
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enhancing Automotive Embedded Applications: A Comprehensive Evaluation of Control Flow Checking Methods /
Solouki, Mohammadreza Amel; Sini, Jacopo; Violante, Massimo. - (2024), pp. 1-6. (Intervento presentato al convegno
2024 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS) tenutosi a Aix-en-
Provence (FRA) nel 14-16 October 2024) [10.1109/dttis62212.2024.10780201].

Original

Enhancing Automotive Embedded Applications: A Comprehensive Evaluation of Control Flow Checking
Methods

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/dttis62212.2024.10780201

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2996144 since: 2025-01-02T15:55:30Z

IEEE

Enhancing Automotive Embedded Applications: A
Comprehensive Evaluation of Control Flow

Checking Methods
Mohammadreza Amel Solouki, Jacopo Sini and Massimo Violante

Department of Control and Computer Engineering
Politecnico di Torino ,Turin, Italy

{mohammadreza.amelsolouki, jacopo.sini, massimo.violante}@polito.it

Abstract—Mitigating the risks posed by Random Hardware
Failures (RHFs) is crucial to prevent data corruption and Control
Flow Errors (CFEs) in embedded systems. This paper addresses
these concerns through the application of Software-Implemented
Hardware Fault Tolerance (SIHFT) methods, emphasizing com-
patibility with high-level programming languages such as C. Cur-
rent SIHFT methods, often implemented in low-level Assembly,
present challenges in terms of overhead to code size and real-time
execution. Our proposed approach focuses on pre-compilation
application of SIHFT methods, specifically Control Flow Check-
ing (CFC), to identify CFEs within C-language-based code. We
conducted a comparative analysis of two established software-
based CFE detection methods in C, seamlessly integrating CFC
methods into the application behavioral model. Our methodology
ensures ISO26262 compliance, crucial for the automotive sector,
offering a software-only strategy that aligns with safety and cost
considerations.

Index Terms—control flow checking, functional safety, auto-
motive applications, fault tolerance

I. INTRODUCTION

Embedded systems play an increasingly pivotal role across
military, medical, and commercial domains. Ensuring these
systems exhibit high reliability and correct functionality, while
mitigating reasonable risks, is paramount. The operational
robustness of these systems, particularly their functional safety,
hinges on the careful selection of hardware and software
components.

Functional safety is a critical facet of the product safety
process, emphasizing the mitigation of unreasonable risks.
FuSa standards offer reference life cycles for the imple-
mentation of embedded systems, necessitating that systems
perform tasks correctly within defined timeframes or, at a
minimum, safely bring controlled physical processes to a halt.
Predominantly rooted in IEC 61508, standards like ISO 26262
specifically target functional safety in automotive industry
applications, addressing safety-critical tasks. Initially released
in 2011 and subsequently updated in 2018, ISO 26262 guides
the development of automotive systems, ensuring adherence
to stringent safety requirements [1].

Designers operating within this paradigm strive to prevent
systematic design errors and fortify systems against the im-

pact of Random Hardware Failures (RHFs). RHFs, affecting
physical components like central processing unit registers or
memory locations, are unavoidable due to the inherent nature
of electronic components. While systematic errors can be
mitigated through meticulous life cycle implementation, RHFs
demand specialized attention.

Various techniques are employed to reduce hazards and bol-
ster safety, with a specific focus on enhancing fault tolerance
levels to improve system reliability and integrity. Introducing
hardening techniques, as detailed in existing literature, often
involves adding redundancy through extra hardware compo-
nents or software instructions in the application. However,
this method may incur higher costs as it necessitates repli-
cated hardware modules or custom hardware with error detec-
tion mechanisms. In contrast, software redundancy techniques
prove more flexible and cost-effective for error detection [2].
These techniques introduce additional code without hardware
modifications, facilitating the monitoring of the application’s
correct execution. Software-implemented detection methods,
such as Control Flow Checking (CFC), have been proposed to
enhance the reliability of embedded systems [3]–[9].

In the automotive sector, Model-Based Software Design
(MBSD) has emerged as a well-established approach for devel-
oping applications [10]. Employing a semiformal model using
tools like Mathwork Simulink, MBSD simplifies developer
activities and circumvents the use of low-level languages
mandated by safety standards like ISO26262 (as requested by
part 6 of ISO 26262 Standard [1]). This approach particularly
targets automotive applications developed to manage the safety
of safety-critical systems throughout their lifecycles.

