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S U M M A R Y 

This paper deals with in situ characterization of the small-strain shear-wave velocity V S and 

damping ratio D S from an advanced interpretation of Multi-channel Analysis of Surface Waves 
(MASW) surv e ys. A new approach based on extracting Rayleigh wave data using the CFDBFa 
method has been discussed in the companion paper. This paper focuses on mapping the 
experimental Rayleigh wave phase velocity and attenuation into profiles of V S and D S versus 
depth, which is achieved through a joint inversion procedure. The joint inversion of phase 
velocity and attenuation data utilizes a ne wl y de veloped Monte Carlo global search algorithm, 
which implements a smart sampling procedure. This scheme exploits the scaling properties 
of the solution of the Rayleigh eigenvalue problem to modify the trial earth models and 

improve the matching with the experimental data. Thus, a reliable result can be achieved with 

a limited number of trial ground models. The proposed algorithm is applied to the inversion 

of synthetic data and of experimental data collected at the Garner Valley Downhole Array 

site, as described in the companion paper. In general, inverted soil models exhibit well-defined 

V S profiles, whereas D S profiles are affected by larger uncer tainties. Greater uncer tainty in 

the inverted D S profiles is a direct result of higher variability in the experimental attenuation 

data, the limited wavelength range at which reliable values of attenuation parameters can be 
retrieved, and the sensitivity of attenuation data to both D S and V S . Nonetheless, the resulting 

inver ted ear th models ag ree well with alter nati ve in situ estimates and geolo gical data. The 
results stress the feasibility of retrieving both stiffness and attenuation parameters from active- 
source MASW testing and the ef fecti v eness of e xtracting in situ damping ratio estimates from 

surface wave data. 

Key words: Elasticity and anelasticity; Inverse theory; Wave propagation. 
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 I N T RO D U C T I O N  

 reliable estimate of the small-strain shear-wav e v elocity V S and
amping ratio D S is necessary for various applications in geotech-
ical earthquake engineering (for instance, ground motion ampli-
cation studies or the modelling of g round-bor ne vibrations), due

o their rele v ant role in the stress-strain response of soils under dy-
amic loading. A possibility to obtain in situ estimates of V S and D S 

elies on the Multichannel Analysis of Surface Waves (MASW; Foti
000 ). This procedure measures the spatial phase lag and attenua-
ion of Rayleigh waves (or R -waves) along linear arrays with active
ources. These experimental data are interpreted to retrieve the so-
alled dispersion curves and attenuation curves, hereafter labelled
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
s V R ( ω) and αR ( ω), that describe the frequency dependence of the
 -wave phase velocity V R (i.e. the propagation speed) and of the
hase attenuation αR (i.e. the spatial amplitude decay). Then, the V S 

nd the D S profiles with depth are estimated through an inversion
cheme, where a theoretical soil model is calibrated to match the
xperimental V R ( ω) and αR ( ω). This paper focuses on new devel-
pments related to the joint inversion of experimental dispersion
nd attenuation data in order to retrieve estimates of the V S and D S 

rofiles. New procedures for estimating the experimental dispersion
nd attenuation data are addressed in the companion paper (Aimar
t al. 2024 ; hereafter labelled as ‘Part I’). 

Inversion is a crucial step in MASW processing, as it maps ex-
erimental R -wave parameters into a suite of subsurface models.
oyal Astronomical Society. This is an Open Access 
ttps://creativecommons.org/licenses/by/4.0/ ), which 
 the original work is properly cited. 525 
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Ho wever , the solution of the inverse problem is a mathematically 
complex operation, as it is a non-linear, mixed-determined, and 
ill-posed problem (e.g. Foti et al. 2014 ). The ill-posedness is re- 
sponsible for the solution non-uniqueness, namely different ground 
models may provide a compatible degree of fit with the experimental 
data. For this reason, uncertainty bounds on the best solution should 
be included, or a set of equi v alent solutions should be provided (Foti 
et al. 2018 ). 

Fur ther more, the highly non-linear nature of the optimization 
procedure urges to adopt specialized algorithms to ensure that the 
identified solution is the optimal one. In general, the most popular 
methods aiming at identifying the optimum can be clustered into 
two families: local search methods and global search methods. Local 
search methods are iterative, deterministic techniques that gradually 
adjust an initially assumed ground model to match the experimental 
data (e.g. Constable et al. 1987 ; Lai & Rix 1998 ; Xia et al. 1999 ; 
Badsar 2012 ; Verachtert et al. 2017 ). Ho wever , these schemes are 
strongl y sensiti ve to the choice of the initial model (Spang 1995 ; 
Lai & Rix 1998 ). Global search methods are stochastic techniques 
that explore the model parameter space to identify the best model. 
These approaches generate random ground models, according to an 
assigned probability distribution, and the corresponding synthetic 
data are compared with the experimental ones. In many procedures, 
the sampling of the parameter space is optimized and iterati vel y 
refined over promising regions, limiting the required number of 
samples, and enhancing the quality of the final estimate (e.g. Sen 
& Stoffa 1996 ; Martı´nez et al. 2000 ; Wathelet et al. 2004 ; Socco 
& Boiero 2008 ). In general, global search methods are preferred 
over local search methods, as they do not require the definition 
of a first tentativ e profile. Besides, the y allow the investigation 
of the uncertainties due to solution non-uniqueness. On the other 
hand, they are usually more time-consuming and computationally 
intensive (Foti et al. 2018 ). In some cases, a mixed inversion scheme 
is adopted. For instance, the Monte Carlo procedure can be used 
to estimate the uncertainties of the solution provided by a local 
estimator (Misbah & Strobbia 2014 ). 

This paper proposes a new algorithm for the joint inversion of 
dispersion and attenuation data that relies on an improved Monte 
Carlo global search algorithm. In this approach, the optimization is 
achie ved b y exploiting the scaling properties of the Rayleigh eigen- 
value problem in linear viscoelastic media, which are demonstrated 
herein. Therefore, the procedure represents a generalization of the 
algorithm introduced by Socco & Boiero ( 2008 ), for a viscoelastic 
model. 

The paper starts with a general description of the inversion prob- 
lem, to introduce basic notions and rele v ant terminolo gy. Then, it 
describes the scaling properties of the Rayleigh eigenvalue prob- 
lem, which represent the key feature in the proposed algorithm. 
Finally, the main steps of the inversion algorithm are summarized. 
The description includes an application of the proposed scheme to 
two synthetic examples and to site characterization of the Garner 
Valley Downhole Array site, whose phase velocity and attenuation 
data were estimated in Part I. The paper concludes with a discussion 
of the reliability of the derived S-wave velocity and damping ratio 
models. 

2  T H E  I N V E R S I O N  P RO B L E M  

The inversion relies on a physically-based model-data relationship, 
that can be described through the following general equation: 

d = g ( m 

) , (1) 
where d is the vector of measured data, m is the vector of the desired 
model parameters and g is a function relating these quantities. The 
latter provides an estimate of observed data when the model pa- 
rameters are known, hence it is mathematically a forward problem 

(Tarantola 2004 ). 
In surface wave testing aimed at jointly estimating stiffness and 

dissipation parameters of the soil deposit, d is the collection of ex- 
perimental modal phase velocity V R ( ω) and phase attenuation αR ( ω) 
data, whereas m is the set of parameters describing the geometry 
and the mechanical behaviour of the soil deposit. Usual inversion 
procedures model the soil deposit as a vertical stack of homoge- 
neous and isotropic linear viscous elastic layers (Foti et al. 2018 ). 
Therefore, the unknown parameters are the number of layers and, 
for each layer, the thickness H (excluding the half-space), the mass 
density ρ, the S -wave velocity V S , the P -wave velocity V P (or, al- 
ternati vel y, the Poisson ratio ν), the S -wave damping ratio D S , and 
the P -wave damping ratio D P . The derivation of a subsurface model 
from experimental data relies on the frequency-dependence of R - 
wave propagation parameters V R ( ω) and αR ( ω). This dependence is 
a combined effect of geometric dispersion, which results from the 
variation of mechanical properties with depth, and intrinsic disper- 
sion, due to the constitutive behaviour of linear viscoelastic media 
(e.g. Shibuya et al. 1995 ; Foti et al. 2014 ). This relationship is 
synthesized by the Ra yleigh wa ve eigenvalue prob lem, w hich maps 
the subsoil profile into the dispersive behaviour of the R -waves, 
hence it represents a forward relationship (i.e. the function g ). As 
the existence of the inverse function g −1 has not been demonstrated 
yet, the model identification is tackled through inversion theory, in 
which model parameters are calibrated so that the simulated system 

response (obtained by applying the forward problem in eq. 1 ) fits the 
e xperimental data. The de gree of fit between the theoretical and ex- 
perimental data is quantitati vel y measured by a misfit function, the 
minimization of which represents the goal of the inversion process. 

