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Abstract—Among the limitations of current quantum ma-
chines, the qubits count represents one of the most critical
challenges for porting reasonably large computational problems,
such as those coming from real-world applications, to the scale of
the quantum hardware. In this regard, one possibility is to decom-
pose the problems at hand and exploit parallelism over multiple
size-limited quantum resources. To this purpose, we designed
a hybrid quantum-classical algorithm, i.e., BBQ-mIS, to solve
graph coloring problems on Rydberg atoms quantum machines.
The BBQ-mIS algorithm combines the natural representation
of Maximum Independent Set (MIS) problems onto the machine
Hamiltonian with a Branch&Bound (BB) approach to identify
a proper graph coloring. In the proposed solution, the graph
representation emerges from qubit interactions (qubits represent
vertexes of the graph), and the coloring is then retrieved by
iteratively assigning one color to a maximal set of independent
vertexes of the graph, still minimizing the number of colors
with the Branch&Bound approach. We emulated real quantum
hardware onto an IBM Power9-based cluster, with 32 cores/node
and 256 GB/node, and exploited an MPI-enhanced library to im-
plement the parallelism for the BBQ-mIS algorithm. Considering
this use case, we also identify some technical requirements and
challenges for an effective HPC-QC integration. The results show
that our problem decomposition is effective in terms of graph
coloring solutions quality, and provide a reference for applying
this methodology to other quantum technologies or applications.

Index Terms—hybrid quantum-classical optimization, graph
coloring, HPC-QC integration, Branch&Bound

I. INTRODUCTION

Recent years have seen a steep rise in interest concerning
quantum computers and their integration with High Perfor-
mance Computing (HPC). For this purpose, it is important to
identify both infrastructures to make the classical and quantum
machines communicate and applications that can benefit from
such an integrated system.

Concerning this last aspect, we propose a hybrid-quantum
classical approach to solve graph coloring (GC) problems
that emerge from several industrial applications, e.g., optimal
deployment of communication networks [1] and analysis of
biological networks [2]. The key idea in our algorithm, BBQ-
mIS, is to combine a classical Branch&Bound algorithm,
which by definition is highly parallelizable, with a quantum
routine to sample feasible (partial-)coloring solutions.

Among the various quantum technologies, neutral atoms
machines [3] are extremely suitable for approaching graph

combinatorial optimization problems, such as GC. They em-
ploy Rydberg atoms, i.e. neutral atoms, to act as qubits,
organizing them on a 2D/3D register. Then, the interactions
among these atoms, subject to laser pulses [4], generate the
machine Hamiltonian H (e.g., Ising)

H =

n∑
i=1

ℏΩ
2

σx
i −

n∑
i=1

ℏδ
2
σz
i +

∑
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C6

d6ij
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where, ni = (1 + σz
i )/2 is the Rydberg state occupancy, σx,z

i

are the i-th qubit’s Pauli matrices, Ω and δ are respectively
the Rabi frequency and the detuning of the controlling laser
system, and dij is the Euclidean distance between qubits i
and j in the register. Hence, the way the machine Hamilto-
nian evolves depends on the laser pulses parameters and on
the positions of qubits (neutral atoms), which assume, once
measured, one out of two possible quantum states (i.e., the
excited Rydberg state |1⟩ or the ground state |0⟩). From this
derives the connection with binary optimization variables.

There is also another effect of quantum mechanics that
allows the representation of graphs directly on the quantum
machine register, i.e., the blockade effect. It acts as a threshold
on the qubit-to-qubit distance, discriminating the closer ones
from the farther ones [5]. This threshold distance is the critical
one at which the strength of the qubit-to-qubit interactions
balances with the Rabi frequency of the laser pulses [6], and
it is called blockade radius rb = (C6

ℏΩ )
1/6. In this way, the

interactions between qubits, which can be assimilated to the
vertexes of a graph, can induce a Unit-Disk Graph (UDG) [7]:
qubit positions in the quantum register are UDG’s vertex
positions, and edges in the UDG link two vertexes whenever
their Euclidean distance is shorter than the blockade radius.

