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Abstract

Elastic wave theory has been widely applied in many engineering fields. Meanwhile, with
the development of material science, designing and producing composite materials with
wave propagation properties becomes possible which is not easily achieved by traditional
materials, which makes the research of wave propagation in inhomogeneous media a hot
issue in the field of theory and engineering. Moreover, defects and structures with depression
or convex on the surface are very common in natural media and artificial materials, while
local defects or structures often cause wave scattering and affect wave energy distribution.
Excessive aggregation of forces often leads to increased deformation or stress concentration
for material failure. Therefor investigating the scattering by surface depression or convex
in inhomogeneous media is of theoretical significance and practical engineering valueace.
Based on the elastic wave theory, this thesis researches elastic waves scattering by surface
depression and convex on the surface of the radially continuous inhomogeneous media with
variable wave velocity and density by using the complex function method and emphatically
analyzes the influence of the existence of the depression or convex on the surface and internal
displacement distribution of the inhomogeneous media.

In this thesis, the complex function method is employs to transform the wave equation of
the radial inhomogeneous media with density, and the standard Helmholtz equation that is
available directly solved analytically is acquired, thus the expressions of the incident wave
field and the scattering wave field in the semi-infinite space could be obtained. Meanwhile,
the scattering wave field expression of SH wave in the semi-infinite space from the surface
semi-cylindrical depression is ably constructed. By calculating the surface and inside
displacement amplitude distribution under the action of various parameters, the influence of
various parameters on the displacement distribution is discussed, and the surface depression
amplification effect on the displacement distribution under the influence of inhomogeneous
parameters is emphatically analyzed.

Considering the influence of surface convex on the dynamic response, this thesis investi-
gates scattering SH wave by the surface convex and surface convex with cylindrical cavity
in a density radially inhomogeneous media. The research region is divided into suitable

sub-regions which could be applied to construct wave field expressions by utilizing the region-



matching technique (RMT) and the auxiliary boundary. Based on the surface depression
scattering problem, the wave field expressions in each sub-region are constructed. Through
the boundary conditions at the auxiliary boundary and the free boundary, the wave field
expression in the whole research area is solved. The distribution of displacement amplitude
and dynamic stress concentration coefficient under the action of various parameters are given.
The influence of surface convex on the distribution of displacement amplitude and dynamic
stress concentration coefficient (DSCF) under different inhomogeneous parameters is mainly
analyzed.

Subsequently, the effect of research region range on the displacement amplitude of the
surface under elastic wave incidence is considered, and the dynamic response to SH waves
is demonstrates for two forms of density inhomogeneous wedge with vertex angle as cusp
and cylindrical depression. The vertex angle is taken to be in the range from O to 27 , which
can describe a variety of region forms. Based on the acquired standard wave governing
equations, the analytical solution of the free wave field expressions in the inhomogeneous
wedge space is proposed based on the free boundary conditions at both boundaries and the
Sommerfeld radiation conditions. Then, the scattering wave field expressions in the wedge
region are constructed based on the previous research of surface depressions. The effects of
inhomogeneous parameters on the displacement amplitudes inside the surface and wedge
regions are calculated and discussed for the forms of cusp and cylindrical depressions at the
vertex angle, respectively.

In addition, the finite element method (FEM) based on the Carrera Unified Formulation
(CUF) framework is extended to the analysis and application of elastic wave problems in
three-dimensional models in semi-infinite space. The Fortran program self-compiled by
MUL2 is expanded to complete the establishment of artificial boundary, input of external

waves, and research on wave propagation in layered media.
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Chapter 1

Introduction

1.1 Background

Elastodynamics, as an important component of solid mechanics, originated from the inter-
pretation of light wave phenomena. Its main research content is the dynamic response of
elastic media under external loads. Generally, there are two forms of wave and vibration
solutions, as the propagation of elastic waves and the vibration of elastic bodies. Wave and
vibration have the same basic governing equations, and the difference between the two forms
is caused by the different initial and boundary conditions of the elastic body. The research
on elastodynamics can be traced back to the 17th century. With Hooke’s discovery of the
relationship between deformation and restoring force in elastic bodies and the establishment
of the three laws of Newton’s mechanics, the establishment of vibration equations in beams
and plates by scholars such as Germain, Euler, Bernoulli, and Timoshenko has promoted the
development of vibration mechanics.

Retrospect on the development of elastic wave propagation is traced back to the early 19th
century when Navier established the general equations of equilibrium and motion for elastic
bodies, and the research on elastic waves began. Possion decomposed the displacement into
two parts: irrotational and dissipative, and obtains the solution of the wave equation. It also
discussed issues related to initial values. In the mid-19th century, the mathematical theory of
elastic wave propagation matured. Lamé proposed the concepts of scalar potential and vector
potential. Stocks proved that longitudinal waves are expansion waves, and shear waves are
shear waves. By the end of the 19th century, Rayleigh given the scattering theorem and the
wave scattering solution for a finite spaced, which was an important achievement. Elastic
wave scattering had become an important research topic in elastodynamics. In the early 20th
century, scholars such as Love, Stonely, and Lamb conducted some research on the wave

problem at the interface, as well as the wave problem caused by the action of line sources and
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point sources. Thus, the theory of wave problems is established and solutions are obtained,
making elastic wave problems a hot research field in geophysics. Since the 20th century,
with the gradual improvement of elastic wave theory, classic works on wave theory have
emerged [2, 54, 130], and the research of elastic wave theory in the engineering field has
become active.

