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Section S1. Device fabrication 

The steps are detailed in the Methods section of the Manuscript. 

 

 

Figure S1: Fabrication scheme. Process flow of our photonic circuit fabrication with standard lithography 

methods. 

 

Section S2. Measurement setup 

The steps are detailed in the Methods section of the Manuscript. 



 

 

Figure S2: Optical measurement setup. An illustration of the Read/Write measurements scheme. 

Section S3. Device Components and losses 

Ring Resonators 

A schematic of our photonic device structure is shown in Figure S3a. For multiplexing the important 

control parameters are the gap sizes between the input -waveguide and -resonator, and the output 

(drop) -resonator and waveguide (shown by red arrow) and the ring resonators’ radii (shown by 

black arrow). For the former, it is can be shown that maximal transmission can be realized when 

input gap=output gap or the device has a symmetric configuration. Our devices are therefore 

symmetric. For maximal transmission however we calibrate for the gap sizes. In Figure S3b we plot 

the gap size against optical transmission. Notably, maximum transmission is achieved for the smallest 

gap, which is 200 nm. We use this gap size in our device. 

 

The transmission spectra of the 16 ring resonators at the MUX shown in Figure 1c of the main 

text are plotted in Figure S3c. 16 distinct resonances are measured at the output (drop) bus, each 

with minimal overlaps with the others. Every resonance is the output from a distinct PCM device and 

satisfies the resonance condition  , where rm is the ring radius, m is a positive integer, 

and neff  is the effective index of the photonic structure. Thus, to adjust the resonance wavelength, 



 

the ring radii are slightly varied resulting in different resonance conditions for each input. Using the 

above relationship, the ring radii to achieve distinct resonances can be estimated using the 

expression . Here r1 is the radius of the first ring which we used as a reference, λ1 is 

its resonance wavelength and ng is the group index. We choose r1 = 30 µm, which yields us a 

sufficient free spectral range, such that the resonances are spectrally separated. For the devices 

shown in Figure 2e of the main text, the free spectral range is 6.33 nm. All photonic structures are 

fabricated on a fully etched SiN (Si3N4) on SiO2 wafer, such that the produced strip waveguides are 

330 nm in height and 1.2 µm in width. The geometry is larger than the cut-off dimensions required 

to only support single-mode propagation (TE00), but the couplers are optimized only for (TE00). 

Thus only single-mode guiding occurs in the waveguides. 

 

PCM device 

In Figure S3d, we plot normalized transmission to the output at a fixed wavelength (thus PCM device) 

for increasing amplitude (energy) of the erase pulses. The 10 nm thin GST patch is 4 µm long and 

is treated on a hotplate at 250 0C before optical switching experiments. The measurement thus starts 

in a fully crystalline state of GST, and for increasing pulses amplitude the device becomes more and 

more transmissive. This is a result of larger amorphous volumes created in the GST patch, as 

sketched in the inset cartoons. We note that to achieve a 30% 1.13 dB) change in transmission 

through amorphization (not shown), a ∼12.5 mW optical pulse of 200 ns width and 4 ns edges is 

sufficient, which corresponds to a switching energy of 2.5 nJ. For the correlation detection 

experiment, every write signal we use is ∼4 mW optical pulse of 200 ns width and 4 ns edges, which 

corresponds to crystallization energy of 0.8 nJ. For the data shown in Figure S3e, the corresponding 

accumulative behavior is plotted in Figure S3d. We also point out that our choice of a device with 2 

resonators provides the benefits of delineating the phase-transition effects in GST from the 

resonance conditions of the resonators. In Figure S3f, we plot the transmission spectra of 4 devices 

before and after switching GST. Notably, the transmission peaks are overlapping each other, which 

would not have been the case if GST were to be deposited on the resonators (Advanced Optical 

Materials 5.1 (2017), 1600346). 