Moreover, the blockade effect prevents qubits, which fall
within the blockade radius, from being both in the excited
state |1⟩. Thus, retrieving the ground state of H coincides
with computing the largest set of non-interacting qubits on
the register, i.e., the Maximum Independent Set (MIS) of the
corresponding UDG.

However, not all the combinatorial optimization problems
can be easily reformulated as MIS problems on UDGs, or,
when this is the case [8], the problem mapping onto the
quantum hardware scales badly in the number of physical
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qubits to represent the binary variables. Willing to solve the
problem of interest and, at the same time, to reduce as much
as possible the needed qubits, we designed the BBQ-mIS
algorithm for GC problems.

More in detail, starting from a UDG representation of the
target graph thanks to the methodology presented in [9],
the proposed quantum-enhanced heuristic solves the graph
coloring problem by iteratively solving MIS problems. One
could notice that being able to retrieve a UDG from the graph
of interest might limit the generality of the approach. However,
it is still possible to map one logical qubit into multiple
physical qubits to increase the UDG’s connectivity [8] or rely
on an approximated UDG (an approximation of the original
graph with some missing edges). In fact, our approach does
not need to find the optimal MIS to solve GC problems.

BBQ-mIS successfully solves graph coloring problems, for
all the graph samples of our dataset, with the minimum number
of colors. The benchmark solutions are provided by the exact
solver Gurobi [10].

II. RELATED WORK

Hybrid quantum-classical algorithms keep on emerging in
several research areas. They range from the optimization field,
e.g., for dynamic portfolio optimization with minimal holding
period exploiting D-Wave 2000Q processor [11], or, in a
sort of complementary direction, the design of optimization
methods for parameterized quantum circuits [12], [13], to
machine learning, e.g., deep learning time series for ship mo-
tion forecasting [14], to material simulation using variational
quantum algorithms to determine the ground state of molecular
problems by combining classical and quantum (neutral atom
machines) hardware [15].

Thus, due to the extensive literature on the topic, we
focus on the quantum-classical algorithms to solve the Graph
Coloring (GC) problem.

The GC problem admits a quadratic unconstrained binary
optimization (QUBO), so it is possible to solve the corre-
sponding combinatorial optimization problem through quan-
tum annealing. For instance, C. Silva et al. [16] compared
the results of solving the QUBO problem of GC both with
a fully-classical simulated annealing method and using a D-
Wave quantum machine; according to their study, the quantum
approach found more solutions. The paper [17] proposes a
similar approach (they still exploit the mapping of the com-
binatorial optimization problem into chimera graphs and use
quantum annealers) but focus more on the effect of an external
noise source, which is a hot topic for noisy intermediate-
scale quantum devices. In particular, they manage to exploit
the noise-generated static disorder to improve performance.
Quantum annealing methods for GC are also discussed in
[18]–[20], but in this case, QUBO formulation is not adopted,
constraints and objective function are directly encoded into the
problem and driving Hamiltonians.

Quantum circuits for GC problems are the topic of [21].
In this work, M. Do et al. extend a previous study on Max-
Cut problems [22]: they implement the Quantum Alternating

Operator Ansatz (QAOA) for GC on quantum processor ar-
chitecture. Together with the circuit routing, they propose a
qubit initialization approach that allows for shorter makespan
compilation. In [23], the authors designed a space-efficient
quantum optimization algorithm for the GC problem circuit
implementation. They approached the problem through a gate-
based implementation and showed that gain in the number of
logical qubits, which are exponentially reduced in the number
of colors, comes to a cost of deeper circuits.

The paper [24] presents a generalization of the Grover algo-
rithm to operate on ternary quantum circuits: the augmented
representation capability enhanced by the use of qudits instead
of qubits allows the reduction of the circuit complexity, the
simplification of the experimental setup and the enhancement
of the algorithm efficiency. Multi-level computational units,
specifically qutrits, are also present in the work of S. Bravyi
et al. [25]. In this case, increasing the state space enables a 3-
coloring formulation for GC problems.