However, the implementation of CFC techniques for di-
verse case studies poses challenges, necessitating a rigorous
assessment of their effectiveness. Existing literature often
details CFC techniques using Assembly language, providing
low-level implementation examples that lack portability. This
paper addresses these challenges, proposing an approach that
implements CFC countermeasures in high-level programming
languages without compromising error detection capabilities.
The experimental results align with ISO 26262 automotive
functional safety standards, demonstrating the effectiveness of979-8-3503-6312-8/24/$31.00 © 2024 IEEE

the proposed CFC methods in detecting RHFs.
Our approach involves the implementation of two estab-

lished CFC detection methods in C-level languages and on
Model-Based Software Design (MBSD), complemented by
benchmarks relevant to the automotive industry. This contribu-
tion aims to enrich the understanding of software-implemented
control flow checking and provide practical insights for devel-
opers and researchers, particularly in the automotive industry.

This work is organized as follows: Section II provides an
overview of hardening techniques, Section III explains our
case study, while Section IV presents the experimentally mea-
sured effectiveness. Finally, Section V provides conclusions.

II. BACKGROUND

This section briefly overviews hardware-based fault toler-
ance techniques and software-based hardening methods. Ad-
ditionally, we delve into functional safety within the automo-
tive industry, focusing on ISO26262-compliant classification.
This scheme is pivotal for assessing fault tolerance methods’
effectiveness while ensuring compliance with industry-specific
safety standards and regulations.

A. Hardware-based fault tolerance techniques

Hardware-based techniques have two main groups i)
redundancy-based and ii) hardware monitors.The first tech-
nique relies on hardware or time redundancy, adding extra
hardware components to detect and eventually reduce faults.

Hardware redundancy can be applied through i) passive,
ii) active and iii) hybrid methods. In contrast, the second
technique adds special hardware modules to the system’s
architecture to monitor the control flow of the programs inside
the processors and memory accesses performed by them.
These include, for example, watchdog processor checkers;
Infrastructure Intellectual Properties (I-IP); runtime signatures
using either reference signatures or verification of the integrity
of signatures with error correction codes.

Hardware-based techniques have a high cost, verification,
testing time, and overhead, leading to higher power consump-
tion [11].

B. Software-based hardening techniques

The corruption of the execution order of instructions is
known as a control flow error (CFE). A CFE is a violation
of the control flow graph (CFG) of the program. The CFG is
an oriented graph representing the program flow. Basic Blocks
(BBs) are the vertices while the legal transitions between them
are the edges. A BB is a sequence of consecutive instructions
with exactly one entry and one exit point, meaning there is
no branch or jump instructions except the last one. Figure 1
shows the sample code alongside an example of the CFG for
the corresponding program.

CFEs are typically partitioned into two categories: inter-
block CFEs and intra-block CFEs. An inter-block CFE is an
invalid jump through the program between two different basic
blocks, while an intra-block CFE is an invalid jump within the
same basic block. Both types of CFE can cause the program or

G= (V,E)
V={BB0,BB1,BB2,BB3,BB4}

E={e0,e1,e2,e3,e4}

e0= {BB0, BB1}

e1= {BB1, BB2}

e2= {BB1, BB3}

e3= {BB2, BB4}

e4= {BB3, BB4}

BB4

BB1

BB3BB2

BB0

BB0 while (int i>10) {

BB1 If y==1

BB2 y ++;

BB3 Else
y=y*2;

BB4 i++;
}

Fig. 1: Sample code and program CFG example. The execution
from basic block BB1 to BB2 or from BB1 to BB3 are legal,
but a jump from BB1 to BB4 is illegal and called Control
Flow Error (CFE) [12].

system to halt, crash, or provide erroneous output, potentially
leading to hazardous situations.

