage to the superstructure.
Therefore, the dynamic response of the superstructure under SH wave incidence is analyzed
in this section. Fig. 6.19 shows the displacement distribution of the SH wave at the same
time step under three incidence angles for cp1 = 120m/s. The superstructure clearly exhibits
shear deformation under SH wave incidence. In the case of two oblique incidence, Figs.
6.19 (b) and (c), the incident wave reaches the superstructure at 0.9s, and the displacement
distribution as well as deformation are similar at 1.2s and 1.5s for the two incidence angles.
Meanwhile, the maximum displacement under SH wave incidence occurs at the top surface
of the superstructure compared to P wave incidence, moreover, the maximum value increases
compared to P incidence. Similarly, to investigate the effects of incidence angles α and β on
the displacement and stress at observation point A under SH-wave incidence, calculations
were performed for different incidence angles at cp1 = 120m/s, the results are shown in
Fig. 6.20. With increasing incidence angles, the displacement response to wave is delayed
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(1)
(a) t = 0.6 s (b) t = 0.9 s (c) t = 1.1 s (d) t = 1.5 s

(2)
(e) t = 0.6 s (f) t = 0.9 s (g) t = 1.2 s (h) t = 1.5 s

(3)
(i) t = 0.6 s (j) t = 0.9 s (k) t = 1.2 s (l) t = 1.5 s

Fig. 6.19 Displacement distribution of underground media with wave velocity cp1 = 120m/s
under three SH wave incident angles
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(a) Displacement (b) Stress

Fig. 6.20 Displacement and stress of point A with cp1 = 120m/s and different incident angle

(a) cp1 = 120m/s (b) cp1 = 360m/s (c) cp1 = 600m/s

Fig. 6.21 Displacement under different incident SH wave angle with three wave velocity

significantly, while the stress has a large undulating change. Compared with Fig. 6.15,
the displacement and stress at observation point A under the incidence of SH wave are
significantly larger than those at the incidence of P wave, and the effects of both the incidence
angle α and βon the displacement and stress are more obvious.

Consequently, under the incident angle α =0 of SH wave, the displacement distribution
of observation point A with incident angle β variation under three wave velocities is shown
in Fig. 6.21. As cp1 = 120 m/s, the displacement of point A decreases significantly with the
increasing of incident angle β (from vertical to horizontal) from Fig. 6.21(a). And when cp1

is changed to 360 m/s and 600 m/s, there is a clear increase in displacement. It can be seen
from Fig. 6.21 that when β reaches 80◦, the displacement response time at point A reduction.
However, different from the P-wave incidence, the influence of β on the displacement at
point A at the same cp1 decreases gradually as the cp1 increases. Moreover, compared with
incident P-wave, displacement of point A under SH-wave incident is larger at the same wave
velocity.
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Fig. 6.22 Model for layered media and artificial boundary setting

6.4 External wave input of layered media

It is of vital theoretical and practical engineering significance to investigate the propagation
characteristics of elastic waves in layered media. While exploring the character of wave
propagation in inhomogeneous media, continuous inhomogeneous media is used to divide
into layered media for simulation. In addition, considering practical applications, such as
in the field of seismic engineering, layered media is simulated the situation of underground
soil media. Therefore, this section researches the input methods of external elastic waves of
layered media. By using the FEM under the CUF framework to model the layered model, it
is only necessary to change the material properties of the nodes of each layer to complete
the establishment of the layered model. Meanwhile, the input of external waves in layered
media has always been the key to solving the problem of ground motion response. Thus, this
section gives the input method and implementation process of the external domain wave in
the layered media. The layered media model and artificial boundary settings are shown in
Fig. 6.22.

The corresponding springs and dampers are still set in the three directions of the nodes at
the artificial boundary, and the parameters are as Eqs. (6.17) and (6.18). At the nodes of the
layer boundary, as shown by node b, the corresponding parameters need to be calculated in
each layer respectively. In a layered media, when an elastic wave enters another media from
one media, a transmitted wave and a reflected wave will be generated at the interface of the
two media, the reflected wave will propagate downward in the incident media layer, and the
transmitted wave will continue to propagate upward in the incident media layer. Therefore,
it is necessary to calculate the amplitude ratio of the reflected wave and the transmitted
wave. Taking P wave vertical incident as an example. When P wave incident from layer
(n−1) to layer n, the amplitude ratios of the reflected P wave and the reflected S wave to the
incident P wave in layer (n−1) are recorded as ArP(n−1)n and ArSV (n−1)n, respectively. And
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the amplitude ratios of the transmitted P wave and the transmitted S wave to the incident
wave in layer n are recorded as AtP(n−1)n and AtSV (n−1)n, respectively. While P wave incident
from layer n to layer (n−1), the corresponding amplitude ratios are recorded as ArPn(n−1),
ArSV n(n−1), AtPn(n−1), AtSV n(n−1), and the corresponding expressions are as follows