Finally, the authors in [26] introduce quantum circuits
implementing genetic algorithms (GA) to solve NP-hard op-
timization problems. They apply their methodology to GC
problems and examine the results obtained with a Qiskit
simulation environment.

III. METHODOLOGY

In this section, we illustrate two hybrid quantum-classical
algorithms. The first one, Greedy-it-MIS, is a quantum-
enhanced version of a classical heuristic for graph coloring
problems; the other one, BBQ-mIS, is a novel approach that
exploits MIS solution to obtain a feasible graph coloring,
still minimizing the number of colors used, thanks to a
Branch&Bound approach.

Before diving into the descriptions of Greedy-it-MIS and
BBQ-mIS algorithms, we introduce some basic notions of
graph theory, thus setting also the notation.

Given a graph G = (V, E), V is the set of vertexes, n = |V|,
E is the set of undirected edges, and A the adjacency matrix
of G. A feasible coloring of G consists of assigning to each
vertex in V a color such that vertexes that share an edge have
different colors. A graph coloring (GC) problem [27] arises
when the feasible coloring of G is targeted along with the
minimization of colors. The number of colors that solve a
GC problem is called the chromatic number of G, and it is
denoted by χ(G). Another well-known graph combinatorial
optimization problem is the Maximum Independent Set (MIS)
problem. It consists in finding the largest independent set [28]
of V (see def. 1).

Definition 1 (Independent set): Given a graph G = (V, E),
an independent set is a set of vertexes such that no two vertexes
share an edge in E .

A. Greedy-it-MIS for Graph Coloring problems

A first approach to solving GC problems, without requiring
one optimization variable, i.e. a logical qubit, for each possible
vertex color assignment [29], and exploiting the straightfor-
ward solution of MIS problems on neutral atoms, follows from
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a simple argument. An MIS solution is a feasible color assign-
ment: provided that all vertexes in the MIS are independent,
they can be colored with the same color. Then, the procedure
can iterate over the induced graph G′ = (V \MIS, E ′) that is
the original graph G after removing the vertexes contained in
the MIS and the corresponding edges. This procedure iterates
until all vertexes in V are associated with a color, as shown
in algorithm 1. We named this coloring strategy Greedy-it-
MIS since we consider the first solution coming from the
MIS solver, after checking for its independence, to obtain
G′, without evaluating the impact of choosing that particular
solution on the overall coloring. In a typical short-sighted way,
Greedy-it-MIS looks just one step at a time, hence the name
Greedy. As a result, Greedy-it-MIS provides feasible GC
solutions but does not target the minimization of the colors.

Algorithm 1 Greedy-it-MIS for Graph Coloring problems
Ensure: C is a feasible coloring for graph G = (V, E)

k ← 0 ▷ number of colors used
while |V| > 0 do

if |E| > 0 then ▷ V is not a MIS
MIS ←MIS solver(G)
G = (V, E)← G′ = (V \MIS, E ′)

else
MIS ← V
G = (V, E)← ∅

end if
k ← k + 1
Ck ←MIS

end while

B. BBQ-mIS for Graph Coloring problems

Willing to improve the solutions to GC problems, one
should identify some exploitable directions that Greedy-it-
MIS does not take into account.

First of all, the probabilistic behavior of quantum systems
requires multiple measurements to provide an MIS solution.
These repeated experiments return a histogram of possible
solutions, where the most occurring one is selected as the MIS
solution by the Greedy-it-MIS. However, other solutions in
the histogram can yield valuable information, and they come
for free by the standard measurement procedure. As a matter
of fact, there is no guarantee that the solution to an MIS
problem is unique, so even when the optimal coloring contains
a maximum independent set, it might not be the first one given
by the MIS solver. Moreover, it happens that optimal colorings
do not include MIS solutions so, we should also consider
smaller independent sets from the histogram of solutions.

Nevertheless, it would be computationally hard to explore
by brute-force all possible independent set combinations pro-
vided by an MIS solver. It is necessary to have a way of cutting
out some solutions and evaluating the impact on the targeted
GC problem of choosing one independent set over another one.
An essential building block to deal with this issue is Theorem
1 [30], [31].