Optical losses 

Considering the device layout sketched in Figure 1b of the main text, the total optical loss in the 

photonic circuit can be expressed as  , and estimated by taking to account the 

different loss mechanisms. This includes propagation losses of SiN waveguide (αSiN), losses from 

optical absorption by GST (αPCM) it amorphous or crystalline state, coupling (insertion) losses to the 

MUXs (αc) and scattering losses at the MUXs (αs), such that α = αSiN + αPCM + αc + αs. Alternatively, 

the loss can be expressed as Pin = Pout ×eαSiNz ×eαPCMz × 2Neαc ×Neαs. Here, z is the propagation length 

of the optical mode and N are the number of devices. The prefactor 2 for coupling losses takes to 

account the 2 coupling junctions for each resonator (from bus waveguide to the resonator and from 

the resonator to PCM waveguide). In Figure S3g, we have listed the magnitudes of the different 



 

losses. Note that in our estimations we have excluded losses at the setup (which we measure to be 

∼-4 dB), and at the grating couplers (which we measure to be ∼-6.6 dB/coupler). 

 

Figure S3: Device characteristics. (a) A schematic of the photonic device. (b) Transmission in the device for 

differing gap sizes. (c) Transmission spectra of 16 devices. (d) Programming curve of a PCM device. (e) 



 

Accumulation behavior in a PCM device. Inset in (d) and (e) are cartoons of hypothetical phase-

configurations. (f) Transmission spectra of 4 devices before and after switching GST. (g) A listing the 

different loss mechanisms in our photonic circuit. (h) A sketch of the projected energy consumption in 

different sections of a systems, for Read and Write operations. (i) A listing of different parameters used for 

the energy.  

The energy consumption associated with the photonic computational memory unit is difficult to quantify 

given that we do not have a complete system yet. However, we can make an estimate based on the 

existing devices and their energy consumption. The energy consumed per device is approximately 2 nJ 

for RESET (amorphization), 0.8 nJ for SET (crystallization) switching, and 0.01 nJ for Read Operation. 

Our previous results (Nature communications, 8, 1-8 (2017)) have improved on the energy consumption 

to 135 pJ for RESET, 5 pJ for SET switching, and 1 pJ for Read Operation. Considering the latter values 

and assuming 100 devices (50 are correlated at every timestamp), the total energy consumed for an 

experiment corresponding to 1 Million Inputs will be 2.50 mJ (Etotal = ERESET + ESET + ERead = (100 ×135 

pJ) + (5 ×1 pJ ×1e6 ×50) + (100 ×1 pJ)). This is comparable to the energy consumed by equivalent 

electronic phase-change memories. Thus, while benefiting from huge imminent advantages, namely 

high processing speeds, and parallelization for write and read through wavelength multiplexing, both 

not possible in the electronic domain, the integrated approach could prove to be equally power efficient. 

However, note this estimate does not consider the overhead associated with read/write circuitry, data 

converters, control, and command circuitry as previously mentioned. Supplementary Figures S3(h and 

i) show the projected power consumption of the different components. The comparison illustrates that 

energy consumption is dominated by the electronic component (particularly ADCs) in our setup and 

Photonic Computational Memory minimally contributes to net consumption. In alternate schemes, more 

efficient ADCs can be considered and the DACs can be simply replaced with a switch, as the mode of 

operation for correlation detection is binary via Write inputs. Note that the predicted speed based on 

high-performance photonic integrated photodetectors, modulators, and high efficiency CMOS-based 

ADC can reach 25 GHz, only to be limited by the crystallization speed of the devices for the Write 

operation. At first approximation, assuming the crystal growth velocity to 4 nm/ns (Nat Commun 4, 

2371 (2013) and each accumulation state requiring a 4 nm region to crystallize, this equates to ~150 

MHz operational bandwidth.  