1.1.1 Application of elastic wave theory

Elastic wave theory is widely applied in nondestructive testing of structures and materials,
geophysical exploration, and acoustics. In the related engineering field, the study of elastic
wave propagation characteristic was paid much attention if the media has defects or structures.
For example, the propagation characteristics in materials containing cracks or other defects
are employed as the basic principle of ultrasonic nondestructive testing techniques and
structural health testing to satisfied the need for safety inspection of large structures or
components subjected to external loads during assembly or service[3, 34, 53]. SH waves
have less energy loss than other types of waves, so they were used in nondestructive testing
applications from the early research in infinite space composite board [15] to the current
research in more complex interfaces and materials based on SH guided waves [71, 132].
Ultrasonic detection has a scanning speed block, good resolution, and detection ability used
in the field, according to the information carried by the ultrasonic detection, obtain the
crack location, size, direction, and other characteristic parameters [110]. Therefore, provides
a diversified theoretical basis for ultrasonic detection and reconstruction after damage by
investigating the scattering of internal and surface defects with different wave forms [45].
Meanwhile, the process of seismic wave propagation is approximated as the process
of wave propagation in elastic media, so the elastic wave theory was widely applied in the
field of earthquake engineering. Based on the scattering of elastic waves, many scholars
conducted a large number of researches on seismic waves scattering by underground structure,
local topography and geological conditions, which confirmed that the structure, topography
and geological conditions have a relatively obvious influence on ground motion. These
achievements provided the corresponding theory for seismic engineering design. Among
them, the plane shear wave (SH wave) is not coupled with P and SV wave when it incident
in space, and the damage generated at the interface is relatively strong, so in the process of
analytical solution, SH wave is often taken as the research object. For instance, in terms
of topography, Trifunac [159] first proposed the analytical solution for the scattering of
SH wave by semi-cylindrical canyon. It was the research target of many scholars to make
employ of the propagation characteristic of elastic wave to conduct geophysical exploration,
to conduct earthquake disaster early warning according to the simulation data of seismic



1.1 Background 3

wave, and to improve the earthquake early warning system, [84]. The study on the interaction
between underground media (soil mass as the main research object) and ground structure
under dynamic load was a hot topic in the field of earthquake engineering[108, 178, 205].

In addition, in the field of civil engineering, due to the demand of urbanization con-
struction rock site blasting, directional blasting of adjacent buildings, aboveground and
underground construction of high-rise buildings will cause the elastic wave interaction be-
tween the underground media and adjacent buildings [43, 107]. Therefore, the interaction
between adjacent buildings and geological conditions under the action of elastic waves was
widely studied in vibration isolation of civil engineering.

Furthermore, elastic wave theory also has important applications in the field of acoustics.
At present, as a kind of material with special physical properties, new acoustic functional
materials realize the regulation of sound wave and elastic wave within a certain scale [66, 24],
so as to achieve sound insulation and noise reduction, directional transmission [28] and
stealth [209] and other purposes. By setting a series of functional primitives on the surface of
the media, some functional controls of sound wave and electromagnetic wave can be realized.
However, due to the coupling of P-wave and S-wave in solid media, and the speed of the two

wave forms is different, the research of elastic wave regulation is still very limited.

1.1.2 Wave problems in inhomogeneous media

The parameters of inhomogeneous media affect the path, velocity, and frequency of wave
propagation, thereby affecting the propagation process of elastic waves to a certain extent.
This makes it of important theoretical significance and application prospects to investigate the
propagation characteristics of elastic waves in different media, conduct elastic wave regulation
and material selection, and analyze the material properties of media. In traditional theoretical
research, in order to simplify the problem, it is often assumed that the media is homogeneous
and isotropic. On this assumption, some elastic wave propagation characteristics are obtained.
However, media in nature often exist in inhomogeneous forms, such as air, ocean, soil, etc.
In some studies, using homogeneous media forms for analysis may lead to deviations in
results. The research on the influence of the inhomogeneity of natural media on the wave
propagation characteristics included early research on the propagation features of light waves
in air with refractive index, atmospheric pressure, or sound velocity varying with depth, and
the impact of soil stiffness varying with depth on the wave response. In current research, wave
propagation in various natural media is discussed based on the physical parameters of the
media detected and the approximate functions that correspond to the changing characteristics
of the media.
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On the other hand, with the continuous development of material science, complex
materials continue to emerge, such as phononic crystals, micro and nano materials, and
the improvement of artificial material preparation technology, allowing the design and
product of materials with special characteristics. In order to break through the functional
limitations of traditional materials and realize that elastic wave propagation have specific
characteristics, such as negative refraction[29, 131], spontaneous emission control[125],
and anomalous tunneling effects [145], bringing new topics to the research of elastic wave
propagation in these materials. By determining an appropriate media inhomogeneous function
to design a continuous material cladding layer, which is used to achieve a smooth transition
of the dielectric parameters of the structure and external materials required for stealth, and
to eliminate the dielectric fault between the structure and external materials, the goal of
structural non reflection and stealth would be achieved. Realizing dynamic and intelligent
regulation of elastic waves was also a key research issue in the field of elastic wave theory,
and the emergence of artificial materials also brought opportunities to this goal. Adjust the
inhomogeneous area layout and parameter settings of artificial materials to achieve elastic
wave propagation according to a predetermined path, wave velocity control, and energy
redistribution, meeting the requirements for vibration reduction and isolation, structural
stealth, and other wave characteristics in engineering. The inhomogeneous media could be
seen as the characteristics of complex or artificial materials. Investigating the propagation
features of elastic waves in inhomogeneous media provides a corresponding theoretical basis
for applying elastic waves and analyzing material properties.

1.2 Research progress in elastic wave scattering

In natural media, artificial materials, and engineering structures, media containing defects
(such as internal cavities, cracks ), surface depressions, convexities, and internal structures
(such as inclusions, linings) are very common. When elastic waves propagate to the location
of a defect or internal structures along the incident direction, the propagation path will
be disturbed, and secondary wave sources will appear at that location, thereby affecting
the wave energy distribution. Excessive accumulation of forces often leads to increased
deformation or stress concentration, leading to damage to the material or structure. Therefore,
the scattering of elastic waves, especially the scattering of elastic waves by simple forms
of defects or internal structures, was always a concern of scholars. This type of wave
scattering problem is available to be solved by analytical methods to analyze and understand
the physical significance, as well as to analyze more complex scattering situations in the

model. The study of elastic wave scattering begins with acoustic waves. Rayleigh utilized the
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wave function expansion method to study the scattering of acoustic waves by rigid spherical
inclusions. Subsequently, Sezawa based on special function to provide solutions to the
scattering problem of spherical, cylindrical, and elliptical cylinders in an infinite domain
under P-wave incidence. Later, with the rise of the engineering field in the 1950s, the
scattering of elastic waves by internal structures and defects received more attention. Many
scholars conducted many researches on the scattering of elastic waves by simple cavities such
as cylindrical and spherical shapes, as well as inclusions in infinite fluids and solids. The
achievements achieved so far deepened the theoretical understanding of the impact of internal
structures and defects on elastic wave scattering, and also promoted relevant engineering

practices.