Definition 2 (Maximal independent set): A maximal Inde-
pendent Set (mIS) of G = (V, E) is an independent set, which
is not properly contained in another independent set of G, i.e.,
adding one or more vertexes to a maximal independent set
would result in losing its independence.

Theorem 1 (Optimal graph coloring): Every graph G =
(V, E) has an optimal coloring in which (at least) one of the
colors is a maximal independent set.

Proof : C = {C1, . . . , Ck} vertex sets defining the optimal
coloring of G = (V, E), k colors. Let I be an mIS of G s.t.
I contains C1 then C ′ = {I, C2 \ I, . . . , Ck \ I} is still an
optimal coloring.

Thanks to this theorem, we can restrict our solutions space
investigation to mISs.

At this point, we can set up an effective minimization
of colors for a GC problem. The proposed solution is a
Branch&Bound (BB) approach that branches on mIS solutions
and considers as bounds the lower bounds on the chromatic
number: BBQ-mIS.

More precisely, BBQ-mIS leverages well-known lower
bounds on χ(G) for the pruning criteria, since the GC is a
minimization problem, and exploits upper bounds on χ(G) for
the exploration policy of the BB tree. The considered bounds
are valid for any graph G = (V, E).

We denote with ∆(G) the maximum vertex degree in G and
with di the degree of the vertex i ∈ V , hence the following
upper bounds (UB).

• Greedy coloring UB [32]: χ(G) ≤ ∆(G) + 1 = UBG

• Welsh-Powell’s UB [33]: χ(G) ≤ max
i∈V

(min(di+1, i)) =

UBWP , provided that d1 ≥ d2 ≥ · · · ≥ dn
Let λ1, . . . , λn be the eigenvalues of A, with λ1 ≥ λ2 ≥
· · · ≥ λn, and (n+, n0, n−) the inertia of A, i.e., the number
of positive, null and negative eigenvalues respectively, then the
following lower bounds (LB) hold.

• Hoffman’s LB [34]: χ(G) ≥ 1− (λ1/λn) = LBH

• Elphick-Wocjan’s LB [35]: χ(G) ≥ 1+max(n
+

n− , n−

n+ ) =
LBEW

• Edwards-Elphick’s LB [36]: χ(G) ≥ n/(n − λ1) =
LBEE

Putting together these concepts, BBQ-mIS represent an
outer (with respect to the MIS solver) optimization phase,
which considers all solutions contained in the histogram
coming out from the MIS solver and branches over the induced
graphs, obtained by removing all the vertexes in one of the
parent node’s mISs.

At the root of the BB tree, we start with the graph G to
be colored. The BB scheme, as represented in Fig. 1, governs
the optimization so that at the end of the procedure we can
retrieve as the BBQ-mIS solution the best coloring found so
far, i.e., the one that requires fewer colors.

At each BB node, the GC problem is associated with a state
(see Fig. 1a), fully described by a tuple (H, C, k, LB,UB)
where

• H is the induced subgraph obtained from the one in the
parent node’s state by removing the mIS solution from
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which the branch springs up. H will be the input graph
to the MIS solver for the considered BB node off-springs;

• C is a feasible coloring; if the BB node is at depth l
(l = 0 at the BB root) of the BB tree and H = H(U , I),
m = |U|, C = {C1 = mIS1, C2 = mIS2, . . . Cl =
mISl, Cl+1 = u1, . . . , Cl+m = um}, ui ∈ U , i.e., the
first l colors are the ones inherited from the parents’
mISs and the other m colors are assigned according to the
worst-case scenario (one color for each of the remaining
vertexes in H);

• k is the value of the objective function in the BB node,
i.e., the number of colors in C;

• LB is a lower bound on χ(G) by pursuing the ex-
ploration of the BB node, i.e., for a node at depth l,
LB = l+ lower bound on χ(H); this last lower bound
is selected as the tightest among Hoffman, Elphick-
Wocjan and Edwards-Elphick lower bounds, that is the
max(⌊LBH⌋, ⌊LBEW ⌋, ⌊LBEE⌋);

• UB is an upper bound on χ(H), UB =
min(⌈UBG⌉, ⌈UBWP ⌉)

Not all the solutions provided by the MIS solver give birth
to branches. In fact, the traditional pruning criteria of the
BB method are complemented by some others which arise
from the problem at hand. The effect of the following pruning
criteria (see Fig. 1b) significantly reduce the number of BB
nodes that are generated or explored.