 

S4. Modeling Framework 

Finite Element Model Description: 

The finite element model simulation framework has been developed using a commercially available 

FEM software environment (COMSOL®), in combination with a classical nucleation-growth (CNG) 

cellular automata algorithm. On the FEM model, we initialize the system by the solution of the 

Helmholtz equation on its port interfaces, to determine the waveguide propagation mode. We use 

this solution to obtain the spatially and time-resolved distributions of the electromagnetic field (by 

solution of the wave propagation equation), and the temperature (solving the heat equation via the 



 

input of the optical absorption as the volumetric heat source). The temperature is then used as the 

driving mechanism inducing the phase transition, calculated via the CNG model, which in turn 

determines the spatially-resolved material properties of the photonic accumulator GST thin layer. 

 

To drastically reduce the calculation time, the FEM calculation is carried out for the total 

duration of each pulse, which includes both the pulse time and the cool-down time. The spatially- 

and time-resolved temperature profile is then extracted to calculate the phase transition taking place 

during the same time range. This process is repeated iteratively until the completion of the simulated 

accumulation task. This approximation retains applicability as long as the variation of the crystal 

fraction (and consequently, of the GST layer optical and thermal properties) is sufficiently low to not 

induce an appreciable variation of the solutions of the wave and heat equations during the pulse 

time. Our experimental data shows that ~100 pulses are necessary to achieve the full transmittance 

drop, thence justifying the use of this approach. 

 

The FEM model geometry replicates a 3D waveguide segment of 8 μm, which includes the 

waveguide core (SiN), the substrate (SiO2), and the cladding (air). The photonic accumulator unit 

cell is placed at the center of the model, on the waveguide top surface, and comprises a GST layer 

and the SiO2 capping layer. The GST layer is further fractioned in two distinct volumes, with an 

(initially) amorphous mark shaped to mimic the experimental results of the SEM characterization, 

and the remaining fraction fixed to retain the crystalline GST material properties. The amorphous 

mark assumes an extrusion of the amorphous area identified with the SEM image, across the 

thickness of the GST layer. The FEM electromagnetic model adopts scattering boundary conditions 

of the second-order surrounding the model external interfaces, to negate unphysical reflections yet 

avoiding the use of computationally-intensive PML approaches (https://uk.comsol.com/blogs/). The 

FEM heat model employs a fixed temperature boundary condition at the external surfaces, which 

we are allowed to adopt as the distance of those from the heat source is sufficiently large to not 

determine any significant variation of the heat flux. We note that, since the device is characterized 

by a planar symmetry, we calculate the model solution on the model of half of the device; on the 

cut plane, we use the perfect electric conductor approximation to ensure the correct calculation of 

the waveguide modal profile and the solution for the wave equation. A zero-flux boundary condition 

is instead applied (on the same cut plane) for the heat model. The material properties utilized in our 

FEM model are reported in Table S1. In addition to those, thermal contact resistance of 3.5×10-

8W/m2K is employed for the GST interfaces with SiN and SiO2 (Sci. Re p7, 1, 15360, 2017, IEEE 

Electron Device Lett., 9, 1281–1283, 2011). 

 

The CNG model draws from the classical steady-state description of the nucleation and 

growth mechanisms. This theory describes the crystallization of an amorphous material starting with 

the formation of small and unstable clusters, which may either dissolve or grow towards a stable 

configuration once the temperature-dependent critical size is reached. The driving force of this 

mechanism is the difference in the Gibbs free energy between the amorphous and the crystalline 



 

phases. The steady-state rates I for nucleation (homogeneous, hom and heterogeneous, het) and 

growth (gro) are usually expressed as follows: 

 

Inuc
ss,hom =  knuc

hom  exp (
−𝐸𝑎

𝑘𝐵𝑇⁄ ) exp (
−∆Gcluster

𝑘𝐵𝑇⁄ )  

Inuc
ss,het =  knuc

het  exp (
−𝐸𝑎

𝑘𝐵𝑇⁄ ) exp (
−∆Gcluster𝑓(𝜗)

𝑘𝐵𝑇⁄ )  