A popular scheme for solving the inversion problem is the Monte 
Carlo sampling procedure, which is a family of global search al- 
gorithms that falls within the framework of Bayesian approaches. 
The aim of a Bayesian approach is the deri v ation of a posterior 
probabilistic distribution σ ( m ) for a generic model m , that statis- 
tically measures the ability of the model to be compatible with 
observed data and with a priori constraints. This scheme assumes 
an a priori statistical distribution π p ( m ) on the model parameters 
to be estimated, that synthesizes any data-independent information 
(e.g. constraints derived from physical laws). Information from ob- 
served data is modelled through the likelihood function L ( d | m ), 
which quantifies the degree of fit between the experimental system 

response and the theoretical one under the assumed validity of the 
generic model m , as a function of the forward modelling g . The 
posterior distribution σ ( m ) is proportional to the product of the 
prior model and the likelihood function, thus combining informa- 
tion provided by measured data and by the physical theory (Taran- 
tola & Valette 1982 ; Mosegaard & Tarantola 1995 ; Mosegaard & 

Sambridge 2002 ; Tarantola 2004 ): 

σ ( m 

) ∝ πp ( m 

) L 

( d | m 

) . (2) 

Eq. ( 2 ) can be interpreted as the mapping of the measured data 
into a distribution of the desired model parameters. Therefore, it is 
a statistical representation of the solution of an inverse problem. 

The main advantage of this formulation is that the derivation of 
information on estimated model parameters refers to the character- 
ization of π p ( m ) and L ( d | m ), which is usually an easier task than
describing σ ( m ). Typical modelling describes π p ( m ) according to 
simple statistical schemes, for instance with a normal distribution 
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r a uniform model. L ( d | m ) usually depends on a misfit function
 ( m ), that measures the deviation between observed data and pre-
icted data (Mosegaard & Tarantola 1995 ), the latter being often
btained through the forward problem: 

L 

( d | m 

) ∝ e −S ( m ) . (3) 

The Monte Carlo procedure reconstructs σ ( m ) through a two-step
cheme. First, it simulates the prior distribution π p ( m ), drawing a
uite of samples { m n } . As typical inverse problems adopt simple
istribution models for π p ( m ), basic sampling methods allow an
dequate simulation of it. Then, it computes the L ( d | m ) value for
ach sample m n , derived from the corresponding misfit S ( m n ). In
he inversion of surface wave data, S ( m n ) compares experimental
ata [i.e. V R ( ω) and αR ( ω)] with the simulated values computed
or each randomized earth model m n . The combination of the prior
nformation and the likelihood value for each sample m n returns
amples of σ ( m ), thus obtaining a suite of realizations for the pos-
erior distribution. 

 S C A L I N G  P RO P E RT I E S  O F  T H E  

O LU T I O N  O F  T H E  R AY L E I G H  WAV E  

I G E N VA LU E  P RO B L E M  

trobbia ( 2003 ), Socco & Strobbia ( 2004 ) and Maraschini et al.
 2011 ) demonstrated that the modal solution in elastic conditions
cales with the w avelength. Specificall y, a scaling of V S results in
n equi v alent scaling of both V R and ω in the dispersion curve,
hereas a scaling of H induces an inverse scaling of ω. In this

tudy, it is demonstrated that this property can be extended to the
inear viscoelastic model, thanks to the correspondence principle
Achenbach & Reddy 1967 ). In such conditions, a scaling of V S 

nd H leads to a scaling of αR ( ω). As for variations in D S , their
apping on the modal solution is non-trivial, but an approximate

olution has been developed in this study. Although this approxi-
ation neglects the causality relationship between V S and D S (e.g.
hristensen 2012 ), the resulting estimate is fairly accurate, as it will
e shown in the final part of this section. 

This section provides a synthetic and intuitive description of the
caling properties of the solution of the Ra yleigh wa ve eigenvalue
roblem in viscoelastic conditions. Ho wever , a more detailed and
athematically rigorous demonstration is available in the online
uppor ting Infor mation . 
Let us consider a layered, viscoelastic earth model, wherein each

ayer is characterized by thickness H 0 , P -wave velocity V P ,0 , S -wave
 elocity V S ,0 , P -wav e damping ratio D P ,0 , and S -wav e damping
atio D S ,0 . A harmonic Ra yleigh wa v e with frequenc y f trav els in
his medium with a phase velocity V R ,0 and a phase attenuation

R ,0 (alternati vel y, a phase damping ratio D R ,0 —defined as D R ≈
R × V R /(2 π f ); Misbah & Strobbia 2014 ). On the other side, the
ropagation parameters of the R -wave mostly depend on the soil
echanical properties down to a depth approximately equal to the

orresponding wavelength λ = V R / f (Foti 2000 ). Thanks to this
roperty, variations in thicknesses, velocities, and damping ratios
n the dispersion and attenuation curves can be mapped. 

First, the effect of scaling V S is investigated. Let us consider
 soil model identical to the original one, but with layer veloci-
ies V S ,1 equal to c × V S ,0 , where c is a real constant. For a given
avelength λ, the corresponding R -wave phase velocity scales ac-

ordingly, therefore: 

f 1 = 

V R, 1 

λ
= 

cV R, 0 

λ
= c f 0 (4) 
On the other hand, the corresponding R -wave phase attenuation
s unaltered; indeed: 

R, 1 = 

2 π f 1 D R, 1 

V R, 1 
= 

2 πc f 0 D R, 0 

cV R, 0 
= 

2 π f 0 D R, 0 

V R, 0 
= αR, 0 (5) 

s D R ,1 = D R ,0 because the damping ratio profile is not scaled. In
ummary, scaling all the S -wav e v elocities results in scaling both
elocities and frequencies in the dispersion curve and frequencies
nly in the attenuation curve (Fig. 1 ). 

Next, the effect of scaling H is investigated. In this case, the
lternative soil model is characterized by layer thickness H 1 equal
o c × H 0 , where c is a real constant. Thus, a Rayleigh wave of
avelength λ in the original medium and one of wavelength λ1 = c
λ0 in the scaled medium both propagate with the same phase

elocity V R ,0 and the same phase damping ratio D R ,0 , as they are
ampling a medium with the same characteristics. Therefore: 

f 1 = 

V R, 1 

λ1 
= 

V R, 0 

cλ
= 

1 

c 
f 0 . (6) 

On the other hand, the corresponding R -wave phase attenuation
s scaled in a similar way as the frequency; indeed: 

R, 1 = 

2 π f 1 D R, 1 

V R, 1 
= 

2 π 1 
c f 0 D R, 0 

V R, 0 
= 

1 

c 

2 π f 0 D R, 0 

V R, 0 
= 

1 

c 
αR, 0 . (7) 

In conclusion, scaling all the layers’ thicknesses results in scaling
requencies only in the dispersion curve and both phase attenuations
nd frequencies in the attenuation curves (Fig. 2 ). 