1.2.1 Research progress on scattering problems within media

In the process of research in recent decades, scholars were deeply demonstrating scattering
problems and gradually mature research methods, which complicate the research model
and make it more close to the practical application. The research of elastic wave scattering
by in-plane defects and internal structures can be divided into two main the study of the
complexity of the media and the complexity of the boundary between defects and internal
structures. The complexity of the media mainly includes the complexity of the media region,
the physical properties of the media and the internal structures.

In the process of the research of media complexity, the first is the complexity of the media
region. The research area develops from the scattering of internal structures and defects in
the infinite space to the semi-infinite space and the angular space. Lee et al.[82] took the
lead in using the mirror method to satisfy the boundary conditions of the free stress at the
horizontal free surface in the semi-infinite space, constructed the expression of the scattering
wave generated by the cylindrical cavity, and gave the analytical solution for the scattering
of SH wave by the cylindrical cavity in the semi-infinite space, extending the study of the
scattering problem from the infinite space to the semi-infinite space. It is more close to the
practical application model of engineering, and the mirror method is still widely employed in
dealing with regional boundary problems, which lays a foundation for the follow-up research
on the scope of the region. With the help of mirror image method, Green function and special
function, the scattering of cavities, inclusions and lining structures in the semi-infinite space
and angular space [68] to different elastic waves (P wave, SV wave, SH wave) attracted the
attention of many scholars [67, 74]. Then, based on the great arc approximation method, the
defect scattering problem in the semi-infinite space of cylindrical arc and parabola boundary
was discussed [79]. Meanwhile, Liu [93, 94] extended the complex function method to
the wave wave problem. By using the conformal mapping transformation in the complex
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function method, the complex boundary space on the plane is mapped to the corresponding
region on the complex plane according to the appropriate mapping function, so the complex
boundary problem can be solved. The superiority of complex function method expands
its application area. It is available to conveniently solve the scattering problem caused by
cylindrical cavity under SH wave incident and scattering problem of arbitrary cavity in
anisotropic media. Moreover, the complex function method providing a simplify path for the
transformation relationship between multiple coordinate systems in the model and provide
convenient analytical solution for scattering problems with multiple scatters in the media. In
combination with Green function, complex function and wave function expansion method,
Liu investigated the scattering of SH wave by cylindrical cavity in wedge region [96]. For
finite space, such as the scattering of SH waves by cylindrical cavities in the plate, Hayir [62]
also analyzed.

During this period, much attention was paid to the scattering of defects and internal
structures in different media. For example, in the research of scattering in porous media,
since Biot established the porous media model, the research of wave propagation in porous
media was gradually carried out in the past few decades. In recent years, the continuous
development of the solving theory of porous medium model (saturated porous elastic media,
unsaturated porous elastic media, etc.) makes the study of wave in porous media become a
hot topic [36, 156, 186, 185]. Based on the complex function method, Wang [170] proposed
a method for solving the scattering of plane waves by arbitrary shape cavities in porous media.
The dynamic stress response of cylindrical cavity in saturated soil under incident wave was
demonstrated by using wave function expansion and boundary integral method.[183]. The
anisotropy of media is also reflected in commonly used materials, such as concrete, wood, etc.,
and the research on the fluctuation in the characteristics of such media was continuing. The
influence of anisotropy of media on anisoplast, defect or other structure resulting in elastic
wave scattering and its solution method were extensively studied [5, 14, 42, 44, 76, 109, 144].

On this basis, the physical properties of internal structures in the research area were
also paid attention to. Smerzini [146] investigated the response of the arbitrary rigid packed
inclusion to plane wave and cylindrical wave. According to the wave function expansion
method, Bostrom [16] gave the anisotropic hole to solve the problem of elastic wave scattering
. Based on the proposed equivalent transformation relation, Wang et al. investigated the effect
of inhomogeneous lining on elastic wave scattering [171]. Research on elastic wave scattering
at nanoscale is also being carried out. Ghanei [52] demonstrated the dynamic response
of circular nanoinclusion to P and SV wave scattering. In addition, many achievements
were made in the research of elastic wave scattering in piezoelectric, layered, and layered

piezoelectric media with functions. In earlier researches, a series of analytical methods
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were applied to study the related wave problems in piezoelectric and layer media. For more
complex cases, semi-analytical or numerical methods provide a way to solve such problems.
For example, transfer matrix method was proposed by Thomson and applied in the wave
problem of layered media [157], this method is still one of the commonly used methods to
solve the wave problem of layered media, based on this method to solve and analyze the
elastic wave scattering problem of circular holes, lining and other heterogeneous bodies
[151]. In recent, more and more scholars pay attention to the elastic wave scattering problem
in complex media such as composite materials and heterogeneous media [103].