Ar j(n−1)n =
1− ρnc jn

ρn−1c j(n−1)

1+ ρnc jn
ρn−1c j(n−1)

(6.45)

At j(n−1)n =
2

1+ ρnc jn
ρn−1c j(n−1)

(6.46)

Ar jn(n−1) =

ρnc jn
ρn−1c j(n−1)

−1

1+ ρnc jn
ρn−1c j(n−1)

(6.47)

At jn(n−1) =
2 ρnc jn

ρn−1c j(n−1)

1+ ρnc jn
ρn−1c j(n−1)

(6.48)

where j = P,S, denote the P wave and S wave velocity, ρn and ρn−1 denote the layer n
and (n−1) density, respectively, c jn and c j(n−1) are the corresponding P wave and S wave
velocity in layer n and (n−1).

6.4.1 Plane SH wave input in layered media

This subsection is based on the external wave input method in Section 6.3, and the influence
of the parameters of each layer on the SH wave propagation when the SH wave is incident
to the double-layer media at an angle β with the positive direction of the z-axis, and the
angle α between the incident wave and the plane determined by the reflected wave and the
y-axis is used as an example to give the input method and process of the external SH wave
in the double-layer media. The calculation model is shown in Fig. 6.23, L1 and L2 are the
layer heights of the two layers respectively. In layer 1, the total number of waves is W, the
media density is ρ1, and the wave velocity is cs1. In layer 2, the total number of waves is M,
the media density is ρ2, and the wave velocity is cs2. The displacement of random node A
(x0,y0,z0) in layer 1 can be expressed as

u1
x = ui

SH cosα −Ars12ur
SH cosα −

W

∑
b=3

(Ars21)
j−3Ats12Ats21ut

sH cosαs (6.49)
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Fig. 6.23 The wave propagation of SH wave incident in the layered media

u1
y =−ui

SH sinα −Ars12ur
SH sinα −

W

∑
b=3

(Ars21)
j−3Ats12Ats21ut

sH sinαs (6.50)

u1
z = 0 (6.51)

where sinαs = sinα .
In layer 2, the displacement of random node B (x0,y0,z0) are presented as

u2
x =

M

∑
a=3

(−Ars21)
ϕ(a)Ats12ut2

sH cosαt (6.52)

u2
y =

M

∑
a=3

(−Ars21)
ϕ(a)Ats12ut2

sH sinαt (6.53)

u2
z = 0 (6.54)

where sinαt = cs1/cs2 · sinα , ϕ(a) = (2k−3− (−1)k)/4, ui
SH , ur

SH , ut
SH denote the displace-

ments caused by incident SH waves, reflected SH waves and transmitted SH waves in layer
1, respectively; ut2

SH is the displacements caused by transmitted SH waves in layer 2, and the
above displacement vectors can be described as

ui
SH =U (t −∆t1) (6.55)

ur
SH =U(t −∆t2) (6.56)

ut
SH =U(t −∆t3) (6.57)
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ut2
SH =U (t −∆t4) (6.58)

where ∆ti (i = 1,2,3,4) is indicates that the time delay between the arrival of the incident SH
wave and the reflected SH wave at node can be given as

∆t1 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +(z0 − z1)cosβ ]/cs1

∆t2 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +(z0 − z1)cosβ

+2(L1 − z0 + z1)cosβ ]/cs1

∆t3 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +(z0 − z1)cosβ

+2(L1 − z0 + z1)cosβ ]/cs1 +2L2 · (b−2)cosβt/cs2

∆t4 = [(x0 − x1)sinβ sinα +(y0 − y1)sinβ cosα +L1 cosβ ]/cs1

+[(x0 − x1)sinβt sinαt +(y0 − y1)sinβt cosαt +(L1 − z0 + z1)cosβt ] · (−1)a/cs2

+[(x0 − x1)sinβt sinαt +(y0 − y1)sinβt cosαt +2L2 cosβ ] · (a−0.5+0.5 · (−1)a)/cs2

where sinβt = cs1/cs2 · sinβ .
Depending on the stress-strain relationship, the stress expression of each node can be

obtained, and the equivalent load of each node can be obtained by the Eqs. (6.30)-(6.38).

