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a b s t r a c t

In this paper, we consider a novel mathematical modeling framework for the spread of two competitive
diseases in a well-mixed population. The proposed framework, which we term a bivirus SIRIS model,
encapsulates key real-world features of natural immunity, accounting for different levels of (partial and
waning) virus-specific and cross protection acquired after recovery. Formally, the proposed framework
consists of a system of coupled nonlinear ordinary differential equations that builds on a classical
bivirus susceptible–infected–susceptible model by means of the addition of further states to account
for (temporarily) protected individuals. Through the analysis of the proposed framework and of two
specializations, we offer analytical insight into how natural immunity can shape a wide range of
complex emergent behaviors, including eradication of both diseases, survival of the fittest one, or
even steady-state co-existence of the two diseases.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mathematical models have emerged as powerful framewo-
ks to predict the spread of epidemic diseases, assess the effec-
iveness of different intervention policies, and, ultimately,
erive tools to help assist public health authorities in their deci-
ion-making during an health crisis (Blanchini, Bolzern, Colaneri,
e Nicolao, & Giordano, 2023; Mei, Mohagheghi, Zampieri, &
ullo, 2017; Paré, Beck, & Başar, 2020; Zino & Cao, 2021). In
heir original formulations, these models consider a single disease
to which we shall refer as a virus) spreading in a population.
ecently, models considering the simultaneous spread of mul-
iple competitive viruses have being developed, for which it is
ssumed that individuals cannot contract multiple diseases at the
ame time (Castillo-Chavez, Huang, & Li, 1999; Darabi Sahneh &
coglio, 2014; Prakash, Beutel, Rosenfeld, & Faloutsos, 2012; San-
os, Moura, & Xavier, 2015; Ye & Anderson, 2023). These models
llow study of antagonistic viral interference —which often occurs
etween respiratory viruses (Chan et al., 2018; Greer et al., 2009;
ickbakhsh et al., 2019)— and the competition between multiple
trains of the same virus —e.g., coronaviruses (Hodcroft, 2021).

✩ M. Ye is supported by the Western Australian Government through the
Premier’s Science Fellowship Program and the Defence Science Centre.

∗ Corresponding author at: Department of Electronics and Telecommuni-
ations, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino,
taly.
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ttps://doi.org/10.1016/j.ifacsc.2024.100262
468-6018/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
1.1. Literature review

The literature on competitive viruses mostly focuses on two
viruses that follow a susceptible–infected–susceptible (SIS) epi-
demic progression, relying on the simplifying assumption that
individuals become immediately susceptible again to both dis-
eases after recovery (Castillo-Chavez et al., 1999; Darabi Sahneh
& Scoglio, 2014; Prakash et al., 2012; Santos et al., 2015; Ye &
Anderson, 2023). The theoretical analysis of such models, which
are termed bivirus SIS models, has established that two scenarios
are possible: either both diseases are eradicated, or the fitter virus
—technically, the one with largest basic reproduction number—
becomes endemic (Prakash et al., 2012). Therefore, persistent co-
existence of the two viruses is not a feasible emergent behavior
of such a model, unless considering the nongeneric scenarios in
which the two viruses have exactly the same basic reproduction
number, or assuming more complex scenarios in which the pop-
ulation is spatially distributed and thus interacts via a network
structure (Ye, Anderson, & Liu, 2022), or the spread is driven by
a complex (nonlinear) contagion mechanisms (Doshi, Mallick, &
Eun, 2023).

Nevertheless, the medical literature provides strong evidence
that persistent co-existence of multiple competing viruses is not
only possible, but is also a very common fact, even in a well-
mixed population. This is the case, e.g., with viruses causing
seasonal flu and the common cold (RSVs), which are in com-
petition but are observed spreading concurrently (CDC Centers
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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or Disease Control and Prevention, 2023; Chan et al., 2018;
ickbakhsh et al., 2019). Interestingly, among the various factors
hat favor the emergence and persistence of such co-existence of
ultiple viruses, the medical literature suggests that natural im-
unity may play a key role (Bhattacharyya, Gesteland, Korgenski,
jørnstad, & Adler, 2015).
Indeed, natural immunity is a very complex phenomenon. In

act, recovery from a virus often yields some level of protection
gainst re-infection with the same virus and, in some cases, it
lso grants a level of cross-immunity against other competitive
iruses. This is the case, e.g., with orthopoxviruses —including
ariola major, variola minor, and monkeypox— which provide
lmost complete virus-specific and cross-immunity (Kaler, Hus-
ain, Flores, Kheiri, & Desrosiers, 2022; Townsend et al., 2013), or
ifferent strains of RSVs (Bhattacharyya et al., 2015) and COVID-
9 (Goldberg et al., 2022; Iwasaki, 2021; Ren et al., 2022), for
hich however the protection against re-infection is only partial.
n the other hand, not all competitive viruses provide cross-
mmunity: there is no evidence that recovery from influenza
rants protection from RSVs (Nickbakhsh et al., 2019), or of
ross-immunity for different strains of rhinoviruses (Glanville &
ohnston, 2015). Moreover, depending on the virus, the (possibly
artial) protection gained after recovery may be permanent (such
s for orthopoxviruses (Townsend et al., 2013)), or may vanish in
ime (such as for COVID-19 (Goldberg et al., 2022; Iwasaki, 2021;
en et al., 2022)).
Despite such a pervasive presence, natural immunity is typ-

cally overlooked or oversimplified in mathematical multi-virus
odels. In fact, most of the analytically-tractable models for
ompeting viruses that account for immunity use a susceptible–
nfected–removed (SIR) model (Gubar & Zhu, 2013; Taynitskiy,
ubar, & Zhu, 2017; Zhang, Gracy, Başar, & Paré, 2022), where
atural immunity is assumed to be perfect and permanent for all
iruses, while all aspects of immunity discussed in the above have
een typically investigated only via numerical simulations (Lom-
ana et al., 2022; Poletto, Meloni, Metre, Colizza, Moreno, &
espignani, 2015).
Here, we fill in this gap by proposing an analytically-tractable

athematical model —called the bivirus SIRIS model— in which
wo competitive viruses spread in a population with specific
ocus on the different aspects of natural immunity. In particular,
uilding on the preliminary effort in Zino, Ye, and Anderson
2023), we expand a classical bivirus SIS model (Ye & Anderson,
023) by incorporating two additional compartments to account
or individuals who have recovered from the two viruses and a
et of tunable parameters to capture the key differences between
irus-specific and cross immunity, and to account for the waning
ature of immunity. Formally, the model consists of a system of
oupled nonlinear ordinary differential equations (ODEs), which
apture the evolution of the fraction of population belonging to
ach compartment.

.2. Paper contribution

The main contributions of this paper build on the preliminary
indings from Zino et al. (2023) and extend them along mul-
iple directions, including the development of novel theoretical
indings, which rely on the use of new and nontrivial technical
rguments, as well as the expansion of the model motivation and
he discussion of the results. Specifically, the contributions of this
aper are five-fold, and can be summarized as follows:

• We formalize a single-virus implementation of the SIRIS
model, which serves as a baseline for all further studies, and
we analyze its behavior. The novel results relative to Zino
et al. (2023) are Theorems 1 and 2.
2

• After illustrating our bivirus SIRIS model, firstly proposed
in Zino et al. (2023), we present some novel general results
on its asymptotic behavior. Specifically, we establish condi-
tions on the parameters for which the disease-free equilib-
rium (DFE) is globally asymptotically stable, and thus both
viruses are eradicated (Theorem 3). Then, we focus on the
behavior of the system when the DFE is not stable, charac-
terizing the endemic equilibria (EEs) in which a single virus
survives —termed boundary endemic equilibria (BEEs)— and
proving that co-existence equilibria (CEEs), if they exist, are
finite in number and nondegenerate (Propositions 5 and
6, respectively). Technically, the high-dimensionality and
nonlinearity of the system of ODEs call for the use of an
array of different analytical methods, ranging from clas-
sical linearization techniques to tools borrowed from sys-
tems theory (Pachpatte, 1997; Sastry, 2013) and differential
geometry (Guillemin & Pollack, 2010; Lee, 2013).

• We analyze a first specialization of the model involving
a scenario of non-waning but partial immunity, which is
a proxy for several real-world multi-strain diseases where
immunity wanes at a much slower time-scale than the
competition between different strains. For this specializa-
tion, we offer two sets of novel analytical results. First, we
characterize its transient behavior, which we bound in terms
of simpler SIS-like equations (Proposition 9). Second, we
expand the results in Zino et al. (2023) —which only focus
on existence of EEs— by providing a complete characteriza-
tion of the asymptotic behavior of the model (Theorem 4),
including the analysis of the stability of the healthy manifold
and the study of the non-generic case in which the two
viruses have the same contagiousness, which gives rise to
a line segment of equilibria.

• We analyze a second specialization of the model in which
recovery from a virus grants waning virus-specific immunity
but not cross immunity. By combining tools from systems
theory and differential geometry, we derive an array of
novel analytical insights, expanding the analysis of BEEs
(Theorem 5) and CEEs (Propositions 13 and 14), and demon-
strating a key novel finding: for a certain range of the
parameter values, CEEs exist. Such a conclusion is consistent
with real-life observations (Balmer & Tanner, 2011; CDC
Centers for Disease Control and Prevention, 2023; Chan
et al., 2018; Nickbakhsh et al., 2019), and may provide
analytical support for the discussion on the role of immu-
nity on co-existence between different competing viruses,
which is a phenomenon often observed in the medical lit-
erature (Bhattacharyya et al., 2015), but one that cannot be
predicted using the simpler SIS bivirus model (Prakash et al.,
2012).

• Importantly, we extend the discussion on the model motiva-
tion and on the implications of our theoretical findings with
respect to the medical literature.

The rest of the paper is organized as follows. In Section 2, we
present the single-virus model and our results on its analysis.
In Section 3, we introduce our general formalism. In Section 4,
we present our results on the model and on its equilibria. Then,
the two specializations of the model are studied, with results
reported in Sections 5 and 6, respectively. Section 7 concludes
the paper.

