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A Deep Learning Method for Optimal
Undersampling Patterns and Image Recovery for

MRI Exploiting Losses and Projections
Filippo Martinini, Mauro Mangia, Member, IEEE, Alex Marchioni, Student Member, IEEE,

Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—Compressed Sensing was recently proposed to re-
duce the long acquisition time of Magnetic Resonance Imag-
ing by undersampling the signal frequency content and then
algorithmically reconstructing the original image. We propose
a way to significantly improve the above method by exploiting a
deep neural network to tackle both problems of frequency sub-
sampling and image reconstruction simultaneously, thanks to the
introduction of a new loss function to drive the training and the
addition of a post-processing non-neural stage. Furthermore, we
highlight how some of the quantities along the processing chain
can be used as a proxy of the quality of the recovered image,
thus allowing a self-assessment of the whole technique.

All improvements hinge on the possibility of identifying con-
straints to which the final image must obey and suitably enforce
them. The effectiveness of our approach is tested on real-world
MRI acquisitions from the fastMRI public database and achieves
an appreciable improvement in Peak Signal-to-Noise Ratio with
respect to the original CS-based proposal with speed-up factors
4 and 8.

Index Terms—fast MRI, Compressed Sensing, Deep Neural
Network, U-NET, measurement constraint.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) [1] is a widely-
used non-invasive technique to obtain precise pictures

of human internal organs and tissues. Roughly speaking, MRI
relies on the possibility of measuring the frequency response
to very intense magnetic fields of hydrogen nuclei contained
in the subject under test. Hence, the acquired information is
a set of frequency components from which the final clinical
image is obtained via inverse Fourier transform.

Unfortunately, the acquisition of an MRI scan is a complex
operation, which leaves the patient in a situation of appreciable
discomfort for quite a long time. Furthermore, the space
where the subject is located during the test is noisy and
claustrophobic, and it is not rare to have individuals refusing to
perform an MRI and even more often being unable to remain
still during the scan, thus creating undesired motion artefacts in
the final image, which may result in need of new acquisitions.
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Several techniques have been proposed to solve this critical
issue, including the implementation of an open MRI [2], which
certainly eliminates the claustrophobic environment, but at the
expense of an undesirable reduction in the resolution of the
acquired image. As such, the most effective solutions rely
on techniques to reduce the MRI acquisition time. In this
scenario, Compressed Sensing (CS) appeared [3], shortly after
its introduction [4], [5] as a methodology worth applying. CS
allows reconstructing a whole image starting from its under-
sampled version with respect to classical Shannon-Nyquist
theory, thus enabling a faster acquisition. Interesting enough,
the use of CS for MRI acquisition was recently allowed by
FDA [6].

In its general formulation [4], [5], CS relies on the use of
a linear encoder to compress the signal or image to acquire,
resulting in a low dimensional measurement vector. A decoder
is necessary to invert the encoding process and recover the
original information. In the MRI context [3], CS encoding is
pursued by applying a binary mask that selects only the most
relevant frequencies to be physically acquired, while decoding
starts from the undersampled frequency content and applies
denoising algorithms based on prior knowledge. The output is
an image close to the fully sampled/ground truth one.

Between encoding and decoding, in MRI applications, the
latter stage has been studied more extensively. Classic CS
decoder approaches involve the solution of an optimization
problem [3]. A wide range of approaches solve the op-
timization problem via regularization terms, such as total-
variation penalty, sparsity-inducing norms on the coefficients
of the transformed representations (i.e. wavelet [7], sparsifying
dictionaries [8]), or non-local patch-based operators [9]. Using
these methods results in good performances but requires
high computational cost and hyper-parameter tuning, severely
limiting their practical impact.

Concerning the encoder, commonly used undersampling
patterns follow simple and non-data-driven schemes, e.g.,
Spectrum based [10], Variable density [11], Cartesian sam-
pling [12] or uniform random undersampling [13]. For a
desired increase in the acquisition rate, there are countless pos-
sible patterns one could use for image undersampling, which
unfortunately lead to very different reconstruction perfor-
mance. Therefore, it is of paramount importance to determine
the undersampling patterns that, coupled with the decoder,
result in the optimal quality of the recovered images. This
direction requires implementing a “data-driven” encoder and
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leads to an overall improvement in reconstruction performance
with respect to classic CS solutions where the encoder design
is agnostic about the class of signal to be acquired.

Approaches based on encoder/decoder co-design exploit
neural networks (NN) to outperform classic methods and
effectively combine high-dimensional sensing and signal pro-
cessing. An example of this family of approaches is reported
in [14], while a better performing one, referred to as Learning-
based Optimization of the undersampling PattErn (LOUPE) is
proposed in [15], [16], and solves the encoder and the decoder
design problem at the same time by adopting a signal-aware
strategy.

This work develops on LOUPE by enhancing subsampling
selection and improving the use of measurements, leading to
a performance improvement in terms of quality reconstruction
or speed-up. In detail, LUOPE corrects the undersampling
artefacts with a deep neural network trained to minimize the
difference between the full-resolution image and the produced
output. This mechanism ignores whether the output matches
the true information content passing through the undersam-
pling mask. LOUPE does not guarantee that the k-space
of the reconstructed image is coherent with the observed
measurements. To improve this match, we propose here some
possible techniques:
• regularization terms that either promote similarity be-

tween the two representations in the k-space or promote
similarity between the k-space frequencies that are not
acquired (available at training time) and the components
that the decoder creates to fill the k-space;

• a slight modification of the U-NET [17] architecture in
the decoder that allows checking if the decoder output
matches the ground-truth undersampling k-space;

• a new decoder structure evolving the one proposed in
[15] that forces the equality between the two k-space
representations;

• a post-processing stage forcing the final output to be
compliant with the ground-truth k-space representation.
This block operates by applying Dykstra’s projection
algorithm [18], [19] at inference time.

