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Abstract. The Earth Clouds, Aerosols and Radiation Ex-
plorer (EarthCARE) satellite mission is a joint endeavour
developed by the European Space Agency (ESA) and the
Japan Aerospace Exploration Agency (JAXA) and features a
94 GHz Doppler Cloud Profiling Radar. This paper presents
the theoretical basis of the cloud and precipitation micro-
physics (C-CLD) EarthCARE Level 2 (L2) algorithm. The
C-CLD algorithm provides the best estimates of the verti-
cal profiles of water mass content and hydrometeor charac-
teristic size, obtained from radar reflectivity, path-integrated
signal attenuation and hydrometeor sedimentation Doppler
velocity estimates using optimal estimation (OE) theory. To
obtain the forward model relations and the associated un-
certainty, an ensemble-based method is used. This ensemble
consists of a collection of in situ measured drop size distribu-
tions that cover natural microphysical variability. The ensem-
ble mean and standard deviation represent the forward model
relations and their microphysics-based uncertainty. The out-
put variables are provided on the joint standard grid horizon-
tal and EarthCARE Level 1b (L1b) vertical grid (1 km along
track and 100 m vertically). The OE framework is not applied
to liquid-only clouds in drizzle-free and lightly drizzling con-
ditions, where a more statistical approach is preferred.

1 Introduction

Clouds and precipitation systems play a critical role in
Earth’s energy and hydrological cycle (Stephens et al.,
2010, 2012). The accurate representation of cloud and pre-
cipitation systems in numerical models is essential for im-
proving the predictability of weather and climate models.
While surface-based observatories (Illingworth et al., 2007;
Mather and Voyles, 2013; Kollias et al., 2020) can provide
high-resolution observations suitable for process studies,
satellite-based active remote sensors have the potential to ob-
tain global estimates of cloud and precipitation microphysics
and dynamics (Battaglia et al., 2020b). The National Aero-
nautics and Space Administration (NASA) A-Train satellite
constellation (Stephens et al., 2002, 2018) first demonstrated
the potential of active remote sensing from space. The Earth
Clouds, Aerosols and Radiation Explorer (EarthCARE) mis-
sion (Wehr et al., 2023) scheduled for launch in 2024 fea-
tures the first spaceborne Cloud Profiling Radar (CPR) with
Doppler capability (Illingworth et al., 2015; Kollias et al.,
2022a, b). The EarthCARE CPR observations will offer a
unique opportunity for the collection of a global dataset of
vertical motions and microphysics in clouds and precipita-
tion.

Compared to CloudSat, the EarthCARE CPR has higher
sensitivity (5–6 dB more sensitive), better vertical sampling
(100 versus 240 m), higher along-track resolution (500 ver-
sus 1100 m) and a smaller instantaneous field of view (IFOV,
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800 versus 1400 m) and includes Doppler velocity measure-
ments and improved detection in the lowest atmosphere lev-
els (Illingworth et al., 2015; Battaglia et al., 2020b; Burns et
al., 2016; Lamer et al., 2019; Kollias et al., 2014). Based on
these characteristics, the EarthCARE CPR is expected to pro-
vide an improved set of CPR observables, i.e. radar reflectiv-
ity, path-integrated attenuation (PIA) and Doppler velocity,
which after their post-processing and quality control by the
CPR processor (C-PRO) algorithms (Kollias et al., 2022b)
will be used for the development of the CPR-only cloud and
precipitation microphysics (C-CLD) product.

The long record of CloudSat observations and the paral-
lel development and validation of the CloudSat data prod-
ucts provide a strong heritage for the C-CLD algorithm de-
velopment. In particular, the use of the CloudSat CPR path-
integrated attenuation (PIA in dB) for estimating the total
liquid water path (LWP) in the atmospheric column and for
constraining surface and profile estimates of the rainfall rate
(Haynes et al., 2009; Lebsock and L’Ecuyer, 2011) is ap-
plied in a similar manner in C-CLD. Another factor that
influenced the C-CLD algorithm development is the devel-
opment of sophisticated ground-based networks such as the
U.S. Department of Energy Atmospheric Radiation Measure-
ment (ARM) observatories and the pan-European Aerosol,
Clouds and Trace Gases Research Infrastructure (ACTRIS)
(Illingworth et al., 2007; Mather and Voyles, 2013; Kollias
et al., 2020). The measurements from these surface-based
networks have stimulated the development of several algo-
rithms that utilize the combination of radar reflectivity and
mean Doppler velocity (Delanoë et al., 2007; Heymsfield et
al., 2008; Mason et al., 2018; Oue et al., 2019). These efforts
highlighted the information content of the Doppler velocity
that is a new EarthCARE CPR observable from space com-
pared to CloudSat. In addition, the C-CLD algorithm utilizes
our latest understanding of solid hydrometeors scattering at
94 GHz (Hogan and Westbrook, 2014; Kneifel et al., 2020)
and the availability of extensive ground-based observations
of particle size distributions (Williams, 2012; von Lerber et
al., 2017).

2 Description of the algorithm

The C-CLD cloud and precipitation retrieval algorithm is
based on a profile-by-profile approach. At each profile, it
uses information available from the radar-only measurements
provided in the form of the following products, as described
by Kollias et al. (2022b): the CPR feature mask and radar re-
flectivity (C-FMR), CPR cloud Doppler (C-CD) parameters,
and CPR target classification (C-TC). The C-CLD algorithm
derives the best estimates of cloud and precipitation micro-
physics that feed into the composite cloud and aerosol pro-
files product (ACM-COM, ATmospheric LIDar–Cloud Pro-
filing Radar–MultiSpectral Instrument composite; Cole et al.,
2022) as explained in Eisinger et al. (2023). The main re-

trieved quantities consist of the water mass content and par-
ticle characteristic size. First, the output of the C-TC hy-
drometeor classification is used to determine the occurrence
of the specific hydrometeor type (ice cloud, snow, rimed
snow, melting snow, cold rain, warm rain, non-drizzling liq-
uid cloud, drizzling liquid cloud). This information is used
to determine which branch of the C-CLD retrieval will be
employed.

As illustrated in the flowchart shown in Fig. 1, the C-CLD
processor contains specific algorithms designed to retrieve
distinct cloud system types:

a. liquid cloud retrieval with the separation between non-
drizzling and drizzling liquid clouds;

b. ice cloud retrieval and precipitation retrieval with spe-
cific algorithms designed to retrieve ice cloud, snow,
riming snow, cold rain and warm rain.

The optimal estimation (OE) variational approach is applied
as described in Rodgers (2000). It is based on a Gauss–
Newton minimization algorithm that allows for a quantitative
evaluation of the uncertainty in the retrieved quantities. The
forward model within the OE approach maps two moments
of the particle size distribution (PSD), the particle character-
istic size (Dm; i.e. mean-mass-weighted equivalent melted
diameter) and mass water content (MC) to the CPR reflectiv-
ity and Doppler velocity (previously corrected in C-CD for
vertical air motion).

The OE method is not applied for retrieval of drizzle-free
clouds (i.e. non-precipitating liquid clouds) and for lightly
drizzling clouds (group a). This is justified by the following
facts.

– In the case of drizzle-free clouds, observed Doppler ve-
locity does not provide any relevant information (fall
velocity of the cloud droplet is negligible), so the re-
flectivity is the only measurement available.

– In the case of lightly drizzling clouds, the observed
Doppler velocity could be heavily dominated by ver-
tical air motion, leading to a large uncertainty in the
reflectivity-weighted velocity. Moreover, the observed
reflectivity is, in general, dominated by drizzle.

Therefore, a retrieval approach involving the optimal estima-
tion method and much simpler methods based on the use of
power-law relationships will result in similar uncertainties in
microphysical parameters. The main retrieved variables for
liquid clouds and drizzle are liquid water content and parti-
cle effective diameter, i.e. the ratio of the third and the second
PSD moments. Note that the case of heavy drizzle is included
in the rain retrieval, as a subcategory of warm rain.

The individual algorithms will now be described in detail
in the next sections.

Atmos. Meas. Tech., 16, 2865–2888, 2023 https://doi.org/10.5194/amt-16-2865-2023



K. Mroz et al.: EarthCARE CPR cloud and precipitation microphysics algorithm 2867

Figure 1. Cloud and precipitation retrieval scheme flow chart. OE theory is applied in the retrieval of solid and liquid precipitating clouds.
The retrievals in the liquid clouds and lightly drizzling clouds (yellow box) are not performed using the OE method. HB: Hitschfeld and
Bordan (1954).

2.1 Liquid cloud and light-drizzle retrieval

Two distinct situations are analysed: non-precipitating liquid
clouds and clouds that generate light drizzle. These two sce-
narios do not overlap spatially with each other or with pixels
classified as precipitation, where the OE algorithm is used.
When a radar volume is classified as a liquid cloud or light
drizzle, an appropriate power-law formula is utilized to esti-
mate the combined liquid water content of the cloud and any
drizzle that may be present. In the case of the OE retrieval,
the liquid water path is one of the retrieved state vector un-
knowns. Once retrieved, it is distributed adiabatically in the
column to provide an estimate of the liquid water content.
The algorithm clearly distinguishes between the cloud water
and the precipitation mass content, with the latter being equal
to 0 for liquid clouds and light drizzle.

2.1.1 Drizzle-free clouds

The cloud liquid water content (LWC) vertical structure is
determined from the reflectivity values using the relationship
LWC−Ze, derived in a power-law form:

LWC(z)= 〈A〉Ze(z)1/2, (1)

where 〈A〉 is an average value assumed constant across the
whole height (Frisch et al., 1998). This relationship assumes
that both the cloud droplets’ number concentration and the
PSD spectral width are constant with height. While this is
reasonable in marine clouds (e.g. Miles et al., 2000), Löhn-
ert and Crewell (2003) concluded that this assumption is the
dominant error factor in continental clouds. If a measurable
PIA signal is available, we can estimate the liquid water path
(LWP) and subsequently estimate the parameter 〈A〉. Other-

wise, two constant values of 4.7 and 2.4 g mm−3 m−3/2 are
assumed over land and ocean, for 〈A〉, respectively.