2. Single-virus SIRIS model

Here, we present a single-virus implementation of the SIRIS
model, which encapsulates partial and waning natural immunity.
Through its analysis, we bound its temporal evolution by means
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f simpler SIS models, and we determine its asymptotic behavior,
.e., whether the disease is eradicated or becomes endemic. These
esults will serve as a baseline for our study of the bivirus SIRIS
odel.

.1. Model

We extend the classical scalar SIS and SIR models (Zino &
ao, 2021) by assuming that recovery provides only partial (and
ossibly waning) immunity. Hence, recovered individuals may
urther transition to either the infected or the susceptible state.
e consider a fully-mixed population, and we denote by w(t) the

raction of the population susceptible to the virus at (continuous)
ime t ≥ 0, x(t) the fraction of infected population, and y(t) the
raction of population who recovered from it and is (partially)
mmune to re-infection. Noting that w(t) = 1 − x(t) − y(t), we
an reduce the state space of the system to the two dimensional
ector (x, y) ∈ D, with D := {(x, y) ∈ [0, 1]2 : x + y ≤ 1}. We
onsider the following planar system of ODEs:

ẋ = −µx + λx(1 − x − (1 − α)y), (1a)

˙ = µx − νy − αλxy. (1b)

Thus, an individual infected with the virus recovers at a rate
> 0. Once recovered, the individual acquires partial immunity,
hich is captured by the parameter α ∈ [0, 1]: α = 1 models
bsence of immunity, α = 0 models perfect immunity. Such a
arameter affects the contagion rate as a multiplicative factor.
amely, while susceptible individuals (the corresponding fraction
eing equal to 1−x−y) are infected by coming into contact with
nfected individuals with contagion rate λ > 0, those that are
partially) immune are infected with contagion rate reduced to
λ. Finally, natural immunity wanes at a rate ν ≥ 0, and the in-
ividual becomes susceptible again. Note that here we allow ν to
e equal to 0, capturing the limiting case in which immunity does
ot wane, being the case, e.g., for orthopoxviruses (Townsend
t al., 2013).

.2. Results

Before presenting our results on the single-virus SIRIS model,
e introduce some terminology.

efinition 1. The healthy manifold is defined as H := {(x, y) ∈

: x = 0}, and the disease-free equilibrium (DFE) as (x, y) = 0.
iven (x̄, ȳ) ∈ D, a fixed point of Eq. (1), (x̄, ȳ) is an endemic
quilibrium (EE) if x̄ > 0.

roposition 1. The domain D and the healthy manifold H are
ositively invariant for Eq. (1). Moreover, if (x(0), y(0)) ∈ H and
> 0, then limt→∞(x(t), y(t)) = 0.

roof. The domain D is compact and convex and Eq. (1) is
ipschitz-continuous. Hence, Nagumo’s Theorem can potentially
e applied (Blanchini, 1999). We are left with checking the direc-
ion of the vector field at the boundaries of D. We immediately
bserve that ẋ = 0 for x = 0; ẏ = νx ≥ 0, for y = 0.
inally, for x = 1 − y, we observe that the field points towards
he interior, as ẋ + ẏ = −νy ≤ 0. Hence, Nagumo’s Theorem
mplies positive invariance of D. Positive invariance of H can be
asily checked, since ẋ = 0 for all (x, y) ∈ H. Finally, given
x(0), y(0)) = (0, y0) ∈ H, Eq. (1) can be solved analytically,
btaining (x(t), y(t)) = (0, y0e−νt ), which yields the claim. □

Now, we present a general result, which provides upper and
ower bounds on the temporal evolution of the epidemic process
n terms of simpler epidemic models.
3

Proposition 2. Let (x(t), y(t)) be the solution of Eq. (1) with initial
ondition (x(0), y(0)). Then there holds z(t) ≤ x(t) ≤ z(t), where
z(t) and z(t) are the solutions of the Cauchy problems

ż = −µz + αλz(1 − z), z(0) = x(0), (2)

and

ż = −µz + λz(1 − z), z(0) = x(0), (3)

respectively which can be computed explicitly, obtaining z(t) =
αλ−µ

αλ+(αλ−µ) αλ(1−x(0))−µ
(αλ−µ)x(0) exp{−(αλ−µ)t}

and z(t) =
λ−µ

λ+(λ−µ) λ(1−x(0))−µ
(λ−µ)x(0) exp{−(λ−µ)t}

.

Moreover, inequalities are strict for any finite t > 0, if α ∈ (0, 1),
x(0) + y(0) < 1, and y(0) > 0.

Proof. For the upper bound in Eq. (2), we observe from Eq. (1a)
that ẋ = −µx+λx(1−x−(1−α)y) = −µx+λxw+αλxy ≥ −µx+
λαx(1 − x), being w, x, y ∈ [0, 1] (Proposition 1), and α ∈ [0, 1],
which yields the claim. For the upper bound in Eq. (3), we observe
from Eq. (1a) that ẋ = −µx+λx(1−x−(1−α)y) ≤ −µx+λx(1−x),
being y ∈ [0, 1] (Proposition 1), which yields the claim.

Finally, to prove strictness, we proceed as follows. From Eq. (1),
we observe that ẏ ≥ −(ν+αλ)y and ẇ ≥ −λw. Hence, Gronwall’s
inequality (Pachpatte, 1997) yields y(t) ≥ y(0) exp{−(ν + αλ)t}
and w(t) ≥ (1 − x(0) − y(0)) exp{−λt}. Hence, if x(0) + y(0) < 1
and y(0) > 0, then w(t) and y(t) are always strictly positive for
any finite t ≥ 0. As a consequence, under these conditions and
with the further assumption that α ∈ (0, 1), the inequalities on
ẋ are strict, which implies that the inequalities on x(t) are strict
too, for any finite strictly positive time t > 0. □

Note that Eqs. (2) and (3) are each equations of a simple SIS
system; thus the proposition shows that an SIRIS model has a
behavior in some sense between the behaviors of two SIS models,
which are determined by the SIRIS model. Note that α = 1
models the absence of immunity, and then the two SIS models
in fact coincide.

The (non-strict) inequalities established in the proposition
obviously will continue to hold when t → ∞, and we also know
what the limits of z(t) and z̄(t) are, depending as they do on the
values of µ/αλ and µ/λ. This allows us to state the following
corollary.

Corollary 1. If λ/µ ≤ 1, then limt→∞ x(t) = 0. If λα/µ > 1, then,
for any σ > 0 there exists a finite constant Tσ ≥ 0 such that, for
any t ≥ Tσ , there holds x(t) ∈ [

λα−µ

λα
− σ ,

λ−µ

λ
+ σ ].

In the following, we will provide a complete characterization
f the asymptotic behavior of the single virus SIRIS model, for
he two distinct scenarios of waning immunity (ν > 0) and
on-waning immunity (ν = 0), respectively.

.3. Results on the waning immunity scenario

We start by considering the asymptotic behavior of the single-
irus SIRIS model in the case of waning immunity, i.e., when
> 0, and we establish the following result.

heorem 1. Assume ν > 0. If λ/µ ≤ 1, then the solution of the
ingle-virus model in Eq. (1) converges to the DFE; if λ/µ > 1, then
he solution of Eq. (1) converges to the unique EE (x̄, ȳ) for any initial
ondition x(0) > 0, where

¯ =
αλ− ν − µ+

√
(αλ− ν − µ)2 + 4αν(λ− µ)

2αλ
(4)

and

ȳ =
αλ− ν − µ+

√
(αλ− ν − µ)2 + 4αν(λ− µ)√

2
. (5)
αλ(αλ+ ν − µ+ (αλ− ν − µ) + 4αν(λ− µ))
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roof. Eq. (1) is a planar autonomous system, which means
that no chaotic solutions are possible as a consequence of the
Poincaré–Bendixson theorem—see, e.g., Sastry (2013) and Teschl
(2012) for more details. Moreover, it has a bounded domain
(Proposition 1), and periodic orbits can be ruled out using the
Bendixson–Dulac theorem (Sastry, 2013), with Dulac function
ψ(x, y) =

1
x . In fact ∂(ψ ẋ)

∂x +
∂(ψ ẏ)
∂y = −λ−

ν
x − αλ < 0.

Now, we compute the equilibria of the system by positing the
ight-hand-side of Eq. (1) equal to zero and we characterize their
local) stability via the Jacobian matrix:

(x, y) =

[
λ(1 − x − (1 − α)y) − λx − µ −λ(1 − α)x

µ− αλy −αλx − ν

]
. (6)

rom Eq. (1b), the DFE is the unique equilibrium on the boundary
= 0, which is unstable if λ > µ (from Eq. (6)), while it is locally
symptotically stable if λ < µ. Convergence when λ = µ and
lobal stability are consequences of the bound in Proposition 2.
Now we focus on EEs. From Eq. (1b), we obtain that at an

quilibrium there holds y = µx/(αλx + ν), which, substituted
nto the equilibrium condition from Eq. (1a), yields the quadratic
quation

(x) = −αλ2x2 + (αλ2 − λν − λµ)x + ν(λ− µ) = 0. (7)

For λ > µ, f (0) > 0, f (1) < 0, and limx→−∞ f (x) = −∞. Hence,
the two solutions of f (x) = 0 are such that one is negative and
one lies in [0, 1]. The explicit computation of the second solution
yields Eqs. (4)–(5), for which we check that x̄ + ȳ ≤ 1. For
λ ≤ µ, instead, a similar argument concludes that both solutions
are nonpositive.