A further contribution is identifying a feature correlated
with the output quality that can be used to estimate the
goodness of reconstruction without the need to know the
ground truth.
• Self-assessment provides each reconstructed image with

a score to measure the similarity with the ground truth.
This ability makes the whole framework more robust, and
to the best of our knowledge, this is the first tentative of
presenting such a tool in the fast-MRI.

As a final remark, the proposed framework preserves the
LOUPE’s characteristics: i) it preserves the undersampling
patterns generality, e.g., it can work with both Cartesian and
non-Cartesian undersampling patterns ii) it is designed for
single-coil acquisitions (even if the multi-coil acquisition is
not precluded).

The rest of the paper is organized as follows. Section II and
III introduce the basics of CS and detail some related works.
Section IV describes the reference acquisition architecture

while the proposed frameworks are discussed in Section V.
Before conclusion numerical evidences and a comparison with
other methods are presented in Section VI.

II. COMPRESSED SENSING FOR MRI

Compressed Sensing (CS) is a general signal acquisition
scheme that allows the reconstruction of the original signal
x from a number of observations that is smaller than those
needed according to classic Shannon-Nyquist theory [4], [5].

It can be thought as the coupling of an encoding stage
with a decoding stage. The encoder Enc(·) that models the
acquisition process is a linear operator producing the mea-
surement vector y = Enc(x). The decoder Dec(·) expands
the measurements into an estimation of the acquired signal
x̂ = Dec(y).

The compression property comes from the fact that the
dimension of x is larger than the dimension of y and,
though, in principle, this would make the exact retrieval of
x impossible as Enc(·) becomes non-injective. The recovery
of the original signal can be guaranteed if prior knowledge of
its structure is available.

The most common setting is the one in which x is n-
dimensional while y is m-dimensional, with m < n, and it
is known that x has a sparse representation, i.e., that a set of
W ≥ n vectors w0, . . . ,wW−1 exists such that in the linear
combination x = ξ0w0 + ξ1w1 + · · · + ξW−1wW−1 only a
small number k < m < n of coefficients ξj are non-zero.

If m is propoerly chosen accordingly to n and k and if
Enc(·) satisfies quite general assumptions, then the original
signal can be recovered by [4], [5]

x̂ = Dec(y) = arg min
x

W−1∑
j=0

|ξj | s.t. Enc(x) = y (1)

where the objective function can be proved to be, in this case,
a good proxy of the number of non-zero coefficients, and the
constraint ensures that the recovered signal is compatible with
the observed measurements.

The applicability of CS schemes to MRI comes from two
key observations. First, intuitively, for CS to work, Enc(·)
must be such that each component of y depends on many
components of x so that y contains information on the whole
x despite being a shorter vector. This assumption is intrinsic in
MRI systems as the physical quantities acquired by the sensor
are the Fourier transform of the image we want to reconstruct.
Second, the reduction of dimensionality implicit in m < n can
be seen as an undersampling, i.e., the possibility of acquiring
only a subset of all the possible Fourier coefficients.

Common undersampling patterns follow simple and non-
adaptive schemes such as uniform random sample skipping
[13], or variable density [11] and evenly spaced Cartesian with
skipped lines [12]. They have the advantage of simplicity but
are not very effective.

Once one fixes the target reduction of the acquisition rate
(i.e. undersampling level), the number of compatible under-
sampling patterns is vast and picking the right scheme may
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significantly improve the performance of the whole acquisition
chain.

Whatever the choice, the optimal encoding must be paired
with a proper decoder. Hence, a further issue regards the
exploitation of a priori knowledge on x to cope with the non-
injective nature of undersampling. Sparsity can be still called
into play when, for example, the grey-level histogram of the
original image is bi-modal, revealing that most of the pixels
are either black or white, thinking of one of the two colours
as the zero filling most of the components. It is also worth
stressing that more refined forms of sparsity have also been
identified through wavelet or dictionary-based representations
[20].

III. COMPRESSED SENSING AND DEEP NEURAL
NETWORKS FOR MRI

A possible path to overcome the issue related to the
straightforward application of CS to MRI relies on using
neural networks specifically adapted to suit encoder-decoder
architectures for CS. Proposals that separately address the
encoder-decoder CS problems exist: those are algorithms that
either specialize in finding the best undersampling pattern or
improving the decoding stage only.

As far as decoding is concerned, [21] reports the use of
a neural network to directly map the undersampled scans in
the frequency domain to the reconstructed image in the pixel
domain. An example of NN applied to solve, in a machine-
learning-fashion, a conventional CS MRI problem was pro-
posed in [22]. NN have also been used along with older works
such as GRAPPA [23] to find new hybrid adaptations [24].
Several of the proposed solutions in the Literature exploits
the so-called U-NET [17], which is a variation of a classic
contracting-expanding convolutional network that differs from
it by introducing a set of skip connections and concatenation
layers.