The corresponding cloud LWP obtained from such an ap-
proximation is evaluated against the estimated cloud mass
content adiabatic profile that represents an average in-cloud
profile, independent of the reflectivity vertical variability
with LWC increasing with the distance from the cloud base,
as

LWCad(z)= fwN 0w

[
z0w

z0w+ (z−hcb)

]
(z−hcb), (2)

where the term in the square brackets accounts for a decrease
in adiabaticity in the thicker clouds as proposed in Wood et
al. (2009), z0w is a scaling parameter set to 500 m, 0w is the
average vertical gradient of the change in adiabatic LWC (pa-
rameterized in Eq. B1), hcb is the height of the cloud base and
fwN is a normalization factor that is set to 1. In the case of
unreliable LWP estimates (i.e. when there is more than one
cloud layer and the PIA corresponding to the cloud is smaller
than 2 dB), a minimum and a maximum limit of the adiabatic
profile (0.3LWCad and 0.9LWCad, respectively) is enforced
on the estimate from the power-law formula.

The cloud effective radius is computed as a mean between
the relationship proposed by Fox and Illingworth (1997),

reff = 23.3Z0.177, (3)

and a relation derived for a lognormal PSD with a spectra
width of 0.38 µm reported by Miles et al. (2000) as an aver-
age value,

reff = 46.5 6
√
Z/Ncl. (4)

In Eqs. (3) and (4), reff is in micrometres; Z is in mm6 m−3;
and the number concentration Ncl is per cubic centimetres
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and is assumed to be equal to 288 and 74 over land and ocean,
respectively (Miles et al., 2000).

2.1.2 Lightly drizzling clouds

The retrieval of LWC for lightly drizzling clouds combines
two estimates:

1. the LWC derived from reflectivity based on power laws
derived by Sauvageot and Omar (1987) and Baedi et al.
(2000),

LWCSO87 [gm−3
]

= 12.25
(
Z[mm6 m−3

]

)0.763
for Z <−22dBZ, (5)

LWCB00 [gm−3
]

= 0.457
(
Z[mm6 m−3

]

)0.193
for Z >−15dBZ, (6)

and a linear interpolation between these two for the in-
termediary reflectivity regime (−22 to −15 dBZ);

2. the LWC profile derived from the adiabatic model
(Eq. 2) with fwN set to fit LWP estimates, if present,
or otherwise set to 1.

The final LWCs are computed by combining the LWCad
derived from the adiabatic model and LWCZ from the reflec-
tivity profile. The used LWC–Z relation for drizzling condi-
tions represents an average relation and can introduce a large
bias, mainly close to the cloud base and cloud top; in such
regions, large differences between LWCad and LWCZ are ex-
pected. Therefore, in the calculation of the LWC the weight
attached to LWCZ is progressively reduced where the abso-
lute relative difference between LWCad and LWCZ becomes
large.

Note that the estimate of the liquid water content reported
here includes both cloud and drizzle water content.

2.2 Optimal estimation framework components

For solid/liquid precipitation and ice clouds, the C-CLD al-
gorithm applies a variational approach (Rodgers, 2000). It
assimilates radar measurements and aims at balancing these
data with the prior information to provide an optimal esti-
mate of the state vector. Gauss–Newton iterations are used to
find the best solution, which allows for a quantitative evalu-
ation of the uncertainty in the retrieved quantities. This ap-
proach has been applied to similar radar-based microphysi-
cal retrievals in the past years (Lebsock and L’Ecuyer, 2011;
Szyrmer et al., 2012; Battaglia et al., 2016, 2020c; Tridon et
al., 2019a; Mason et al., 2017) and in the EarthCARE syn-
ergistic microphysical retrieval product (ACM-CAP, ATmo-
spheric LIDar–Cloud Profiling Radar–MultiSpectral Instru-
ment CAPTIVATE; Mason et al., 2022).

Radar measurements depend on a number of microphys-
ical properties of hydrometeors in the sampled volume, in-

cluding the particle size distribution (PSD) and, for solid-
phase particles, the shape and mass distribution. Assump-
tions on any of the parameters listed above lead to a variety
of microphysical relations reported in the literature between
radar observables and microphysical properties (e.g. Protat
et al., 2007; Matrosov and Turner, 2018). To assess the ef-
fect of the uncertainty associated with the microphysical de-
scription, the ensemble-based method is used to obtain the
forward model relations and the associated simulation uncer-
tainty. The ensemble consists of a number of particle size dis-
tributions collected at the ground for the Global Precipitation
Measurement (GPM) mission ground validation programme
(Dolan et al., 2018). Scattering models are applied to these
data to map the microphysical quantities to the radar observ-
ables. The ensemble mean relations and its spread, defined as
1 standard deviation, represent the forward model relations
and their microphysics associated uncertainty, respectively.

2.2.1 State vector

The PSD is parameterized using the concept of double-
moment normalization. Following Delanoë et al. (2005), the
normalizing moments are defined as

Mp =

Dmax∫
0

DpN(D)dD, (7)

where p is the moment, D is the equivalent liquid sphere di-
ameter and Dmax is the diameter of the largest particle. The
ratio of the fourth and the third moment represents the mean-
mass-weighted melted diameter Dm =M4/M3 and is used
as the size scaling parameter, whileM3 is proportional to the
water-equivalent mass content MC= (π/6)ρwM3 that con-
trols the magnitude of the PSD. Dmax is set to be equal to
5 mm or 2.5Dm, whichever value is smaller. By selectingM3
and M4 moments, the PSD can be expressed as

N(D;Dm,MC)=MC× f (D;Dm), (8)

where f represents functional forms that are reported in the
literature, derived from large datasets for each given hydrom-
eteor category.

The goal of the C-CLD algorithm is to retrieve two mo-
ments of the PSD, i.e. the mass content, MC, and Dm, from
radar reflectivity and Doppler velocity measurements. There-
fore, the vector of the retrieval unknowns has the following
form:

x =
[
log10D

1
m, log10D

2
m, . . . log10D

N
m , log10MC1,

log10MC2, . . . log10MCN
]T
, (9)

where N is the total number of the CPR range gates, regard-
less of whether they include ice/snow or rain. It is impor-
tant to note that we do not use a separate notation for the
mass content of ice and rain in this study, although it is com-
monly referred to as “ice water content” (IWC) and “rain
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water content” (RWC) in the literature. In case of warm- and
cold-rain retrieval, the vector x also includes the cloud liquid
water path with liquid water content distributed according to
Eq. (2). In cold rain, the attenuation of the melting layer is an
additional unknown. Note that the errors in the variables in
the logarithmic units can be converted to fractional errors in
the variable in the linear scale by the following error propa-
gation formula:

1z

z
≈
z′1x

z
=

ln10z1x
z

= ln101x, (10)

where z= 10x and x is either log10Dm or log10MC, e.g. the
root mean square error in log10z of 0.3 corresponds to the
fractional error of 69 % in z.

2.2.2 Vector of measurements

The forward model maps the retrieved microphysical param-
eters to the space of radar measurements (attenuated radar re-
flectivity Zm; Doppler velocity corrected for air motion UD;
and, in some cases, path-integrated attenuation).

The equivalent reflectivity factor for a radar operating at
the wavelength λ is given by

Ze =
λ4

π5|Kw|2

∞∫
0

σb(D,λ)N(D)dD, (11)

where σb is the backscattering cross-section of a particle and
Kw is the dielectric factor of liquid water at a reference tem-
perature and frequency. For this study, Kw is assumed to be
equal to 3.195+ 1.667i, which represents its value at 10 ◦C
according to the model of Turner et al. (2016). The reflectiv-
ity is usually expressed in mm6 m−3 or, due to its high vari-
ability, in logarithmic units of dBZ= 10log10(mm6 m−3).

When analysing millimetre wavelength radar data, the at-
tenuation due to gases (mainly water vapour and oxygen)
and the one caused by hydrometeors cannot be neglected
(Battaglia et al., 2020b; Tridon et al., 2020; Lamer et al.,
2019). The measured reflectivity at distance r from the
radar is given byZm(r)= Ze(r)exp

[
−0.2ln10

∫ r
0 k(s)ds

]
or,

in more commonly used logarithmic units, Zm(r)[dBZ] =
Ze(r)[dBZ] − 2

∫ r
0 k(s)ds, where k is the so-called specific

attenuation given in decibels per unit length; its component
associated with the hydrometeors can be computed as the ex-
tinction cross-section-weighted (σe) integral of the PSD:

k =
10

ln10

∞∫
0

σe(D)N(D)dD. (12)

Over waterbodies, the total path-integrated attenuation
(PIA≡ 2

∫
k(s)ds) can be estimated from the surface return,

and then it is used as an additional observational constraint.

The mean Doppler velocity is the backscattering-weighted
line-of-sight velocity (vLOS) of targets relative to the radar:

UD =

∞∫
0

N(D)σb(D,λ)vLOS(D)dD

×

 ∞∫
0

N(D)σb(D,λ)dD

−1

. (13)

Here, positive velocities correspond to downward motions
(away from the CPR).