To prove that the unique EE (if it exists) is locally exponentially
stable, we evaluate Eq. (6) at (x̄, ȳ), obtaining

J(x̄, ȳ) =

[
−λx̄ −λ(1 − α)x̄

µ− αλȳ −αλx̄ − ν

]
, (8)

because at (x̄, ȳ), Eq. (1a) yields −µ + λ(1 − x̄ − (1 − α)ȳ) = 0.
Notice that tr(J(x̄, ȳ)) < 0. We compute det(J(x̄, ȳ)) = λ2α(x̄)2 +

λx̄ + λ(1 − α)x̄(µ− αλȳ) = λx̄µ(1 − α) + λ2x̄α(x̄ + (1 − α)ȳ) +

λx̄ > 0. Hence, the eigenvalues of J(x̄, ȳ) have negative real part,
ielding local stability. Finally, the Poincaré–Bendixson theorem
uarantees convergence to a fixed point (Sastry, 2013), which is
he unique EE. □

emark 1. For ν > 0, the conditions for stability of the DFE
nd the qualitative behavior when the DFE is unstable (i.e., con-
ergence to a unique EE) coincide with those of a standard SIS
odel (Zino & Cao, 2021). However, the exact value of the EE

s indeed affected by immunity. Specifically, the epidemic preva-
ence in Eq. (4) is always smaller than that of the corresponding
IS model, which is equal to 1−µ/λ. Moreover, from the mono-
onicity of f (x) in Eq. (7) with respect to the model parameters,
e observe that the EE x̄ is monotonically increasing in α and
ecreasing in ν, in accord with intuition.

.4. Results on the non-waning immunity scenario

We conclude this section by considering the special case in
hich immunity does not wane (ν = 0). In this case, the
ehavior of the model is substantially different, as illustrated in
he following result.

heorem 2. Assume ν = 0. If λα/µ ≤ 1, then the single-virus
odel in Eq. (1) converges to the healthy manifold H and x(t) is
onotonically decreasing if λ/µ ≤ 1. If λα/µ > 1, then the
ingle-virus model in Eq. (1) converges to its unique EE (x̄, ȳ) =

µ
,
µ ).
1 −

αλ αλ

4

Proof. When ν = 0, Eq. (1) reduces to

ẋ = −µx + λx(1 − x − (1 − α)y), (9a)

˙ = µx − αλxy. (9b)

imilar to Theorem 1, the Poincaré–Bendixson theorem can be
sed to prove convergence to a fixed point (Sastry, 2013). From
q. (9), we observe that the fixed points of the single-virus model
re the entire healthy manifold (which includes the DFE), and the
E (1 − µ/αλ,µ/αλ), which exists only if λα > µ. The Jacobian
n a generic point is

(x, y) =

[
λ− µ− 2λx − λ(1 − α)y −λ(1 − α)x

µ− αλy −αλx

]
, (10)

rom which we observe that the EE is always stable when it exists.
oreover, if λα > µ, then ẋ > 0 in the neighborhood of x = 0,

mplying that the system cannot converge to the healthy manifold
rom any point in the interior.

In contrast, if λ ≤ µ, we observe that ẋ < 0 in the entire
omain. Hence, any trajectory converges to H.
It is left to prove the behavior when µ < λ ≤ µ/α. For
̸= µ/α, from Eq. (10), we observe that the healthy manifold

an be split into two subsets: Hs = {(x, y) : x = 0, y >
λ−µ

λ(1−α) } ⊂ H and Hu = H \ Hs. The line segment Hs is made of
quilibrium points with a 0 eigenvalue (with eigenvector parallel
o the line segment) and a negative eigenvalue with eigenvector
rthogonal to the line. Hence, the points on this segment line are
ttractive in the direction orthogonal to the line segment 0. On
he contrary, the line segment Hu is made of unstable equilibria.
ence, due to the absence of other fixed points, the system
ecessarily converges to the line segment Hs (which is part of
he healthy manifold). Finally, when µ < λ ≤ µ/α, Eq. (9b) reads
˙ = µx(1−y), which implies that y(t) is monotonically increasing
ntil either x = 0 or y = 1 (where the latter implies x = 0),
ielding convergence to H. □

emark 2. For ν = 0, below the epidemic threshold λα/µ, the
isease is eradicated and the system converges to the healthy
anifold, with part of the population recovered and part still
usceptible. It is worth noticing that, while the exact proportion
f the two compartments cannot be determined a priori since it
ay depend on the initial condition, we can lower-bound the

raction of recovered individuals as ȳ > 1 −
µ

λ(1−α) , using the
observations in the proof of Theorem 2. Above the epidemic
threshold, instead, susceptible individuals eventually vanish, and
the behavior of the model eventually coincides with a standard
SIS model with contagion rate re-scaled by α.

. General bivirus SIRIS model

When multiple competitive diseases are considered, natural
mmunity gains additional dimensions of complexity. In fact,
ecovery from a specific virus may or may not grant protection
gainst infection with a different virus—the former being the case
f different orthopoxviruses (Kaler et al., 2022; Townsend et al.,
013), the latter of influenza and RSVs (Chan et al., 2018). On the
op of this distinction between virus-specific and cross-immunity,
ach type of immunity can be partial, e.g., cross-immunity be-
ween different RSVs (Bhattacharyya et al., 2015), and can wane
n time, as for the strains of COVID-19 (Goldberg et al., 2022).

For these reasons, the development of compartmental models
or multiple competitive viruses spreading in the same population
s nontrivial, and requires specific care in the definition of the
ompartments for recovered individuals, and in the introduction
f a suitable set of parameters to capture all the features dis-
ussed in the above. Before presenting such implementation, we
riefly recall the standard bivirus SIS model (Prakash et al., 2012)
nd we describe its emergent behavior. This will be key in the
iscussion of the impact of immunity on the epidemic process.
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.1. Bivirus SIS model

In the bivirus SIS model, three compartments are used to rep-
esent individuals who are susceptible (S), infected with virus 1
I1), and infected with virus 2 (I2), respectively. We denote by
(t) ∈ [0, 1] the fraction of the population susceptible to the two

viruses at time t ≥ 0; and by x1(t) and x2(t) the fraction of the
population infected with virus 1 and virus 2, respectively. Since
w(t) = 1− x1(t)− x2(t), the dynamics of the bivirus SIS model is
fully captured by the planar system of ODEs

ẋ1 = − µ1x1 + λ1(1 − x1 − x2)x1, (11a)

ẋ2 = − µ2x2 + λ2(1 − x1 − x2)x2, (11b)

with λi > 0 and µi > 0 being the infection and recovery rates of
virus i, respectively. The competitive nature of the two viruses
is captured by the second term in Eq. (11), which couples the
two equations. In fact, new infections with virus i occur with
contagion rate λi > 0 when susceptible individuals (the fraction
being 1−x1−x2) come into contact with individuals infected with
virus i (the fraction being xi). In Prakash et al. (2012), Eq. (11) is
analyzed, and the main results, reported in the following, depict
a survival-of-the-fittest scenario: co-existence is only possible in
the non-generic case of two equally infectious viruses.

Proposition 3 (From Prakash et al., 2012). If λi/µi ≤ 1 for both
i ∈ {1, 2}, then Eq. (11) converges to the DFE (x̄1, x̄2) = 0. If
λi/µi > λj/µj and λi/µi > 1, then Eq. (11) converges to the
(unique) EE (x̄1, x̄2), where x̄i = 1 − µi/λi and x̄j = 0. Finally, if
λi/µi = λj/µj > 1, then Eq. (11) converges to an equilibrium on
the line segment (s, 1 − µ1/λ1 − s), for all s ∈ [0, 1 − µ1/λ1].

3.2. Bivirus SIRIS model

To capture the features arising from immunity, we build on a
bivirus SIS model and we include two additional compartments
accounting for individuals who have recovered from virus 1 and 2
(R1 and R2, respectively). Consequently, we add two variables
to account for the fraction of the population recovered from
virus 1 and 2 at time t ≥ 0, denoted by y1(t) and y2(t), respec-
tively. Similar to other compartmental models, we notice that
w(t) = 1 − x1(t) − x2(t) − y1(t) − y2(t). Hence, we can reduce
the state space of the system to the four dimensional vector
(xi(t), xj(t), yi(t), yj(t)) ∈ D, where D := {(xi, xj, yi, yj) ∈ [0, 1]4 :

x1 + x2 + y1 + y2 ≤ 1}. Therefore, we propose the following four-
dimensional system of ODEs to capture the disease spreading
dynamics:

ẋ1 = − µ1x1 + (1 − x1 − x2 − (1 − α11)y1 − (1 − α21)y2)λ1x1,
(12a)

ẋ2 = − µ2x2 + (1 − x1 − x2 − (1 − α22)y2 − (1 − α12)y1)λ2x2,
(12b)

ẏ1 =µ1x1 − ν1y1 − α11λ1y1x1 − α12λ2y1x2, (12c)

ẏ2 =µ2x2 − ν2y2 − α21λ1y2x1 − α22λ2y2x2. (12d)

Similar to the bivirus SIS model in Section 3.1, the parameters
λi and µi captures the infection and recovery rate of virus i,
respectively. However, once recovered, an individual acquires
partial immunity against the two viruses. Specifically, for each
virus i, we introduce two parameters αii ∈ [0, 1] and αij ∈ [0, 1],
which captures virus-specific immunity and cross immunity due
to recovery from virus i, respectively (αii = 1 and αij = 1 mod-
els absence of virus-specific and cross immunity, respectively;
αii = 0 and αij = 0 model perfect virus-specific and cross
immunity, respectively). Such parameters affect the contagion
rate of the corresponding viruses as multiplicative factors, similar
 E

5

Fig. 1. Schematic of the general model. Black solid arrows denote spontaneous
transitions; red (orange) dashed arrows are transitions driven by interactions
with individuals infected with virus 1 (2). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Variables and parameters of the bivirus SIRIS model.
Symbol Meaning

w(t) Susceptible population at time t
xi(t) Population infected with virus i at time t
yi(t) Population recovered from virus i at time t
λi Contagion rate of virus i
µi Recovery rate from virus i
νi Rate of waning immunity from virus i
αii Virus-specific immunity against virus i
αij Cross immunity against virus j

to the single-virus SIRIS model illustrated in Section 2. Natural
immunity due to infection from virus i wanes at a rate νi ≥ 0,
nd the individual becomes susceptible again. Hence, for each
irus i, the characteristics of immunity in terms of level of virus-
pecific protection, level of cross-protection, and duration are
aptured by the three parameters αii, αij, and νi, respectively. The
odel is illustrated in Fig. 1 and all variables and parameters are
ummarized in Table 1. We introduce some terminology.

efinition 2. The healthy manifold is defined asH := {(x1, x2, y1,
2) ∈ D : x1 = x2 = 0}, and the DFE as (x1, x2, y1, y2) = 0. Given
fixed point of Eq. (12), (x̄i, x̄j, ȳi, ȳj) ∈ D, the point is an EE if

¯1 + x̄2 > 0. Specifically, the fixed point is a boundary (endemic)
quilibrium (BEE) if x̄1 > 0 and x̄2 = 0 or x̄1 = 0 and x̄2 > 0, and
t is a co-existence (endemic) equilibrium (CEE) if both x̄1 > 0
nd x̄2 > 0.