Among the various error protection techniques available in
the literature, Control Flow Checking (CFC) is considered one
of the most effective for those faults affecting the control
flow of embedded software. Examples of such methods are
CFC by Software Signature (CFCSS) [4], Control-flow Error
Detection through Assertions (CEDAs) [5], Assertion for CFC
(ACFC) [6], and Yet Another Control-Flow Checking using
Assertions (YACCA) [7]. Relationship Signatures for Control
Flow Checking (RSCFC) [8], signature monitoring methods
like, for instance, YACCA [7], CFCSS [4] and CEDA [5], ad-
dress illegal inter-block jumps during application execution by
monitoring run-time signatures with compile-time signatures
at the BB level. These approaches are based on comparisons
of the value of the signatures computed at run-time with
their expected values assigned to each BB at the design
time or compile-time. It allows the detection of misbehaviors.
The fundamental difference among these techniques is how
signatures are computed and checks are performed. To improve
the previous methods and allow them to cover unallowable
intra-block jumps, instruction monitoring techniques, such as
the previously described RSCFC [8], Software Implemented
Error Detection (SIED) [3], and Random Additive Control
Flow Error Detection (RACFED) [9] are used to examine the
correct order of instruction execution.

C. Functional safety in the automotive industry

The ISO 26262: Road Vehicles - Functional Safety standard,
published in 2011 [1], addresses the safety aspects of automo-
tive E/E architectures, considering both random and systematic
system failures. It is an automotive-specific adaptation of the
IEC 61508 standard, the functional safety focusing on general
electronic systems. This means managing risks emerging from
malfunctioning behavior (due to random hardware failures or
systematic failures) of E/E systems The Standard is divided
into eleven parts, covering all activities during the safety life
cycle of safety-related systems. The process prescribed in ISO
26262 uses a top-down approach in which, hazard analysis is
first conducted to identify potential hazards and system-level
requirements.

The most important parts related to our paper are the third
(concept phase), fifth (development at the hardware level),

and sixth (development at the software level). The third is
the ”concept phase”, when the item is defined. From the
definition, it is possible to perform the hazard analysis and
risk assessment needed to define the risk level associated with
its functionality (Automotive Safety Integrated Level, ASIL),
the safety goals (SGs) to be achieved, and its functional safety
concept (FSC).

The fifth phase is about product development at the hard-
ware level. An essential result of this phase is the list of the
possible Failure Modes (FMs) that can affect the designed item
and, in particular, its computation unit. Since the computation
unit is a microcontroller, part 11 introduced in the 2018 version
is useful since describes the application of the Standard to
semiconductor components. The sixth phase is that technical
safety requirements must be detailed down to quality software
safety requirements to be implemented in the software. These
are self-test and monitoring functions for the operating system,
basic software, and application software [1].

III. CASE STUDY

To enhance the robustness of the software, two distinct
approaches were employed. as shown in Figure 2:

1) Source Code Generation and Manual Hardening: The
source code was initially generated directly from the
Simulink StateFlow chart through the Embedded Coder.
Subsequently, the source code underwent manual hard-
ening. It is imperative to highlight that adhering to func-
tional safety standards dissuades the implementation of
embedded software in assembly code due to associated
testing complexities.

2) Integration of CFC Techniques into Simulink Model:
CFC techniques were directly integrated into the
Simulink Model, reflecting the application behavior.
This aligns with the MBSD commonly employed in the
automotive industry. MathWorks [13], a widely adopted
tool for MBSD, was selected for its compatibility and
Simulink’s popularity in describing behavior models.
The Stateflow package within Simulink facilitated the
development of Finite State Machines (FSM).

To evaluate the efficacy of our approach, we opted for two
established CFC methods, namely YACCA [7] and RACFED
[9]. The selection of MathWorks [13] was driven by its
ubiquity and acceptance within the MBSD paradigm.

YACCA [7] is favored for its simplicity in implementation
and is available in both assembly and C language. This
simplicity typically results in minimal overheads in terms of
instructions and code size. However, it necessitates a signature
variable with a bit width equal to the number of Basic Blocks
(BBs), making implementation challenging when BBs exceed
64.

RACFED [9], while more intricate, utilizes random num-
bers, enabling the use of a smaller signature (64 bits suffice in
every scenario). It incorporates a two-phase signature update
and has the capability to detect intra-block Control Flow
Errors (CFEs). Theoretically, this positions RACFED to offer
superior detection capabilities compared to YACCA.