In the study of the complexity of internal structure and defect models, the scattering
of elastic waves by single circular and elliptical cylindrical, cavity, lining, and inclusion
is developed to the interaction of multiple internal structures and the scattering waves by
complex boundaries such as semi-cylindrical and square. By using the mirror image principle
and Graf’s addition theorem, Balenda [10] researched the dynamic response of two linings
under SH wave incidence and gave the relevant analytical solution. Yuan [195] extended
Graf’s addition theorem and constructed the formula for cylindrical coordinate wave function
in global transformation, which solved the limitation of Graf’s addition theorem in scattering
problem and made the theorem more widely applied in these problem. Based on this
method, Lee [80] used the weighted residual method in the process of solving the problem of
scattering plane SH waves by arbitrary holes (ellipse and square for example) . In addition,
the application of the complex function method in the wave problem is proposed, using
the complex function in the convenience of transformation between multiple coordinate
systems, a series of studies were made on the elastic wave scattering problem in the case
of multiple internal structures combinations [135]. After the region-matching technique
(RMT) is introduced into this kind of problem, the complex boundary is partitioned by
auxiliary boundary, which is divided into regular and solvable simple boundary, and the
corresponding boundary conditions are satisfied at the auxiliary boundary to obtain the
final result. According to RMT, the analytical solution of elastic wave scattering by many
complex boundaries was solved. For example, Tsaur [164] deduced the series solution of
truncated cylindrical cavity scattering problem when SH wave incident, Gao [47] established
the solution method for horseshoe cavity scattering problem. Liu [101] gave an analytical
solution to the scattering problem of square cavity, Zhang [202] analyzed the scattering
problem of semicircular lining with straight boundary, Liu [100] explored the scattering
situation of SH wave around the slope in the variable slope wedge area.

With the gradual progress of numerical methods, combined with the engineering needs, it
was widely used in the research of solving more complex models in engineering practice. For

example, based on the finite element method, the dynamic response of an arched square lined
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tunnel under P wave incident, an irregularly arched lined tunnel under P wave incident, a
three-dimensional column group under SV wave incident, [117] and some practical models to
seismic wave scattering are investigated. Meanwhile, other numerical methods were applied
to elastic wave scattering problems. For example, the boundary element method is used to
simulate the advantages of more concise and accurate boundary. The scattering problem
caused by single or multiple linings in the semi-infinite space and the arbitrary wedge of the
top angle is effectively simulated[64, 105, 128]. Wave scattering by a triangular projection
with a horseshoe lining is studied [106], the influence of the relative position between the

horseshoe lining and the triangular projection on the dynamic response is analyzed and so on.

1.2.2 Research progress on wave scattering by surface depression and

convex

The investigation for the influence of surface or interface depression, convex, and structures
on wave propagation is of great significance in both theory and practical engineering ap-
plications. In the analytical method, the scattering of elastic waves by simple depression
boundary is taken as the research basis, based on which the complex depression and convex
boundary could be detected later. Retrospected the research on elastic wave scattering by
surface defects or structures, Trifunac [159] based on wave function expansion method to
construct scattering wave expression by applying the free stress condition of semi-cylindrical
depression boundary and Hankel function to express the property of diverging wave, and
gave the analytical solution of SH wave scattering by two-dimensional semi-cylindrical
depression. Using elliptic coordinate system and Mathieu function, Wong [179, 180] gave
the analytical solution of SH wave scattering by semi-elliptic depression and analyzed the
influence of each parameter on surface displacement. With the application of Green function,
complex function, Graf’s addition theorem and other analytical solutions to wave problems,
the analytical results of elastic wave scattering by surface depression were developed rapidly,
solving the problem of elastic wave scattering by arc depression [60, 78, 92, 184, 196]. In
addition, according to the free wave field constructed by Sanchez [152] in the wedge space,
Lee [81] gave the solution for the scattering of SH wave by circular arc depression at the
vertex.

In recent years, due to the needs of engineering background and the gradual improvement
of analytical methods, more achievements were obtained in the research of elastic wave
scattering in more depression boundaries and different media surface depressions. Liu
[89] derived the analytical solution of the scattering of planar P waves in the two-layer

cylindrical arc alluvial valley based on the series expansion method, and analyzed the
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influence of parameters of each layer on the scattering with this solution. Liang [175-177]
gave a solution to the scattering problem of P wave, SV wave and SH wave in cylindrical
arc sedimentary depression by using the great arc hypothesis. Then, the method of RMT
enables scholars to break through the limitation of arc depression boundary, and obtain the
corresponding subregion of constructible wave field through reasonable regional division of
complex boundary. Graf’s addition theorem is employed to complete coordinate conversion,
and finally, the solution is carried out according to auxiliary boundary conditions. Based on
this method, a large number of analytical studies were carried out on the wave scattering by
surface depressions with straight boundaries. Tsaur [160, 166] applied the RMT method to
derive series solutions for SH wave scattering by symmetric deep V and shallow V-shaped
depression. Based on the analytical solution of semi-cylindrical depression, and according to
the suitable partition fit, the scattering problem of fan shape, truncated semicircle, semicircle
containing sedimentary layer, U shape, symmetrical tridacidal depression and so on complex
depression boundary is given [22, 48, 161, 163, 198, 199]. The SH wave scattering by elliptic
depression at the vertex angle of rectangular space is studied by applying Green function
[165]. Qi [133] utilized Mathieu function addition theorem and multi-elliptic coordinate
system to give an analytical expression for asymmetric semi-elliptic depression. It can be
seen that the analytical solution of elastic wave scattering by semi-cylindrical depression is
the foundation of the research on elastic wave scattering analysis by depression boundary.
Furthermore, the scattering of elastic wave by surface depression is demonstrated by
numerical method. In order to satisfied engineering applications, it is always an important
research topic to solve the problem of irregular depression boundary or complex media
surface depression. Since the early days, some scholars made application of the advantages
of the boundary element method (BEM) at the boundary to simulate the scattering of SH
wave by two-dimensional arbitrary depression and the combination boundary of depression
and convex in the frequency domain and time domain[41, 153, 154]. The finite element
method (FEM) is also applied to the simulation of wave problems. By coupling the wave
equation in differential form with discrete domain, the node or element solution are utilized
to approximate the solution of the differential equation. This process has clear physical
meaning, and is available in mathematical derivation and program implementation[116, 147].
Therefore, finite element method has a long history of development and discuss in the wave
problem. In the process of using FEM to investigate the scattering problem of surface
depression. Zhang [200] earlier simulated the dynamic response of arbitrary depression
under the incidence of seismic waves, and gave a variety of depression boundary simulation
results. Kashiba [73] simulated the scattering behavior of Lamb waves from a depression

defect in a plate. Casadei [19] investigated the scattering of elastic waves by local defects on
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surfaces. At present, the development of finite element method based on the simulation of
actual large-scale depression terrain ground motion is more rapid[123].