. Results on the general bivirus SIRIS model

In the following, after reporting a result that guarantees the
ell-posedness of the bivirus SIRIS model in Eq. (12) in terms
f the invariance of the domain and of the healthy manifold, we
rove a general result to characterize the stability of the DFE in
he scenario of waning immunity.

roposition 4 (Proposition 3 from Zino et al., 2023). The domain
and the healthy manifold H are positively invariant for Eq. (12).
oreover, if (x1(0), x2(0), y1(0), y2(0)) ∈ H and ν1, ν2 > 0, then

imt→∞(x1(t), x2(t), y1(t), y2(t)) = 0.

heorem 3. Let ν1 > 0 and ν2 > 0. Then, the DFE is globally
symptotically stable for Eq. (12) if and only if (iff) λi ≤ µi, for
∈ {1, 2} (with exponential stability if both inequalities are strict),
nd it is unstable otherwise.

roof. For the sufficiency, we verify that, for λi ≤ µi, the
FE is globally asymptotically stable. In fact, for λi < µi, from

˙
qs. (12a)–(12b), we can bound xi ≤ −(µi−λ)xi. Using Gronwall’s
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nequality (Pachpatte, 1997), we bound xi(t) ≤ x(0) exp{−(µi −

i)t}. Similar, for λi = µi, we bound ẋi ≤ −µix2i , yielding
xi(t) ≤

x(0)
µit+1 . In both cases it holds xi(t) → 0, but convergence is

xponentially fast only in the first case. Then, using Eq. (12c) and
12d), for i, j ∈ {1, 2} and i ̸= j, there holds

ẏi = −νiyi + µixi − λjxjyi = −νiyi + ωi(t), (13)

with ωi(t) being an input signal that decays to zero, whereas
Eq. (13) with no input would converge to 0 exponentially fast
(being νi > 0). Evidently, limt→∞ yi(t) = 0 for all i = 1, 2, which
yields the first part of the claim.

For necessity, we evaluate the Jacobian of the right side of
Eq. (12) at the DFE, obtaining a lower triangular matrix with di-
agonal entries equal to λ1−µ1, λ2−µ2, −ν1, and −ν2, concluding
hat the DFE is unstable if at least one of the two ratios λi/µi > 1,
ielding the claim. □

While a general characterization of the EEs is a challenging
roblem, we can explicitly compute the BEEs and prove that CEEs
if present) are finite in number, for almost any value of the
arameters.

roposition 5. Let ν1 > 0 and ν2 > 0. Then, the bivirus SIRIS
odel in Eq. (12) has at most two BEEs, of the form (x̄1, x̄2, ȳ1, ȳ2),
here x̄j = ȳj = 0,

¯i =
αiiλi − νi − µi +

√
(αiiλi − νi − µi)2 + 4αiiνi(λi − µi)

2αiiλi
(14)

nd

¯ i =
µix̄i

νi + αiiλxi
, (15)

hich exists iff λi > µi, for i ∈ {1, 2} and j ̸= i.

roof. We derive the equilibrium conditions by equating the
ight-hand side of Eq. (12) to 0. Without any loss in generality,
e consider the boundary x̄i = 0. From Eq. (12c), we observe
hat for an equilibrium on the boundary x̄1 = 0 to exist, there
ecessarily holds ȳ1 = 0. By substituting these conditions into
q. (12d), we obtain

¯2 =
µ2x2

ν2 + α22λx2
. (16)

y replacing x̄1 = ȳ1 = 0 and Eq. (16) into the equilibrium
condition from Eq. (12b), we obtain the equilibrium condition for
a single-virus SIRIS model with λ = λ2, µ = µ2, ν = ν2, and
α = α22, studied in Theorem 1, which yields the claim. □

Proposition 6. The bivirus SIRIS model in Eq. (12) has a finite
number of CEEs (possibly none), which are nondegenerate, for almost
all the parameter values.

Proof. Let us consider a generic coexistence equilibrium
(x1, x2, y1, y2), with x1 ̸= 0, x2 ̸= 0. Let us denote the vector
field in Eq. (12) by F , by p = [µ1, µ2, ν1, ν2, λ1, λ2]

⊤ a vector of
parameters and v = [x1, x2, y1, y2]⊤ the state vector that gathers
the four variables of the system.

Let g1 := [1 − x1 − x2 − (1 − α11)y1 − (1 − α21)y2]x1 and
g2 := [1−x1−x2−(1−α12)y1−(1−α22)y2]x2, then we can consider
the vector field F as function also of the parameter vector p, and
write the Jacobian of F (v, p) with respect to the parameters p:

Jp =

⎡⎢⎣−x1 0 0 0 g1 0
0 −x2 0 0 0 g2
x1 0 −y1 0 −α11y1x1 −α12y1x2

⎤⎥⎦ . (17)
0 x2 0 −y2 −α21y2x1 −α22y2x2
6

From Eq. (12c), we observe that at a co-existence equilibrium, it
necessarily holds that y1 ̸= 0 and y2 ̸= 0. Hence, it is clear from
considering the first four columns that Jp has rank 4. Further, the
equilibrium equations give µi = giλi, which shows that the gi are
both nonzero.

Let V and P denote the associated open sets of allowed v
and p, with the openness guaranteeing they are manifolds. Let
W denote the manifold that is the image of V ×P under Eq. (12),
thus W = {w : w = F (v, p)}. Let Z := {0}, where 0 is the 4-
dimensional all-zero vector. The calculation above demonstrates
that the Jacobian Jp in Eq. (17) has rank 4 at any point in V × P
which maps to Z , so a fortiori the Jacobian J v,p (which is obtained
by adding columns to Eq. (17)) has rank 4 at any such point.
Hence F : V ×P → W is transversal to Z , and by the parametric
transversality theorem (see Lee (2013, p.145) and Guillemin and
Pollack (2010, p. 68)), for almost all particular p̄ ∈ P , i.e., ex-
cluding a set of zero measure, the Jacobian J v associated with the
mapping Fp̄ : V → W , with Fp̄(v) = f (v, p̄) will have full row
ank at any zero, i.e., for v such that Fp̄(v) = 0. Equivalently, for
lmost all p̄, a zero of Fp̄ gives rise to a nonsingular Jacobian or the
ero is nondegenerate (and consequently isolated). The bounded
ature of D implies that there can only be a finite number of
quilibria. □

emark 3. Note that the argument used in the proof of Propo-
ition 6 does not take into account the values of the parameters
ij. Hence, a corollary of Proposition 6 is that, for any fixed α11,
22, α12, and α21, the bivirus SIRIS model has a finite number of
ondegenerate CEEs for almost all the parameter values.

We report here an intuitive but important result for the case
1 = ν2 = 0, which models situations in which, following
nfection, some permanent level of immunity remains. In this
cenario, it is intuitive that, if the disease becomes endemic, then
he pool of susceptible individuals goes to zero: once a person
as had a virus, they can never return to the susceptible state.
he following result from Zino et al. (2023) provides theoretical
uarantees to such an intuition.

roposition 7 (Proposition 4 from Zino et al., 2023). If ν1 = ν2 = 0,
hen either Eq. (12) converges to H or limt→∞w(t) = 0.

Above, consideration is given as to what happens in the non-
aning immunity scenario, when both νi = 0. We now ask

what happens in the opposite scenario of fast-waning immunity,
i.e., when νi → ∞. Intuition is that any individuals who are
temporarily) immune will lose that immunity arbitrarily fast,
mplying that there cannot be a nonzero endemic value possible
or yi. If both νi go to infinity, the system should then be indis-
tinguishable from the bivirus SIS model in Eq. (11). The following
result formalizes this intuition.

Proposition 8. Let νi → ∞ for i = 1 or i = 2 (both possibilities
being permitted). Then, Eq. (12) is such that yi(t) → 0 for any t > 0.
Moreover, if both ν1, ν2 → ∞, then the ODEs for x1 and x2 with
> 0 become identical to those for the bivirus SIS model in Eq. (11).

Proof. Suppose without loss of generality that i = 1. Then

ẏ1 = µ1x1 − (ν1 + α11λ1x1 + α12λ2x2)y1
= u(t) −

(
a(t) + ν1

)
y1, (18)

where u(t) = µ1x1 is bounded and nonnegative, a(t) = α11λ1x1+

α12λ2x2 is bounded and nonnegative, and importantly, the deriva-
tive of u(t) is bounded, the claim being easily checked. A conven-
tional singular perturbation argument appears awkward to apply,
and we use a ‘first principles’ style of argument.
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Fig. 2. Simulations of the bivirus SIRIS model with λ1 = λ2 = 0.7, µ1 = 0.4,
2 = 0.2, α11 = α22 = 0, and α12 = α21 = 1.