Simulink
Stateflow

Simulink
Stateflow

Hardened model

.c .h

.c .h

.c .h

Plain source code

Direct Hardened
Source code

Manually Hardened
Source code

Embedded
coder

Embedded
coder

Im
pl

em
en

tin
g

C
FC

Implementing CFC

Fig. 2: Code Hardening Approaches

This case study, through the integration of these CFC
methods into an MBSD framework, provides a comprehen-
sive examination of their performance in enhancing software
robustness.

A. Target platform

To assess the robustness of the proposed methodologies,
we conducted benchmarking on a target platform based on
RISC-V (RV32I). The emulation of this platform was achieved
at the instruction-set level through the utilization of QEMU
(Quick Emulator) [14], an open-source machine emulator and
virtualizer.

The choice of RISC-V as the underlying architecture for our
platform provides notable advantages. Specifically, it allows
developers to tailor the architecture to specific applications.
Furthermore, it fosters an environment open to diverse hard-
ware vendors without incurring royalty-related constraints.
This characteristic aligns with the open nature of RISC-V,
empowering developers with customization capabilities.

We employed the GNU RISC-V Toolchain to compile
the benchmark applications considered in this paper. This
toolchain ensures compatibility and optimal performance
within the RISC-V architecture.

The GNU Debugger (GDB) [15] was seamlessly integrated
into our setup, serving as the primary interface to interact
with the QEMU emulator. As an open-source debugger, GDB
provides a robust and flexible environment for debugging
and analysis. The utilization of QEMU and the GNU RISC-
V Toolchain [16] in our experimental setup guarantees a
standardized and replicable environment for benchmarking.
This consistency is crucial for accurately evaluating the per-
formance of the proposed methodologies.

B. Fault models

This subsection of the work focuses on a specific subset of
faults, specifically those impacting the Program Counter (PC)
register. The rationale behind this choice lies in the inherent
capabilities of CFC methods, which are primarily designed
to detect faults influencing the program flow. Consequently,
faults affecting data or leading the program along an incorrect
but valid path within the CFG are beyond the scope of CFC
detection.

For clarity, faults such as those causing a deviation from the
correct path in conditional assertions (e.g., if-else statements)

due to corruption in the associated variable are not within the
purview of CFC. These faults, although potentially impactful,
fall outside the detection capabilities of the chosen CFC
approach. As a result, their detection does not necessitate
experimental validation.

To conduct fault injection experiments, we adopted the Fault
Injection system outlined in [17]. This system, presumably
detailed in the referenced source, provides a robust and reliable
framework for introducing faults into the system, allowing for
the systematic evaluation of the CFC method’s effectiveness
in detecting faults affecting the Program Counter register.
The specific faults injected, coupled with the chosen Fault
Injection system, contribute to the rigor and reproducibility of
our experimental setup.

C. ISO26262-compliant classification

This section serves as a valuable methodology for software
developers, offering them a means to comprehensively assess
the efficacy of their software in detecting and, when possible,
mitigating failures impacting the onboard computation unit.
The paper facilitates this assessment by presenting classi-
fications derived from simulation results in a format com-
pliant with ISO26262 standards. In the context of real-time
safety-critical systems, our focus centers on two key aspects:
i)Diagnostic Coverage (DC) and ii) Overhead. Diagnostic
Coverage, a key metric, quantifies the effectiveness of the de-
tection mechanism. Simultaneously, we prioritize assessing the
overhead regarding executed instructions, as preserving real-
time performance is imperative. Formally, the N results, where
N represents the number of injected faults, are categorized as
follows:

• N the number of injections;
• L the number of ”latent after injection” outcomes;
• DHW the number of simulations where a hardware

mechanism has detected the RHF;
• DSW the number of simulations where the RHF has been

detected by the CFC;
• U the experiment in where the application entered an

”infinite loop”, remained ”stuck at some instruction”, or
presenting an ”erratic behavior”.

Safe =
As golden

N

Detected =
DHW +DSW

N

Latent =
L

N

Residual =
U

N

False positive =
false positive

N

The Diagnostic Coverage (DC) is calculated using the
formula:

DC = DSW (Number of simulations where the RHF is detected by Control Flow Checking)
N (Total number of fault injections conducted)

This equation provides a quantitative measure of the ef-
fectiveness of the CFC methods in detecting RHFs during

fault injection simulations. This metric serves as a crucial
indicator of the diagnostic capabilities of the implemented
fault detection mechanism.