Igro
ss =  kgro  exp (

−𝐸𝑎
𝑘𝐵𝑇⁄ ) 𝜙(𝑇) (1 − exp (

−∆Gcluster
𝑘𝐵𝑇⁄ ))  

where the suffix ss indicates the steady-state value. As visible, each equation is composed by three 

terms: a kinetic prefactor k, an Arrhenius term driven by the activation energy Ea for the diffusion 

across the phase interface, and a thermodynamic term. In the latter, the critical energy barrier for 

the cluster formation is ∆Gcluster =  
16

3
π

σ3

(∆Hf
𝑇𝑚−𝑇

𝑇𝑚
)

2 (Tm being GST melting point, and ΔHf the enthalpy 

of formation of the crystal phase). The shape factor 𝑓(𝜗), appearing in the heterogeneous process, 

is usually defined as 𝑓(𝜗) =   
(2−cos𝜗)(1−cos𝜗)2

4
, with 𝜗 being the contact angle between the crystallite 

and the vicinal defect. To improve the adherence of our simulation to the experimental data, we 

here use also the expression proposed by Peng et al. (J. Appl. Phys., 82, 9, 4183–4191, 1997), 

𝜑(T) = exp (−
0.8

1−T/Tm
), which is a phenomenological expression which mimics the growth dynamics 

of thin PCM layers.  

 

In our implementation, we employ a 3D cellular automata framework to manage the temporal 

evolution and phase-state output of a series of constituent units, defined as monomers, driven by 

the above-listed equations. The material properties adopted for the CNG model are reported in Table 

S2; however, more details of the CNG model, and the methods adopted to transfer its output to the 

FEM model, are discussed in detail in Ref. (E.Gemo,Thesis, 2021). The model here employed does 

not consider any heterogeneous nucleation contribution, as the literature is incomplete on the 

quantification of such a phenomenon for a thin GST film sandwiched between a SiN and a SiO2 

layers. 

 

We restrict the calculation to the amorphous mark region, once more for computational 

requirements reasons. By use of explorative models, we determined the necessary optical power to 

induce melt-quench on the model (in our case being 4.6 mW). Thus, by setting such a power 

threshold value as the upper limit in our simulation tasks, we avoid any unexpected melt-quench 

outside the devised phase-change – “allowed” volume, and therefore any resulting computational 

artifact, thus validating the applicability of this restriction. 

 

 

 

 

 



 

 

Table S1. Material parameters used for the FEM simulations 

material 
Refractive 

index 𝑛 

Extinction 

coefficient 

𝜅 

Density 𝜌 

[Kg/m3] 

Specific heat 

𝑐𝑃 [J/Kg/K] 

Thermal conductivity 

𝜅𝑇 [W/m/K] 

A-GST 3.94† [11] 0.045† [11] 
5781 

[12], [13] 218 [14] 
0.23 [14] 

C-GST 6.11† [11] 0.83† [11] 6150 [12] 0.58 [14] 

Si3N4 2.001† [15] -- 2750 [16] 773† [17] 18.4† [17] 

SiO2 1.445 -- 
2200 

(bulk) 
696† [17] 1.37† [17] 

The suffix † indicates that the FEM model uses temperature-dependent parameters (room temperature values are 

reported). 

 

Table S2. Materials and model parameters used for the phase-change simulations 

Parameter value 

GST Enthalpy of formation, Δ𝐻𝑓 1.121×10-9 [J/m3] 

Kinetic parameter, hom. nucleation, knuc
hom 1.2076×1049 [m3/s] 

Kinetic parameter, growth, kgro 2.0205×108 [m/s] 

GST nucleation activation energy, 𝐸𝑎 2.1 [eV] 

GST melting temperature, 𝑇𝑚 889 K 

 

We model the accumulation effect induced by delivery of a series of 4.1 mW / 200 ns pulses, 

consistently with the power used to collect the data shown in Figure S4a, left axis. We here report 

the plot of the normalized amorphous mark volume (i.e. volume of the amorphous mark divided by 

its initial volume) as a function of the number of accumulated pulses. As visible, the crystallization 

process shows the fingerprint trait exhibited by the experimental device, which sees three stages: 

i) an initial slow-recrystallization stage, ii) a second stage characterized by a steeper crystal fraction 

decrease, and iii) a third stage where the change of the crystal fraction is again slow.  