Examples are [25], [26], which have been recently used as
the baseline accuracy in the famous “fastMRI” competition. In
[27], authors compare a net built using complex convolution
layers with a net that uses classic convolution operation,
demonstrating appreciable improvements. Many recent works
are inspired by the successes of the adversarial neural network
(GAN) [28] and present their neural architecture adaptation
to the MRI reconstruction problem [29]. Examples are [30]
that uses a modified cyclic loss, [31] that uses un-pared
scans during training to tackle the problem of a small-size
dataset, [32] that uses a Wasserstein loss, [33] that introduces
the attention mechanism inside the classic GAN architec-
ture, and [34] that carefully studies how to exploit at best
all the acquired frequency regions while reducing a novel
structural loss. [35], [36] also contribute to the GAN-based
model research direction by respectively proposing combined
innovative losses and architectural modifications. An important
class of publications focuses on exploring how a multi-domain
framework improves denoising [37], [38]. In addition, [39]
leverages both the magnitude and the phase information con-
tent by creating two different neural networks at once, and [40]
reconstructs the undersampled image exploiting the frequency

1

Aγ,θ

à .
x x̂

y
Encγ(x) Decθ(y)

Fig. 1. The cascade of encoding and decoding as a unique autoencoding
structure Aγ,θ(·).

domain and the pixel representations simultaneously by cre-
ating an adapted recurrent neural network. Notable works
adopting recurrent-based solutions are [41], [42], where novel
models are deployed to leverage the dependencies between
samples at best. Interesting advancements can also be found in
[43], which lays the foundation for a simultaneous combined
metric optimization, and from [44], which proposes a new
geometrically expressivity enhanced design technique.

A great deal of effort has also been paid to search for the
best undersampling pattern (encoder), and many data-driven
inspired approaches have been presented. As an example,
[45] studies the solution of a Bayesian inference problem
formulation, [10] uses the power spectrum of a set of examples
images as a reference to optimize the acquisition.

More recent contributions tackle the possibility to adapt
encoding and decoding simultaneously as this has been
demonstrated to be a profitable approach in other contexts
[46]. For instance, [47] and [48] deploy a Model-based deep
learning (MoDL) [49] framework (an interesting novel ap-
proach alternative to CS), reporting outstanding results. The
MoDL algorithm restores the undersampled image, adapting
to the input data, while the undersampling pattern is jointly
optimized within the conventional NN training.

Among the novel contributions relying on data-driven en-
coder/decoder simultaneous optimization, LOUPE [15], [16]
can be considered as the state-of-the-art CS-based approach
that uses a Deep Neural Network (DNN) to speed up MRI.
More specifically, in [16], authors present a regularized-
training version, while in [15], the regularization is removed,
and a smart rescaling function is used instead, enabling better
performances. The latter is the starting point of our work,
which offers a significant enhancement of the decoding stage.

IV. BASIC ARCHITECTURE

We assume that the encoder (decoder) depends on some
parameters γ (θ) and that the two stages are embedded in
a single generalized autoencoding structure [50] Aγ,θ(·) =
Decθ

(
Encγ(·)

)
that we interpret as a single DNN.

We assume that the original target image is normalized to be
x ∈ [0, 1]N×N . The reconstructed acquisition is x̂ = Aγ,θ(x)
and the autoencoder is trained to be as close as possible to the
identity to set x̂ = x.

The encoder is characterized by parameters γ, which control
the generation of a random undersampling mask Mγ ∈
[0, 1]N×N so that

y = Encγ(x) = Mγ ◦ F(x)

This article has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2022.3171082

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



SUBMITTED TO IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING 4

where ◦ indicates the Hadamard entrywise product between
matrices, and F(·) indicates the two-dimensional Fourier
transform.

Actual undersampling is only achieved by using a binary
mask Mγ ∈ {0, 1}N×N . Hence, to have a speed-up of R,
one needs a mask Mγ whose amount of non-zero elements
is exactly rN2, where r = 1/R and N2 are the total entries.

Encγ(·) generates Mγ differently depending on whether
Aγ,θ(·) is under training, or is used for real acquisitions. In
both cases Mγ depends on a matrix T (γ) ∈ [0, 1]N×N that
is random at training time and fixed at inference time.

To compute T (γ), define the sigmoid function

σt (·) =
1

1 + exp (−t·) (2)

parametrized by t and set S = σt(γ) ∈ [0, 1]N×N where
γ ∈ RN×N and σt(·) is applied to each component separately.
The value of t is not critical as this mapping is only used to
guarantee γ to contain generic real numbers mapped into the
[0, 1] range.

Once S(γ) is given, one computes its average 〈S(γ)〉 =
1
N2

∑
i,j Si,j(γ) and sets

T (γ) =

{
r

〈S(γ)〉S(γ) if 〈S(γ)〉 ≥ r
1− 1−r

1−〈S(γ)〉 (1− S(γ)) if 〈S(γ)〉 < r
(3)

where 1 is the N × N matrix with all unit entries and the
formula ensures that 〈T (γ)〉 = r.

As long as Aγ,θ(·) is under training, masks are generated
by drawing a random matrix U ∈ [0, 1]N×N with independent
and uniformly distributed entries and setting

Mγ = σs (T (γ)−U) (4)

for a suitable parameter s. The magnitude of s is important
since there is a trade-off between smaller values easing back-
propagation and larger values that tend to guarantee substan-
tially binary masks.