IV. EXPERIMENTAL RESULTS

In this study, we opted for two benchmarks: i) timeline
scheduler (TS) and ii) tank level (T).

The first benchmark (timeline scheduler (TS)) was a Finite
State Machine (FSM) implementing a timeline scheduler. A
timeline scheduler is a periodic task, executed thanks to a
timer triggering an interrupt, in charge of running a set of
tasks in a fixed order defined by the system designer. In our
benchmark, we had 15 tasks that to be executed in a fixed
order, granting each of them a 200 ms time slot.

The second benchmark (tank level (T)) was a software-
implemented controller in charge of keeping the liquid level
contained in a tank at the desired height with an on-off logic.
It takes the liquid level inside the tank alongside the current
absorbed by the pumps. Based on this data, it decides when to
turn the pump on and generates an alarm in case of detection
of overcurrents, shutting down the pump to avoid damage to
its motor.

These benchmark applications have been chosen since this
kind of algorithm is expected in the automotive environment,
for example, battery management during regenerative braking
or in other functional safety environments to keep the right
level in fire extinguisher plants.

A. Fault injection results

Seven distinct outcomes were considered in classifying the
application’s behavior, each providing insights into the impact
of injected faults on the Program Counter (PC) register flow.
These outcomes include ”Latent after injection,” where the
fault is injected, but the behavior remains identical to the
fault-free run, and ”Erratic behavior,” indicating a deviation
from the normal execution. Additionally, classifications like
”Infinite loop” and ”Stuck at some instruction” capture specific
behaviors related to the PC register, revealing insights into
potential issues caused by the injected faults.

Furthermore, the classification extends to detection mech-
anisms, with distinctions like ”(Detected) by SW hardening,”
signifying detection by the Control Flow Checking (CFC),
and ”(Detected) by HW (mechanism),” indicating detection
triggered by hardware traps. Notably, a category labeled ”As
golden” differentiates from ”Latent after injection,” represent-
ing detected faults that do not impact the application’s output.

We conducted multiple injection campaigns alongside these
classifications, each introducing 1000 Permanent faults affect-
ing the target’s PC. Permanent faults imply a scenario where
a bit inside the affected register remains permanently stuck
at 0 or 1 from the moment of injection until the end of the
simulation. Injection characteristics were randomly chosen,
including injection time, affected bit position, and state.

It is important to note that the sum in Table I may be
less than 1000 when some injections fail due to the random
injection time occurring after the algorithm’s end.

TABLE I: Classifier results obtained from the fault injection campaign assessing [18] [12].

Approach Classification result T Benchmark TS Benchmark
MBSD C-Level MBSD C-Level

YA
C

C
A

Latent after injection 791 883 110 166
Erratic behavior 0 29 0 0
Infinite loop 0 20 261 142
(Detected)bySW +Safe 0+13 26+40 112+0 141+0
(Detected)byHW +Safe 2 2 512 551

R
A

C
FE

D

Latent after injection 771 945 133 83
Erratic behavior 0 0 0 0
Infinite loop 0 0 167 314
(Detected)bySW +Safe 1+34 0+52 305+0 79+0
(Detected)byHW +Safe 0 3 395 524

TABLE II: ISO 26262-compliant classification of the results obtained from the fault injection campaign [18] [12].

Approach CFC Methods Benchmarks Detected Undetected False Pos.
Safe Detected Latent Residual

M
B

SD

YACCA T 1.61% 0.25% 98.14% 0.00% 0.00%
RACFED T 4.22% 0.12% 95.66% 0.00% 0.00%
YACCA TS 0.00% 51.80% 9.10% 39.10% 0.00%
RACFED TS 0.00% 70.00% 13.30% 16.70% 0.00%

C
-l

ev
el

YACCA T 4.00% 2.80% 88.30% 4.90% 0.00%
RACFED T 5.20% 0.3% 94.50% 0.00% 0.00%
YACCA TS 0.00% 69.20% 16.60% 14.20% 0.00%
RACFED TS 0.00% 60.30% 8.30% 31.40% 0.00%

TABLE III: Data regarding memory occupation and executed instruction.T = Tank Level, TS = Timeline Scheduler, and TSS
= Text Segment Size. Vanilla refers to the application that is not hardened from its original form. [18] [12].