The CPR processor (C-PRO; Kollias et al., 2022b) derives
an estimate of the CPR measurements with their associated
uncertainties. This includes the attenuated radar reflectivity,
the PIA provided by the C-FMR product and the sedimenta-
tion Doppler velocity (C-CD product). The estimation of the
sedimentation velocity from raw EarthCARE CPR Doppler
velocity measurements is a multistep, complex process con-
sisting of non-uniform beam-filling correction; velocity un-
folding; spatial averaging; and finally the sedimentation ve-
locity estimate, where the contribution of the vertical air mo-
tion has been removed (based on the methodology of Kalesse
and Kollias, 2013). The C-CLD algorithm takes in radar re-
flectivity, sedimentation velocity and PIA measurements as
inputs. The measurement vector is composed of 2N + 1 en-
tries, and it is given by

y =
[
Z1

m, Z
2
m, . . .Z

N
m ,U

1
D,U

2
D, . . .U

N
D ,PIA

]T
, (14)

where N is the number of retrieval layers. However, because
the normalized radar cross-section of the surface over land
varies widely depending on factors such as vegetation, sur-
face slope, soil moisture and snow cover, estimates of PIA
are only provided over the ocean. The retrieval is still per-
formed without PIA estimates, but results are significantly
more uncertain and should be used with caution.

The vertical resolution of the retrieval matches the radar
sampling, and it is equal to 100 m. Note that the actual ver-
tical resolution of the radar is 500 m, which implies a fac-
tor of 5 oversampling. Thanks to a large antenna (2.5 m) and
low aircraft altitude (400 km), the CPR is expected to achieve
an unprecedented result in space sensitivity and collect mea-
surements as low as −36 dBZ.

2.2.3 OE procedure

The aim of the OE is to provide the most probable value of
the microphysical state vector x given the information pro-
vided by the measurements and prior knowledge about the
state of the atmosphere. This is done by an iterative search
that minimizes the cost function 8:

8=
[
y−F(x)

]TR−1
y

[
y−F(x)

]
+ [x− xa]TR−1

a [x− xa]+ xTRTTx. (15)
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2870 K. Mroz et al.: EarthCARE CPR cloud and precipitation microphysics algorithm

Here, F denotes the forward model (radar simulator), Ra =

Rm+RF represents the sum of the measurement error covari-
ance matrix Rm and the forward model error covariance ma-
trix RF, and Ra represents the prior covariance matrix. The
measurement errors are assumed to be uncorrelated, and so
the matrix Rm is diagonal. The reflectivity and Doppler ve-
locity errors depend mainly on the number of independent
samples and on the signal-to-noise ratio (SNR); for a typical
measurement, they are 1 dB and 0.2 m s−1, respectively. An
uncertainty estimation of the PIA is more complex (e.g. it de-
pends on the surface characteristics within the radar field of
view), but it is provided by the C-PRO (for more detail on the
PIA estimator, see Kollias et al., 2022b). A smoothness con-
straint is introduced in the form of the Twomey–Tikhonov
matrix RTT, including a scaling coefficient, as described in
Hogan (2006). The state vector at the ith iteration can be
found using Gauss–Newton minimization steps, i.e.

xi =xi−1+H−1[JTR−1
a (y−F(xi−1))

−R−1
a (x− xi−1)−RTTxi−1

]T
, (16)

H≡ JTR−1
y J+R−1

a +RTT, (17)

where J denotes the Jacobian (gradient) of the forward
model F . Usually, after a few iterations, the algorithm con-
verges to the minimum that provides the final solution. If
convergence criteria are not met within a set number of it-
erations, the state variables are set to the missing value.

The advantage of using the OE approach is that it pro-
vides a method for propagating errors in the measurements
and uncertainties in the algorithm assumptions. The error co-
variance matrix Rx associated with the retrieval variables is
given as

R−1
x = JTR−1

y J+R−1
a . (18)

The diagonal elements of Rx provide the estimates of the
variance of x, i.e. decimal logarithm of the retrieved quanti-
ties (MC andDm). The off-diagonal elements give the cross-
correlations between errors. The errors for any related quan-
tity, like precipitation rate, can be computed by propagating
these errors.

2.3 Warm rain

2.3.1 Forward model of rain reflectivity, attenuation
and Doppler velocities

For rain, a gamma model is used to analytically approximate
the PSD shape, i.e. the function f in Eq. (8) is

f (D;Dm,µ)=
6(µ+ 4)µ+4

πρwD4
m0(4+µ)

(
D

Dm

)µ
exp

(
−
D(µ+ 4)
Dm

)
, (19)

where 0 denotes the gamma function and µ is a shape-
controlling parameter. Schulte et al. (2022) have demon-
strated that, in warm-rain retrievals, single-moment PSD
models can lead to large biases, of the order of 100 %, when
retrieving rain rates. The selection of the shape parameter µ
is based on the methodology presented by Williams et al.
(2014), where the expected value of µ is found for a given
Dm, based on the statistical analysis of in situ microphysi-
cal measurements. In this study, in situ PSD data collected
during field campaigns and from the permanent sites of the
ground validation programme of the Global Precipitation
Measurement mission (GPM; Hou et al., 2014) are exploited
(for more detail, see Mróz et al., 2019). The analysis is re-
stricted to the measurements from the two-dimensional video
disdrometer (2DVD; Kruger and Krajewski, 2002) with a se-
ries of quality checks performed beforehand. These checks
include discarding frozen precipitation or insufficient PSD
sampling that happens for small rainfall rates (≤ 0.1 mmh−1)
and large sizes (Dm ≥ 4 mm) that disdrometers are not well
suited to capture (Guyot et al., 2019). These filtering criteria
are set to have statistically and physically meaningful PSDs.
The final dataset includes almost 150 000 samples of rainy
measurements over different latitudes, thus thoroughly cov-
ering natural variability.

Our analysis confirmed previous findings of Williams et al.
(2014) about the microphysical properties of PSDs (i.e. the
mass-weighted standard deviation of D); the so-called PSD
width (σm) is highly correlated with Dm, and its expected
value is given by

σ
expected
m =

D1.4
m
√

10
, (20)

where σm and Dm are in millimetres. Although these statis-
tics are based on binned PSD measurements with no underly-
ing assumptions about the PSD shape, they can be translated
into a gamma-model-specific relation via σ0m =Dm/

√
4+µ

giving

µexpected
= 10D−0.8

m − 4. (21)

For the forward model simulation, backscattering and ex-
tinction cross-sections are computed with the T-matrix ap-
proximation assuming the axial-ratio formula of Brandes et
al. (2005). The Doppler velocity is computed using the rain-
drop terminal fall speed as determined by Gunn and Kintzer
(1949). It is assumed that the PSD shape can be parameter-
ized by Eq. (19) with µ given by Eq. (21) to reduce the num-
ber of free parameters in the retrieval. The uncertainty in such
an approximation was estimated via analysis of the radar
simulations for the binned PSDs collected at the ground. The
forward model errors for the reflectivity, specific attenuation
and mean Doppler velocity are 0.42 dB, 10 % and 0.12 ms−1,
respectively. Note that the specific attenuation uncertainty is
given in terms of a fractional error, as it strongly varies with
the absolute value. The simulated radar observables corre-
sponding to the in situ PSD measurements and the forward
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model parameterization used in this study can be found in
Appendix A1.

2.3.2 Cloud liquid water correction

A crucial component in the warm-rain algorithm for W-band
radars is the cloud liquid water correction (Haynes et al.,
2009; Battaglia et al., 2020a). The following strategy has
been followed: first, the cloud boundaries are identified based
on the lifting condensation level (cloud bottom) and by the
highest altitude of the detectable reflectivity (cloud top); then
the shape of the profile of cloud MC given by Eq. (2) is at-
tributed to the measurement column. Once the shape is fixed,
the magnitude of the liquid water content is controlled by
the cloud liquid water path (CLWP) that, in the logarithmic
units, is one of the retrieved unknowns. Because the radar re-
flectivity of cloud droplets is much smaller than the one of
raindrops, the retrieval of log10(CLWP) is mainly driven by
the PIA estimate.

2.3.3 A priori

One of the essential elements of the OE procedure is the ini-
tial estimation of the microphysical parameter values along
with their uncertainties. This can be done by providing cli-
matological statistics based on long-term observations. This
approach usually involves very large uncertainties that corre-
spond to the natural variability in the rain microphysics. Al-
ternatively, a much more constrained a priori estimate can be
obtained by statistical analysis of in situ PSD measurements
in relation to their radar simulations, as was done by Tridon
et al. (2019b). For example, an estimate of the mean value
and standard deviation of log10Dm and log10MC in corre-
spondence to a given reflectivity range (Z±SD(Z)) can be
provided. This approach is adopted in this study.

The a priori information on log10Dm and log10MC is ob-
tained from the rain microphysics statistics, and their corre-
sponding reflectivity simulations collected in the PSD dataset
are described in Sect. 2.3.1. Regression analysis reveals a
moderate correlation with the Pearson correlation coefficient
(CC) of 0.53 between the state vector parameters via the fol-
lowing linear formula:

log10MC [gm−3
] = 1.863log10Dm[cm] + 0.757. (22)

The root mean square error (RMSE) of this fit is estimated
to be 0.33 B for 0.8<Dm < 2 mm. Since the PSD dataset
does not include small raindrop sizes, we use regressions (21)
and (22) together with the related uncertainties to supplement
the in situ data with a low precipitation rate and/or low reflec-
tivity points. This leads to the following a priori relations in

rain:

log10Dm [cm]

=


0.020Ze [dBZ] − 1.446 if Ze < 6.75dBZ,

0.036Ze [dBZ] − 1.554 if 6.75≤ Ze < 17dBZ,

0.012Ze [dBZ] − 1.147 if Ze ≥ 17dBZ;

(23)

log10MC[gm−3
]

=

{
0.038Ze [dBZ] − 2.043 if Ze ≤ 12.5dBZ,

0.109Ze [dBZ] − 2.932 if Ze > 12.5dBZ.
(24)

Uncertainties in these relations over the whole range of
reflectivity values are estimated to be 0.15 and 0.2 B, respec-
tively (i.e. a factor of 1.41 and 1.58), representing the maxi-
mum RMSE value for PSD simulations partitioned into 1 dB
reflectivity bins from −15 to 32 dBZ. Note that, for large re-
flectivity, the slope of the Z–Dm relation is very small com-
pared to the uncertainty estimate, which indicates a weak cor-
relation between these parameters. In practice, it reduces the
Z–Dm relationship to the climatological value of log10Dm
provided by the in situ dataset.