When scaling S -wave damping ratios, the resulting soil model
s characterized by damping ratio D S ,1 equal to c × D S ,0 , where
 is a real constant. For a given wavelength λ, the corresponding
 -wav e phase v elocity (and frequenc y) is unchanged, whereas the
orresponding phase attenuation is scaled: 

R, 1 = 

2 π f 1 D R, 1 

V R, 1 
= 

2 π f 0 cD R, 0 

V R, 0 
= c 

2 π f 0 D R, 0 

V R, 0 
= cαR, 0 (8) 

Therefore, scaling all the damping ratios results in an unchanged
ispersion curve and in scaling phase attenuations in the attenuation
urves (Fig. 3 ). Ho wever , this relationship is approximate because
ariations in D S induce more complex modifications in the modal
olution than a simple scaling. Indeed, variations in frequencies and
hase velocities also occur, but there is no closed-form solution for
redicting them. Fur ther more, the modification in the attenuation
s slightly non-linear and dependent on the frequenc y. Howev er,
uch variations are rather small compared to the order of magnitude
f phase velocities and frequencies of common applications, when
ealing with low dissipative media. Therefore, the error induced by
he approximation may be considered negligible, as also numerically
hown by Armstrong et al. ( 2020 ). 

 P RO P O S E D  M O N T E  C A R L O  

L G O R I T H M  F O R  T H E  J O I N T  

N V E R S I O N  O F  P H A S E  V E L O C I T Y  A N D  

H A S E  A  T T E N U  A  T I O N  C U RV E S  

his section summarizes the main elements of the inversion proce-
ure, that is the adopted prior model and likelihood function, and it
rovides a step-by-step description of the proposed algorithm. 

This section includes the application of the proposed algorithm
o retrieve the S -wave velocity and damping ratio profiles for two
deal profiles, namely a normally dispersive model (SW1) and a soil
eposit with a low-velocity zone (SW2). Part I contains a detailed
escription of the two profiles. For both cases, we generated the
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Figure 1. Effect of S -wave velocity scaling on the dispersion and attenuation curves. 

Figure 2. Effect of layer thickness scaling on the dispersion and attenuation curves. 
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inversion target by corrupting the theoretical fundamental mode 
dispersion and attenuation curves with Gaussian noise, thus creating 
a realistic data set which allows an ef fecti ve assessment of the 
robustness of the proposed algorithm. Data variability was modelled 
according to a lognormal distribution for both the phase velocity and 
the phase attenuation (Aimar 2022 ). As for V R ( ω), the log-standard 
de viation w as set to 0.05 at frequencies higher than 10 Hz and to 
0.1 at lower frequencies. Both the trend with the frequency and the 
magnitude are compatible with the typical coefficient of variation 
(i.e. the ratio between the standard deviation and the mean) observed 
for dispersion data (Marosi & Hiltunen 2004 ; O’Neill 2004 ; Lai 
et al. 2005 ; Foti et al. 2009 ; Comina et al. 2011 ; Cox et al. 2014 ;
Garofalo et al. 2016a ; b ; Olafsdottir et al. 2018 ; Teague et al. 2018a ; 
b ; Passeri et al. 2021 )—note that the log-standard deviation and the 
coefficient of variation are similar when the corresponding values 
are small. Instead, the log-standard deviation for αR ( ω) was set 
equal to five times the one for the velocity, consistently with results 
observed in the literature (Spang 1995 ; Rix et al. 2000 ; Verachtert 
2018 ; Bergamo et al. 2019 ; Aimar 2022 ). Fig. 4 represents the 
fundamental mode (hereafter labelled as ‘R0’) V R ( ω) and αR ( ω) 
data, and the error bars denote the interval defined by the median and 
one lo g-standard de viation. Data were computed at 30 log-spaced 
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Figure 3. Effect of S -wave damping ratio scaling on the dispersion and attenuation curves. 

Figure 4. (a–b) Fundamental mode phase velocity (a) and phase attenuation 
(b) data obtained for the SW1 synthetic model perturbed with noise. (c–d) 
Fundamental mode phase velocity (c) and phase attenuation (d) data obtained 
for the SW2 synthetic model perturbed with noise. These data represent the 
target for the inversion procedure. Each panel includes information on the 
variability of the R -wave parameters, represented as error bars the width 
of which is related to the logarithmic standard deviation. Target dispersion 
and attenuation data are superimposed by the theoretical dispersion and 
attenuation curves for SW1 and SW2, for comparison purposes. 
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requencies between 5 and 100 Hz (i.e. λ = 2–80 m) for SW1, and
0 log-spaced frequencies between 6 and 40 Hz (i.e. λ = 5–50 m) for
W2. The frequency ranges were selected to encompass a typical
av elength range inv estigated in MASW. Howev er, in SW2, only
ata below 40 Hz were considered because R0 contributes to the
 avefield onl y in this frequency range when considering a w avefield

ecorded according to a typical MASW setup (see Part I for further
etails). Therefore, R -wave parameters cannot be retrieved at higher
requencies. Fur ther more, the adopted sampling grid, in terms of the
ampling interval and the number of data points, complies with the
ecommendations provided by devoted guidelines (e.g. Foti et al.
018 ; Olafsdottir et al. 2018 ; Vantassel & Cox 2021b ). 
.1 Definition of the prior distribution 

he Monte Carlo procedure requires the statistical characterization
f the prior distribution π p ( m ), which collects the a priori knowl-
dge on the model m , corresponding to the unknown geometric and
echanical parameters (i.e. H , ρ, V S , ν, D S and D P ). 
The adopted simulation procedure postulates that π p ( m ) is a mul-

i v ariate, uniform distribution. The advantage of this assumption for

p ( m ) is multifold. On the one side, the statistical characterization
f the parameter space can be carried out for every single model pa-
ameter in a separate way, and each one requires only two statistics
or an e xhaustiv e description (e.g. the boundaries of the uniform dis-
ribution). Fur ther more, the generation of realizations { m n } from

p ( m ) involves a sequential use of basic, 1-D sampling methods
Mosegaard & Sambridge 2002 ). Finally, for a uniform prior, σ ( m )
s determined primarily by L ( d | m ), which, in turn, depends solely
n the misfit function S ( m ) (Sen & Stoffa 1996 ; Socco & Boiero
008 ). Therefore, a characterization of S ( m ) provides an adequate
escription of the posterior distribution, and inference on estimated
round models can be drawn from this quantity. For instance, the
ost suitable model [i.e. the one maximizing σ ( m )] coincides with

he minimum of S ( m ). 
Ideally, a proper definition of π p ( m ) requires an accurate defini-

ion of suitable ranges for all the ground model parameters. How-
 ver, sensiti vity studies demonstrated that each unknown parameter
as a variable influence on the inversion process. Inversion results
re mostly sensitive to H , V S and D S , whereas the role of ρ, V P (or ν)
nd D P is generally less relevant. Specifically, experimental data do
ot exhibit the same sensitivity to all the earth model parameters.
n the one hand, modal dispersion data (i.e. V R ) strongly depend
n H and V S , whereas the influence of ρ and V P (or ν) is gener-
lly negligible (Nazarian & Stokoe II 1984 ; Xia et al. 1999 ; Aki
002 ; Badsar 2012 ; Verachter t 2018 ). Fur ther more, D S and D P do
ot significantly impact their behaviour, at least in weakly dissipa-
ive media (Aki 2002 ; Badsar 2012 ; Verachtert 2018 ). On the other
and, modal attenuation data (i.e. αR ) are remarkabl y sensiti ve to
 , V S and D S . The important role of V S urges for robust inversion
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schemes to retrieve an accurate stiffness model in order to achieve 
reliable D S profiles. Instead, ρ and V P (or ν) have a limited influence 
on attenuation curves. Finally, modal attenuation data are much less 
sensitive to D P compared with D S (Badsar 2012 ; Verachtert 2018 ). 