In its most generic implementation, the above scheme
generates unconstrained masks that are often indicated as
non-Cartesian subsampling trajectories. Yet, [15] shows that
a scheme like LOUPE is also able to cope with Cartesian tra-
jectiories that subsample the k-space with subsequent parallel
lines. Since we improve LOUPE relying on the same basic
principles, our framework straightforwardly applies to non-
Cartesian trajectories if γ is thought as an N dimensional
array in which the i-th element encodes the probability of
sensing the entire i-th line of the k-space.

The mask generation mechanism is the one in [15] and can
be implemented using four layers. The first layer produces
S(γ) = σt(γ). The second layer computes T (γ) from S(γ)
by (3). The last two layers generate the random matrix U
and apply (4). We represent the whole mechanism as a unique
block named mask generator.

Contrary to the original proposal, once T (γ) is fixed by
training and the model is used for acquisitions, we use the
deterministic binary mask defined componentwise as

(Mγ)j,k =

{
0 if T j,k(γ) < 0.5

1 if T j,k(γ) ≥ 0.5
j, k = 0, . . . , N−1 (5)

Note that in (5), Mγ is the instance with the highest
probability among all the possible training-time masks for
s → ∞. This aspect is also reported in Fig. 2, showing
proposed encoders and decoders, where the encoder Enct

γ(·)
with the mask generator is for training, while Enci

γ(·) is for
testing/physical testing.

Also Decθ(·) works in stages [15]. The first takes the
encoded image y and yields a baseline ground-truth approxi-
mation |F−1 (y) |. Here the modulus is needed to bring y to
the real domain, in fact it may contain imaginary components
that are a consequence of the combined undersampling and
Inverse Fourier Transform.

The artefacts of this first approximation are corrected by the
second stage, which applies pixel-wise adjustments computed
by a sub-DNN DR

θ that observes F−1 (y) to yield the decoder
output (see Fig. 2)

x̂ = Dec0
θ(y) = |F−1 (y) |+DR

θ (F−1 (y)) (6)

where DR
θ depends on the trainable parameters θ, and is the

slight modification of the U-NET DNN [17], as originally
proposed in [15].

In its original conception [15], [16], the parameters of
this architecture are trained by considering the result of the
decoding x̂, defining the error

δx = ‖x̂− x‖1 (7)

where ‖·‖1 represents the `l norm, and using the loss function

L0(γ,θ) = Ex[δx] (8)

where Ex[·] stands for expectation over all possible x.

V. IMPROVED ARCHITECTURES

The original LOUPE architecture and training strategy can
be improved along multiple directions. Our work relies on
two major intuitions: the mismatch between the measurements
and the encoded version of the reconstructed scan can be i)
reduced, if not eliminated, to improve the final reconstruction
quality; ii) exploited to infer properties of the final output.

To reach these goals, we first go through mathematical
operations that, given a general scan x̂, force its undersampled
frequency components to a desired set. We will then show
how to embed such operations inside the model, proposing
new architectures and training strategies.

Let us define the following convex subsets of the set of
possibly complex images IC = CN×N .

Iy = {x|y = Mγ ◦ F(x)}
IR = RN×N

I[0,1] = [0, 1]N×N

Note that Dec0
θ(·) guarantees that x̂ ∈ IR but not that x̂ ∈

I[0,1], and thus may generate invalid images.
For a generic subset of I ⊂ IC, we indicate with ΠI(·) the

projection of its argument onto I. We clearly have

ΠIR(x) = Re{x}
ΠI[0,1](x) = max {0,min {1,Re {x}}}
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ΠIy

F

γ

Mask gen.

x y

Mγ

Enctγ

Fx

Mγ

y

Enciγ

F−1 DR
θ

| · |

y x̂

Dec0θ

F−1 DC
θ | · |

y x̂x̄

Dec1θ

F−1 DC
θ F F−1 | · |

y x̂x̄

1−Mγ
Dec2θ

ΠIy∩I[0,1]
x̂

?
x

Deci?θ

trainable non-trainable

Fig. 2. Illustration of all the proposed architectures. On the left side we grouped the encoders: Enctγ is used at training time to learn the mask, while Enciγ is
used at inference time and employs a fixed binary mask. On the right are the decoders: Dec0θ is one proposed in LOUPE [15], Dec1θ is a slight modification
of Dec0θ , Dec2θ embeds the operator ΠIy . All the three decoders may benefit from an additional block that performs ΠIy∩I[0,1] at inference time. When
such a block is used we append a ? to the decoder label: Deci?θ , with i = 0, 1, 2.

where elementary operations are applied entry-wise to the
whole matrix.