For analytical research on elastic wave scattering by surface convex boundaries, the
analytical solution of SH wave scattering by semicircular convex and the region-matching
technique (RMT) presented by Yuan and Men [197] laid the foundation for subsequent
exploration on surface convex boundary scattering, providing a solution idea for surface
convex boundary researches. In [197], the convex boundary was divided into semi-infinite
space with cylindrical arc depression and cylindrical closed region through an auxiliary
boundary. After constructing wave field expressions in each region, the solution is solved
applying the unified coordinates of the Graf’s addition theorem. Therefore, the basis of
the analytical solution of the elastic waves scattering problem by surface boundary is still
the semi-infinite cylindrical depression problem. Based on RMT, the scattering problem
by cylindrical convex and the interaction between surface convex and internal structures is
further investigated. For the demonstration of elastic wave scattering by convex boundary
with straight boundary, the method of partition is still employed. Meanwhile, the method
of complex variable function is introduced to facilitate coordinate transformation between
coordinate systems. The fractional Bessel function is used to satisfy the boundary conditions
of straight boundary. Thus, the SH wave scattering problem of isosceles triangular convex
in semi-infinite space is solved [138]. Then, according to this method, a series of scattering
problems, such as double isosceles triangle convex, isosceles triangle convex and circular
convex, isosceles triangle convex and internal structures, were solved, and the specific
analysis of scattering effect was illustrated[38, 39, 137, 139]. Guo [134] considered the
scattering problem of angular domain surfaces with isosceles triangular bumps. In order to
further study the surface convex scattering problem, Tsuar [162] proposed the series solution
of the cylindrical arc convex scattering problem through the wave function expansion method
combined with the RMT, which improved the computational accuracy of the traditional
analytical results. For a more complex anisosceles, Lin [91] detected a preliminary analytical
result of anisosceles triangle scattering with an obtuse vertex angle .

For a period afterwards, due to the limitations of existing methods on the elastic wave
scattering problems by complex convex boundary, many scholars’ analytical solutions to
scattering by convex boundary mainly focus on the influence of the relative position of internal
structures and convex or concave on elastic wave scattering [59, 95], and the scattering by
internal structure contained in convex boundaries [88, 85]. However, convex boundary
on complex surface is more satisfied actual situation, so it is of practical significance to
demonstrate this problems. The multi-region-matching technique (MRMT) proposed by
Song [148, 149, 188, 189] broken through this situation. By utilizing the flexibility of the
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multilevel partitioning technique, the more complex convex surface boundary is partitioned
several times to construct corresponding wave field expressions respectively, and then the
complex function method is used to solve the problem in accordance with the convenience
of coordinate transformation. And then, the SH wave scattering problem of semi-infinite
surface isosceles trapezoidal convex and multistage gradient isosceles triangular convex was
demonstrated. Research on convex boundary scattering problems is also being carried out in
other engineering fields, such as the analysis of dam by edge waves propagation along the
coast [201].

The numerical method is also applied to detect the boundary scattering of convex surfaces
in semi-infinite space. The numerical method is utilized to simulate the scattering problems
by a more complex convex boundary. With the convenience of boundary element description,
BEM is often applied to analyze the scattering problem of convex, depression and internal
structures combination [129], and investigate the three-dimensional dynamic response of
convex [8], etc. Moreover, FEM and finite difference method (FDM) also have many
applications in these scattering problems. Such as, in the field of earthquake engineering,
many researches were carried out on the ground motion response of the actual raised boundary
(mountain, dam, etc.) [26, 27, 40, 50].

1.3 Research progress in inhomogeneous media

Investigating wave propagation in inhomogeneous media attracted the attention of many
scholars, since the large influence of media properties on wave propagation characteristics.
The inhomogeneous properties of media are significant both reflected in natural materials and
the design of artificial materials. However, the research of wave problems in inhomogeneous
media is more complicated, and its solution methods are divided into analytical methods
(including semi-analytical methods) and numerical methods. Analytical methods reveal
intuitively analyzing the physical significance of the influence of wave propagation properties,

while numerical methods provide the possibility to simulate complex situations.

1.3.1 Analytical method

The essence of analytical solution of wave problems in inhomogeneous media is to ana-
lytically solve differential equations with variable coefficients, which is usually difficult.
However, the analytical method has a clear physical meaning and is fast in calculation. Mean-
while, the analytical solution provides a theoretical foundation for the numerical method

and a benchmark for verifying the simulation results. Based on the properties of the me-
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dia, employing analytical methods to solve wave problems in inhomogeneous media is
divided into two main aspects: the research of layered media and the research of continuous
inhomogeneous media.

The research and application development of functionally graded materials (FGM) makes
the investigation of the wave problem in them become a hot topic. Early, the inhomogeneous
of FGM posed greater difficulties for discussing their kinetic response using analytical
methods. The FEM parameters have a more pronounced effect on the scattering caused by
defects or internal structures, which tend to cause significant concentrations of dynamic
stresses and displacements, thus causing premature destruction of the material in service.
Therefore, many scholars divided FGM into layered homogeneous media for the research.
And, the wave propagation characteristic is also approximated in the early studies of wave
problems in continuously inhomogeneous media by the method of layering and setting the
material parameters of each layer as constants to analyze the wave propagation characteristic.
Naderi [122] presented an analytical solution for a sector-shaped functional gradient plate
under flexural loading. Through the Green function method, Kumar [75] demonstrated the
propagation characteristic of shear waves in inhomogeneous layers. Chattopadhyay [23]
discussed the propagation of SH waves caused by point sources in transversely isotropic
layers.