A reasonable choice of the investigation range can mitigate so- 
lution non-uniqueness, improving the reliability and accuracy of 
the resulting ground models. For this purpose, geological data or 
independent geophysical and geotechnical surv e ys often provide 
valuable information that helps in optimizing the parameter choice 
(Foti et al. 2014 ; Teague et al. 2018a ). These data often allow an 
ef fecti ve constraint in the model layering (i.e. the number of layers 
in the ground model and their thickness). In case of unavailable 
site-specific information, it is strongly recommended to include 
variations in the inversion parametrization to account for epistemic 
uncertainty, for example through the layering ratio and/or the lay er - 
ing by number approaches (Cox & Teague 2016 ; Vantassel & Cox 
2021b ) or by including a statistical model for the layering (Passeri 
et al. 2020 ). Additionally, the interpretation of R0 experimental data 
allows to draw inference on the investigated parameters. Indeed, the 
transformation of the experimental dispersion curve from the V R —f 
domain into the (1.05–1.1) ×V R —λ/2.5 domain returns an approx- 
imation of the time-weighted average V S profile as a function of 
the depth, the validity of which is stronger when R0 dominates the 
wavefield (Foti et al. 2014 ). The inspection of the transformed dis- 
persion data provides some preliminary insights into the velocity 
structure of the medium, the minimum resolvab le lay er thickness, 
and the maximum investigable depth (Herrmann & Al-Eqabi 1991 ; 
Shtivelman 1999 ; Foti 2018 ). Similar considerations apply to the 
dissipation structure, which can be approximated by transforming 
experimental attenuation data from the αR —f domain into the D R —
λ/2.5 domain. Indeed, the high-frequency phase damping ratio D R 

usually matches the near-surface D S , especially in normally dis- 
persive media (e.g. Badsar 2012 ). Ho wever , the variation of D R 

along the pseudo-depth usually does not allow an immediate infer- 
ence of the dissipation structure of the medium, due to the great 
variability and the presence of oscillations linked with stiffness 
variations. 

4.2 Definition of the likelihood function 

According to eq. ( 3 ), the definition of the likelihood function L ( d | 
m ) is equi v alent to the specification of a misfit function S ( m ). This 
quantity is a distance metric between the observed data [i.e. V R ( ω) 
and αR ( ω)] and the predicted data, which are the values computed 
for each randomized earth model m n . The deri v ation of theoretical 
data requires the solution of the forward problem, corresponding to 
the Ra yleigh-wa ve eigenvalue problem. 

A popular definition of the misfit function assumes that the pre- 
diction error is normally distributed (Oldenburg & Li 2005 ). In this 
case, an ef fecti ve metric to quantify model accuracy with respect 
to experimental data is the Mahalanobis distance (Mosegaard & 

Tarantola 1995 ), computed as the L2-norm of the prediction er- 
ror vector, weighted by the experimental covariance matrix (Seber 
& Wild 2003 ). As experimental data are modelled according to 
a lognormal distribution and the linear correlation between mea- 
sured V R ( ω) and αR ( ω) is statistically insignificant (Aimar 2022 ), 
the following formulation for S ( m ) can be used: 

S ( m ) = 

1 

2 RW 

R−1 ∑ 

r= 0 

w ∑ 

w= 1 

[ 
( ln V w, R r,e − ln V w, Rr,t ) 

2 

σ 2 
ln V,w, Rr 

+ 

( ln αw, Rr,e − ln αw, Rr,t ) 
2 

σ 2 
ln α,w, Rr 

] 
. (9) 

The definition compares theoretical dispersion data V w, R r,t and 
attenuation data αw, R r,t and observed median values V w, R r,e and 
αw, R r,e , normalized by the corresponding variances (i.e. σ 2 
ln V,w, Rr 

and σ 2 
ln α,w, Rr ), for each considered propagation mode R r and each 

frequency sample w ( R is the number of modes and W is the number 
of data samples). Fig. 5 provides a graphical representation of the 
involved quantities. This structure of the misfit function is a least- 
square objective function, that can be interpreted as a generalization 
of the version often adopted in the model identification from phase 
velocity data (e.g. Wathelet et al. 2004 ). This definition separates 
the contributions linked with V R ( ω) and αR ( ω) fitting, and the nor- 
malization with respect to the corresponding variance guarantees 
proportional weighting to dispersion and attenuation data. There- 
fore, the model identification accounts for the different degree of 
accurac y in observ ed data, also compensating for the different order 
of magnitude that characterizes V R ( ω) and αR ( ω) (and the related 
prediction errors), thus avoiding potential overfitting of part of the 
observed data. The multiplying factor 1/2 RW is an additional quan- 
tity that simply scales the S ( m ) distribution without altering its 
shape, to provide a more intuitive interpretation of the numerical 
values of S ( m ) itself. Indeed, S ( m ) is unitary when the distance 
between predicted and experimental V R ( ω) and αR ( ω) across the 
inv estigated frequenc y bandwidth and the considered propagation 
modes equals one standard deviation, on average. Fur ther more, any 
model with S ( m ) less than 1.0 fits the experimental data, on average, 
within one standard deviation or less. 

4.3 Description of the algorithm 

The proposed inversion procedure consists of a multistage opera- 
tion, in which the most rele v ant steps are described below in detail. 
The steps are more concisely expressed in Algorithm 1. For easier 
understanding, the description includes results from the application 
of the algorithm to SW1 and SW2. 

Step 1 : Starting from the suite of experimental V R ( ω) and αR ( ω) 
data (i.e. the inversion target), the procedure first defines the inves- 
tigated ranges of each unknown parameter, thus specifying the prior 
model π p ( m ) assumed in the Monte Carlo procedure. 

As for SW1 and SW2, the model identification adopts a fixed 
layering scheme, based on a three-layer ground model for SW1 and 
a two-layer profile for SW2. The layering is compatible with the 
stratigraphy of the corresponding synthetic profiles (see Part I). For 
simplicity, ρ is fixed at 2000 kg m 

−3 and ν is equal to 0.3, and D P is 
assumed as equal to D S , consistently with the assumed values used 
for the generation of the synthetic wa vefields. How ever , the in vesti- 
gated ranges of H , V S and D S were kept moderately large, spanning 
a broader range compared with potential constraints informed by 
the target inversion data, converted into the 1.1 × V R —λ/2.5 and the 
D R —λ/2.5 domains. These ranges are shown in Table 1 . The ranges 
were kept the same in all the layers and no constraints on velocity 
and damping ratio variations between subsequent layers were ap- 
plied, although they could have been deduced from the target data. 
In this way, the robustness of the proposed inversion algorithm can 
be ef fecti vel y tested, since the influence of a priori assumptions on 
the inversion results is reduced. 

Step 2 : Then, the Monte Carlo procedure simulates the prior 
distribution π p ( m ), drawing a suite of samples { m n } . This task is 
achie ved b y randoml y extracting each model parameter [i.e. H , ρ, 
V S , ν, D S and D P ] from a uniform distribution, the range of which 
has been defined in the previous step. The corresponding ground 
models represent samples of π p ( m ). In this study, the inversion was 
run generating 10 000 trial earth models. 
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(a) (b)

Figure 5. Quantities involved in the definition of the misfit function S ( m ), namely theoretical estimates (subscript ‘t’) and observed data (subscript ‘e’). This 
example refers to an experimental data set characterized by two R-wave propagation modes (after Aimar 2022 ). 

Algorithm 1: Monte Carlo algorithm for the joint inversion of phase velocity and phase attenuation. 