To give an expression for ΠIy note that Encγ(·) = Mγ ◦
F(·) is a non-injective linear operator whose codomain is
a
(
N2
/R
)
-dimensional coordinate subspace (i.e., a subspace

defined by the fact that certain components of its vectors are
zero). Given any x ∈ IC, the projection ΠIy (x) is the solution
of

ΠIy (x) = arg min
ξ
‖ξ − x‖2 s.t. Encγ(ξ) = y (9)

i.e., the vector

ΠIy (x) = x+ Enc†γ
(
y − Encγ(x)

)
(10)

where Enc†γ(·) is the Moore-Penrose pseudo-inverse of
Encγ(·) whose feature deserves a brief discussion. Note in
fact that, by defining the complementary encoding Enc⊥γ (·) =

(1−Mγ) ◦ F(·), we have F(·) = Encγ(·) + Enc⊥γ (·). With
these definitions, the Fourier transform of the projection in
(10) is

F
(
ΠIy (x)

)
= Encγ(x) + y − Encγ(x) +

Enc⊥γ (x) + Enc⊥γ
(

Enc†γ
(
y − Encγ(x)

))
= Enc⊥γ (x) + y

where we have exploited the fact that Enc⊥γ
(

Enc†γ(·)
)

= 0

since, by definition, Enc†γ(·) is an image whose Fourier
transform has zeros in the positions masked by Mγ , while
Enc⊥γ (·) puts to zero the Fourier components not masked by
Mγ . Hence,

ΠIy (x) = F−1 ((1−Mγ) ◦ F(x) + y) (11)

meaning that the projection of x can be obtained by transform-
ing x by Fourier, substituting the non-zero components of y
in the results, and transforming it back to the image domain.

The improvements we propose start from a slight rearrange-
ment of the original decoder (see the intermediate block in
Fig. 2) that yields

x̂ = Dec1
θ(y) = |x̄| =

∣∣F−1 (y) +DC
θ (F−1 (y))

∣∣ (12)

where the quantity x̄ remains implicitly defined and DC
θ

has the same structure as DR
θ but produces a two-channel

output accounting for both a real and a imaginary part of the
corrections.

Such a rearrangement allows to define a further error figure
that accounts for the ability of the intermediate estimation x̄ to
reproduce the same measurements that were observed starting
from the original image x, i.e.,

δȳ =
∥∥y − Encγ(x̄)

∥∥
2

(13)

One may observe that good reconstructions x̄ should be
such that δȳ is small. It is possible to add this information
to the training procedure of Dec1

θ(·) by defining a new loss
function

L1(γ,θ) = Ex [(1− φ)δx+ φδȳ] (14)

which, by using the user-defined balancing coefficient φ ∈
[0, 1], favors solutions in which not only x̂ is close to x but
also the measurements that would have been produced by x̄
are close to those produced by x.

As an alternative option, one may introduce the measure-
ment matching criterion into the signal chain and define (see
third decoder structure in Fig. 2)

x̂ = Dec2
θ(y) =

∣∣ΠIy
(
F−1 (y) +DC

θ (F−1 (y))
)∣∣ (15)
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that is normally trained by means of L0(γ,θ). Note that
Dec2

θ(·) includes a projection onto Iy of x̄ and thus improves
the measurement matching criterion at processing time.

Finally, independently of the inner decoder, one may append
a final stage guaranteeing that the recovered image satisfies all
requirements, thus defining

?
x= Deci?θ (y) = ΠIy∩I[0,1]

(
Deciθ(y)

)
(16)

where ΠIy∩I[0,1] can be computed by the Dykstra’s alternat-
ing projections algorithm [18] [19] that uses the elementary
expressions of ΠIy and ΠI[0,1] .

The adoption of a final projection stage means that the
final image reconstruction is able to reproduce the observed
measurements. This is the best one can do at decoding-time
as the Fourier components of x that are not measurements are
not known and cannot be used in computations.

Yet, at training time all the Fourier components are avail-
able. Hence, one may think of improving the performance of
Deci?θ (·) by training it with a loss function considering the
measurements not taken by defining the error term

δy⊥ =
∥∥∥Enc⊥γ (x̄)− Enc⊥γ (x)

∥∥∥
2

(17)

that accounts for the ability of the intermediate estimation x̄ to
produce the same Fourier components that x would produce
if they were acquired. This can be used in an alternative loss
function

L2(γ,θ) = Ex
[
(1− ψ)δx+ ψδy⊥

]
(18)

for a proper user-defined weight ψ ∈ [0, 1]. Worth noting this
option gives substantial performance improvements only when
applied along with Dec1?

θ (·).
All our contributions, in particular the architectural modifi-

cations, introduce a negligible complexity overhead in term of
number parameters and number of Multiply-and-Accumulate
operations (MAC). In Dec0, U-NET dominates the complex-
ity count with 86.9 GMAC. In Dec1 the U-NET structure
undergoes a small modification leading to an increase of
6.55 MMAC. Dec2 adds a projection block that increases
the previous computational cost by a further 13.6 MMAC.
Similarly, Dykstra’s algorithm (the ? in Deci?) introduces
13.6 MMAC for every iteration; in our case we use 20 itera-
tions. For what concerns the memory footprint the increase is
minimal, in fact Dec1 and Dec2 only add 65 more parameters
to the 31.5M parameters of Dec0.

A. Decoder self-assessment

All the improved decoders we propose exploit the fact that
good reconstructions should correspond to small δȳ. Yet, in
an ideal reconstruction chain, each estimation of the image
should be as close as possible to the original one and thus
virtually produce the same measurements.

Hence, it is sensible to assume that by defining

δŷ =
∥∥y − Encγ(x̂)

∥∥
2

(19)

when the reconstruction fails then δȳ and/or δŷ are substan-
tially larger than 0.

Consequently, δȳ and δŷ, which can be computed starting
from the knowledge of the actual measurements y only, have
a magnitude that can be seen as a proxy of the decoder
performance.