The solution of Eq. (18) is the sum of a zero input component,
all it ỹ(t), arising from the initial condition y1(0), and a zero-
nitial-state component, call it ŷ(t), arising from the ‘‘input’’ u(t).
he zero-input component is the solution of d

dt ỹ1 = −(a(t) +

1)ỹ1, i.e., ỹ(t) = y1(0) exp{
∫ t
0 (−a(s) − ν1)ds}, and it clearly goes

o zero at any nonzero t when ν1 → ∞. For the zero-initial-state
omponent, there holds ŷ1(t) =

∫ t
0 exp{

∫ s
0 (−a(σ ) − ν1)dσ }u(t −

)ds. Since u(t) > 0 for all t , the integral is nonnegative and in
act 0 ≤ ŷ1(t) ≤

∫ t
0 e−ν1su(t − s)ds = −

1
ν
(e−ν1tu(0) − u(t)) +

1
ν

∫ t
0 e−ν1s d

dsu(t − s) ≤ −
1
ν
(e−ν1tu(0) − u(t)) + ν−2M , where M

is an upper bound on |u̇(t)|. Letting ν1 go to infinity establishes
the lemma claim for y1(t). It is immediate that if for t > 0 one
replaces y1(t) and y2(t) by zero in the differential equations for
x1 and x2 one recovers Eq. (11). □

While the general bivirus SIRIS model is amenable to some
analytical treatment, such as characterizing the stability of the
DFE (see Theorem 3) and investigating relevant limit cases (see,
e.g., Proposition 8), its general study is challenging, being Eq. (12)
made of four independent nonlinear equations regulated by 10
parameters. Nonetheless, numerical simulations reported in Fig. 2
illustrate a wide range of emergent behaviors, which include
not only survival-of-the-fittest scenarios (see Fig. 2(a)), simi-
lar to what happens in the standard SIS model, but also stable
co-existence of the two viruses for generic values of the param-
eters (see Fig. 2(b)), which cannot emerge in the standard SIS
model (Prakash et al., 2012).

To provide analytical evidence to such observations, in the
rest of this paper we focus on two specializations of the model,
which are amenable to analytical treatment. First, we derive
a specialized model that focuses on the role of partial immu-
nity, neglecting waning immunity and the (possible) differences
between virus-specific and cross immunity. This study aims to
provide some insight into diseases with multiple strains, where
recovery from one strain provides a certain level of immunity
against the same strain and other strains, but not complete im-
munity. This is the case, for instance, for COVID-19 (Goldberg
et al., 2022; Iwasaki, 2021; Ren et al., 2022). Second, we simplify
our general model to study the role of virus-specific waning im-
munity. This study aims to provide insights into diseases such as
seasonal flu and cold (Chan et al., 2018; Nickbakhsh et al., 2019),
which despite being competitive, are often observed to stably
co-existing in the population (CDC Centers for Disease Control
and Prevention, 2023). Each of the two specializations obtained is
characterized by only six parameters: four are common and are
associated with the characteristics of the two viruses: λ1, λ1, µ1,
µ2; two are specific to the particular phenomenon under analysis.

5. Model I: Partial immunity

In this first specialization, we focus on understanding the
effect of partial immunity. Thus, we assume that after recovery
7

Fig. 3. Schematics of the two specializations of the SIRIS model.

from either of the two viruses, an individual acquires a certain
level of immunity against both viruses, which may be differ-
ent between the two viruses, but with no distinction between
virus-specific and cross immunity. Moreover, we neglect wan-
ing immunity. To some extent, these assumptions may capture
scenarios with multiple strains of a virus during an epidemic
outbreak, where immunity waning occurs on a much slower
time-scale than the competition between different strains. This
was the case, e.g., in the emergence of the Omicron variant of
COVID-19 in late 2021 (Hodcroft, 2021). Briefly, our assumptions
can be summarized in the following set of conditions on the
model parameters.

Assumption 1. Let ν1 = ν2 = 0, α21 = α11, α12 = α22.

Intuitively, since virus-specific immunity and cross immunity
are assumed to have the same effect, there is no need to define
two distinct variables for the recovered compartments. Hence, if
we define y = y1 + y2, we can reduce the dynamics in Eq. (12)
under Assumption 1 to the following three dimensional system:

ẋ1 = −µ1x1 + (1 − x1 − x2 − (1 − α11)y)λ1x1, (19a)

ẋ2 = −µ2x2 + (1 − x1 − x2 − (1 − α22)y)λ2x2, (19b)

ẏ = µ1x1 + µ2x2 − α11λ1x1y − α22λ2x2y, (19c)

as illustrated in Fig. 3(a). The model is fully determined by six
parameters: λ1, λ2, µ1, µ2, α11, and α22.

The analysis of the partial immunity model is two-fold. First,
we study its transient behavior, establishing bounds on its evo-
lution in terms of simpler bivirus SIS models, extending the
bounding arguments used in Proposition 2. Second, using Propo-
sition 7, we characterize the asymptotic behavior of the bivirus
model.

5.1. Results on the transient behavior

The earlier results for a single virus model with immunity
showed how two SIS models can be found whose solutions pro-
vide upper and lower bounds for a specified SIRIS model. This
motivates the following material, where similar bounds are pro-
vided for the bivirus case. In particular, we start by present-
ing the following technical lemma, whose proof is reported in
Appendix A.

Lemma 1. Consider the Partial Immunity Model in Eq. (19) with
nitial conditions satisfying x1(0) ≥ 0, x2(0) ≥ 0, x1(0) + x2(0) ≤ 1.
hen there hold

˙1 ≥ −µ1x1 + λ1α11(1 − x1 − x2)x1, (20a)

˙ ≤ −µ x + λ (1 − x − x )x , (20b)
2 2 2 2 1 2 2
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˙1 ≤ −µ1x1 + λ1(1 − x1 − x2)x1, (21a)

ẋ2 ≥ −µ2x2 + λ2α22(1 − x1 − x2)x2. (21b)

Moreover, if α11 ̸= 1, α22 ̸= 1, x1(0) > 0, x2(0) > 0 and
w(0) = 1− x1 − x2 − y > 0, then the four inequalities are strict for
all t > 0.

The inequalities above are the key to obtaining SIS systems
whose trajectories bound those of the SIRIS system. The tech-
nique for doing this is to draw on results for positive systems,
see Angeli and Sontag (2003).

Proposition 9. Consider the Partial Immunity Model in Eq. (19)
with initial conditions satisfying x1(0) ≥ 0, x2(0) ≥ 0, x1(0) +

x2(0) ≤ 1. Consider the following two bivirus SIS systems:

u̇1 = −µ1u1 + λ1α11(1 − u1 − u2)u1, (22a)

u̇2 = −µ2u2 + λ2(1 − u1 − u2)u2, (22b)

and

v̇1 = −µ1v1 + λ1(1 − v1 − v2)v1, (23a)

v̇2 = −µ2v2 + λ2α22(1 − v1 − v2)v2. (23b)

Suppose that x1(0) = u1(0) = v1(0), x2(0) = u2(0) = v2(0). Then
for all t, there holds

v1(t) ≥ x1(t) ≥ u1(t), v2(t) ≤ x2(t) ≤ u2(t). (24)

If α11 ̸= 1, α22 ̸= 1, and x1(0), x2(0) and w(0) are all positive, then
the inequalities are strict for all t.

Proof. We shall prove only the inequalities in Eq. (22); the
inequalities in Eq. (23), being obtained by the same procedure.
To enable applicability of the comparison theorem for differential
equations (Angeli & Sontag, 2003), we need to introduce new
variables x̃2(t) = −x2(t) and ũ2(t) = −u(t), so that the differential
inequalities are all in the same direction. Using Eq. (20a), we see
that ẋ1−u̇1 ≥ −µ1x1+λ1α11(1−x1+x̃2)x1+µ1u1−λ1α11[1−u1+

ũ2]u1 = [−µ1 +λ1α11(1−x1 −u1)](x1 −u1)+λ1α11(x̃2x1 − ũ2u1)].
Now since x̃2x1 − ũ2u1 = x̃2(x1 − u1) + (x̃2 − ũ2)u1, we have that
ẋ1−u̇1 ≥ [−µ1+λ1α11(1−x1−u1+x̃2)](x1−u1)+λ1α11u1(x̃2−ũ2).
A similar argument yields ˙̃x2 − ˙̃u2 ≥ −λ2ũ2(x1 − u1) + [−µ2 +

λ2(1 + x̃2 + ũ2 − x1)](x̃2 − ũ2).
Let us set α = x1 − u1, β = x̃2 − ũ2. Then there are time

functions gij(t) such that α̇ ≥ g11(t)α+g12(t)β and β̇ ≥ g21(t)α+

g22(t)β , with strict inequality at time t in case α11 ̸= 1, α22 ̸= 1
and x1(0), x2(0)1 − x1(0) − x2(0) − y(0) all positive. Moreover,
the functions g12 and g21 are nonnegative for all t ≥ 0 (and it
is irrelevant that they can be expressed in terms of some of the
variables of interest). Since also α(0) = 0, β(0) = 0, there holds
α(t) ≥ 0, β(t) ≥ 0 for all t ≥ 0, (with strict inequality under the
stated conditions), i.e., the result follows (Angeli & Sontag, 2003,
Lemma VIII.1). □

5.2. Results on the asymptotic behavior

Here, we will discuss the asymptotic behavior of the Partial
Immunity Model in Eq. (19). Specifically, we start by reporting a
result from Zino et al. (2023), which establish conditions under
which EEs exist and they are (almost) globally asymptotically
stable, with the exception of a set of nongeneric parameter values.

Proposition 10 (Proposition 7 from Zino et al. (2023)). If α11λ1
µ1

̸=

α22λ2
µ2

, Eq. (19) admits at most two EEs, coinciding with the BEEs:

x1, x2, y) =

(
α11λ1 − µ1

, 0,
µ1

)
, (25a)
α11λ1 α11λ1

8

(x1, x2, y) =

(
0,
α22λ2 − µ2

α22λ2
,
µ2

α22λ2

)
, (25b)

which exist iff α11λ1 > µ1 and α22λ2 > µ2, respectively. Eq. (25a)
s locally asymptotically stable iff α11λ1

µ1
>

α22λ2
µ2

; while Eq. (25b)
is locally asymptotically stable iff α11λ1

µ1
<

α22λ2
µ2

. In each case,
the locally asymptotically stable BEE is globally stable for all initial
conditions in the interior of {(x1, x2, y) ∈ [0, 1]3 : x1 + x2 + y ≤ 1}.