The derived regressions require effective reflectivity esti-
mates; therefore, the radar measurements are corrected for at-
tenuation by using the Hitschfeld and Bordan (1954) method-
ology before a priori estimates are derived.

The expected value of the cloud liquid water path is es-
timated to be weakly related to the rain water path (RWP),
i.e.

log10
CLWP
RWP

= 0.344± 0.26. (25)

This formula is based on the statistical analysis of warm-rain
simulations over the Cabo Verde islands described in Sect. 3.

2.4 Ice and snow

Large natural variability in ice microphysics results in a va-
riety of solid-phase hydrometeor structure models. In this
study, the mass of the snowflakes is modelled using the pa-
rameterization of Morrison et al. (2009), where riming is
simulated by filling the gaps between the ice crystal branches
with supercooled liquid droplets (Heymsfield, 1982). The
mass of snowflakes is parameterized by the power-law for-
mula of m[kg] = α(D[m])β , with α and β varying for dif-
ferent size regimes. For the unrimed aggregate, it is as-
sumed that α = 0.01 and β = 2, agreeing with the simula-
tions (e.g. Leinonen and Szyrmer, 2015; Westbrook et al.,
2004) and in situ measurements of aggregates (Brown and
Francis, 1995; Erfani and Mitchell, 2017; Moisseev et al.,
2017). For sizes where the power-law formula would exceed
the mass of solid ice spheres, the latter is used. In riming con-
ditions, the smallest aggregates are fully filled with rime and
they grow by accretion, so their mass–size relation follows
the one for graupel (α = 86.6, β = 3). During riming, large
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aggregates do not increase their size due to the collection of
supercooled droplets, but they only increase their mass pro-
portionally to their projected surface area and the amount of
supercooled liquid water the snowflake passes through. This
implies that the exponent in the mass–size formula for par-
tially rimed snow remains the same as for unrimed aggre-
gates (β = 2) and it is only α that increases with the degree
of riming. It is implicitly assumed that the mass of rimed ag-
gregates is always larger than or equal to the mass of unrimed
snow; therefore the maximum between the power-law for-
mulas for rimed and unrimed aggregates is taken. For more
detail on this conceptual model, see Mroz et al. (2021b) and
their Fig. 1, which shows the transition points between dif-
ferent mass–size relationship regimes. With this parameteri-
zation, a degree of riming is fully represented by the value of
α that is equal to 0.01 for unrimed aggregates and reaches 0.5
for heavily rimed large graupel particles. The OE retrieval for
snow profiles is performed for five different values of α, and
the one that provides the lowest cost function (see Eq. 15) is
used as a final state estimate.

2.4.1 Forward model of ice reflectivity, attenuation and
Doppler velocities

The scattering properties of snow particles are obtained by
using discrete dipole approximation corresponding to real-
istic snowflake shapes (see Leinonen et al., 2016). These
snowflakes are composed of dendrites of different sizes,
and they are subject to various degrees of riming. In the
computations, the radar is pointing vertically, the parti-
cles are aerodynamically aligned with the maximum di-
mension oriented horizontally and particles are discretized
to a collection of 40 µm dipoles. The original dataset of
Leinonen et al. (2016) is complemented by large aggre-
gates generated by the authors using the same aggregation
model (https://github.com/jleinonen/aggregation, last access:
1 October 2022). The terminal velocity of particles is sim-
ulated for standard atmospheric conditions (relative hu-
midity of 50 %, T̃ = 20 ◦C, P̃ = 1013 mbar) using the pa-
rameterization of Böhm (1992). The physical and scatter-
ing properties of individual snowflakes are freely avail-
able at https://doi.org/10.5281/zenodo.7510186 (Mroz and
Leinonen, 2023). The velocity UD(p,T ) at any tempera-
ture T and pressure p is computed via an air density cor-
rection as suggested by Foote and du Toit (1969):

UD(p,T )= UD(p̃, T̃ )

[
p̃ T

p T̃

]0.4

. (26)

Consistency between the microphysical parameteriza-
tion and radar simulations is achieved by assuming that
the scattering properties of snowflakes are functions of
their mass and size only. For this purpose, for a se-
lected mass–size formula (i.e. a selected degree of rim-
ing, α), the scattering database is searched for aggre-
gates in the proximity of that relation. More specifi-

cally, for a given size D only snowflakes that satisfy
1m = 10log10|msnowflake(D)/mexpected(D)|< 3 are consid-
ered; i.e. the mass is within a factor of 2 of the formula. Next,
depending on the distance from the expected mass–size rela-
tion, the particle is assigned its weight, w(m)= exp(−12

m).
The scattering properties for a given mass (and α) are com-
puted by locally fitting a fifth-degree polynomial to the dec-
imal logarithm of the cross-sections as a function of log10m.
The fitting of logarithmic values is adopted because of the
large variability in the cross-sections with respect to the
mass. Moreover, it reduces the variability in the averaged
variables. The terminal velocities are fitted without the loga-
rithmic transformation.

Once the snowflake density model is chosen and the cor-
responding scattering and falling velocity simulators are ob-
tained, it is necessary to characterize the particle size distri-
bution so that the description of the forward model of snow
is complete. Due to the complexity of snow crystal shapes,
the wide range of their densities, the ambiguities in the size
definition (von Lerber et al., 2017) and the related difficul-
ties in the PSD measurements, we decided not to use in situ
snow PSD measurements to derive their statistical proper-
ties. Instead, it is assumed that the rain that was captured by
the disdrometers of the GPM ground validation programme
formed from snow melting and thus, by taking into account
the differences in raindrop and snowflake terminal velocities,
can be used to fully describe the natural variability in PSDs in
snow. Implicitly, we assume that melting is the only process
that occurs while snowflakes melt; i.e. no collision coales-
cence, breakup, condensation or evaporation takes place. By
doing so, the particle size distributions in rain (Nr) and snow
(Ns) are linked via the following relation:

Ns(Deq,α)Vs(Deq,α)dDeq =Nr(Deq)Vr(Deq)dDeq

⇒Ns(Deq,α)=Nr(Deq)
Vr(Deq)

Vs(Deq,α)
, (27)

where Vr and Vs denote the terminal velocity in rain and
snow, respectively, and Deq is the equivalent melted diam-
eter. The statistics about the microphysical properties of rain
derived in Sect. 2.3.1 translate naturally, through melting-
only assumption formula (27), into characteristics of snow.
In particular, the PSD of snow, after melting, converts into
the gamma PSD (Eq. 19) with µ= 10D−0.8

m − 4. The radar
forward model is obtained by combining the electromagnetic
and microphysical properties of snow. The scattering proper-
ties for selected values of α are shown in Fig. A2.

2.4.2 A priori

The a priori profiles of MC and Dm are generated using the
empirical relations that take Z and temperature into account.
Estimates of the mass content and a priori Dm are based
on the relationships provided by Matrosov and Heymsfield
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(2008, 2017):

MC [gm−3
] = 0.086

(
Ze [mm6 m−3

]

)0.92
; (28)

Dm[cm] =

{
0.052(Ze [dBZ])0.28 for snow,

0.047(Ze [dBZ])0.294 for cirrus.
(29)

The reflectivity profiles are corrected for attenuation be-
fore the above relationships are applied. First, the cloud liq-
uid water correction is performed. In the presence of riming,
a constant amount of supercooled LWC (SLWC) is present
across the ice layer for all pixels flagged as riming snow
in the C-TC product. Attenuation is computed according to
the parameterization provided in Sect. A2, and the reflectiv-
ity profile is corrected for the SLWC attenuation. Then the
ice profile is further corrected for ice attenuation using the
Hitschfeld and Bordan (1954) approach with the two-way at-
tenuation coefficient proposed by Protat et al. (2019):

kice[dBkm−1
] = 0.0325Z [mm6 m−3

]. (30)

In the presence of a PIA measurement, if the attenuation is
overestimated, the LWC is reduced to match the PIA. On the
other hand, if the correction underestimates the PIA, the co-
efficient in the Z–k relation is scaled to match the PIA.

2.5 Cold rain

The cold-rain retrieval capitalizes on the modelling for the
liquid phase described in Sect. 2.3 and on the solid phase
described in Sect. 2.4. In cold rain, in the layer where tem-
peratures become warmer than 0 ◦C, hydrometeors transi-
tion between the solid and liquid phases. This region is very
well identified by the target classification (C-TC). The mod-
elling for Doppler velocities and reflectivities for the solid
and the liquid phase follows what is described in Sects. 2.3.1
and 2.4.1. The melting layer is not modelled, and observ-
ables within the melting layer are not fitted as in Tridon et
al. (2019b). The melting layer attenuation coefficient is esti-
mated to be proportional to the mean rain rate underneath:

kML [dBkm−1
] = γML〈RR [mmh−1

]〉
δML , (31)

with γML = 2.6 and δML = 0.87 as proposed by Matrosov
(2008). This estimate is used as a soft constraint only; i.e. the
bright band extinction is added to the vector of the unknown
variables. During the OE iterations, the difference between
its expected and state vector value is minimized, assuming
the uncertainty in the Matrosov (2008) formula to be a factor
of 2. The liquid cloud content (in logarithmic units) is also re-
trieved in cold rain. It is assumed that the liquid cloud is dis-
tributed between the freezing level and the height of the lift-
ing condensation level (LCL) according to Eq. (2). Due to the
high uncertainty regarding the occurrence of the cloud and its
possible water content, it is assumed that the a priori estimate
of the cloud water path (CWP) is very small, i.e. 0.1 gm−2,

which has no effect on the radar measurements. The relative
uncertainty in this estimate is set to be 100 dB, which reflects
no prior knowledge of this parameter.