This proxy can be exploited in a self-assessment stage that
follows reconstruction and whose aim is to give the user
additional information on the quality of the output image at
inference time, i.e., when the true image x is unknown and
the physical system only captures the frequency components
in y.

In particular, to assess the capability of δȳ and/or δŷ to
predict decoder performances, we use the Pearson correlation
coefficient ρ(a, b) = cov(a, b)/(σaσb), where cov(·, ·) is the
covariance between two vectors while σ· stands for standard
deviation. We adopt ρ(δx̂, δŷ) for Dec0

θ(·), ρ(δ
?
x, δŷ) for

Dec0?
θ (·) and ρ(δ

?
x, δȳ) for the remaining proposed approaches

with δ
?
x= ||x− ?

x ||1.

VI. NUMERICAL EVIDENCE

A. Dataset
To ease comparison of our methods1 with [15], we co-

herently test our models using a subset of the public NYU
fastMRI dataset [51], a benchmark commonly used for interna-
tional competitions [25], [26]. From this dataset, we select the
emulated single-coil proton density weighted scans (derived
from raw 15-channel multi-coil data) by the Biograph mMR
scanner.

Scans are grouped in volumes, each volume being composed
of slices that are grayscale images with N = 320 that we
normalize into I[0,1] dividing pixel values by the maximum
magnitude within each volume.

The image set is split into three subsets: 50 volumes used for
training, 5 volumes used for validation and 5 volumes used for
testing. Each training volume has a number of slides ranging
from 34 to 42, validation volumes from 34 to 40, while test
volumes from 35 to 45 such that 1895 slices compose the
training set, 188 the validation and the remaining 186 build
the test set.

B. Training and Evaluation
We train our models on an Nvidia V100 using Adam

optimizer, an initial learning rate of 0.01, and a batch size of
16. Evaluation is performed over the test set using an adapted,
fixed undersampling mask.

To assess the quality of each reconstruction we adopt three
different metrics:
• The Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log10

(
max{x}

MSE

)
(20)

where MSE is the mean square error between x and the
decoder output.

• The Structural Similarity Index (SSIM):

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(21)

1Code implementing proposed methods available at
https://github.com/SSIGPRO/LOUPE evolutions
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(a) Dec0|L0 R = 4 (b) Dec1|L1 R = 4 (c) Dec1|L2 R = 4 (d) Dec2|L0 R = 4

(e) Dec0|L0 R = 8 (f) Dec1|L1 R = 8 (g) Dec1|L2 R = 8 (h) Dec2|L0 R = 8

Fig. 3. undersampling masks Mγ ∈ [0, 1]N×N after training for all considered decoders (starred and non-starred versions share the same undersampling
mask).

1
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30
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(c)
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Dec2θ |L0
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(d)

Fig. 4. Effect of final projection on various decoders for R = 4.

where µx and µx̂ are defined as local averages for
the original and reconstructed images, σx and σx̂ are
the local variances, while σxx̂ is the local covariance
between the decoder output and the ground-truth. local
means computed on sliding windows with size 11 × 11
where each pixel is weighted with a gaussian weight
with standard deviation 1.5 pixels. In the above formula,
c1 = (k1L)2 and c2 = (k2L)2, where L is the dynamic
range of the pixel values, k1 = 0.01 and k2 = 0.03 [52].

• The high-frequency error norm (HFEN), which is a metric
quantifying how well original edges are preserved by
reconstruction. Following [53], a Laplacian of Gaussian
(LoG) filter is first applied with a standard deviation of
1.5 pixels and a window size of 13× 13. HFEN is com-
puted as the norm `2 of the difference between the LoG
filtered ground-truth and the LoG filtered reconstructed
image.

We focus on speed-up factors R = 4 and R = 8.
For a given R, we consider four possible combinations of
decoder architectures and training loss functions, namely:
Dec0|L0, which is the original LOUPE [15]; Dec1|L1 in
which the loss function emphasizes the ability to reproduce the
physical measurements; Dec1|L2 in which the loss function
emphasizes the ability to reproduce the Fourier coefficients
that are neglected in the acquisition; and Dec2|L0 in which
an approximate measurement constraint is embodied in the
network architecture. For all these options the performance of
the starred version Deci? is also considered.

In particular, the best values of φ in Dec1|L1 is experimen-
tally determined to be φ = 10−5 for R = 4 and φ = 10−4 for
R = 8, respectively. An even more unbalanced configuration
results from the numerical optimization of ψ in Dec1|L2,
which yields the best results with ψ = 1 for both R=4 and
R=8. This value implies that the loss reduces to L2(γ,θ) =
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TABLE I
AVERAGE (µ), MINIMUM (min) AND MAXIMUM (max) VALUES OF PSNR

[dB] SSIM AND HFEN FOR THE THE TEST SET AND R = 4.

Dec0|L0

Dec0?|L0 Dec1?|L1 Dec1?|L2 Dec2?|L0

(LOUPE)

HFEN
µ 0.162 0.099 0.031 0.022 0.025
min 0.112 0.056 0.015 0.011 0.012
max 0.316 0.241 0.083 0.065 0.073

SSIM
µ 0.961 0.965 0.969 0.971 0.971
min 0.944 0.949 0.955 0.958 0.958
max 0.979 0.982 0.983 0.983 0.983

PSNR
µ 42.8 43.4 43.8 44.0 44.1
min 40.3 40.7 41.2 41.5 41.6
max 47.5 47.8 48.0 48.1 48.1

Ex
[
δy⊥

]
, i.e., it only focuses on predicting the frequencies

discarded at sensing time. Such an approach is expected to
reach consisting performances only when coupled with a final
projection stage as the actual value of measurements would
be otherwise completely neglected.