Proposition 10 completely characterizes the behavior of the
epidemic model when at least one of the viruses is sufficiently
infectious, that is, αiiλi > µi for at least one i ∈ {1, 2}, and when
α11λ1
µ1

̸=
α22λ2
µ2

. In the following, we investigate the nongeneric
case α11λ1

µ1
=

α22λ2
µ2

, in which, as proved below, a line segment of
equilibria is present.

Proposition 11. If α11λ1/µ1 = α22λ2/µ2 > 1, Eq. (19) admits
the line segment of equilibria (0, x1, 1 −

µ1
α11λ1

− x1,
µ1
α11λ1

), with
1 ∈ [0, µ1

α11λ1
]. When it exists, such a segment is always globally

attractive from any initial condition in the interior.

Proof. If α11λ1/µ1 = α22λ2/µ2, then the equilibrium conditions
or Eq. (19a) and (19a) coincide and are equal to x1 + x2 =
α11λ1−µ1
α11λ1

, which yields the line segment of equilibria. If we eval-
uate the Jacobian of Eq. (19) in the generic point of the line
segment and we compute its eigenvalues, we obtain that one is
equal to 0 (with eigenvector parallel to the line segment), while
the other two are always negative and equal to −(α11λ1x1 +

22λ2x2) and −(λ1x1 + λ2x2), yielding local stability in the direc-
ions orthogonal to the line segment. Global convergence is finally
roved similarly to Proposition 10, using the argument that w(t)

converges exponentially fast to 0, reducing the system to a stan-
dard bivirus SIS model with an exponentially vanishing additive
term, and then using again the theoretical results from Krasovskii
(1963), Prakash et al. (2012) and Sastry (2013). □

The results above consider scenarios in which at least one of
the viruses is sufficiently infectious so that it remains endemic in
the population, that is, when at least one of the ratios αiiλi

µi
> 1.

Now, we study the opposite scenario, i.e., when both α11λ1
µ1

≤

1 and α22λ2
µ2

≤ 1, which yields eradication of the disease, as
summarized in the following, with proof reported in Appendix B.

Proposition 12. If αiiλi ≤ µi for both i ∈ {1, 2}, Eq. (19) possesses
a line segment of equilibria defined by x1 = x2 = 0, y ∈ [0, 1]. If
αiiλi < µi for both i ∈ {1, 2}, an equilibrium on this line is (locally)
attractive in directions orthogonal to the line iff

y ∈

(
max

[
λ1 − µ1

λ1(1 − α11)
,
λ2 − µ2

λ2(1 − α22)

]
, 1

]
, (26)

which is never empty. If α11λ1 = µ1 or α22λ2 = µ2, then the only
attractive point on this line is (0, 0, 1). Moreover, Eq. (19) always
converges to the healthy manifold H.

We now consolidate all our findings from Propositions 10–
12 in a theorem, which is the main result of this section and
provides a complete characterization of the asymptotic behavior
of Eq. (19).

Theorem 4. Consider the Partial Immunity Model in Eq. (19). Then,
the following holds true.

1. If λiαii/µi ≤ 1 for both i ∈ {1, 2}, Eq. (19) converges to the
healthy manifold H for any initial condition. Specifically, it
converges to an equilibrium point of the form (0, 0, y), with y
that satisfies Eq. (26).



L. Zino, M. Ye and B.D.O. Anderson IFAC Journal of Systems and Control 28 (2024) 100262

a

p
w
b
d
o
4
l
b

ν

y

y

a
p

b
p
s

6

t
t
a

T
i

Fig. 4. Simulations of Model I with λ1 = 0.6, λ2 = 0.45, µ1 = 0.4, µ2 = 0.3,
nd different values of α11 and α22 .

2. If λiαii/µi > 1 and λiαii/µi > λjαjj/µj, for j ̸= i ∈ {1, 2},
then Eq. (19) converges to the BEE with x̄i = 1−

µi
αiiλi

, x̄j = 0,
and ȳ =

µi
αiiλi

, for any initial condition in the interior of the
domain.

3. If λ1α11/µ1 = λ2α22/µ2 > 1, then Eq. (19) converges to
the line segment of equilibria (x1, 1 −

µ1
α11λ1

− x1,
µ1
α1λ1

), with
x1 ∈ [0, µ1

α11λ1
] for any initial condition in the interior of the

domain.

The simulations in Fig. 4 illustrate the findings in Theorem 4. In
articular, we consider two viruses with λ1/µ1 = λ2/µ2 > 1, and
e observe the behavior when changing α11 and α22. As predicted
y item 1, when both αii are small so that αiiλi/µi < 1, the
isease is eradicated and the system converges to an equilibrium
n the healthy manifold (as reported in Fig. 4(a)). Figs. 4(b) and
(c) show a survival-of-the-fittest scenario, where the virus with
argest αiiλi/µi remains endemic. Interestingly, in Fig. 4(c), where
oth viruses have αiiλi/µi > 1, after an initial outbreak of virus 1

(which has larger value of λi), virus 2 becomes dominant, as
predicted by item 2. Finally, in Fig. 4(d), we illustrate the scenario
predicted by item 3, where the system converges to a point on the
line of EEs, with co-existence of the two viruses.

Remark 4. The emergent behavior of the Partial Immunity model
in Eq. (19) resembles that of a bivirus SIS model presented in
Section 3.1, wherein (except for a non-generic set of parameter
values) we observe either eradication of both diseases or survival-
of-the-fittest virus. However, unlike the standard SIS model, the
fitter virus is not the one with largest basic reproduction number
(i.e., λi/µi), but such a value is modulated by the (potentially
different) level of protection against the two viruses acquired
after recovery.

6. Model II: Waning virus-specific immunity

We consider now a second specialization of the model, in
which we focus on unveiling the effects of simultaneous waning
and virus-specific immunity. To this aim, we assume that after
recovery from either of the two viruses, an individual acquires
full (but waning) immunity only against that specific virus, while
no immunity is acquired against the other virus. For instance,

this is the case of the influenza A virus and rhinovirus (which a
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cause flu and cold, respectively), for which no (or very limited)
cross-immunity has been observed (Nickbakhsh et al., 2019).
Briefly, these assumptions are summarized in the following set
of conditions.

Assumption 2. Let α11 = α22 = 0, α12 = α21 = 1, ν1 > 0, and
2 > 0.

Under Assumption 2, Eq. (12) reduces to

ẋ1 = −µ1x1 + (1 − x1 − x2 − y1)λ1x1, (27a)

ẋ2 = −µ2x2 + (1 − x1 − x2 − y2)λ2x2, (27b)

˙1 = µ1x1 − ν1y1 − λ2x2y1, (27c)

˙2 = µ2x2 − ν2y2 − λ1x1y2, (27d)

s illustrated in Fig. 3(b). The model is fully determined by six
arameters: λ1, λ2, µ1, µ2, ν1, and ν2.
Before starting the analysis of this model, we observe that,

ecause ν1 > 0 and ν2 > 0, we can apply Theorem 3, which
rovides necessary and sufficient conditions for global asymptotic
tability of the DFE. Hence, we focus our analysis on EEs.

.1. Results on the boundary endemic equilibria

We start by considering the BEEs, representing survival-of-
he-fittest scenarios. While their existence is proved in Proposi-
ion 5, here we study their stability. The results of this analysis
re summarized in the following theorem.

heorem 5. Consider the Waning Virus-specific Immunity Model
n Eq. (27). Then, the following conclusions hold:

1. If λi/µi ≤ 1 for both i ∈ {1, 2}, then the DFE is globally
asymptotically stable.

2. If λi/µi > 1 and λj/µj ≤ 1, for i ̸= j ∈ {1, 2}, then the DFE
is unstable. Moreover, there is a unique BEE with

xi =
νi(λi − µi)
λi(µi + νi)

, yi =
µi(λi − µi)
λi(µi + νi)

, xj = yj = 0, (28)

which is globally asymptotically stable for any initial condi-
tion in the interior of the domain.

3. If λi/µi > λj/µj > 1, for i ̸= j ∈ {1, 2}, then the DFE is
unstable. Moreover, there are two BEEs, viz.

xj =
νj(λj − µj)
λj(µj + νj)

, yj =
µj(λj − µj)
λj(µj + νj)

, xi = yi = 0, (29)

which is always unstable, and that of Eq. (28), which is locally
asymptotically stable iff

νi > ν∗

i =
µiλi(λj − µj)
µj(λiµj − λjµi)

, (30)

and unstable if νi < ν∗

i .

Proof. Item 1 is a straightforward consequence of Theorem 3.
The computation of the BEEs and the assessment of their (local)
stability have been performed in Zino et al. (2023) through a
direct analysis of Eq. (27) and of the eigenvalues of its Jaco-
bian matrix computed at the equilibrium point. For more details,
see Zino et al. (2023, Theorem 9 and Corollary 11). This yields
item 3, and the first part of item 2. We are left to prove (almost)
global convergence for item 2. Without any loss in generality,
let us consider the case λ1/µ1 > 1 and λ2/µ2 < 1, where
the system has only the equilibrium on the boundary Eq. (28)
with x2 = y2 = 0. From Eq. (27b), we observe that ẋ2 ≤

−(µ2 − λ2)x2. By Gronwall’s inequality, x2(t) ≤ x2(0)e−(µ2−λ2)t ,
nd thus it converges exponentially fast to 0. The system is thus
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Fig. 5. Simulations of Model II with λ1 = λ2 = 0.7, µ1 = 0.4, µ2 =

0.2, ν1 = ν2 = 0.08, from different initial conditions (colored circles). All
trajectories converge to the same CEE, which is denoted with a black cross.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

a perturbation of a single-virus SIRIS model, which converges
exponentially fast to its unique BEE from any initial condition in
the interior (see Proposition 3). Hence, the unique BEE is (almost)
globally asymptotically stable. □

6.2. Results on the coexistence endemic equilibria

We now study the existence of CEEs, i.e., equilibria in with
both viruses are present (x1 ̸= 0 and x2 ̸= 0). We immediately
observe that the results in Theorem 5 preclude the existence
of such CEEs for all scenarios, except when λ1/µ1 > 1 and
λ2/µ2 > 1. In the following, we will focus on this scenario. First,
the following result (with proof reported in Appendix C) proves
that CEEs cannot exist when one of the BEEs is stable, i.e., when
νi > ν∗

i from Eq. (30).