Unlike the retrieval of snow profiles, the cold-rain retrieval
is performed for one value of α only. Selection of the best α
value is based on the continuity of the mass flux between
the solid and the liquid phase, and it follows these steps:
first, utilizing Eqs. (A1) and (A2), the mass content and the
characteristic size of rain below the melting layer are esti-
mated from the mean Doppler velocity and radar reflectiv-
ity measurements corrected for attenuation using the PIA-
constrained Hitschfeld and Bordan (1954) technique. Once
the water content and the size of rain are known, the radar
simulations in the ice part are performed for logarithmically
sampled values of α ranging from 0.01 to 0.5, assuming that
the equivalent melted diameter Dm and the precipitation rate
in rain and ice are the same; i.e. melting is the only process
within the melting zone (Mróz et al., 2021a). Then, the differ-
ence between the radar simulations and the measurements in
the radar bin above the melting zone is computed for all con-
sidered values of α, taking into account corresponding mea-
surement uncertainties. Finally, an α value that minimizes
this distance is selected for the retrieval.

3 Validation of the algorithm

The validation of the algorithm was performed with the syn-
thetic precipitation scenes generated by Global Environmen-
tal Multiscale (GEM) model (Côté et al., 1998; Girard et al.,
2014).

3.1 Warm rain

The C-CLD algorithm has been tested with warm-rain simu-
lations over the Cabo Verde islands. The cloud microphysical
processes were represented by the Predicted Particle Prop-
erties (P3) two-moment bulk microphysics scheme (Morri-
son and Milbrandt, 2015; Milbrandt et al., 2016). In the P3
scheme, the ice-phase hydrometeors are represented by three
ice categories whose physical properties evolve continuously
and were proved sufficient to represent the co-existence of
cloud ice particles of different sizes (Qu et al., 2022). In ad-
dition to the three distinct ice species, rain and cloud droplets
are also simulated. The horizontal resolution of the simula-
tion is 250 m, which allows for resolving fine-scale convec-
tive cells that are characteristic of warm rain. The readers are
referred to Qu et al. (2022) for more detail.

To simulate the radar measurements, the effective reflec-
tivity and the specific attenuation of rain are estimated using
formulas (A1) and (A3) in each model bin. The cloud contri-
bution is simulated with an exponential PSD and summed up
with the rain components. Then, the attenuated reflectivity,
at the native model resolution, is computed by integrating
the attenuation along the vertical path. The resulting three-
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dimensional reflectivity field is averaged horizontally over
3× 3 pixels to provide a resolution of 0.75× 0.75 km2 that
is comparable with the one of the EarthCARE CPR. Simi-
larly, the mean Doppler velocity is first simulated at the na-
tive resolution. Next, it is averaged over 3× 3 pixels using
the attenuated reflectivity (in the linear units) as the weights.
This provides the Doppler measurements at the radar scale.
An estimate of the PIA aims to reflect as closely as possible
the values that would be observed with the surface reference
technique. The normalized radar cross-section, σ0 [dB], is as-
sumed to be uniform in the field of view. Then, the apparent
PIA is given by

PIASRT = σ0− 10log10

(
1
n

n∑
i=1

100.1(σ0−PIAi )

)

=−10log10

(
1
n

n∑
i=1

10−0.1PIAi

)
, (32)

where PIAi denotes the path-integrated attenuation in the ith
column and n= 9 is the number of the spatially averaged
profiles of the simulations. The water mass content, simi-
larly to the reflectivity field, is averaged over nine neighbour-
ing pixels. The characteristic size at the radar resolution is
the mean of the fine-scale Dm values weighted by the corre-
sponding mass content. Both rain and cloud components are
taken into account in the state and measurement vector com-
putations. The ice and snow species are neglected in these
simulations because only warm-rain columns are considered.

Contour frequency altitude diagrams (CFADs) of the radar
observables simulated for the warm-rain profiles are shown
in Fig. 2. The freezing level is located at about 5 km. Two
distinct hydrometeor populations can be seen in the reflec-
tivity and in the Doppler velocity data. In the dominant
mode, the cloud top height is about 1 km above the freez-
ing level, where the Doppler measurements do not exceed
1.5 ms−1. This corresponds to raindrop diameters less than
0.3 mm (Fig. A1c) that are characteristic of drizzle and cloud
droplets. The velocity tends to increase towards the ground,
indicating an increase in the size of the raindrops caused ei-
ther by collision-coalescence processes or growth by con-
densation. The reflectivity profiles reach their maximum at
approximately 4 km, and then they tend to decrease toward
the ground, which may be due to the signal attenuation, a
decrease in the water mass content, non-Rayleigh scattering
effects (Kollias et al., 2002) or a combination of some of
these factors. The secondary mode of the radar observables
corresponds to more shallow precipitation columns, with the
cloud top height between 2 and 4 km above the ground. This
suggests the presence of a liquid cloud at this altitude too.
Although similar peak reflectivity values are observed, the
Doppler velocity is reduced compared to the deeper profiles,
indicating smaller rain drops with a higher concentration and
thus completely different microphysics. The presented sim-
ulations cover precipitation rates up to 15 mmh−1, with a

mean value of 0.4 mmh−1. This is reflected in the PIA val-
ues, normalized by the cloud top height, shown in Fig. 2c.

Validation of the retrieval was performed using approx-
imately 8000 warm-rain columns, and its performance is
illustrated in Fig. 3. The algorithm accuracy and preci-
sion are quantified by the mean error (ME) and root mean
square error (RMSE) in the retrieved variables. The corre-
lation coefficient (r) and normalized RMSE (NRMSE(x)=
RMSE(x)/SD(x), where SD(x) denotes the standard de-
viation of x) are computed as additional quality metrics.
Since the considered variables are given in the logarithmic
units, i.e. log10CLWP, log10MC and log10Dm, the ME and
RMSE are given in bels (B). On average, the algorithm is
overestimating the liquid cloud water path by about 32 %
(ME=−0.12 B and 100.12

≈ 1.32). For profiles with higher
cloud water content, the overestimation is reduced but scat-
tered more around the 1–1 line. An opposite behaviour is ob-
served for rain; the algorithm underestimates the rain MC
by approximately 26 % (ME= 0.13 B and 10−0.13

≈ 0.74)
to compensate for the PIA overestimation due to the cloud
droplets. The retrieval of Dm shows very good accuracy; for
0.1≤Dm < 3 mm, the algorithm tends to underestimate the
characteristic size only by 5 % (ME=−0.02 B). Because the
same forward model was used for the retrieval and the scene
simulations, the systematic underestimation for large sizes is
believed to be caused by non-uniform beam-filling (NUBF)
effects; i.e. the antenna-pattern-averaged mean Doppler ve-
locity is smaller than the Doppler velocity corresponding
to the footprint-averaged Dm because of the shadowing ef-
fect due to attenuation in correspondence to the fraction of
the footprint with larger reflectivities (see Fig. 9 in Mroz et
al., 2018). The precision of the algorithm is greatly reduced
when PIA estimates are not assimilated in the retrieval, which
is reflected in a reduction in the correlation coefficient and an
increase in the RMSE values, as can be seen in Fig. 3d and e.
The RMSE value increases from 0.24 and 0.27 to 0.48 and
0.45 B, while the correlation drops from 0.81 and 0.94 to 0.31
and 0.76 for CWP and rain MC, respectively. The estimate of
the characteristic size is not affected by the lack of PIA mea-
surements because it is mainly retrieved from the Doppler
velocity measurements.

When PIA measurements are available, the simulated PIA
is practically the same as the one being assimilated, with
small differences due to the assumed error in the PIA mea-
surements (i.e. 1 dB), giving a correlation of 0.99 and RMSE
of 0.07 dB. When the PIA measurements are not available,
the algorithm estimates the PIA using the maximum value
of the reflectivity profile and the value close to the surface.
While this approximation is useful, the lack of an integral
constraint makes the correlation between measured and re-
trieved PIA drop to 0.58 and the RMSE increase to 0.39 dB
as shown in Fig. 3f. When raindrops are present in the CPR
radar sampling volume, they dominate the CPR observables.
In this case, the information provided by the radar reflectivity
and mean Doppler velocity is not sufficient to predict the PIA
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Figure 2. Contour frequency altitude diagrams of the (a) radar reflectivity (ZW ) and (b) mean Doppler velocity (MDVW ) of the warm-rain
profiles used for the C-CLD validation. Panel (c) shows a histogram of the PIASRT estimates (one-way) normalized by the cloud top height
(CTH).

Figure 3. The warm-rain algorithm performance histograms. The x axis represents the model values, while the y axis corresponds to the
retrieval. Panels (a), (b) and (c) show the cloud liquid water path, rain water content and rain characteristic diameter, respectively. Panels (d),
(e) and (f) show the cloud liquid water path, rain water content and forward path-integrated attenuation when assuming that the PIA is not
available. The reported values of the ME, RMSE, normalized RMSE (NRMSE) and correlation coefficient (r) are calculated for unknowns
in the logarithmic units, i.e. log10CLWP, log10MC and log10Dm.

values reported by the model well. This results in a tendency
to overestimate the amount of liquid cloud water content and
thus to overestimate the observed attenuation.