C. Undersampling Masks

To show how encoder adaptation works, Fig. 3 reports the
fixed binary masks Mγ in (5) resulting from the training of
the four architectures we consider. White dots correspond to
Fourier coefficients that are acquired by the systems. Clearly,
their number decreases when R increases. Yet, it is evident
that, since the encoder and the decoder are trained together,
different adaptation policies and decoder architectures yield
different under-sampling masks.

D. Performance

The plots showing the performance of the overall signal
chain have all the same format. They report the result for
every slice of each of the 5 volumes in the test set. Each slice
corresponds to a position on the horizontal axis, and the first
slice of the (i+ 1)-th volume follows the last slice of the i-th
volume. Each reconstruction is described using three different
figures of merit: SSIM, HFEN and PSNR. Different volumes
and different slices in the same volume may have different
quality scores, which reflects in the plots’ non-constant profile.

Fig. 4 shows the effect of adding ΠIy∩I[0,1] to change Deci

into Deci? for R = 4 in term of PSNR. The plots share the
vertical axis, and dotted tracks correspond to the non-starred
configurations while the solid tracks to the starred ones. The
effect of the final projection is negligible only for Dec2|L0

since the architecture of Dec2 includes ΠIy that is the main
component of ΠIy∩I[0,1] . In all other cases, it is clear that
ΠIy∩I[0,1] is most effective on the slices with lower PSNR and
it brings a dramatic benefit when applied to models trained
with L2. Note that ψ = 0, hence the network is trained to
exclusively learn how to reconstruct the Fourier coefficients
that are not acquired (an effect that is complementary to the
one of ΠIy∩I[0,1] ).

Overall, best performances on this dataset are achieved by
Dec1?|L2 and Dec2?|L0. To assess the improvement quanti-
tatively over the original LOUPE (Dec0|L0), we choose to

TABLE II
AVERAGE (µ), MINIMUM (min) AND MAXIMUM (max) VALUES OF PSNR

[dB] SSIM AND HFEN FOR THE THE TEST SET AND R = 8.

Dec0|L0

Dec0?|L0 Dec1?|L1 Dec1?|L2 Dec2?|L0

(LOUPE)

HFEN
µ 0.264 0.224 0.173 0.144 0.144
min 0.154 0.118 0.083 0.071 0.071
max 0.614 0.504 0.430 0.388 0.369

SSIM
µ 0.936 0.940 0.944 0.948 0.948
min 0.902 0.908 0.915 0.920 0.921
max 0.968 0.973 0.974 0.974 0.974

PSNR
µ 40.5 40.8 41.1 41.4 41.4
min 37.7 38.0 38.3 38.6 38.7
max 45.6 46.0 46.1 46.2 46.2

consider HFEN, PSNR, SSIM, and we lay down Table I
and Table II in which we report the average, minimum
and maximum reconstruction qualities for the four starred
configurations, along with the original LOUPE proposal in
case of R = 4 and R = 8. With respect to LOUPE, our
proposed architectures achieve non-negligible improvements
in terms of both SSIM and PSNR, while HFEN values show
a remarkable enhancement.

Finally, Fig. 5 compares proposed approaches (solid lines)
with LOUPE, Dec0|L0, (dashed line) for both R = 4 and
R = 8. These results also show that passing from R = 4
to R = 8 causes a reduction of the quantified quality for all
considered metrics, confirming results in Table I and Table II.
Note also that the greatest improvements correspond to the
slides with the most complex structure, i.e., the slides for
which the reconstruction task is the hardest. With more details,
for R = 4/8, the improvements are up to 2.1/1.7 dB in terms
of PSNR, 0.016/0.020 in terms of SSIM, and 0.101/0.079
in terms of HFEN.

Moreover, it results that: i) Dec2?|L0 and Dec1?|L2 always
obtains the best scores; ii) Dec0?|L0 always improves original
LOUPE by applying the Dykstra’s alternating projections
algorithm to LOUPE reconstructed scans at inference time;
iii) all proposed approaches improve with respect to original
LOUPE with the only exception of Dec1?|L1 performing
worse than Dec0|L0 in the 1.6% of cases (3 out of 186 slices)
with R = 4.

For a visual representation, reconstructed images with
Dec2?|L0 and LOUPE, along with the ground truth, are in
Fig. 6 where we chose Dec2?|L0 to represent our approaches.

E. Comparison with other approaches

In [15], authors compare LOUPE with state-of-the-art de-
coders and use many different undersampling patterns. Be-
cause our work evolves and improves LOUPE, we can infer
to be superior to all those methods, but, as a further assess-
ment, we test our model against some other state-of-the-art
techniques, namely those in [34], [38], [41], [48]. For each of
the above, we adapt our method to work on the same dataset
and with the same speed-up factors. We then measure PSNR
and SSIM and compare them with those reported in the cited
references.
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Fig. 5. Results for all considered decoders and for the 5 volumes composing
the test set in terms of HFEN, SSIM, and PSNR. Volumes number 1,2,3
and 5 include 35 slices while 45 slides are in volume 4. Left plots are for
R = 4 while R = 8 is used for plots on the right.