6.4.2 Validation

For verification of the given input method of SH waves in layered media, a two-layer media
model is used as an example for calculation, and the calculation model is shown in Fig. 6.24.
The model size is L = 20m, b = 20m and h1 = h2 = 25m, the finite element model created
by using 20 B2 beam element and 64 LE4. Points A (10,10,50) and B (10,10,0) are the
selected observation point. The properties of elastic model is assumed as, elastic modulus E
for layer one is 24MPa, for layer 2 is 6MPa, the Poisson’s ratio ν is 0.25, the density ρ is
200kg/m3. The pulse function time history equation for SH wave input is as Eq. (6.21) with
F0 = 1, T0 = 0.25.

Fig. 6.25 illustrates the displacement of observation points A and B compared with the
existed results. From Fig. 6.25, it can be observed that the transmission and reflection of the
wave due to the layered can be reflected in the displacement distribution, and the reflected and
transmitted waves gradually weaken with time. The comparison with the analytical results
and existed result verifies the validation of the proposed method in this section. Moreover,
the method used in this section saves considerable degrees of freedom (DOF) compared
with the existed results [13] under the condition that the accuracy is guaranteed. Fig. 6.26
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Fig. 6.24 Calculation model for two-layered media under SH wave incident

shows the temporal displacement distribution, and the reflected wave generated by SH wave
propagation through stratification can be observed.

6.5 Summary

Based on the FEM of CUF framework, this chapter established the artificial boundary,
external P wave and S wave inputs, and the external wave input process for layered media,
therefore, the dynamics simulation under the external wave input is available performed for
the infinite space or the region with truncated boundary. It is verified that the method and the
implementation procedure presented in this chapter are validated and have the advantage of
saving model degrees of freedom and improving the computational speed compared to the
existing results while maintaining computational accuracy. The proposed method is applied
to influence the incident angle at the external wave input on the superstructure dynamics for
different wave velocities in the subsurface media. The results indicated that the incident angle
has different effects under P wave and S wave incident, hence the analysis of the incident
angle on the dynamic response cannot be neglected in the correlation analysis.
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(a) Displacement of Point A (b) Displacement of Point B

Fig. 6.25 Displacement distribution under SH wave input in two-layered media

(a) t=0.8s (b) t=0.9s

Fig. 6.26 Displacement distribution under SH wave input at t = 0.8s and t = 0.9s



Chapter 7

Conclusions

7.1 Concluding remarks

Based on the elastic wave theory and the complex function method, SH wave scattering by
surface depression and convex in density radial inhomogeneous media with varying wave
velocity is investigated in this thesis. Applying the standard Helmholtz equation obtained by
transformation function, the analytical solution of SH wave scattering by surface depression
is presented. Based on this solution, SH wave scattering problem of surface convex and
convex with cylindrical cavity is explored by employing RMT. Subsequently, considering
the influence of research range, the dynamic response of the density radial inhomogeneous
wedge region under SH wave incident is discussed. Based on the boundary conditions and
radiation conditions on both sides of the wedge, the analytical solution of the research region
free wave field is proposed. Furthermore, the influence of the wedge space with a cusp and a
cylindrical depression on the dynamic response is considered. The effects of incident angle,
dimensionless frequency, inhomogeneous parameter and radius ratio of the cylindrical cavity
to the convex on the distribution of surface displacement amplitude and DSCF are calculated
and discussed. The conclusions are as follows:

1. In the scattering of SH waves by inhomogeneous media surface depression, the
inhomogeneous parameters and incident angle have a great influence on the displacement
amplitude distribution, and the dimensionless frequency presents a positive correlation
with the displacement amplitude. The amplification effect of surface depression on the
displacement amplitude is proportional of inhomogeneous parameter. Moreover, the surface
depression amplification effect is weaker as inhomogeneous parameter β < 1 than that
of the homogeneous media. As the incident angle varies from horizontal to vertical, the
displacement increases on the whole. However, under the joint action of the incident angle
and the inhomogeneous parameter, the value range of the inhomogeneous parameter (greater
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than 1 or less than 1) at different incident angles may exhibition different effects on the
distribution.