Proposition 13. Consider the Waning Virus-specific Immunity
Model in Eq. (27) with λi/µi > λj/µj > 1 and νi > ν∗

i from Eq. (30).
Then, no CEEs can exist.

A consequence of Proposition 13 is that, when λi/µi > λj/µj >
1 and νi > ν∗

i , the system has a single (locally) stable equilibrium,
for which the simulations in Fig. 2(a) suggest global asymptotic
stability. Evidently, CEEs can only be present when the two
BEEs are unstable. The following result (with proof reported
in Appendix D) establishes the existence of such equilibria and
provides a bound on their number.

Proposition 14. If λi/µi > λjµj > 1 and νi < ν∗

i , then, for almost
all values of the parameters, the system has either one or three CEEs,
with no more than two of them being stable.

Proposition 14 guarantees the existence of CEEs for the wan-
ing virus-specific immunity specialization of our SIRIS model, in
the region of the parameter space in which none of the BEEs
or the DFE are stable. Such result provides analytical support
to the hypothesis in the medical literature that immunity may
play a key role in favoring coexistence of multiple competitive
diseases (Bhattacharyya et al., 2015). Finally, the numerical sim-
ulations in Fig. 5 suggest that, when such CEEs exist, then there
is always exactly one of them which is globally asymptotically
stable.

7. Conclusion

In this paper, we proposed and analyzed a novel mathematical

model for the spread of two competing diseases that accounts
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for real-world features of natural immunity, including partial
virus-specific and cross-immunity protection, and waning im-
munity. Through the theoretical analysis of the proposed model,
termed bivirus SIRIS model, we established general results that
characterize the asymptotic behavior of the system in terms of
convergence to the disease-free equilibrium or to an endemic
state, further characterizing and counting the possible endemic
equilibria. Then, we delved into the analysis of two specific im-
plementations of the model, inspired by realistic scenarios, which
allowed us to shed light on the impact of partial immunity and
waning virus-specific immunity, respectively, on the transient
and asymptotic behavior of the system. In particular, we demon-
strated how the complex nature of immunity can impact the
emergent behavior of an epidemic disease; for instance, by al-
lowing multiple competing diseases to coexist in an endemic
equilibrium.

The modeling framework and the results presented in this
paper pave the way for several lines of future research. First,
our theoretical results provide a thorough characterization of
the two specializations of interest. However, the analysis of the
most general scenario is limited to establishing conditions for
the eradication of both diseases, while in the endemic regime,
results are limited to the computation of the winner-take-all
endemic equilibria and a characterization of the possible coexis-
tence equilibria. Further efforts should be placed into extending
the study of the transient and asymptotic behavior of the system
to the general bivirus SIRIS model. Second, while our model is
implemented in a homogeneous scenario where the individuals
of the population interact in an all-to-all fashion, further model-
ing extensions of the SIRIS framework should be developed and
studied toward incorporating heterogeneity across the popula-
tion and in the pattern of interactions, e.g., by embedding the
bivirus model onto a network structure, similar to Lombana et al.
(2022), Poletto et al. (2015), Ye et al. (2022), Zhang et al. (2022).
Third, leveraging our mathematical formulation of the bivirus
model, one can investigate the problem of mitigating an epidemic
outbreak by extending the modeling framework to time-variant
scenarios, which allows to consider, e.g., closed-loop intervention
policies. This would allow us to unveil how the characteristics
of natural immunity shape an optimal intervention policy, using,
e.g., the methods developed in Blanchini et al. (2023), Gubar
and Zhu (2013) and Taynitskiy et al. (2017). Finally, while the
features of natural immunity incorporated into our model are
based on real-world observations (Chan et al., 2018; Goldberg
et al., 2022; Greer et al., 2009; Iwasaki, 2021; Kaler et al., 2022;
Nickbakhsh et al., 2019; Ren et al., 2022; Townsend et al., 2013)
and the consistency of our results with empirical evidence and
epidemiological theories provides some high-level validation to
our approach (Bhattacharyya et al., 2015; CDC Centers for Dis-
ease Control and Prevention, 2023; Hodcroft, 2021), a rigorous
validation of the model is still missing and should be performed
by establishing systematic ways to match real-world data to our
predictions (see, e.g., Dautel, Agyingi, and Pathmanathan (2023)
and Kopec et al. (2010)), building on our theoretical findings.
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ppendix A. Proof of Lemma 1

roof. We prove just the first pair of inequalities, the second
ollowing by an identical argument. Recall that w = 1 − x1 −

2 − y is necessarily nonnegative, corresponding to the fraction
f susceptible individuals. Then observe that ẋ1 = −µ1x1 +

1 − x1 − x2 − (1 − α11)y)λ1x1 = −µ1x1 + (w + α11y)λ1x1 ≥

µ1x1 + λ1α11(w + y)x1 = −µ1x1 + λ1α11(1 − x1 − x2)x1.
o establish the claim regarding strict inequalities, observe first
hat the differential equations for x1, x2 are of the form ẋi =

i(x1, x2, y)xi, which means that the conditions x1(0) > 0 and
x2(0) > 0 propagate for all time, so that x1(t) > 0 and x2(t) > 0,
∀t ≥ 0. It is also readily verified using the differential equations
for x1, x2 and y that ẇ = −(λ1x1 + λ2x2)w, which means that
the condition w(0) > 0 also propagates for all time t ≥ 0. The
differential equation for y shows that for all t > 0, y(t) > 0, even
if y(0) = 0. Then in relation to the inequality chain immediately
above, since w(t) and x1(t) are nonzero, and α11 ̸= 1, there holds
(1 − α11)λ1wx1 > 0 and so the inequality in the above chain is
strict. To verify the upper bound, observe that ẋ2 = −µ2x2 + (1−

x1−x2−(1−α22)y)λ2x2 ≤ −µ2x2+λ2(1−x1−x2)x2. Since α22 ̸= 1
and x2(t) and y(t) are positive, the inequality is also strict. □

Appendix B. Proof of Proposition 12

Proof. The steady-state equation for y yields(µ1 − α11λ1y)x1 +

(µ2 − α22λ2y)x2 = 0. The coefficients of x1 and x2 in the above
equation are both strictly positive, except for the case in which
y = 1 and α11λ1

µ1
=

α22λ2
µ2

= 1. Hence, the only equilibrium
olution in the region of interest requires x1 = x2 = 0 (note
hat, when y = 1, then this is necessarily verified), but then the
quilibrium value of y is unspecified. Note also that x1 = x2 =

, y ∈ [0, 1] defines a line segment of equilibria (as revealed by
irect calculation), irrespective of the inequalities among the pa-
ameters. At such an equilibrium, the Jacobian matrix is diagonal,
ith entries equal to −µ1 +λ1(1− (1−α11)y), −µ2 +λ2(1− (1−

22)y), and 0.
The nonsingular part of the Jacobian gives some information.

n particular, for the line segment of equilibria defined by x1 =

2 = 0, there will be an attractive interval defined precisely
y those values ȳ for which the two nonzero eigenvalues are
egative, i.e., −µ1 + λ1[1 − (1 − α11)ȳ] < 0 and −µ2 + λ2[1 −

1 − α22)ȳ] < 0, or ȳ > λ1−µ1
λ1(1−α11)

and ȳ > λ2−µ2
λ2(1−α22)

. Obviously,
there is also a requirement that ȳ ≤ 1. It is easily verified that
the two conditions α11λ1 < µ1 and α22λ2 < µ2 are necessary
nd sufficient to ensure that (λ1 − µ1)/λ1(1 − α11) < 1 and
λ2 − µ2)/λ2(1 − α22) < 1.

For the cases in which α11λ1 = µ1 or α22λ2 = µ2, we observe
hat all the equilibria on the line are unstable, except for the one
ith ȳ = 1, whose stability cannot be simply determined by the
11
Jacobian. However, we can easily observe that the equilibrium
point (0, 0, 1) is always attractive in directions orthogonal to the
line if α11λ1 ≤ µ1 and α22λ2 ≤ µ2. In fact, orthogonal to the
line segment of equilibria, the dynamics reduces to a bivirus SIS
model with infection rates λ̃1 = α11λ1 and λ̃2 = α22λ2, for which
Proposition 3 yields the claim.

Finally, we are left to prove global convergence, which we
do by contradiction. Assume that the system does not converge
to the healthy manifold H. First, we observe that, since the line
segment y ∈ (ȳ, 1) ∈ H is locally attractive, then there exists a
positive constant δ > 0 such that, if there were to hold x1(t) +

x2(t) ≤ δ and y ≥ ȳ − δ, then the trajectory would converge
to the line. Since we have assumed that x(t) does not converge
to the line, then it must be true that either (i) x1(t) + x2(t) > δ

or (ii) y < ȳ − δ, for all t ≥ 0. In both cases, we can conclude
that 1 − y(t) > δ. Proposition 7, combined with our temporary
assumption that the system does not converge to H guarantees
that there exists τδ ≥ 0 such that w(t) ≤

min{α11,α22}δ

2 , for any
t ≥ τδ . Then, using Eq. (19), we bound ẋi = −µixi + (w +

iiy)λixi ≤ −µixi + (w + αiiy)
µi
αii
xi = −µi(1 − y −

w
αii
)xi, for

oth i ∈ {1, 2}. For any t ≥ τδ , this implies that ẋi ≤ −
µ1δ
2 xi.