Input: { V w, Rr,e , σln V,w, Rr , αw, Rr,e , σln α,w, Rr } R, W 

r= 1 ,w= 1 : experimental modal phase velocity and phase attenuation data (median values and 
variability), for R modes r , at W frequency samples ω w 

1: Assumed the number of layers L , define investigation ranges for H l , ρl , V S,l , V P,l (or νl ), D S,l and D P,l , with l = 1,. . . , L 
2: Generate random trials of H l , ρl , V S,l , V P,l (or νl ), D S,l and D P,l ( l = 1,. . . , L ), according to a uniform distribution, for N profiles n 
3: for n = 1 : N do 
4: Solve Rayleigh eigenvalue problem: 

{ H l,n , ρl,n , V S,l,n , V P,l,n , D S,l,n , D P,l,n } L l= 1 → { V w, Rr,t , αw, Rr,t } R, W 

r= 1 ,w= 1 
5: Identify scaling factors to minimize S ( m n ), defined in eq. (9 ): { c f,n , c VR,n , c αR,n } ← argmin S ( m n ) 

Calculate { c H,n , c VS,n , c DS,n } from { c f,n , c VR,n , c αR,n } through eq. (10 ) 
6: Modify profile parameters and corresponding theoretical R -wave parameters: 

{ H l,n , ρl,n , V S,l,n , V P,l,n , D S,l,n , D P,l,n } L l= 1 ← { c H,n H l,n , ρl,n , c V S,n V S,l,n , c V S,n V P,l,n , c DS,n D S,l,n , c DS,n D P,l,n } L l= 1 
{ V w, Rr,t , αw, Rr,t } R, W 

r= 1 ,w= 1 ← { c V R,n V w, Rr,t ( c f,n ω w ) , c αR,n αw, Rr,t ( c f,n ω w ) } R, W 

r= 1 ,w= 1 
7: Compute misfit S ( m n ), defined in eq. (9 ) 
8: end for 
9: Select a number of lowest misfit soil profiles to quantify uncertainty 
Output: Collection of S -wave velocity V S and S -wave damping ratio D S profiles, compatible with experimental Rayleigh wave modal dispersion 

curves and attenuation curves 

Table 1. Boundaries of the investigated parameter domain for the inversion of SW1 and SW2 
data. 

Model Thickness, H (m) S -wav e v elocity, V S (m s −1 ) 
S -wave damping ratio, D S (per 

cent) 

SW1 1–15 100–600 1–7 
SW2 1.5–10 100–500 0.5–7 
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Step 3 : For each randomized earth model m n , theoretical disper-
ion data V n, R j,t and attenuation data αn, R j,t are computed. The deri v a-
ion of theoretical values requires the solution of the forward prob-
em, corresponding to the Ra yleigh-wa ve eigenvalue problem. This
peration is herein carried out through the ElastoDynamics Tool-
o x (EDT ; Schevenels et al. 2009 ), w hich implements the transfer
atrix method (Thomson 1950 ; Haskell 1953 ). The implemented

lgorithm estimates the modal complex dimensionless wavenum-
er (normalized by the frequency) using a search algorithm that
inimizes the determinant of the stiffness matrix of the medium,

imultaneously tracking changes in modal shapes with the frequency
o avoid undesired jumps to a different mode. Then, the dispersion
nd attenuation curves are obtained from the complex wavenumber.
dditional details can be found in Schevenels et al. ( 2009 ) and the

oftware is available at https://bwk.kuleuven.be/bwm/edt . 
Step 4 : The scaling properties are then used to modify the random

amples so that the theoretical data better match observed values.
pecifically, for each trial ground model, the predicted dispersion
nd attenuation data are scaled to improve the fitting with the ex-
erimental values, and the corresponding model parameters are
odified through the inverse application of the scaling properties.
his application in the elastic inversion procedure was introduced by
occo & Boiero ( 2008 ), where the scaling of the theoretical data was
ased on the comparison of the gravity centres between predicted
nd observed dispersion data. In this study, the scaling procedure
ointly modifies the theoretical frequencies, phase velocities, and
hase attenuations according to three scaling coefficients (labelled
s c f , c VR and c αR , respecti vel y), that are calibrated through a local
ptimization procedure which minimizes the discrepancy between
heoretical and experimental data, measured by misfit function S ( m )
ntroduced in eq. ( 9 ). Compared with measuring the distance on the
ravity centre only, the proposed approach does not only guarantee
 good matching between scaled and observed data at the gravity
entre, but it also introduces a constraint on the behaviour of the
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remaining points. Therefore, the estimated scaling coefficients also 
account for the geometry of the dispersion and attenuation data, 
thus ensuring better matching between predicted and experimen- 
tal data. Once the scaling factors c f , c VR and c αR are obtained, the 
corresponding scaling factors for layer thicknesses ( c H ), S -wave 
velocities ( c VS ) and S -wave damping ratios ( c DS ) are computed as 
follows: 

c H = 

c V R 
c f 

, c V S = c V R , c DS = 

c V R 
c f 

c αR . (10) 

By applying these scaling factors to the corresponding param- 
eters, each trial earth model is converted into a new one, whose 
theoretical R -wave parameters better match the experimental ones. 

Step 5 : Finally, the ranking of each trial scaled model with respect 
to observed data is quantified by the misfit function S ( m ) introduced 
in eq. ( 9 ). 

Step 6 : The last step of the inversion procedure consists of the 
selection of a representative suite of ground models to describe in- 
version results. This set should ensure an adequate matching with 
experimental data (i.e. low misfit) and account for the uncertain- 
ties both in the inversion problem (due to solution non-uniqueness) 
and in the experimental data themselves (Mosegaard & Sambridge 
2002 ). For this purpose, various approaches have been proposed 
for the inversion of phase velocity data (e.g. Socco & Boiero 2008 ; 
Griffiths et al. 2016 ; Hallo et al. 2021 ). Ho wever , currently, there are 
no methods for identifying a reference collection of samples from 

the joint inversion of phase velocity and phase attenuation data. Fur- 
thermore, the generalization of existing criteria to select adequate 
damping models is not immediate because this should account for 
both the multi v ariate nature of the joint inversion and the different 
degree of variability affecting experimental data. In the context of 
Bayesian inversion, an ef fecti ve strategy relies on specific statis- 
tics extracted from the posterior distribution (Hallo et al. 2021 ). 
Alternati vel y, a non-conventional, yet intriguing approach directly 
obtains the desired distribution by running multiple inversion sim- 
ulations on a suite of experimental data, whose statistical features 
are compatible with measured ones (Vantassel & Cox 2021a ). This 
study adopts a simple strategy, reporting a collection of best-fitting 
models as the representative suite. Despite its simplicity, this se- 
lection criterion provides insight into the main features of inverted 
models and the related uncertainties. 

Fig. 6 shows the results for the 30 best-fitting models obtained 
from the inversion of the SW1 data set, whereas results for SW2 are 
represented in Fig. 7 . In both cases, inverted S-wave velocity profiles 
are tightly grouped, with a clearly identifiable velocity structure. 
As for D S , the estimated profiles are af fected b y larger v ariability, 
which increases with depth. This is an effect of the high σ ln α in 
the experimental data, that does not allow a constraint on D S as 
ef fecti vel y as in the stiffness modelling. Ho wever , in verted profiles 
exhibit a quite clear trend, with variations compatible with those 
of the theoretical profiles, especially when focusing on the lowest 
misfit profile. Notably, in SW1, the variability of the estimated V S 

and D S is small in the near -surface lay er, perhaps because of the 
constraint exerted by the large number of data available at high 
frequencies (hence, short wavelengths). For this reason, in SW2, 
the near-surface D S variability is larger than the one observed in 
SW1, although the estimated V S profiles almost perfectly match 
the theoretical model and the assumed data variability is the same, 
because of the lack of target data at high frequencies. 

These qualitative results support the effectiveness of the pro- 
posed inversion algorithm, which manages to retrieve V S and D S 

compatible with the theoretical ones. As expected, the matching is 
not perfect because of the noise perturbation on the inversion tar- 
get combined with the limited wavelength range available from the 
target data and the large ranges in the investigated parameter do- 
main. Nonetheless, the procedure manages to consistently retrieve 
the expected profiles, with moderately limited computation effort. 
This aspect will be addressed in detail in the next section, which 
also includes a quantitative assessment on the quality of inversion 
results. 