2. For the scattering problem of surface semi-cylindrical convex and semi-cylindrical
convex containing cylindrical cavity on the in inhomogeneous media, when the dimensionless
frequency is about 2, the displacement amplitude distribution will have a sudden change. The
inhomogeneous parameter and the incident angle still have different effects on the surface
and internal displacement amplitude distribution. In addition, compared with the surface
depression amplification coefficient with the same parameters, the displacement amplification
coefficient in surface convex is smaller than that in surface depression, especially at horizontal
incidence. Meanwhile, the amplification coefficient with the advanced of dimensionless
frequency then increases only at the inhomogeneous parameter is less than 1. DSCF around
a cylindrical cavity, the ascender of inhomogeneous parameters makes the distribution more
complicated.

3. In the inhomogeneous media, the displacement amplitude of the wedge space with
a cusp γ/2 still exists at the vertex, while the maximum displacement amplitude does not
necessarily appear at the cusp. Moreover, the inhomogeneous parameter have great influence
on the distribution of displacement amplitude. At the vertex angle is cylindrical depres-
sion, the displacement amplification coefficient is inversely proportional of inhomogeneous
parameter under the same wedge angle. Under the same inhomogeneous parameter, it is
proportional of incident angle. By comparing the two types of vertex angle, the scattering
wave is generated by the cylindrical depression, which has certain influence on the surface
and internal displacement distribution.

4. Applying the FEM based on the CUF framework simulates the dynamic response of
the truncated region with superstructure under the input of external elastic wave. Furthermore,
the incident angle has obvious influence on the displacement distribution in the research
region under the SH wave incident. Compared with the other existing resulting by employing
FEM, the total DOF of the element used in this chapter is smaller and the calculation time is
faster.

Highlight of this thesis

1. Based on the complex variable function method, the analytical solution to the SH wave
scattering caused by semi-cylindrical depressions on the radially inhomogeneous media sur-
face with variable wave velocity and density is derived, and the effect of surface depressions
on the displacement amplitude distribution under the action of inhomogeneous parameters is
analyzed and discussed.
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2. Applying the region matching technique, an analytical solution to the SH wave
scattering problem of semi-cylindrical convex on the surface and semi-cylindrical convex
with cylindrical cavity in a radially inhomogeneous media with variable wave velocity density
is proposed. The corresponding wave field expression is constructed, and the surface and
internal displacement amplitude and the dynamic stress concentration factor around the
cavity are obtained. The amplifying effects of surface convex and surface depression on the
displacement amplitude under inhomogeneous parameters are given.

3. The dynamic response of the dense radial inhomogeneous wedge space under the
incident SH wave is investigated. A free wave field expression is constructed for a radially
inhomogeneous wedge space with a vertex angle of (0,2π), which satisfies two boundary
conditions. Considering two cases where the vertex angle of the wedge is a sharp point and a
cylindrical depression, the influence of each parameter on the displacement amplitude of the
surface and inside of the media is analyzed and discussed.

4. Based on the FEM under the CUF framework, a viscous-spring artificial boundary is
established, which can simulate the dynamic response of infinite or semi-infinite space under
the input of external elastic waves.

Future work

Considering the variable wave velocity, this work only investigated the inhomogeneous media
with radially varying densities. And for the wedge space exploring, discussed two vertex
forms. Scattering problems for other forms of inhomogeneous media, surface depressions
and protrusions interacting with internal structures could be further investigated. Furthermore,
the application of the CUF in this work is still in the preliminary research stage in the field of
seismic waves, and there are still many problems that could be further detected.

1. Further research on surface defects or structural boundaries, while considering the
scattering problem in the case of multiple defect combinations.

2. Other forms of inhomogeneous media could be considered. Starting from actual
artificial materials, actual material parameters is applying to simulate utilizing reasonable
functions, and further research could be conducted.

3. In the application of the finite element method based on CUF framework, through
secondary development, the input process of artificial boundary calculation and the setting
of artificial boundary node coordinates are automatically matched with the self-developed
FORTRAN program, thereby enabling rapid simulation of more complex models.
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