• Pruning by non-improving solution: it applies when in
the state of a BB node LB ≥ best value of the objective
function found so far; this is a standard pruning criterion,
which prevents us from wasting time and resources by
exploring the potential children of a BB node which for
sure would not provide a coloring with a smaller number
of colors.

• Pruning by unfeasibility: it avoids generating children
from the MIS solver which are either non-independent
sets (they would result in some adjacent vertexes colored
with the same color) or non-maximal sets (they would
violate Th. 1 on which the overall BB approach relies).

• Pruning by redundancy: it avoids duplicating an explo-
ration in the BB tree; if the same subgraph H has been
generated previously, it will not generate a new BB
node. Since the same induced graph can be obtained
by removing the same vertexes, but in a different or-
der, we associate with each H(U , I) a fingerprint, i.e.,
fp(H) =

∑
u∈U 2i − 1, and generate a new BB node

only if its fingerprint has not yet been detected.

Concerning the BB tree exploration, we first investigated
standard policies, such as First-In-First-Out (FIFO), gap-based,
and depth-first, then we designed our custom policy that
assigns to each BB node a priority score (see Fig.1c). The
higher the priority score, the sooner the BB node is explored.
To balance between the in-depth and in-width exploration, the
priority score is computed as −UB × |I|. At the top of the
BB tree, the priority scores are low. So, in the beginning, the
BB exploration goes in-depth, thus providing a best objective

(a) Each node in the Branch&Bound tree is associated with the induced
graph H, the corresponding coloring C, the number of colors k, a lower

bound LB on the best coloring achievable by branching further on that node,
and an upper bound UB on χ(H).

(b) The pruning criteria reduce the number of Branch&Bound nodes to
explore taking into account non-improving directions, unfeasibility, and

equivalences of graphs H.

1

2 3 4

5

6

7

8

12

13 14

9

10 11

(c) A priority score is assigned to each Branch&Bound node to lead the
exploration of the Branch&Bound tree: higher priority scores mean that the

corresponding node is explored sooner.

Fig. 1. Representation of the Branch&Bound scheme underlying the BBQ-
mIS algorithm.

function value similar to the one that can be obtained by
the Greedy-it-MIS algorithm. Then, it starts looking for the
most promising directions in the BB tree, the ones with lower
connectivity |I|, combined with a tighter bound on the worst-
case scenario provided by UB.

Finally, BBQ-mIS, as described so far, is designed to end
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with its solution once all the BB branches culminate into
leaves. However, since the number of mISs scales linearly with
the size of the graph n [37] and mISs are computed at each
BB node, BBQ-mIS could explore a very large number of
solutions before ending. Hence, we added a stopping criteria,
after which the BBQ-mIS returns the best coloring found as
its solution. In particular, we set a maximum number of BB
nodes that may be explored to 50.

C. Quantum and classical solvers

So far, we have focused mainly on the classical part of our
hybrid algorithms, Greedy-it-MIS and BBQ-mIS. Here, we
describe what is the MIS solver that brings quantum into the
aforementioned methods.

In our experiments, we relied on Pulser1 for the emulation
of the quantum system on classical resources. Then, we
adopted the Quantum Approximate Optimization Algorithm
(QAOA) [4], [38], [39] to optimize the laser pulses’ parameters
to solve an MIS problem. Specifically, the input graph G is
depicted on the array of rearranged Rydbger atoms. The rabi
frequency Ω is set according to the desired rydberg radius rb
so that the edges in G reproduce the proper connectivity. The
detuning and the shape of the laser pulses are set according
to the specifics of the real hardware Pasqal’s R&D prototype
Chadoq2 [40]. The maximum value for rabi frequency and
detuning is 12MHz, and the duration of the pulse sequences
is limited to 3µs.