4.4 Discussion 

A key step in the proposed inversion algorithm is the implementa- 
tion of the scaling properties of the Rayleigh eigenvalue problem 

in linear viscoelastic media. This strategy strongly mitigates one 
critical aspect of Monte Carlo-based global search methods, which 
is the need to ef fecti vel y sample the investigated parameter space. 
Indeed, as the search domain is broad and high-dimensional, a huge 
number of model realizations is required to minimize the risk of 
neglecting promising regions. Ho wever , increasing the number of 
generated models means a greater number of forward simulations, 
entailing a significant rise in computation time. The computation 
burden is even more relevant when viscoelastic media are involved, 
due to the greater complexity of the forward algorithm. As an exam- 
ple, the performance of elastic and viscoelastic forward modelling 
codes are compared, with reference to the computation of modal 
V R ( ω ) and αR ( ω ) for SW1, at 82 frequencies spanning between 0.5 
and 100 Hz. Elastic modelling was carried out through MATLAB 

codes, whereas the EDT toolbox (Schevenels et al. 2009 ) was used 
for viscoelastic simulations. Numerical calculations were run on a 
workstation, with 24 Intel R © Xeon R © W-2265, 3.50 GHz CPUs. The 
computation time needed for computing fundamental-mode data is 
0.15 s in elastic conditions and 0.9 s when computing both V R ( ω) 
and αR ( ω) in viscoelastic conditions. If the goal of the forward simu- 
lation is estimating the first two R -wave modes (e.g. for multimode 
inversion), elastic modelling takes 0.45 s, whereas the computa- 
tion time is 2.3 s in viscoelastic conditions. Therefore, viscoelastic 
forward modelling is 5–6 times more time-consuming than the cor- 
responding elastic computation. This dramaticall y af fects the global 
search procedure, as the number of trial earth models should not be 
large, to avoid e xcessiv ely time-consuming inv ersion runs. For in- 
stance, running a viscoelastic inversion stage with 10 4 trial ground 
models needs about 12–24 hr for being completed, depending on the 
size of the parameter space and the number of propagation modes 
being simulated. Often, elastic inversion studies involve 10 5 –10 7 

trial models (i.e. the typical sample size used in the inversion of 
phase velocity data), which would require a time that is incompat- 
ible with practical needs for viscoelastic inversions. On the other 
side, reducing the number of random samples hinders the capacity 
of the search algorithm to explore the parameter space, increasing 
the risk of discarding potentially good solutions. 

The scaling properties of the solution of the Rayleigh wave eigen- 
value problem represent a valuable tool to optimize the generated 
Monte Carlo samples, with negligible increase in computation time. 
Indeed, these properties can be used to modify the random samples 
so that the theoretical data better match observed values. The result 
of the scaling procedure is an alternative sampling of the param- 
eter space, with the models concentrated in the high-probability 
region, which is closer to the true model (Socco & Boiero 2008 ). 
This allows to optimize the sampled por tion, conver ting the set of 
trial earth models into an alternative one better suiting observed 
data. In this way, the number of required samples (hence, forward 
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(a)

(c) (d)

(b)

Figure 6. Best-fitting ground models to SW1 data: (a–b) Theoretical versus target data, for the phase velocity (a) and phase attenuation (b). (c–d) Resulting 
S -wav e v elocity (c) and damping ratio (d) profiles. The boundary z = λmax /2 is an approximated value of the maximum investigable depth, that can be 
achieved from the available experimental data–layer interfaces beneath it are usually less reliable. The theoretical S -wave velocity and damping ratio profiles 
are represented with a thick black line. 

(b)(a)

(c) (d)

Figure 7. Best-fitting ground models to SW2 data: (a–b) theoretical versus target data, for the phase velocity (a) and phase attenuation (b). (c–d) Resulting 
S -wav e v elocity (c) and damping ratio (d) profiles. The boundary z = λmax /2 is an approximated value of the maximum investigable depth, that can be 
achieved from the available experimental data–layer interfaces beneath it are usually less reliable. The theoretical S -wave velocity and damping ratio profiles 
are represented with a thick black line. 
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imulations) can be significantly reduced, thus saving computation
ime. 

To test the benefits achie v able with the scaling properties, SW1
nd SW2 data sets were also inverted through a ‘standard’ Monte
arlo procedure, in which the scaling properties are not applied.
or the sake of comparison, the inversion started with the same
ollection of trial profiles. Then, the quality of inversion results was
uantified by measuring the average relative error ε̄ V D between the
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estimated V S and D S profiles—V S,e and D S,e , respecti vel y—and the 
theoretical V S and D S profiles: 

ε̄ V D = 

1 

Z 

Z ∑ 

z= 1 

( ∣∣V S,e − V S 

∣∣
V S 

+ 

∣∣D S,e − D S 

∣∣
D S 

) 

(11) 

This error is computed over the resolvable depth range based on 
the target inversion data—for simplicity, assumed as equal to λmax /2, 
with λmax being the maximum wavelength—and considering a depth 
grid with size equal to 0.5 m, with a total of Z depth bins. 

Considering the lowest-misfit profile for SW1, the computed esti- 
mation errors ̄ε V D are 0.46 for the ‘standard’ Monte Carlo procedure 
and 0.12 for the proposed inversion algorithm. Instead, for SW2, 
ε̄ V D is 0.24 for the ‘standard’ Monte Carlo procedure and 0.062 
for the proposed inversion algorithm. Notably, the average error 
reduces with a factor of 5 when the proposed inversion scheme is 
used. Fur ther more, for both SW1 and SW2, ε̄ V D is less than 0.15, 
that is the deviation between estimated and the theoretical V S and 
D S profiles is about 15 per cent, on average. Therefore, high-quality 
inverted profiles can be obtained even with a relatively small num- 
ber of trial earth models as the one assumed in this study (i.e. 10 000 
models). 

In addition, the performance of the proposed, coupled inversion 
algorithm was also tested against the uncoupled inversion approach, 
based on a separate inversion of V R ( ω) and αR ( ω) (e.g. Rix et al. 
2000 ; Xia et al. 2002 ; Xia et al. 2012 ). Specifically, the uncoupled 
algorithm was applied to obtain the best-misfit velocity profile, 
which was then used as reference for the damping inversion, in 
which the lowest-misfit model with respect to the target αR ( ω) was 
finally extracted. For the uncoupled procedure, the computed esti- 
mation errors ε̄ V D are 0.19 for SW1 and 0.075 for SW2 (against 
0.12 and 0.062, respecti vel y). This is due to the error amplification 
that occurs in the sequential scheme (Lai & Rix 1998 ). Fur ther more, 
the joint inversion accounts for the intrinsic coupling between the 
R -wav e phase v elocity and phase attenuation in linear, viscoelastic 
media, that derives from the Cauchy–Riemann equations (Lai & 

Rix 1998 ; Lai et al. 2002 ). This introduces an additional constraint 
on the selection of the trial models, which further mitigates the ill- 
posedness of the inversion problem and improves the quality of the 
estimated soil models. 