Moreover, the semi-infinite space with overburden layer approximately simulated the soil
layer formed through long-term deposition, which has practical engineering significance in
the field of seismic engineering. Exploring the elastic wave propagation characteristic in
such media through analytical methods will provide theoretical foundation for engineering.
Using the complex variable function and wave function expansion method, combined with
the orthodrome assumption, Zhao [206, 207] conducted research and analysis on the dynamic
stress around internal structures such as cylindrical cavity in a semi-infinite space with a
covering layer under the incidence of SH waves. Based on this assumption, some scholars
also considered the scattering problems by depression or convex boundaries on the surface
of a media. Liu [97] analyzed the scattering problem of surface depressions with a covering
layer under the incidence of SV waves. Gupta [56, 57] applied analytical methods to discuss
the propagation laws of torsional surface waves in a inhomogeneous semi-infinite space with
a covering layer and Love waves in a inhomogeneous dual porous layer. Chaki [20] deduced
the dispersion equation for SH waves with an irregular dielectric layer on a functionally
graded piezoelectric layer.

The application of semi-analytical methods provides more avenues for the study of layered
problems. Employing the transfer matrix method, Love wave and SH wave propagation in

functionally graded piezoelectric media and structure features carried out extensive research
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and analysis [37, 46, 49, 72, 127]. Later, Zhang [203] applied the transfer matrix method
and the wave function expansion method to investigate the elastic wave scattering by a
dielectric surface depression with a single or multiple radial inhomogeneous layer. Rokhlin
[142] proposed a stiffness matrix method based on the idea of the transfer matrix method to
analyze the wave propagation problem in multi-layer anisotropic media. Chen [25] presented
the dispersion behavior of waves in laminated FGM plates based on the developed echo
matrix method. Han [61] proposed a semi-analytical method to study the scattering behavior
of waves by cylinders in functionally gradient piezoelectric materials. Utilizing the WKB
approximation method, Qian [136] discussed the propagation characteristics of Love waves
in FGM. Li [87] studied the characteristics of Love waves in layered functionally gradient
piezoelectric structures. With the deepening of the research on FGM, more scholars consider
the continuous variation of material parameters. Cao [17] solved the Lamb wave problem in
FGM plates using the power series method.

Subsequently, in investigation continuous inhomogeneous media, among the factors that
affect the properties of the media, such as density and modulus, scholars first pay attention to
the variable wave velocity caused by these properties. Changes in wave velocity will lead to
changes in the propagation path or characteristics of waves, resulting in differential dynamic
responses. Based on the Green function method, Manolis [111] considered the characteristic
of plane wave propagation when the wave velocity varies with depth, and presented a solution
to the Helmholtz equation under this condition. The vertical variation of medium parameters
in accordance with some natural features has engineering significance. Therefore, employing
the Green function method, Guzina [58] derived the response of a inhomogeneous elastic
semi-infinite space in the vertical direction under a point source. Muravskii [120, 121]
demonstrated the time harmonic vibration problem in a semi-infinite space where the shear
modulus linearly increases with depth. Subsequently, Manolis [112, 114, 115] presented
a series of basic solutions for elastic wave propagation problems in vertical and layered
inhomogeneous media, and applied them to numerical methods such as BEM. For other forms
of inhomogeneous media, the Green function method was also applied to solve. Watanabe
[172] obtained Green function solutions for SH waves in heterogeneous media with power
function changes in wave velocity, and Green function solutions for wave number changes
in anisotropic heterogeneous media[173]. According to Manolis’s solution, Daros [30]
proposed the foundation solution for SH waves in anisotropic density inhomogeneous media.
In combination with Radon transformation, Rangelov [141] gave a fundamental solution
for anisotropic density varying with depth in media. In other analytical methods, Abd [1]
applied the Fourier transform method to solve the dispersion equation of Love waves in

anisotropic media with inhomogeneous shear modulus. Ting [158] demonstrated an analytical
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expression for the anti plane wave problem in a semi-infinite space with inhonogeneous
density anisotropy. Meirbekova [118] applied periodic geometric transformation to solve
the scattering of plane shear waves by multiple heterogeneous bodies in radially anisotropic
inhomogeneous shells.

As complex variable function methods are applied to wave problems, they also provide
new ideas for solving wave problems in heterogeneous media. Vrettos [167, 168] solved
the wave propagation in inhomogeneous media with shear modulus varying with depth
problem utilizing complex function method. Shaw [143] gave the fundamental solution of
the generalized Helmholtz equation in variable wave velocity media based on the complex
variable function method and conformal mapping. For the scattering of elastic waves in
inhomogeneous media, Zhou [208] investigated the dynamic stress concentration around
double elliptical cavities in inhomogeneous media with exponential changes in density and
modulus applying the complex variable function method. Similarly, the problem of dynamic
stress concentration around cylindrical and elliptical cylindrical cavities in a semi-infinite
space of exponentially varying inhomogeneous media was solved [51, 102, 103]. Achenbach
[4, 11] explored the surface wave situation in a inhomogeneous semi-infinite space where
the shear modulus and density vary with depth under different sources. However, in early,
only inhomogeneous parameters was preserved, and the wave velocity was simplified to a
constant wave velocity for research. In order to continue exploring the scattering of elastic
waves by heterogeneous bodies in heterogeneous media under variable wave velocities,
Hei [63] combined with the mapping method, proposed the foundation solution of the
Helmholtz equation for density inhomogeneous media, and analyzed the dynamic response
of cylindrical cavity in inhomogeneous media with density varying with depth to SH wave
scattering. Based on this investigation, SH wave scattering by a series of internal structures
in inhomogeneous media with varying density was studied [65, 187, 192]. Subsequently, a
related research was carried out in varying modulus media, and the distribution of dynamic
stress concentration coefficients due to scattering from internal structure within the media was
analyzed[193]. Moreover, on the basis of this study, the inhomogeneous media parameters
were extended and the relevant solution to the scattering problem related to variable wave
velocity under simultaneous modulus and density variations were given in the subsequent
exploration. In addition, based on the proposed equivalent transformation relation, Yang
[191] proposed another method for the analytical solution of the wave problem in one-
dimensional inhomogeneous media. A summary of relevant literature on using analytical
methods to solve wave problems in non-uniform media is shown in Table 1.1.