The parameters to optimize, i.e., the variational parameters
in QAOA, are the time durations (µs) of the pulses. In
this work, we considered just one layer of alternating non-
commutative Hamiltonian. The durations’ optimization relies
on a classical solver (Nelder-Mead simplex algorithm2) that
tunes them in order to minimize the energy of the Hamiltonian,
so pushing the results towards MISs solutions. Finally, thanks
to the Rydberg blockade effect and the tuned laser pulses, we
take repeated measurements and obtain a set of viable MISs.

This emulative process can be adopted for graphs with
a limited number of vertexes, as it requires solving the
differential equation describing the overall quantum system.
Practically, it is possible to emulate quantum MIS solution on
graphs with up to 15 − 17 vertexes within 3 − 20 hours of
emulation.

Gurobi classical solver provides a reference value for the
GC problem solutions. Since the GC problems for which it was
possible to emulate the quantum dynamics were pretty small,
up to 15 vertexes, Gurobi solver always return an optimal
coloring solution.

D. Remarks about HPC-QC interplay

The application described in this paper represents a good
example of a hybrid algorithm for solving combinatorial opti-
mization problems which can leverage both the computational
power of modern HPC systems and the characteristics of some
types of QPUs, in this case, neutral atoms-based ones. In

1https://pulser.readthedocs.io
2https://docs.scipy.org/

fact, the BB is well-suited for parallel computing (our simple
implementation already makes use of MPI to launch processes
on multiple HPC processes) as each BB node is independent
of the others, leading to batches of parallel computation where
a set of the BB nodes to be explored is evaluated in parallel.
In this context, the HPC produces a large number of quantum-
friendly problems that can be solved using a QPU, inducing
a few technical challenges related to the interplay between
quantum computers and classical computers. Given the early
stage of the NISQ platforms, a similar type of usage from
typical users (mostly academic and research personnel) is
foreseeable [41].

The main challenge is related to parallelism: in the short
term, most HPC facilities are expected to have at most one
QPU for a given technology (e.g., neutral atoms) available: this
represents a first bottleneck for this class of problems where
many quantum sub-problems are generated; key parameters,
in this case, are related to the relative length of the quantum
and classical task and to the latency of moving data around.
In this specific case, the quantum task requires 50 shots, that
are executed by the QPU at a rate that we can assume to be
∼ 5Hz [42], [43]. This means that sampling an MIS requires
around 10s, regardless of the size of the graph; also, MISs
can only be addressed one at a time, or a few at a time if
considering approaches like mapping multiple graphs on the
same QPU register. This granularity is much larger than the
time taken by the classical computer to generate problems,
creating a bottleneck and wasting all of the advantages of
parallelizing the BB tree exploration. On the other hand, the
impact of data movement is negligible at this granularity.

The shot rate is then a critical factor to keep into account
for an efficient HPC-QC integration. Another related aspect
is the scheduling of resources: a low shot rate keeps clas-
sical resources idle for a long while waiting for the QPU
to complete its task, resulting in a sub-optimal allocation.
Possibilities to mitigate this issue range from oversubscribing
classical resources when hybrid jobs are involved, to splitting
the calculation into multiple steps (i.e., expressing it as a
workflow), decoupling the different classical and quantum
steps into separate units of scheduling, allowing the batch
scheduler to allocate resources to them only when they are
actually ready to run. This last approach is particularly suitable
also when dealing with cloud-based quantum resources, or
with mixed set-ups.

Finally, assuming a different technology (e.g., supercon-
ducting) or a dramatically improved shot rate, other resource
scheduling challenges should be considered: with only a few
QPUs available, we can imagine having a large number of
small quantum tasks to be submitted by multiple classical
jobs executed by many users. Efficient task queues should
be implemented to handle these tasks at a much smaller
granularity [44].