The quality of the mass content retrieval can be further im-
proved when the PIA estimate based on the surface reference
technique (Eq. 32) is corrected for NUBF. We quantify this
by replacing the PIASRT estimate with the fine-scale antenna-

pattern-averaged attenuation values. In that case, the bias and
RMSE in the rain MC estimate are reduced by 14 percent-
age points for both metrics. This indicates the need for more
research on the NUBF and the related forward model adjust-
ments, even in the case of satellite systems with such small
footprints as the EarthCARE CPR (Battaglia et al., 2020a).
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3.2 Cold rain and snow

The cold-rain and snow retrieval was applied to all the sim-
ulated scenes; in Fig. 4 the “Halifax” scene over eastern
Canada is presented (for more detail on the simulated scenes,
see Donovan et al., 2023). The left-hand side panels show
the model output, while the right-hand side panels depict
the retrieval and the simulated radar observables. The first
part of the scene is occupied by light and moderate snow,
with the cloud tops below 5 km. The second part presents
ice clouds reaching 8 km and the associated stratiform pre-
cipitation with the melting layer between 2 and 3 km a.s.l.,
clearly highlighted by a sharp change in the Doppler signal.
The cold-rain part features a heavy precipitation band associ-
ated with convection where the rain rates exceed 10 mmh−1.

Overall, the C-CLD algorithm reliably reproduces the
radar measurements corresponding to the precipitation struc-
ture, and despite being designed for stratiform rain, it per-
forms relatively well even for convective profiles character-
ized by moderate precipitation conditions. The largest dif-
ferences between the simulations and the retrieval within the
stratiform rain systems are observed around the along-track
distance of 3450 km close to the ground. The problem that
affects these profiles is a misclassification in the C-TC prod-
uct of pixels with a mixture of ice and rain as pure-snow
columns. This leads to erroneously large Dm estimates and
failure of the algorithm. The worst performance of the al-
gorithm is observed for the retrieval of Dm in snow. Due to
limited information content about the density of ice in the
instrument illuminated volume, different degrees of riming
tested by the algorithm can provide comparable cost func-
tion values. Therefore, the choice of the final solution may
not be entirely accurate. Future work on the algorithm should
focus on including such ambiguities in the final uncertainty
estimates of the state vector.

Statistics on the retrieval accuracy based on all the scenes
are presented in Fig. 5. The results for snow microphysical
parameters combine the solid-phase part of cold-rain profiles
and pure-snow profiles. These statistics correspond to radar
reflectivity values in excess of −21 dBZ, where Doppler ve-
locity is considered reliable, and the retrieval shows a full po-
tential of Z and UD measurements. The snow MC retrieval is
strongly correlated with the model output, with a slight ten-
dency to underestimate. The reported RMSE of 0.23 B cor-
responds to a fractional uncertainty of 53 %. The retrieval of
Dm is more ambiguous (which is reflected in higher values of
NRMSE) due to the limited variability in Doppler measure-
ments with snow size, especially in the case of low-density
ice (Fig. A2). Moreover, due to non-Rayleigh effects the re-
flectivity is not a monotonic function of the size, which addi-
tionally hampers the retrieval. This results in a moderate cor-
relation coefficient of 0.68. As expected, the sizing retrieval
in rain has a higher correlation and lower RMSE values than
in ice due to the tighter relationship between the size and
mean Doppler velocity. Like in the case of warm rain, the

algorithm underestimates sizes above 0.6 mm and underesti-
mates the MC values. However, in cold rain these differences
are more pronounced because, in addition to NUBF effects,
they are amplified by differences between the forward model
used in retrieval and the one used in GEM simulations (not
shown). Our forward model provides higher Doppler veloc-
ity for sizes exceeding 0.7 mm and smaller velocities below
this size, which explains differences in the retrieved size.
These differences propagate further into the MC retrieval.
For Dm < 0.7 mm the radar reflectivity increases with size,
so an overestimate in Dm causes negative bias in the MC re-
trieval. When Dm > 0.7 mm, reflectivity decreases, and thus
the MC is underestimated also for large raindrops.

3.3 Stability and sensitivity of the optimal estimation
biases in the measurements, the forward model and
the a priori estimate

The calibration of radar systems and correct assumptions on
microphysics are paramount for the accuracy of remote sens-
ing retrievals. This is presented in Fig. 6, where the precision
of the C-CLD algorithm in rain with various error sources is
tested. The quality of the retrieval is quantified in terms of
the NRMSE. First, the sensitivity of the retrieval to biases
in the measurements is tested by adding a constant offset in
the forward model to the radar reflectivity and the Doppler
velocity. Note that this is equivalent to adding a bias with an
opposite sign to the measurements; thus the calibration errors
and model biases are tested simultaneously. As expected, the
retrieval of the MC is mainly affected by the biases in the
reflectivity, which is manifested in the valley-like shape of
a local minimum, with the RMSE changing mainly along
log10MC direction. Having said that, some compensation ef-
fects are also observed; i.e. the RMSE shows little variability
if Z and UD are simultaneously increased or decreased ac-
cording to the direction given by the valley shape as shown
in Fig. 6a. This is due to the characteristics of the forward
model, namely the fact that the reflectivity depends on both
the size and the mass content of rain. Thus, for a fixed mass,
deviations in the reflectivity are compensated for by changes
inDm corresponding to changes in the Doppler velocity. The
accuracy of the retrieval of log10Dm is also driven mainly
by one variable, the mean Doppler velocity. As for the other
unknowns, biases in the Doppler velocity measurements can
be, at least to a certain degree, compensated by an offset in
the reflectivity. However, due to a very constrained relation
between Dm and UD , the compensation is not as effective
as for the MC retrieval and is mainly driven by the Z–Dm
relationship used for the a priori estimate.

The position of a local minimum of the average of the
NRMSE in log10Dm and log10MC indicates the “reference”
point that provides the best possible retrieval. As can be seen,
the minimum is shifted away from the origin, which indicates
differences between the forward model used in the retrieval
and the one used for simulations. An offset of 0.4 ms−1 and
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Figure 4. Panels (a), (b), (c) and (d) show the model radar reflectivity, Doppler velocity, mass content and mean-mass-weighted characteristic
diameter for the ice and cold-rain regions of the Halifax scene. Panels (e), (f), (g) and (h) show the forward radar reflectivity and Doppler
velocity and the retrieved mass content and mean-mass-weighted characteristic diameter applied to all regions, where Z >−21 dBZ. The
grey band represents the melting layer where the retrieval is not applied.

−1 dB in UD and Z, respectively, would improve the re-
ported retrieval uncertainties, but we decided not to alter our
radar simulator as there is no evidence of the GEM model
assumptions being superior to those used in the retrieval.

A similar analysis was performed to quantify the effect of
the a priori assumption on the quality of the retrieval. As ex-
pected, the retrieval of Dm is mainly affected by its a priori
estimate, and the same applies to the retrieval of MC. The
error in the MC estimation resulting from differences be-
tween forward models (or calibration errors) can be reduced
by changing the a priori assumptions, and the optimal re-
trieval is obtained if log10MC is increased by approximately
0.5 (i.e. a factor of 3.2). This indicates that for a given re-
flectivity value in rain, the mean mass content in the GEM
model is larger than our a priori estimate. It raises the ques-
tion of whether the Z–MC relationship, based on the PSD
measurements at the ground (which typically fail in detecting
small raindrops and low rain rates), which provides the basis
of our forward model, is applicable in the low-precipitation-
rate regime (Z < 10 dBZ) that constitutes the majority of the
profiles tested here.

3.4 The added value of the Doppler measurements

The EarthCARE radar mission is a follow-up of the highly
successful CloudSat spaceborne radar mission. A number
of studies on clouds and precipitation properties were con-
ducted based on the CloudSat measurements (Stephens et
al., 2018; Luo et al., 2008; Matrosov and Heymsfield, 2008;
Tourville et al., 2015). The EarthCARE CPR is more sen-
sitive (5–6 dB); has better vertical and horizontal sampling;
has a smaller instantaneous field of view; and, most of all, has
Doppler measurement capabilities. With all of these assets, it
is vital to determine what improvement in the understanding
of the properties of precipitation and clouds will be brought
by the new mission.

The analysis presented here focuses on the Doppler ve-
locity measurements value and their impact on the retrieval.
The evaluation is based on comparison of the retrieval statis-
tics with and without Doppler information assimilation. For
this purpose, the C-CLD algorithm is applied once more
to the Halifax scene, this time assuming no Doppler mea-
surements. As expected, this results in reduced quality of
the characteristic-size estimate. In rain, the correlation co-
efficient between Dm from the model and the retrieved one
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Figure 5. The algorithm performance histograms based on the three GEM scenes. The x axis represents the model values, while the y axis
corresponds to the retrieval. Panels (a) and (b) show the rain water content and rain characteristic diameter. Panels (c) and (d) show the snow
water content and snow characteristic diameter. The profiles with significant contributions of graupel and hail and the regions at cloud tops
where the measurements are not very well constrained (large UD error) are excluded from the analysis.

drops from 0.79 (for the original algorithm) to 0.47 in the
no-Doppler setting. Similarly, the RMSE is approximately
doubled for the reduced-input retrieval. This decreased con-
fidence in the size estimate propagates to the retrieval of the
rain water content, and it results in an RMSE increase from
0.29 to 0.44 B. The correlation drops from 0.92 to 0.79. Im-
portantly, the lack of velocity measurements has no effect on
the accuracy of the retrievals, with the mean error being al-
most non-affected.

The restriction of the measurement vector to radar reflec-
tivity only has a small effect on the retrieval in the snow/ice.
The RMSE and the ME statistics are virtually unchanged.
Having said that, the correlation coefficient of the snow char-
acteristic size decreases from 0.68 to 0.36 for no-Doppler
retrieval. All the retrieved sizes oscillate in a narrow range
of values between 0.2 and 0.3 mm that corresponds to the a

priori estimates for the range of the observed reflectivities.
This shows that Doppler measurements are relevant to es-
timating the size of snowflakes. Insignificant differences in
the RMSE values between the size retrievals with and with-
out velocity observations are due to the relative uncertainty in
the velocity observations; i.e. the assumed measurement un-
certainty of 0.2 m s−1 gives a large fractional uncertainty in
snow, where falling velocity often does not exceed 1 m s−1.