The analytical investigation of inhomogeneous media, most of it focuses on wave scat-

tering by internal structures within the media and the propagation characteristics of waves.
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Table 1.1 Summary of main references for researching wave problems in inhomogeneous
media by analytical methods

Type Reference

the propagation characteristic of shear
waves in inhomogeneous layers [75]
propagation of SH waves caused by point
Layered media sources in layered media[23]

wave propagation in anisotropic layered
media [142]

propagation of Love wave in layered media
Analytical method [136] and structures [87]

scattering of elastic waves by internal cavi-
ties [206, 207] and surface depressions in
a semi-infinite space with a covering layer
[97]

propagation of surface waves in inhomoge-
neous semi-infinite space with a covering
layer [57]

scattering of SH waves by surface depres-
sions in layered media with single or multi-
ple covering [203]

elastic wave propagation characteristic with
wave velocity varying with depth [111]
analytical solution of SH wave in medium
with power function wave velocity [172]
basic solutions of the generalized helmholtz
equation in variable wave velocity media
[143]

Green’s function solution to wave problems
in density varying media [30, 141, 158]
surface wave propagation in media with
shear modulus varying with depth [167,
168]

dynamic stress concentration around cavi-
ties in constant wave velocity media with
density and shear modulus varying [51, 102,
103]

dynamic stress concentration around scat-
tering bodies such as cavities and lining in
variable wave velocity media with varying
density [63, 65, 187, 192]

scattering problem of cavities in variable
wave velocity media with changing modu-
lus [193]

Inhomogeneous media
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However, there are few types of research on the scattering of defects and structures with

surface depression or convex, especially in continuously inhomogeneous media.

1.3.2 Numerical method

The numerical method provides an efficient and feasible solution tool for solving complex
and heterogeneous media fluctuation problems or practical engineering problems. Based
on the basic solution given by Green function method, BEM is applied to the study of
inhomogeneous media fluctuation problem. BEM was used to considered wave in continuous
inhomogeneous media problems. Leung [83] discussed the dynamic response of internal
structures scattering in inhomogeneous media with shear modulus varying with depth. Daors
[32] proposed a BEM for SH waves in heterogeneous anisotropic media with the same
variation of stiffness and density and carried out crack modeling and stress intensity factor
analysis. In the follow-up researches, the propagation characteristics of SH wave under
the condition of variable media parameters are discussed based on BEM [31, 33]. Dineva
[35] studied the problem of crack scattering in inhomogeneous semi-infinite space with
parabolic media parameter. Wei [174] simulated the antiplane wave motion in two continuous
inhomogeneous media. Mojtabazadeh [119] proposed the complete formula of BEM for the
analysis of transient SH wave scattering in the anisotropic semi-infinite space. BEM was also
employed to discuss scattering problems by internal structures and surface defects in layered
media. Lee [77] analyzed the scattering of SH wave in anisotropic media with multiple layers
of anisotropic anisoplasty. Ba [6] proposed the indirect BEM to investigate the scattering
and diffraction by surface depression in multilayer transverse isotropic semi-infinite space,
and the dynamic response of local periodic layers under P wave and S wave [7, 9]. Liu [104]
further considered the problem of three-dimensional elastic wave scattering in multi-layer
semi-infinite space. When BEM is employed to solve the wave problem in inhomogeneous
media, it needs to give the foundation solution of the corresponding media parameters, so it
is difficult to solve in some complicated cases.

As a widely used numerical method, FEM has experienced many years of development
and acquired many research results in the application of inhomogeneous wave problems. FEM
is used for numerical calculation of wave problems in layered media, is available to simulate
more complex media situations and provide high accuracy simulation results. Sullivan [150]
proposed plane strain and axisymmetric finite element formulas for multilayer anisotropic
media and viscous damping, which effectively reduced model freedom and calculation
time. Yazdi [194] developed a finite element model that considers the fluid saturation
continuum in the rigid semi-infinite space under the action of harmonics, which is employed

to consider the inhomogeneity of complex geometric boundaries and media. In order to



1.3 Research progress in inhomogeneous media 17

simulate the parameters of continuous inhomogeneous media, many scholars investigated
FEM. For example, based on static problems in inhomogeneous media, inhomogeneous
isoparametric element [204] and gradient finite element [70] are proposed. Then, in order to
explored dynamic analysis problem in inhomogeneous media, Yang [190] proposed dynamic
inhomogeneous isoparametric element format; Chakraborty [21] proposed a spectral layer
element for wave propagation in anisotropic inhomogeneous layered media caused by high
frequency impact loads. For the finite element solution of models with local shapes or
media changes, larger degrees of freedom and calculation cost are often needed, Carrera [18]
proposed a finite element method based on the framework of Carrera Unified Formulation
(CUF), which proposed path for effectively saving the degree of freedom required by the
model, greatly reduce the calculation time. Based on this method, the multi-field coupling
mechanics of layered and nonlinear media structures are investigated [12, 126, 140, 181].

Another significant point to solve wave problem in inhomogeneous media in infinite or
semi-infinite space by FEM is to set the artificial boundary at the truncation boundary. Most of
the commonly applied artificial boundaries, such as Higdon boundary, transmission boundary
and viscous-spring boundary, are established based on the parameters of homogeneous
media. However, the artificial boundaries based on the parameters of inhomogeneous
media with better establishment effect and faster calculation often require the analytical
foundation solutions of relevant problems. Currently, the research on artificial boundaries
of inhomogeneous media is still in progress. There are related solutions in one- and two-
dimensional separable waves.

Other numerical methods, such as the finite difference method, can be used to analyze the
propagation characteristics of Love waves in inhomogeneous functionally gradient materials
[69]. The scattering problem [155] caused by inhomogeneous media with variable wave
velocity and irregular surface defects was studied, as well as the spectral element method
(SEM) [55], the meshless methods (MMs) [169], and the combination of different numerical
methods [90, 113, Xiao et al.] is employed for investigating wave in inhomogeneous media
problems. Similar to the FEM, these methods also necessary to set the artificial boundary to
satisfied the radiation condition at the truncated boundary as solving the infinite space wave
problem.