IV. RESULTS AND DISCUSSION

To test our algorithms, we created a dataset containing 120
samples of unit-disk graphs with a number of vertexes n ∈
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𝑛 = 10 𝑛 = 11 𝑛 = 12 𝑛 = 13 𝑛 = 14 𝑛 = 15

Fig. 2. Comparison of GC results: Greedy-it-MIS and BBQ-mIS algorithms are used to color all graphs in our dataset, Gurobi solver provides a benchmark
for the coloring solution. The implementation for the MIS solver is based on the Pulser library.

{10, 11, 12, 13, 14, 15}. Specifically, there are 20 samples for
each possible value of n. The unit-disk feasible representation
of each graph is obtained with the GEAN model presented in
[9].

All the experiments were run on an IBM Power9-based
cluster, with 32 cores/node and 256 GB/node. In particular,
each trial uses 32 physical cores of a node and used up to 16
MPI processes for the parallelization of the Branch&Bound.
The overall experiment required ≈ 8000 core hours.

When solving GC problems, the MIS solver emulates the
quantum system, thanks to the Pulser library implementation,
as discussed in section III-C.

On this dataset, the BBQ-mIS algorithm always reaches
the coloring solutions with the same number of colors as the
optimal GC solutions. Greedy-it-MIS instead provides worse
solutions for 38 samples out of 120; in the worst case, it
requires up to 4 colors more (9 colors instead of 5). Fig. 2
summarizes all GC results on our dataset.

Another observation concerns the number of nodes used in
the Branch&Bound exploration. In the case of our dataset,
the maximum number of BB nodes, i.e., 50, is never reached:
BBQ-mIS terminates into leaves after having explored at most
20 nodes, in the worst-case graph instances. Reasonably, the
number of mIS coming from small graphs, hence the number
of children generating from each branch, is significantly lower
than when targeting larger graphs.

When moving to larger graphs and simulations with real
quantum hardware, it might be interesting to modify the
computation of the feasible coloring C with a less greedy
approach than the one which assigns one different color to
each of the remaining vertexes in H. Thus, one could identify
a property on the number of vertexes |U| to establish that when
the graph is smaller than a given threshold it is better to solve
the subgraph coloring with exact classical methods, possibly
even enhanced by HPC, whereas for graph larger than the
threshold, the quantum MIS solver can be exploited to provide
viable mIS for partial coloring in a computationally efficient
way.

Finally, given the current version of BBQ-mIS, and the
sampling rate of the quantum machine, we estimated the time
needed to solve a GC, independently of the graph size. To
provide meaningful statistics, we need 50 samples for a fixed
pulse setting. This sampling procedure is a minimal quantum

task. To optimize the pulse durations, we allow for evaluating
the sampling results 100 times. Once the optimizer finds the
best duration values, we retrieve 100 samples to provide the
final result of the MIS solver. This procedure takes place each
time a BB node is explored. Since we limited our optimization
to 50 BB nodes in the worst-case scenario, we would need
(50×100+100)×50 = 255000 samples to solve a GC problem
instance. Considering a 5Hz sampling rate, the corresponding
computational time is ≈ 14 hours. For the specific graph
instances of our dataset, this time would be lower because
the BB ended by optimality before exploring 50 nodes. In
particular, all the corresponding GC problems were solved
with 8−20 BB nodes, which would correspond to 2−6 hours
on the real QPU.

V. CONCLUSION

The work presented so far shows promising results for
Graph Coloring problem solutions. Nevertheless, some further
directions can be explored to improve BBQ-mIS’s perfor-
mances or provide a broader benchmark.

One possibility is considering the Quantum Adiabatic Al-
gorithm [45] to solve the Maximum Independent Set problem
instead of the QAOA approach, thus also reducing the use of
quantum resources because no pulse optimization phase would
be needed.

On the emulation side, it may be interesting to implement
the same algorithms exploiting other libraries that emulate the
neutral atoms quantum system, such as Bloqade3, potentially
being able to target even larger graphs. Concerning this aspect,
we aim to compare the emulated results with the simulations
on real quantum hardware, thus establishing the robustness of
our methods in the presence of noise.

Finally, even though these hybrid quantum-classical algo-
rithms target GC problems, they can inspire methods with
a main focus on saving the required qubits and algorithmic
integration with HPC systems, for solving other combinatorial
optimization problems.
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