Approach CFC Methods Benchmarks TSS Overhead # exec. instr. Overhead

M
B

SD

Vanilla T 9012 33460
YACCA T 10432 (+15.7%) 33498 (+0.1%)
RACFED T 12804 (+42.0%) 33534 (+0.2%)
Vanilla TS 1736 3991
YACCA TS 6056 (+249%) 10771 (+170%)
RACFED TS 7320 (+322%) 7492 (+87.7%)

C
-l

ev
el Vanilla T 9012 42593

YACCA T 10512(+16.6%) 44668(+4.9%)
RACFED T 10966(+21.7%) 43864(+3.0%)
Vanilla TS 1736 3991
YACCA TS 2496 (+ 43.8%) 4182 (+ 4.9%)
RACFED TS 6271 (+ 261%) 5770 (+ 44.6%)

This comprehensive classification system, coupled with
injection campaign results, offers a thorough understanding
of the application’s response to permanent faults and the
effectiveness of the detection mechanisms.

B. Diagnostic coverage
The outcomes presented in Section IV-A were transposed

into ISO 26262-compliant classifications, necessitating the
calculation of DC for the evaluation of CFC methods. Table II
reveals that the RACFED method outperformed the YACCA
method, aligning with expectations due to its additional fea-
tures, such as intra-block detection and a two-phase signature
update, which were not utilized in our benchmark. It is note-
worthy that no ”safe” detected failures were observed for the
TS benchmark, while ”safe” detected failures predominated
in the T benchmark for both MBSD and manual hardening
approaches. This distinction underscores the methodological
variations in the benchmark scenarios, contributing to nuanced

detection outcomes for the two benchmarks under different
hardening techniques.

C. Overheads
Table III provides comprehensive data on the overhead

considerations in this study, encompassing two pivotal aspects:
(i) the augmentation in Text Segment Size (TSS), delineating
the expanded program memory footprint attributable to the
inclusion of CFC instructions post-compilation. This size
increase directly impacts the embedded system’s flash memory
requirements. (ii) Execution time overhead, assessed through
ISA-level simulations conducted during the fault injection
campaigns, quantifies the additional machine instructions (#
exec. instr.) necessary for the execution of the hardened
program.

Delving into both forms of overhead is crucial for em-
bedded applications, with specific considerations for code
size in resource-constrained microcontrollers and the executed

instructions, a key determinant of real-time application per-
formance. The correlation between CFE detection capabilities
and the introduction of hardening instructions is evident.
The analysis reveals that the lower DC observed in the T
benchmarks aligns with the overhead in terms of the number
of executed instructions. Notably, variations in text segment
sizes between benchmarks arise from implementing hardening
techniques using Embedded Coder’s inline option.

V. CONCLUSIONS

In the realm of software-implemented Control Flow Error
(CFE) detection techniques, the literature lacks comprehen-
sive guidelines aiding developers and researchers in method
selection and implementation within models or high-level
programming languages. To address this gap, we conducted
an experimental study implementing two established CFE
detection techniques using a Model-Based Software Design
approach and the C language. Our investigation focused on
evaluating these techniques across three critical criteria: i)
diagnostic coverage, ii) code size overhead, and iii) the number
of executed instructions, directly impacting the worst-case
execution time of the application.

This study serves as a valuable resource for software de-
velopers and researchers, particularly those engaged in the
automotive industry, offering insights into the most suitable
CFE detection techniques for mitigating random hardware
failures. Furthermore, the portability ensured by high-level
programming language or model implementations extends the
applicability of this approach, making it feasible for adoption
in AUTOSAR-compliant applications [19], [20]. Our proposed
methodology aligns with technical requirements in scenarios
where code independence from the platform is paramount.

Our methodology exhibits potential for broader application
across diverse industrial domains, such as unmanned aerial
vehicles, owing to its comprehensive nature surpassing the
confines of the automotive sector. In this context, we have
opted for automotive industry benchmarks to cater to the
requisites of automotive functional safety standards concerning
the utilization of high-level programming languages.