From the above research progress introduction, it can be found that the analytical research
methods for elastic wave scattering problems in homogeneous media are relatively mature
and have rich achievements. Because the variable coefficient wave equation caused by the
inhomogeneous media is difficult to solve analytically, the current research work is limited
to the SH waves scattering by inclusions such as cavities and lining in the media, and the

research on the dynamic response of complex boundary on the surface of inhomogeneous
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media is less. Considering that the actual material surface often has irregular boundaries
such as defects and structures, this thesis approximates these boundaries to circular or wedge-
shaped boundary forms, and studies the displacement and stress situations of these boundaries
and nearby areas under SH wave action. From an analytical perspective, this provides a
theoretical reference for the damage and failure analysis of inhomogeneous materials. In
addition, the analytical solution of the SH wave scattering problem caused by the depression
and convex types surface arc-circular boundary can serve as the basis for researching complex
boundary problems, providing ideas and inspiration for subsequent more complex analytical

research work.

1.4 Outline

Analytical solutions for the scattering of SH waves by surface defects or structures in
continuously inhomogeneous media with variable wave velocities are of great significance
for both theoretical and practical engineering applications. Therefore, the purpose of this
thesis is to investigate SH incident propagation characteristics on the surface depression
and convex boundaries in inhomogeneous media with variable wave velocity, in Harbin
Engineering University. Meanwhile, during the joint training in Politecnico di Torino, the
FEM under the CUF framework is expanded to exploration the elastic wave problem utilizing
the CUF method. The dynamic response of the superstructure is analyzed considering the
oblique input of elastic waves. The main research content of this article is as follows:

(1) In Chapter 2, based on the elastic wave theory, the wave equation of inhomogeneous
media with density and shear modulus varying with coordinate components is derived,
and the solution idea is proposed. In order to be able to perform analytical solutions and
ensure the variable wave velocity characteristics in the media, this thesis mainly considers
inhomogeneous media with radial variations in density and constant shear modulus. The
Helmholtz equation with variable coefficients is successfully reduced to standard form by
using the complex variable function method and introducing a transformation function.

(2) The scattering of SH waves by a radial inhomogeneous media with a semi-cylindrical
depression surface boundary is investigated in Chapter 3, and the expressions of free and
scattering wave field are constructed. The validation of the proposed method is verified
by comparing the results with existing results by reducing the influence of parameters. By
calculating the displacement amplitude results under each parameter, the influence of each
parameter on the dynamic response under SH wave incidence is analyzed.

(3) Convex boundaries on the surface of a media also have a significant impact on the

scattering of elastic waves. Chapter 4 is mainly detected SH wave scattering by considering
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semi-cylindrical convex boundary and semi-cylindrical convex boundary with cylindrical
cavity. In order to explore the comparison of the scattering characteristic of SH waves
by convex and depression boundary in the same inhomogeneous media, the density radial
inhomogeneous media is still employed in this chapter. According to the solved standard
Helmholtz equation and the idea of region-matching, the wave field expressions in each
region after the model division are constructed, and the displacement and stress boundary
conditions are applied at the auxiliary boundary to solve the problem. Taking the parameters
closer to the existing result parameter settings, the validation in this chapter is verified through
calculation and comparison. The surface and internal displacement amplitudes are calculated
under various parameters, and the effects of various parameters on the distribution of dynamic
stress concentration coefficients (DSCF) around the cylindrical cavity are analyzed.

(4) Based on the consideration range of the research media, SH waves propagation in
the inhomogeneous wedge space is investigated in Chapter 5, and the effect on the dynamic
response is considered for both the cases of the wedge domain with cusps and circular
depressions. The inhomogeneous media parameters are still in the form of density variation
along the radial direction under the condition of retaining the variable wave velocity, and the
results are analyzed in comparison with the first two problems. From the governing equations
obtained after the transformation, the expressions for the free wave field, as the incident
and reflected waves, in the density radial inhomogeneous wedge space are derived for the
cylindrical depression scattering problem, while the expressions for SH wave scattering wave
field in the wedge space are constructed. The wedge vertex angle takes the value range from
0 to 27, which can correspond to a variety of regional boundary forms. The validation in this
chapter verified by setting the media parameters to calculate and compare with the existing
results for similar cases. Then the displacement distribution on the surface and inside of the
wedge space is calculated and the effect of each parameter on the displacement distribution
is discussed.

(5) FEM often requires more degrees of freedom and computational time when simulating
the dynamic response of large-scale models under elastic wave input. During the joint training
period, FEM based on the CUF framework effectively reduces the advantages of the finite
element model’s degrees of freedom and calculation time. In Chapter 6, by establishing
the viscous-spring artificial boundary, the method is applied to the calculation model with
truncated boundaries. This process is implemented using the MUL2 team’s self-developed
Fortran code. The validation of artificial boundary is verified applying the classical Lamb
problem. Subsequently, the input process of external waves oblique incident and external
waves in layered media is completed, and the dynamic response of external waves under

oblique incident in various underground media with upper structures is considered, with
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Wave propagation in semi-infinite space
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Fig. 1.1 Structure diagram of this thesis

emphasis on the influence of incident angle. Fig. 1.1 shows the structural relationship of

each chapter.



Chapter 2

Theory of analytical methods for wave

propagation in inhomogeneous media

The research of traditional elastic wave problems is more based on the assumption of isotropic
media, under which the solution of the equation is only applicable to discussing the elastic
waves propagation characteristic in isotropic media. For complex media, such as anisotropic
media, inhomogeneous media, porous media, etc., it is necessary to further expand the

original theory to analytically solve related problems.

2.1 Wave equation in inhomogeneous media

2.1.1 Establishment of equation of motion

For an elastomer with a volume of V and a surface area of S, let its density be p and its
physical strength be f; (excluding inertial force), the dynamic governing equation can be
obtained through Gauss formula

Gijj+pfi = pi 2.1

1
€j =7 (uij+uji) (2.2)
Cij = ﬂtekk6ij+2ueij (2.3)

where u;, p f;