One of the advantages of OE algorithms is the ability to
quantify the amount of information provided by an individ-
ual measurement. This is achieved by comparing the state
vector uncertainties before and after the measurements are
assimilated by the algorithm (Shannon and Weaver, 1949).
In geometrical terms, the information content of an obser-
vation is defined as the ratio between the volume enclosed
by 1 standard deviation of the prior and posterior probability
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Figure 6. The accuracy of the C-CLD algorithm applied to the Halifax scene quantified by the NRMSE of Dm and MC. This evaluation
takes into account the impact of (a, b, c) radar simulator bias and (d, e, f) a priori assumption bias in MC andDm estimates. Panels (c) and (f)
display the average NRMSE values for MC and Dm. The cross symbolizes the location of the minimum NRMSE.

density function ofX. For Gaussian distributions, this can be
computed as follows:

Hs = 0.5ln
∣∣∣R−1
x Ra

∣∣∣ , (33)

where | | denotes the determinant of a matrix and Rx and
Ra are posterior and prior covariance matrices defined in
Sect. 2.2.3 (see Eq. 2.73 in Rodgers, 2000). The computation
of R−1

x (Eq. 18) for different instrument configurations does
not require multiple runs of the computationally expensive
algorithm. Instead, once the retrieval has converged, the diag-
onal elements of the matrix R−1

a that correspond to selected
measurements can be set to 0 to mimic instrument shutdown.
This allows for the quantification of information content for
all measurements together, for just radar reflectivity or just
Doppler velocity or even for a single measurement at a given
height in the column as shown in Fig. 7b and c.

To ensure a fair comparison among various regimes, the
subsequent analysis focuses solely on quantifying the infor-
mation content of the measurement in relation to estimates
of mass content and characteristic size. Factors such as a re-
duction in uncertainty in melting layer attenuation or liquid
cloud water content are not taken into consideration, as these
variables are not present in all OE retrievals.

The amount of information provided by EarthCARE CPR
measurements varies depending on the size and type of the
hydrometeor being observed. In general, radar reflectivity
provides more information for ice and snow, while mean
Doppler velocity is more informative for rain. This trend is

particularly noticeable in cold-rain columns, where the infor-
mation content of reflectivity decreases from 3.2 to 2.5 nat
(natural unit of information) as the hydrometeor transitions
from a solid to liquid phase. In contrast, the information con-
tent of Doppler velocity increases from 2 to 2.5 nat during
the same transition. The Doppler velocity measurements are
useful for decreasing uncertainty in precipitation size estima-
tion, particularly in rain, where the information content can
surpass 2.5 nat. In snow, the observed sedimentation veloci-
ties have a smaller dynamic range, which results in reduced
information content. High information content of radar re-
flectivity in ice can be attributed to an effective reduction in
the uncertainty in the ice water content.

The amount of information is not uniform for a given mea-
surement or hydrometeor type, as it depends also on the pre-
cipitation size. This non-uniformity in the information con-
tent is most apparent in warm-rain profiles, but it is also ev-
ident if rain pixels from Halifax simulations are compared
with the “Cabo Verde” scene, where the retrieved sizes tend
to be larger. In the case of reflectivity in warm rain, the in-
formation content is the highest at the top of the precipita-
tion column, where particles are smaller than approximately
0.8 mm. Then, it reaches a minimum at the raindrop size that
is the most efficient for the backscattering radar reflectiv-
ity signal (see the radar reflectivity maximum in Fig. A1a).
For sizes larger than 0.8–0.9 mm, the information content
is approximately 2 nat. A similar behaviour is observed for
Doppler velocity but with a less pronounced minimum at
1 mm, where a reduction in the slope of UD is observed.
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The maximum in the information content is observed for
Dm = 0.4 mm.

The total amount of information available from Earth-
CARE CPR measurements ranges from 3 to 4.4 nat, depend-
ing on factors such as hydrometeor type, ice-to-rain layer
thickness ratio and particle size. Upon analysis of individ-
ual components, it is evident that, in snow and cold rain, the
radar reflectivity profile (with PIA) provides the most infor-
mation out of all measurements considered. It is followed
by the Doppler velocity profile, as demonstrated in Fig. 7d.
In contrast, in warm rain, both reflectivity and velocity mea-
surements carry a similar amount of information. This trend
also applies when considering only the liquid-phase precipi-
tation in cold-rain profiles, as can be seen in the lower portion
of Fig. 7b and c.

The analysis presented here shows that the Doppler mea-
surements are particularly valuable in remote sensing re-
trievals because they offer additional information that com-
plements the measurements of reflectivity and PIA. In fact,
the information content from all measurements combined
(Z+UD +PIA) is typically about 1 nat greater than the in-
formation content of reflectivity and PIA alone, demonstrat-
ing the significance of Doppler observations. That said, it is
important to note that the information content of Z and PIA
summed with the information content ofUD is larger than the
information content of all measurements. Thus, there is some
overlap between the information content of Doppler velocity
and reflectivity, and they are not entirely independent. Fur-
thermore, it is interesting to note that the information content
of Doppler velocity is comparable for all considered regimes,
while the reflectivity measurements are more advantageous
in ice and cold rain.

4 Conclusions

The cloud and precipitation microphysics (C-CLD) algo-
rithm is an EarthCARE Level 2 (L2) data product that utilizes
measurements from the EarthCARE 94 GHz Doppler Cloud
Profiling Radar (CPR) to provide microphysical information
about cloud and precipitation systems. The C-CLD algo-
rithm primarily uses an optimal estimation (OE) approach
that balances the information provided by the CPR with a
priori knowledge on the climatology of cloud and precipita-
tion systems. The algorithm is designed to retrieve profiles of
two moments of the PSD drop size, namely the mass content
and mean-mass-weighted diameter, owing to the information
content provided by the CPR. When dealing with drizzle-
free and lightly drizzling warm clouds, the OE framework is
replaced with climatological relationships between the mea-
sured reflectivities and the microphysical parameters of in-
terest.

A large dataset of in situ, surface-based observations is
used to reduce the number of free parameters and to obtain
the forward model relations with the corresponding uncer-

tainties. To maintain water mass flux through the melting
layer, only small perturbations from this condition are al-
lowed. Additionally, a one-dimensional parameterization is
proposed for representing a wide range of ice particle densi-
ties, from unrimed snowflakes to dense graupel particles.

The C-CLD retrieval framework has been applied to Earth-
CARE CPR simulated observations from high-resolution
weather systems simulations occurring in three different cli-
matological regimes (Donovan et al., 2023): tropical climate,
humid continental climate bordering on an oceanic climate
(Halifax) and mid-latitude conditions over North America
(Baja). The CPR reflectivity and Doppler radar measure-
ments provide sufficient information to retrieve, with high
confidence, two moments of the PSD, especially in rain due
to the added value of the Doppler measurements, which,
in stratiform rain, are closely related to the raindrop fall
speed and thus to its mean size. On average, the mean-mass-
weighted diameter (Dm) of rain can be estimated within a
precision of 23 % with negative bias reported for large sizes.
As a result, the estimate of rain mass content (MC) is also
captured well by matching the radar reflectivity to the obser-
vations. The uncertainty in the MC estimate is estimated to
be 67 % for all the GEM simulation scenes combined. De-
spite more complex and ambiguous scattering properties of
ice particles, errors in the ice mass content are smaller than
in rain, and they are equal to 53 % for profiles including ei-
ther snow-only or cold rain. This unexpected result may in-
dicate differences in the forward model used in GEM simu-
lations and in the retrieval of rain or difficulties in separating
path-integrated attenuation (PIA) into the liquid cloud, melt-
ing layer and rain components. The retrieval of Dm of ice is
the most challenging; it is characterized by the lowest cor-
relation coefficient and the highest value of the normalized
root mean square error among all the considered unknowns.
The variety of snowflake morphology and the corresponding
diversity in the relation between particle size and terminal
velocity results in uncertainties of 23 %.

Due to the high susceptibility of W-band measurements to
signal attenuation, the quality of the retrieval is strongly re-
duced when the path-integrated attenuation estimates are not
assimilated. This is reflected in the degradation of the quality
of the mass content retrieval in warm-rain conditions; i.e. the
RMSE in log10MC increases from 0.27 to 0.45 B, while the
correlation coefficient is reduced from 0.97 to 0.75.

The reported uncertainties are heavily dependent on the
forward model accuracy and on the measurement calibra-
tion biases. The performed analysis revealed that, due to
some differences in the fall velocities used in the GEM
model and in the C-CLD retrieval framework, a systematic
overestimation (underestimation) of small (large) raindrop
sizes is present. These errors, combined with discrepancies
in the reflectivity forward model, result in a negative bias
of the rain mass content. The differences between the sim-
ulators are attributed to the different particle size distribu-
tion shape assumptions. Although the difference between the
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Figure 7. Information content for different measurements. Panel (a) shows the radar reflectivity for the context. Panel (b) displays the
information content for individual measurements of radar reflectivity in the column. Similarly, panel (c) shows information content for
individual measurements of Doppler velocity, and panel (d) shows the information content of an entire profile of measurements, as indicated
in the legend. To ensure consistency across the different profiles, the information content values have been normalized by the number of
retrieval levels.

radar simulators was not systematic (i.e. it has a different
sign depending on the rain characteristic size), the bias in
the mass content retrieval was. This shows how susceptible
to model and/or measurement biases the optimal estimation
framework is and how important the calibration of the Earth-
CARE reflectivity and Doppler velocity (Battaglia and Kol-
lias, 2014) will be.

Despite the detection of differences between the GEM
simulations and our radar model, the algorithm was not fine-
tuned to match model assumptions due to the lack of evi-
dence that the model could reflect reality better than the long-
term particle size distribution statistics. This paper aims at
providing a physical basis for the retrieval, and so the mod-
ifications of the forward model or of a priori assumptions
are left for the calibration–validation activity period after the
launch of the satellite.