REFERENCES

[1] “ISO 26262:2018 Road vehicles – functional safety,” 2018.
[2] M. A. Solouki, S. Angizi, and M. Violante, “Dependability in embed-

ded systems: A survey of fault tolerance methods and software-based
mitigation techniques,” arXiv preprint arXiv:2404.10509, 2024.

[3] B. Nicolescu, Y. Savaria, and R. Velazco, “Sied: Software implemented
error detection,” in Proceedings 18th IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems. IEEE, 2003, pp. 589–596.

[4] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE transactions on Reliability, vol. 51, no. 1,
pp. 111–122, 2002.

[5] R. Vemu and J. Abraham, “Ceda: Control-flow error detection using
assertions,” IEEE Transactions on Computers, vol. 60, no. 9, pp. 1233–
1245, 2011.

[6] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-
line fault detection using control flow assertions,” in 9th IEEE On-Line
Testing Symposium, 2003. IOLTS 2003. IEEE, 2003, pp. 137–143.

[7] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
“Improved software-based processor control-flow errors detection tech-
nique,” in Annual Reliability and Maintainability Symposium, 2005.
Proceedings. IEEE, 2005, pp. 583–589.

[8] A. Li and B. Hong, “Software implemented transient fault detection in
space computer,” Aerospace science and technology, vol. 11, no. 2-3,
pp. 245–252, 2007.

[9] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random
additive control flow error detection,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2018, pp. 220–
234.

[10] K. Vinoth Kannan, “Model-based automotive software development,”
in Automotive Embedded Systems: Key Technologies, Innovations, and
Applications. Springer, 2021, pp. 71–87.

[11] S. Safari, M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin,
A. Yeganeh-Khaksar, S. Hessabi, A. Ejlali, and J. Henkel, “A survey of
fault-tolerance techniques for embedded systems from the perspective of
power, energy, and thermal issues,” IEEE Access, vol. 10, pp. 12 229–
12 251, 2022.

[12] M. A. Solouki, J. Sini, and M. Violante, “An experimental evaluation of
control flow checking for automotive embedded applications compliant
with iso 26262,” IEEE Access, vol. 11, pp. 51 185–51 198, 2023.

[13] T. M. Inc., “Matlab version: 9.13.0 (r2022b),” Natick, Massachusetts,
United States, 2022. [Online]. Available: https://www.mathworks.com

[14] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41, no. 46. Califor-
nia, USA, 2005, pp. 10–5555.

[15] “The gnu debugger [online] available,” https://www.gnu.org/software/
gdb/, 2022.

[16] “Gnu risc-v toolchain [online] available,” https://github.com/johnwinans/
riscv-toolchain-install-guide, 2022.

[17] J. Sini, M. Violante, and F. Tronci, “A novel iso 26262-compliant test
bench to assess the diagnostic coverage of software hardening techniques
against digital components random hardware failures,” Electronics,
vol. 11, no. 6, p. 901, 2022.

[18] M. Amel Solouki, J. Sini, and M. Violante, “Implementation of con-
trol flow checking—a new perspective adopting model-based software
design,” Electronics, vol. 11, no. 19, p. 3074, 2022.

[19] “AUTOSAR Main Requirements,” https://www.autosar.org/fileadmin/
standards/R22-11/FO/AUTOSAR RS Main.pdf, accessed: 2024.

[20] S. Fürst and M. Bechter, “Autosar for connected and autonomous ve-
hicles: The autosar adaptive platform,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Work-
shop (DSN-W), 2016, pp. 215–217.

https://www.mathworks.com
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://github.com/johnwinans/riscv-toolchain-install-guide
https://github.com/johnwinans/riscv-toolchain-install-guide
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_RS_Main.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_RS_Main.pdf

	Introduction
	Background
	Hardware-based fault tolerance techniques
	Software-based hardening techniques
	Functional safety in the automotive industry

	Case Study
	Target platform
	Fault models
	ISO26262-compliant classification

	Experimental results
	Fault injection results
	Diagnostic coverage
	Overheads

	Conclusions
	References