These examples (as well as the application in the next section) 
address the performance of the proposed algorithm for the inversion 
of fundamental mode data only, although the formulation allows for 
the handling of multimode experimental data sets. Indeed, the main 
scope of this paper is to demonstrate the potential of the joint inver- 
sion and the ef fecti veness of implementing the scaling properties 
to optimize inversion results. The complexity of the topic suggests 
limiting the present discussion leaving out the inclusion of multiple 
modes. Ho wever , data from higher modes provide additional inde- 
pendent information that improves the degree of constraint of the 
inverse problem (Foti et al. 2018 ). Therefore, the joint inversion 
of multimode data may help to improve the quality of the esti- 
mated soil models by reducing their variability and increasing the 
investigated depth (e.g. Gabriels et al. 1987 ). On the other hand, it 
should be noted that the benefits of multimode inv ersion hav e been 
demonstrated only for the inversion of velocity data, whereas the 
advantages on the combined inversion of velocity and attenuation 
data need to be further investigated in future studies. 
5  A P P L I C AT I O N  O F  T H E  I N V E R S I O N  

A L  G O R I T H M  T  O  A  R E A L  S I T E :  T H E  

G A R N E R  VA L L E Y  D OW N H O L E  A R R AY  

This section describes the application of the proposed algorithm to 
retrieve the S -wav e v elocity and damping ratio profiles at the Gar- 
ner Valley Downhole Array (GVDA) site, where a MASW surv e y 
was carried out. Part I contains a detailed description of the GVDA 

site, together with the MASW surv e y and the estimation of R - 
wave parameters. Fig. 8 represents the fundamental mode (‘R0’) 
V R ( ω ) and αR ( ω ) data computed through the CFDBF a method , 
and the error bars denote the interval defined by the mean and 
one log-standard deviation. These statistics were inferred from the 
elementary R -wave parameters corresponding to different source 
offsets, in consistency with the multi-offset approach (Wood & 

Cox 2012 ; Vantassel & Cox 2022 ), assuming a lognormal dis- 
tribution of the experimental data (Aimar 2022 ). Data are com- 
puted at log-spaced frequencies between 5 and 35 Hz (i.e. λ = 

5–90 m). This represents the target data set used in the inversion 
procedure. 

Starting from the suite of experimental V R ( ω) and αR ( ω) data 
(i.e. the inversion target), the investigated ranges of each unknown 
parameter were defined, and they are summarized in Fig. 9 and 
Table 2 . In order to mitigate non-uniqueness, ρ is fixed at typical 
values compatible with the lithology and the location of the water 
table (Foti & Strobbia 2002 ; Foti et al. 2018 ) and D P is assumed as 
equal to D S . The investigated ranges of H , V S and D S were mainly 
informed by the experimental data, converted into the 1.1 × V R —
λ/2.5 and the D R —λ/2.5 domains (refer to Fig. 9 ) so they could more 
easily be related to the V S and D S profiles. The explored parameter 
space includes models with the half-space interface at around 40 m. 
This depth is consistent with λmax /2 (where λmax is the maximum 

wavelength), that is a conservative proxy of the maximum investi- 
gable depth, within which layer interfaces should be located (Foti 
et al. 2014 ). Both the surface geolo gy and inv asi ve testing (e.g. 
Gibbs 1989 ; Steller 1996 ; Teague et al. 2018b ) demonstrated the 
presence of a low-velocity alluvium layer overlying weathered rock, 
with remarkably greater stiffness. Therefore, the model identifica- 
tion adopts a fixed layering scheme, based on a four -lay er ground 
model. The parametrization includes three shallow layers with mod- 
erately low V S , which gradually increases with depth. These layers 
seek to capture V S variations in the alluvium, as suggested by the 
gradual rise of 1.1 × V R with λ/2.5. Note that the search domain 
also includes a near-surface thin layer, with a thickness slightly be- 
low the minimum resolvable value according to experimental data 
(i.e. λmin /3 = 1.8 m, where λmin is the minimum wavelength; Foti 
et al. 2014 ). Indeed, the shallow D R exhibits a remarkable increase, 
without achieving a stable value. Therefore, it is assumed that the 
presence of a thin, highl y dissipati ve layer might be responsible for 
such behaviour. It is assumed that the half-space is likely representa- 
tive of weathered rock, for which the average V S of the investigated 
range sensibly increases. On the other hand, not enough informa- 
tion is available to constrain D S at depth. Therefore, the investigated 
ranges are rather broad to ensure an adequate exploration of the pa- 
rameter space. Ho wever , a gradual reduction of D S with depth is 
accommodated, to comply with the gradual decrease of D R when 
λ/2.5 is large. Finally, the parametrization also allowed independent 
randomization for V P , of which ranges were based on PS-logging 
data carried out at the GVDA (Steller 1996 ). Also, to ensure realis- 
tic coupling with V S , ν was constrained within realistic boundaries. 
As the available geological and geophysical information indicates 
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(b)(a)

Figure 8. Experimental phase velocity (a) and phase attenuation (b) data at the GVDA site. 

(a) (b)

Figure 9. Range of V S and D S profiles corresponding to the investigated parameter domain, reported in Table 2 . The search domain is overlapped by the 
‘pseudo-depth’ representation of experimental data, that is 1.1 × V R versus λ/2.5 and D R versus λ/2.5. 

Table 2. Boundaries of the investigated parameter domain for the inversion of GVDA data. 

Layer 
Thickness, H 

(m) 
Mass density, 
ρ (kg m 

−3 ) 

S -wave 
velocity, V S 

(m s −1 ) 

P -wave 
velocity, V P 

(m s −1 ) 
Poisson ratio ν

(-) 

S -wave 
damping ratio, 
D S (per cent) 

P -wave 
damping ratio, 
D P (per cent) 

1 1–3 1600 150–250 300–500 0.25–0.40 1–3 Equal to D S 

2 3–5 1600 160–260 320–520 0.25–0.40 0.05–5 Equal to D S 

3 5–15 1750 170–280 1350–1650 0.43–0.49 0.03–5 Equal to D S 

Half-space - 2000 350–1000 1800–3000 0.43–0.49 0.03–2 Equal to D S 
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he location of the groundwater table at a depth of about 5 m (e.g.
ill 1981 ; Steller 1996 ), the assumed ν increases in the deeper lay-

rs to account for soil saturation (Foti & Strobbia 2002 ; Foti et al.
018 ). In general, the search domain is broad enough to allow an
f fecti v e e xploration of the parameter domain and to accommodate
or discrepancies from a priori information. Ho wever , it should be
emarked that the adopted boundaries only represent the parameter
pace for the generation of the trial population. The application of
he scaling properties in the next stage may allow models to move
utside such boundaries (e.g. Socco & Boiero 2008 ). 

The inversion was run generating 10 000 trial earth models and
ig. 10 shows the 30 best-fitting models obtained from the inversion
f the GVDA data set. Regarding the S -wav e v elocity, the inv ersion
rovided a clearly identifiable velocity structure. Specifically, the
esulting V S model includes a low-velocity near-surface portion,
ith V S close to 200 m s −1 . Then, it suddenly increases to 450–
00 m s −1 at around 18 m of depth, which is compatible with the
ocation of the interface between alluvium and weathered rock (see
art I). As for D S , the estimated profiles are affected by larger vari-
bility, which increases with depth. This is an effect of the high σ ln α

n the experimental data, that does not allow a constraint on D S as
f fecti vel y as in the stiffness modelling. Ho wever , in verted profiles
xhibit a quite clear trend, characterized b y D S of approximatel y 5
er cent in the near-surface layer, which decreases to about 1 per
ent in the underlying layer. The large D S in the shallow portion of
he ground models might be an effect of heterogeneities on the top
f the soil deposit, which have been also identified in Fathi et al.
 2016 ). Lateral variations result in wave scattering phenomena, that
nduce an apparent increase of D S . 

An insight into the reliability of estimated ground models can be
btained by comparing the resulting V S and D S profiles with those
stimated in alternative in situ characterization studies conducted
t the GVDA site. Fig. 11 overlaps the estimated earth models with
he results of previous studies (Gibbs 1989 ; Steller 1996 ; Brown
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(a)

(c) (d)

(b)

Figure 10. Best-fitting ground models to GVDA experimental data: (a–b) theoretical versus experimental data, for the phase velocity (a) and phase attenuation 
(b). (c–d) Resulting S -wave velocity (c) and damping ratio (d) profiles. The boundary z = λmax /2 is an approximated value of the maximum investigable depth, 
that can be achieved from the available experimental data–layer interfaces beneath it are usually less reliable. 