Thanks to its large antenna, CPR’s unprecedented fine hor-
izontal resolution minimizes the impact of two of the chal-
lenges of spaceborne radar-based precipitation remote sens-
ing: multiple scattering (Battaglia et al., 2010; Matrosov et
al., 2008; Matrosov and Battaglia, 2009) and non-uniform

beam filling (NUBF; Tanelli et al., 2012). Since the hori-
zontal resolution of the model simulations is finer than the
one of the radar, errors related to NUBF are quantified and
included in the reported total algorithm errors, with small
biases observed. Furthermore, negligible multiple scattering
effects were simulated and reported to the flag produced in
C-PRO (Kollias et al., 2022b).

The CloudSat mission radar measurements and the infor-
mation about clouds and precipitation derived from them
provide a strong heritage for the C-CLD product develop-
ment. However, this legacy poses a challenge for consis-
tency of the retrieved parameters for the two missions. Con-
tinuity between the products is important for evaluation of
the long-term trends in precipitation statistics and climate
change studies. To address this issue, the information con-
tent of Doppler measurements and their impact on the re-
trieval must be carefully evaluated. The knowledge about the
cloud and precipitation properties gained with this additional
measurement can be transferred to the reflectivity-only algo-
rithm via refinement of the a priori assumptions. The updated
C-CLD algorithm (i.e. without Doppler measurements and
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considering differences in the instrument specifications) can
be applied to the CloudSat measurements and compared to
its products for an assessment of potential biases. In the case
of detection of systematic differences, the CloudSat dataset
can be reprocessed to provide a consistent long-term cloud
and precipitation record.

Our preliminary analysis shows that the amount of infor-
mation provided by EarthCARE CPR measurements varies
depending on the size and type of hydrometeor observed,
with reflectivity more informative for ice and snow and
mean Doppler velocity for rain. The Doppler velocity mea-
surements are particularly useful in reducing uncertainty in
precipitation size estimation, especially for rain. The non-
uniformity in the information content is most apparent in
warm-rain profiles, where the size of particles is evolving
with height. The maximum in the information content of UD
is observed for Dm = 0.4 mm. The analysis reveals that the
Doppler measurements complement the measurements of re-
flectivity and PIA, and the information content of all mea-
surements combined is typically about 1 nat greater than the
information content of reflectivity and PIA alone.

Further development of the algorithm is necessary to en-
sure its effectiveness in a wider range of weather condi-
tions. The GEM simulations used in this study do not in-
clude weather systems with raindrops or snowflakes larger
than 1 mm. These conditions are particularly challenging for
W-band retrievals due to significant signal attenuation and
saturation of radar reflectivity and Doppler measurements
(Mróz et al., 2019). To improve the credibility of a priori es-
timates in the drizzle size particle regime, more in situ mea-
surements are required. This aspect should be addressed dur-
ing the calibration–validation activities. Moreover, character-
izing the shape of the liquid cloud mass content profiles is
essential for reducing uncertainties in path-integrated atten-
uation simulations and retrieved rain and snow mass content
below the liquid cloud top. As suggested by Battaglia and
Panegrossi (2020), this issue can be mitigated by the inclu-
sion of the W-band brightness temperatures in the observ-
ables adopted in the derivation of the C-FMR product. In ad-
dition, in order to produce realistic transitions in the retrieved
state vector between consecutive profiles, future algorithms
could make use of the two-dimensional information provided
by the radar. In addition, future algorithms could leverage the
two-dimensional information from the radar to create seam-
less transitions between consecutive profiles. This not only
preserves the horizontal continuity of the state vector but also
enables accurate quantification and correction of NUBF ef-
fects. Additionally, using a two-dimensional approach can
aid in detecting liquid clouds that may be present within
precipitation. These clouds typically have long correlation
lengths and are easier to spot outside of precipitation zones
where larger hydrometeors are not masking them. Once these
clouds are detected in these areas, their location within pre-
cipitation can be inferred through continuity. Finally, future
work should include cross-validation with the other precipi-

tation products, e.g. ACM-CAP (Mason et al., 2023), which
provides a synergistic retrieval of the hydrometeor properties
based on the full suite of sensors on board the EarthCARE
satellite. This latter product should provide more accurate es-
timates due to the increased information content provided by
the other instruments.

Appendix A: Parameterization of scattering properties
in the W-band

Here, we report the parameterizations of the scattering prop-
erties at 94 GHz that are used in C-CLD. These relations link
the CPR observables (reflectivity Ze and Doppler velocity
UD) with two state vector parameters (Dm and MC) in terms
of power laws. This simplifies the analytical computation of
the Jacobian.

A1 Rain

The radar observables and PSD moments are approxi-
mated by polynomials in x = log10MC[gm−3

] and y =

log10Dm[cm], i.e.

Z [dBZ](x,y)= 10 x+PZ(y)= 10 x+
n∑
i=0

cZi y
i, (A1)

UD [ms−1
](x,y)= PUD (y)=

n∑
i=0

c
UD
i yi, (A2)

10log10(k [dBkm−1
])(x,y)= 10 x+Pk(y)

= 10 x+
n∑
i=0

cki y
i, (A3)

10log10(PR [mmh−1
])(x,y)= 10 x+PPR(y)

= 10 x+
n∑
i=0

cPR
i y

i, (A4)

where the coefficients cfi for f = Z,k,UD and PR are given
in Table A1. The degree of the fitting polynomial results
from its high accuracy in replicating the simulations for the
gamma PSD model over a broad range of characteristic rain
sizes, i.e. from 0.1 to 3.5 mm.

A2 Cloud attenuation coefficients

The two-way attenuation coefficient in dB km−1 g−1 m3 is
parameterized as a quadratic function of the temperature ex-
pressed in Celsius with the zeroth-, the first- and the second-
order coefficients equal to [8.4979,−0.0062,−0.0022].
This replicates the empirically verified model at 94 GHz
very well (Tridon et al., 2020, Fig. 1) with a maxi-
mum of about 8.5 dB km−1 g−1 m3 at 271.8 K decreasing to
7 dB km−1 g−1 m3 at 245.7 and at 297.8 K.
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Figure A1. Two-dimensional histograms of the radar-observable simulations corresponding to the in situ PSD measurements at the ground.
(a) Radar reflectivity factor in dBZ per 1 g m−3 of rain. (b) 10log10 of the (one-way) specific attenuation in dB km−1 per 1 g m−3 of rain.
(c) Mean Doppler velocity in standard atmospheres. (d) Precipitation rate in standard atmospheric conditions (15 ◦C, 1013.25 mbar) per
1 g m−3 of rain. The black line shows the simulations for the gamma PSD model with µ= 10D−0.8

m − 4 that is used as a forward model.

Table A1. Coefficients of the polynomial representation of the forward model for rain given by formulas (A1), (A2), (A3) and (A4).

f Z k UD PR

c0 1.753507473× 102 1.061446625× 102
−7.878213785× 100 1.462599005× 101

c1 1.516600758× 103 9.773037642× 102
−1.154722711× 102

−2.509159043× 100

c2 6.283964040× 103 4.009203831× 103
−3.316155732× 102

−6.430492096× 100

c3 1.421269360× 104 8.912225708× 103
−4.482927812× 102

−7.573354723× 10−1

c4 1.916701560× 104 1.182437649× 104
−3.176017676× 102

c5 1.570071551× 104 9.570123072× 103
−1.130125193× 102

c6 7.622732776× 103 4.610284065× 103
−1.589687728× 101

c7 2.012452449× 103 1.211200335× 103

c8 2.223312876× 102 1.333794232× 102

A3 Ice

As in the case of rain, the radar observables and
PSD moments are approximated by polynomials in x =

log10MC [gm−3
] and y = log10Dm [cm]. These polynomi-

als are of different degrees, and their coefficients depend on
the degree of riming. Therefore, it is impractical to list all the

coefficients here. Instead, these tables are freely available at
https://doi.org/10.5281/zenodo.7529739 (Mroz, 2023). Fi-
gure A2 shows the scattering properties as parameterized in
the forward model for five selected degrees of riming. Note
that while attenuation and Doppler velocities tend to increase
with melted diameter, reflectivities reach maximum values in
correspondence to sizes between 0.4 and 0.8 mm.
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Figure A2. Ice-scattering properties as parameterized in the forward model as a function of the equivalent melted size; different colours
correspond to different degrees of riming (α). For selected values of α, the histograms in the background show the gamma PSD modelling
corresponding to the rain PSD measurements collected at the ground based on the “melting-only” assumption (see Sect. 2.4.1). The line
represents µ= 10D−0.8

m − 4. All the simulations are performed for 1 g m−3 of snow. (a) Radar reflectivity factor is in decibels relative
to Z. (b) 10log10 of the (one-way) specific attenuation is in decibels per kilometre. (c) Mean Doppler velocity is in standard atmospheres.
(d) Precipitation rate is in standard atmospheres.

Appendix B: Other parameterizations

The vertical gradient of the change in adiabatic LWC is cal-
culated as in Rogers and Yau (1989) and is parameterized as

∂LWC
∂z
= ρair

cp

Lev
(0d −0s)

≈

(
d0+ d1Tc+ d2T

2
c

)( p

p90 kPa

)c0+c1Tc

, (B1)

with [d0,d1,d2,c0,c1] = [1.615,0.0554,−6.287×
10−4,0.42,0.015].

Data availability. The EarthCARE Level 2 demonstra-
tion products from simulated scenes, including the C-
CLD product discussed in this paper, are available from
https://doi.org/10.5281/zenodo.7311704 (van Zadelhoff et
al., 2022). The dataset of single-scattering properties of
large snow aggregates used in this study is available at
https://doi.org/10.5281/zenodo.7510186 (Mroz and Leinonen,
2023). Parametrization of scattering properties in the W-
band for a population of ice particles is available at
https://doi.org/10.5281/zenodo.7529739 (Mroz, 2023).
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