Finally, Gronwall’s inequality yields xi(t) ≤ exp{−
µi
2 δ(t − τδ)} →

0, which contradicts our assumption. Consequently, the system
should necessarily converge to the healthy manifold. □

Appendix C. Proof of Proposition 13

Proof. Without any loss in generality, we consider i = 1. A CEE
of Eq. (27) is a point (x1, x2, y1, y2) ∈ D such that x1 > 0, x2 > 0
and the following four equalities hold:

0 = − µ1 + (1 − x1 − x2 − y1)λ1, (C.1a)

0 = − µ2 + (1 − x1 − x2 − y2)λ2, (C.1b)

=µ1x1 − ν1y1 − λ2x2y1, (C.1c)

=µ2x2 − ν2y2 − λ1x1y2. (C.1d)

In order to prove that no CEEs can exist, we consider the
ollowing related system of equations:

= −µ1 + (1 − X1 − X2 − Y1)λ1, (C.2a)

= −µ2 + (1 − X1 − X2)λ2, (C.2b)

= µ1X1 − ν1Y1 − λ2X2Y1, (C.2c)

hich is obtained from Eqs. (C.1a)–(C.1c), by modifying Eq. (C.1b)
hrough removal of the term −λ2y2. The proof follows two main
teps. First, we show that given any solution (x̄1, x̄2, ȳ1, ȳ2) of
q. (C.1) in the domain of interest, and letting (X̄1, X̄2, Ȳ1) be any
olution of Eq. (C.2) (without restriction to any domain), there
ecessarily holds x̄2 ≤ X̄2. Then, we prove that Eq. (C.2) does not
dmit solutions with X̄2 ≥ 0, which in turns implies that there
annot be solutions of Eq. (C.1) in the domain of interest with

¯2 > 0.
Let (X̄1, X̄2, Ȳ1) be a solution of Eq. (C.2). From Eq. (C.2b), we

btain that

¯1 + X̄2 = 1 − µ2/λ2. (C.3)

n a similar way, from Eq. (C.1b) and using the fact that ȳ2 ≥ 0,
e obtain the inequality

¯1 + x̄2 ≤ x̄1 + x̄2 + ȳ2 = 1 − µ2/λ2 = X̄1 + X̄2. (C.4)

Similarly, by comparing the expressions for Ȳ1 and ȳ1 obtained
rom the equilibrium specialization of Eqs. (C.1a) and (C.2a),
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espectively, and inserting the inequality obtained in Eq. (C.4), we
onclude that

¯1 ≤ ȳ1. (C.5)

Next, we observe that Ȳ1 can be explicitly obtained and is
positive. In fact, by dividing Eq. (C.2a) by λ1 and Eq. (C.2b) by
λ2, and subtracting the two equations, we get

Ȳ1 =
λ1µ2 − λ2µ1

λ1λ2
=
µ2

λ2
−
µ1

λ1
> 0, (C.6)

ith the positivity following by the Proposition hypothesis. In the
ight of Eq. (C.5), this implies that ȳ1 > 0.

Using the two inequalities in Eqs. (C.4) and (C.5) and the
positivity of Ȳ1 and ȳ1, we will now show that x̄2 ≤ X̄2. To prove
this, assume temporarily to the contrary that there holds X̄2 < x̄2,
and we will prove a contradiction. From Eqs. (C.1c) and (C.2c), we
observe that:

X̄2 =
µ1X̄1

λ2Ȳ1
−
ν1

λ2
, x̄2 =

µ1x̄1
λ2ȳ1

−
ν1

λ2
, (C.7)

here the nonzero nature of Ȳ1 and ȳ1 is critical. From Eq. (C.4),
nd with the temporary assumption X̄2 < x̄2, then there would
ecessarily hold X̄1 > x̄1. Moreover, since Ȳ1 ≤ ȳ1, from Eq. (C.7)
e bound (using again the positivity of Ȳ1 and ȳ1) X̄2 =

µ2X̄1
λ2 Ȳ1

−

ν1
λ2

≥
µ2 x̄1
λ2 ȳ1

−
ν1
λ2

= x̄2, which contradicts our assumption, proving
hat x̄2 ≤ X̄2.

Now, we focus on Eq. (C.2). From Eq. (C.2c), we get

¯1 =
µ1X̄1

ν1 + λ2X̄2
. (C.8)

y equating the right-hand sides of Eqs. (C.6) and (C.8), we obtain
λ1µ2−λ2µ1

λ1λ2
=

µ1X̄1
ν1+λ2X̄2

, which implies

1 =
µ1λ1λ2X̄1

λ1µ2 − λ2µ1
− λ2X̄2. (C.9)

By using the assumption that ν1 > ν∗

1 , and inserting the expres-
sion of ν∗

1 from Eq. (30) into Eq. (C.9), we obtain µ1λ1λ2X̄1
λ1µ2−λ2µ1

−

λ2X̄2 >
µ1λ1(λ2−µ2)
µ2(λ1µ2−λ2µ1)

, which, after some algebraic simplifications,
eads

¯1 > 1 −
µ2

λ2
+
λ1µ2 − λ2µ1

µ1λ1
X̄2, (C.10)

here the coefficient of X̄2 is strictly positive. Finally, inserting
q. (C.3) into Eq. (C.10), we get X̄1 > X̄1+ X̄2+

λ1µ2−λ2µ1
µ1λ1

X̄2, which
can only be satisfied if X̄2 < 0, yielding the claim. □

Appendix D. Proof of Proposition 14

Proof. From Eq. (C.1), we observe that, at a CEE, we have
y1 =

µ1x1
ν1+λ2x2

and y2 =
µ2x2

ν2+λ1x1
. When these equalities are

substituted into the first two equations of Eq. (C.1), there results
two quadratic equations in x1, x2:

λ1λ2x1x2 + λ1λ2x22 + λ1(µ1 + ν1)x1
+ (µ1λ2 + ν1λ1 − λ1λ2)x2 + ν1(µ1 − λ1) = 0, (D.1)

λ1λ2x21 + λ1λ2x1x2 + (µ2λ1 + ν2λ2 − λ1λ2)x1
+ λ2(ν2 + µ2)x2 + ν2(µ2 − λ2) = 0. (D.2)

From Eq. (D.1), we obtain

x1 =
−λ1λ2x22 − (µ1λ2 + ν1λ1 − λ1λ2)x2 + ν1(λ1 − µ1)

. (D.3)

λ1λ2x2 + λ1(µ1 + ν1)

12
When this equation is substituted into Eq. (D.2), algebraic simpli-
fications lead to a cubic equation, which has at least one and at
most three real solutions.

To prove existence of at least one solution in the domain of
interest, we observe that Eq. (27) is such that (i) Rn

+
is forward

invariant (xi = 0 ⇐ fi(x) ≥ 0), and (ii) the semiflow induced
y the system is dissipative, i.e., lim supt→+∞ xi(t) ≤ k for some
onstant k > 0. As a consequence, we can use the theory devel-
ped in Hofbauer (1990). A key result of this theory states that for
given system satisfying those two aforementioned properties,

here exists at least one saturated equilibrium (Hofbauer, 1990,
heorem 2), whose definition is explainable as follows. Without
oss of generality, let x̄ = [0, 0, . . . , x̄k+1, . . . , x̄n]⊤, with k ≥ 0
nd x̄i > 0 for i ≥ k + 1. In other words, x̄ is a equilibrium
here the first k entries are equal to 0. The Jacobian of x̄ can be
xpressed as

(x̄) =

[
A 0
B C

]
, (D.4)

where A is a Metzler matrix. We call A the external part of
the Jacobian, and C the internal part. Define s(A) as the spectral
abscissa of a given matrix A. Then, x̄ is said to be an unsaturated
equilibrium if s(A) > 0, a saturated equilibrium if s(A) ≤ 0 and
strictly saturated equilibrium if s(A) < 0. If x̄ > 0n, i.e., it is a
ositive vector, then x̄ is always saturated.
If λi/µi > λjµj > 1 and νi < ν∗

i , the system has three
quilibria other than the (possibly existing) co-existence ones.
vidently, the DFE is unstable, and thus it is an unsaturated equi-
ibrium. Next, consider the BEE (0, x̄2, 0, ȳ2). After a permutation,
he Jacobian can be written into the form of Eq. (D.4), which yields

¯ =

⎡⎢⎣−µ1 + (1 − x2)λ1 0 0 0
µ1 −λ2x2 − ν1 0 0
λ2x2 0 −λ2x2 −λ2x2

−λ1y2 0 µ2 −ν2

⎤⎥⎦ . (D.5)

he block corresponding to C in Eq. (D.4) is Hurwitz; the block
orresponding to A is lower-triangular with the entry −λ2x2 −

1 < 0, and −µ1+(1−x2)λ1 being positive or negative depending
n whether (0, x̄2, 0, ȳ2) is unstable or locally stable, respectively.
n other words, (0, x̄2, 0, ȳ2) is a strictly saturated equilibrium iff
t is locally exponentially stable, and it is an unsaturated equilib-
ium if it is unstable. The same statement can be made about the
ther BEE, (x̄1, 0, ȳ1, 0). According to Hofbauer (1990, Theorem 2),
his implies that when both BEEs are unstable, there exists at
east one CEE, as none of the BEEs or the DFE are saturated.
inally, Proposition 6 guarantees that all CEEs are nondegenerate
or almost all choices of the parameters (see Remark 3 for the
act that setting α11 = α22 = 1 and α12 = α21 = 0 is not restric-
ive). This implies that all saturated equilibria are nondegenerate.
ence, Hofbauer (1990, Theorem 2) guarantees that the sum of
he indices of the saturated fixed points is equal to +1, where the
ndex of a fixed point is equal to the sign of the determinant of the
egative of the Jacobian matrix evaluated at the fixed point. As a
onsequence, stable equilibria necessarily have index +1, while
nstable equilibria can have index +1 or −1 (depending on the
umber of positive eigenvalues). Hence, in order for the sum of
he indices to be equal to +1, either there is a unique equilibrium
with index +1) or there are three equilibria (two with index +1
nd one with index −1), yielding the claim. □
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