(a) (b)

Figure 11. Comparison between the best-fitting ground model to GVDA experimental data and velocity and damping ratio models obtained in past studies: (a) 
S -wav e v elocity profiles; (b) S -wav e damping ratio profiles. Results from past studies include data from PS suspension logging (i.e. the grey circular symbols; 
Steller 1996 ), downhole and surface wave testing (i.e. the thin grey lines; Gibbs 1989 ; Brown et al. 2002 ; Stokoe II et al. 2004 ; Teague et al. 2018b ), and seismic 
interferometry (i.e. the gre y re gion; Chandra et al. 2015 ). The remaining lines correspond to the models labelled as D lab , computed according to Darendeli 
( 2001 ); D BSGA , proposed by Bonilla et al. ( 2002 ); D TR , proposed by Tao & Rathje ( 2019 ) and D SSA , proposed by Seylabi et al. ( 2020 ). 
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et al. 2002 ; Stokoe II et al. 2004 ; Chandra et al. 2015 ; Teague et al. 
2018b ; Seylabi et al. 2020 ). Fig. 11 (b) includes a laboratory-based 
D S estimate, which has been obtained through the Darendeli ( 2001 ) 
empirical model. This value should provide a measure of intrinsic 
material damping, which is usually overestimated by in situ damp- 
ing values due to the presence of additional attenuation mechanisms 
(e.g. geometric attenuation and seismic wave scattering; Foti 2003 ; 
Tao & Rathje 2019 ). This component typically affects in situ es- 
timates, due to the difficulty in separating geometric and intrinsic 
attenuation, that is the energy loss due to wav efront e xpansion and 
to wave scattering in heterogeneous media, on one side, and the 
one due to intrinsic material attenuation, on the other. It also shows 
the D S models proposed by Bonilla et al. ( 2002 ), Tao & Rathje 
( 2019 ) and Seylabi et al. ( 2020 ), which were estimated from the 
interpretation of downhole array data available at the GVDA site. 
In general, the resulting V S profiles well match other studies in 
the near -surface lay ers, with good consistency both in terms of stiff- 
ness values and the depth of the impedance variation. The latter is 
also compatible with site geolo gy. Howe ver, some di vergence oc- 
curs for the V S values below 20 m, which should be representative 
of the weathered rock unit. Indeed, this study returned V S = 450–
500 m s −1 , whereas past studies provided larger V S values, spanning 
between 450 and 600 m s −1 . This discrepancy may be justified as an 
effect of lateral variability at the GVDA site, which results in sig- 
nificant variations of V S at intermediate depths, as also highlighted 
by the large variations in results from past studies (Teague et al. 
2018b ). 

As for D S , the estimated damping model is compatible with the 
laboratory-based profile, especially at intermediate depths. How- 
ever, it should be remarked that the latter is not specific to this site, as 
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t derives from an empirical model which provides an average damp-
ng ratio for typical fine-grained soil deposits. Therefore, no strong
onclusions can be drawn from this comparison. On the other hand,
he consistency between these two alternative schemes suggests that
he MASW-based D S estimate shares the same order of magnitude
f the material damping ratio, hence the influence of scattering is
ot strongly significant—at least, in the depth range investigated in
his surv e y . Actually , the laboratory-based D S is significantly dif-
erent in the shallow layer. This discrepancy may be an effect of
ocal heterogeneities and near-surface variability demonstrated in
lternative studies (e.g. Fathi et al. 2016 ), which is responsible of
dditional attenuation mechanisms other than intrinsic dissipation,
hat induce significant scattering of high-frequency Rayleigh waves.
ndeed, as they propagate with moderately small wav elengths, the y
re rather sensitive to local fluctuations in the soil deposit char-
cteristics. These considerations also explain why the inverted D S 

odels from this study are significantly lower than the values pro-
osed by Bonilla et al. ( 2002 ), Tao & Rathje ( 2019 ) and Seylabi
t al. ( 2020 ), except in the shallow layer. Indeed, these results de-
ive from the interpretation of down-hole array data recorded at the
VD A from both shallo w and deep sensors, in volving a depth range
uch broader than the one investigated in this surv e y. Therefore,

uch estimates rely on large-scale variations, which include different
mpedance variations and additional dissipation mechanisms than

aterial damping, such as wave scattering and reflection/refraction
henomena at the layer interfaces. This results in increased attenua-
ion. Indeed, it is expected that these phenomena are quite rele v ant at
he GVDA site, as spatially variable mechanical properties and the
onsequent anisotropy in the velocity structure are significant, espe-
ially at intermediate-to-large depths layers (Coutant 1996 ; Bonilla
t al. 2002 ). The influence of lateral variability and the different
olume of sampled soil (in terms of investigated depth and lat-
ral extent) as a function of the characterization technique needs to
e addressed in future studies, to get better insight on the reasons
ehind such discrepancies. On the other hand, the consistency be-
ween the inverted profiles with these alternative estimates supports
he reliability of the SWM approach, as also demonstrated by the
ood match with the in situ observed ground motion amplification
Aimar et al. 2022 ). 

 C O N C LU S I O N S  

he solution of the inverse problem is a key step in surface wave
nal ysis. The dif ficulties linked to the high non-linearity and the
ll-posedness of the problem urge for the implementation of robust
lgorithms to return reliable earth models. 

This paper proposed a novel algorithm for the joint estimate of
 -wav e v elocity and damping ratio profiles from the e xperimen-
al R -wave dispersion and attenuation parameters. The proposed
cheme is a global search, Monte Carlo procedure that implements
n optimized sampling procedure, based on the scaling properties
f the Rayleigh eigenvalue problem in viscoelastic conditions. The
alidity of these scaling properties in the viscoelastic case has been
emonstrated in this paper, and the ef fecti veness of the proposed
nversion algorithm has been tested on two synthetic data sets. The

onte Carlo scheme allows for the investigation of a large pop-
lation of candidate earth models, whereas the implementation of
caling properties concentrates the random samples in high prob-
bility density zones that are expected to be closer to the ‘true’
round model. In this way, the number of random samples required
o ef fecti vel y investigate the parameter space can be reduced, thus
aving computation time. 

The ef fecti veness of the proposed algorithm w as tested on the in-
ersion of the experimental dispersion and attenuation data obtained
rom a MASW surv e y at the Garner Valley Downhole Array site.
he improved sampling scheme resulted in well-constrained S -wave
elocity and damping ratio profiles, especially in the near-surface
a yers. How ever, the estimated ground models are affected by large
ariability at depth, especially in terms of the S -wave damping ratio.
he scatter is the combined effect of the high variability in low-

requenc y e xperimental data and the moderately low sensitivity of
heoretical attenuation curves to D S at great depths (e.g. Verachtert
018 ). Therefore, experimental data do not allow for an ef fecti ve
onstraint on D S in the deep portions of the earth models. Ho wever ,
his limitation can be solved by exploiting ambient vibration data
o get attenuation estimates in the low-frequency range, thus allow-
ng a more reliable estimation of D S at depth. On the other hand,
he considerations above on data variability rely on a fixed-number
uite of best-fitting ground models, which is a simplified description
f actual data uncertainties and inversion non-uniqueness. Indeed,
urrently there are no available methods for selecting a statistical
ollection of samples from the joint inversion of phase velocity and
hase attenuation data. For this reason, further studies on this topic
ill address this issue, by generalizing available criteria developed

n the dispersion analysis or introducing new schemes, that account
or the multi v ariate nature of the joint inversion. 

Finally, the reliability of the derived ground models was ad-
ressed, by assessing the compatibility with estimates from alter-
ative procedures. The general agreement with laboratory-based
alues highlights the reliability of surface wave data. Besides, the
arger values of D S in the shallow portion of the ground is consistent
ith the near-surface variability demonstrated in other studies (e.g.
athi et al. 2016 ), which is responsible of additional attenuation
echanisms other than intrinsic dissipation. In summary, using sur-

ace wave data returns comparable damping models in respect of
he interpretation of borehole array data. On the other hand, MASW
esting does not require the realization of instrumented boreholes
nd therefore is much more flexible for site investigation in engi-
eering applications. 

Further improvements in the reliability of ground models could
e obtained by including higher modes in the solution of the inverse
rob lem, w hich in principle is a straightforward extension of the
roposed scheme. 
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