The considered datasets are: i) the fast MRI proton density
dataset (PD, 60 subjects, 2269 scans) [25], ii) the fast MRI
proton density fat suppression dataset (PDFS, 70 subjects,
2440 scans) [25] and iii) IXI dataset [54] (170 subjects, 27750
scans), all of them considering the single-coil acquisition
method. PD and PDFS contain fully sampled knees, while
IXI is a collection of fully sampled brains. Following [38],
we split IXI in test/validation set by randomly selecting 8/11
volumes. For PD and PDFS, we reproduce the partitioning
proposed by [15], where test and validation sets are created
by randomly extracting 5 volumes for each. In both cases, the
remaining volumes are used to train the models.

We summarise in Table III all achieved results. Our meth-
ods, represented by Dec2?|L0, outperform every competitor in
terms of both PSNR and SSIM, confirming the effectiveness
of the proposed approaches.

(a) ground truth

(b) Dec0|L0

(c) Dec2?|L0

Fig. 6. Left side of (a) represents a single Knee image from the dataset
“fastMRI”, volume 2 and slice number 24 in the test set. Left sides of (b)
and (c) correspond to reconstructed images by Dec0|L0 with PSNR equal
to 37.7 dB, and Dec2?|L0 with 38.9 dB. Reconstructions refer to R = 8.
Right side images highlight the region of the images in the left sides in the
red box.

TABLE III
COMPARISON IN TERMS OF PSNR AND SSIM OF Dec2?θ |L0 WITH THE

RECENTLY PROPOSED WORKS IN [34], [38], [41], [48] ON PD [25], PDFS
[25], AND IXI [54] DATASETS.

dataset R PSNR [dB] SSIM

Dec2?θ |L0 [41] [48] Dec2?θ |L0 [41] [48]

PD 4 44.1 35.2 33.8 0.971 0.835 0.87
6 42.2 34.2 - 0.955 0.807 -

PDFS 4 35.6 30.3 - 0.868 0.651 -
6 34.0 29.7 - 0.799 0.604 -

Dec2?θ |L0 [38] [34] Dec2?θ |L0 [38] [34]

IXI 5 48.3 44.0 34.6 0.995 0.991 0.979
10 42.1 37.6 31.2 0.977 0.964 0.961
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Fig. 7. Error in the measurement constraint fitting versus reconstruction error for the images composing the test set. Results are for all considered approaches
except for Dec1∗|L1. Top plots are for R = 4 while bottom plots are for R = 8.

TABLE IV
PEARSON CORRELATION COEFFICIENT BETWEEN RECONSTRUCTION

ERROR AND THE MEASUREMENT MISMATCH.

Dec0|L0

Dec0?|L0 Dec1?|L1 Dec1?|L2 Dec2?|L0

(LOUPE)

ρ(δŷ, δx̂) ρ(δŷ,δ
?
x) ρ(δȳ,δ

?
x) ρ(δȳ,δ

?
x) ρ(δȳ,δ

?
x)

R = 4 0.877 0.837 0.138 0.853 0.821
R = 8 0.888 0.866 0.198 0.535 0.863

F. Self-assessment

In Table IV we present the Pearson correlation coefficient
as defined in V-A.

Avoiding Dec1∗|L1, the results are overall promising and
show a good correlation, i.e., it is possible to guess de-
coder performance starting from its capability to match the
measurements constraint. We hope that this peculiarity could
help us in the design of a detector capable of identifying
flawed image reconstructions, a topic that will be explored
in future communications. To further evidence the meaning
of the computed correlation coefficients, Fig. 7 shows scatter
plots connecting reconstruction errors with the fitting of the
measurements constraint 2. It is interesting to note that while
all the graphs in Fig. 7 share the same y-axis, the x-axis
ranges differ conspicuously, and this is because at training
time Dec0|L0 reduces δŷ, while the training of Dec1|L2 and
Dec2|L0 does not affect δȳ.

2Dec1∗|L1 is not reported since it does not lead to interesting results.

VII. CONCLUSION

We evolve our method from a deep neural state-of-the-art
technique called LOUPE [16], which simultaneously adapts
both undersampling pattern and image recovery. We demon-
strate that it is possible to enhance the reconstruction perfor-
mance with some architectural changes. In particular i) we
show how the previously neglected measurements constraint
can be exploited in three different ways, always bringing
advantages, and ii) we solve the optimization problem to find
the image that, belonging to the image domain and the set
of the counterimages, is optimally reconstructed. In terms of
PSNR, we gain approximately 1 dB with most significant
enhancements (up to 2.1 dB) in case of detail-rich images.
Such improvements are also confirmed with perceptual metrics
such as SSIM and HFEN.

We confirm that, in fast MRI, undersampling pattern and
decoder benefit from joint optimization. In our view, this holds
for any choice of encoder and decoder. In this sense, the
framework here considered is only mildly dependent on the
specific decoder selection (the U-NET) and may extend to
other decoders.

Finally, we demonstrate a connection between the error
committed on the whole reconstruction and the error commit-
ted on the measurement-only reconstruction of every scan. It
should be possible to accurately estimate the first (otherwise
unknown) simply by considering the second (always avail-
able). We will further explore this direction and plan to present
achieved results in future communications.
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