 

The 3D plot of the GST phase-state provides a useful lens to this peculiar behavior. Our 

calculation shows that the initial recrystallization takes place predominantly at the sides of the 

amorphous mark. This stage is characteristically slow, as the optical-to-thermal energy conversion 

takes place at the sides of the unit cell, where the optical coupling with the propagating TE1 mode 

evanescent field is intrinsically inefficient (see IEEE Trans. Nanotechnol., 10, 4, 900–912, 2011 for 

more details). However, this holds true until a crystalline bridge is formed at the center of the 

amorphous mark. At this stage, the unit cell supports a much stronger interaction between GST and 

the propagating mode, with the temperature peak now closer to the remaining amorphous mark 

region. During and after this crystalline bridge formation, the rapid recrystallization stage takes 

place, with relatively faster growth of the crystal phase towards the amorphous region. This process 

gradually slows as the amorphous mark region is depleted, with the residual A-GST located further 



 

from the optical-to-thermal conversion hot-spot (remaining where the initial crystalline bridge is 

formed). The maximum temperature data as a function of the pulse number is also reported in 

Figure S4b, and clearly outlines the rapid shift in temperature which results in the transition among 

the described crystallization stages. 

 

The simulation data also outlines that, in agreement with our estimation, the recrystallization is 

strongly growth–driven. In Figure S4a we demonstrate this, by the plot of the normalized crystal 

fraction (of the investigated amorphous mark region) separated in its nucleation and growth 

contributions, see the right axis. Here we observe that the growth mechanism is indeed the 

predominant contribution, with only 7 new nuclei being formed during the simulated accumulation 

process. 

 

 

Figure S4. Modelling, Data Fitting and System-Level Simulations. (a) Composition of the analyzed GST 
volume as a function of the number of pulses. The left axis reports the normalized amorphous mark volume 
(A-GST, pink area). The right axis reports the corresponding normalized crystal fraction. The other colors 
appearing on the plot correspond to each one of the stable crystalline nuclei encountered during the 
accumulation process (for a total of 8 different grains). The simulation data demonstrates how the 

accumulation process is predominantly growth-dominated. (b) Peak A-GST temperature calculated during 
the accumulation process, as a function of the number of crystallization pulses. (c) Representation and 
significance of the fitting parameters in a sample curve produced by the model in Eq. 1. (d) Calculated 
curves (solid lines) and experimental curves (dashed lines) using the model in Eq. 1 for powers 4.9766 mW 
(blue), 5.0980 mW (yellow), 5.2194 mW (green), and 5.3408 mW (red). (e) Representation and significance 
of the fitting parameters in a sample curve produced by the model in Eq. 2 adding the linear component to 
the logistic function. (f) Calculated curves (solid lines) and experimental curves (dashed lines) using the 
model in Eq. 2 for powers 4.9766 mW (blue), 5.0980 mW (yellow), 5.2194 mW (green), and 5.3408 mW 
(red), a noticeable improvement in the fitting of the experimental data is observed when adding the linear 
component. (g and h) Experimental data for the change in transmittance as a function of time (dashed 
lines) and fitted data (solid lines) using two different expressions. Traces are for 4.98 mW (blue), 5.10 mW 
(yellow), 5.22 mW (green), and 5.34 mW crystallization pulses. (i) Diagram of the system being simulated. 
(j) Frequency response of an isolated unit cell (see i). The transmittance as a function of the wavelength 
from “in port 1” to “out port 2” (blue line); from “in port 1” to “out port 1” (green line); and from “in port 



 

1” to the input of the PCM cell (red line, note that this will allow us to know the power that the PCM cell is 
receiving). (k) Frequency response of a system with four unit cells resonant at 1550.17, 1551.06, 1551.85, 
and 1552.63 nm for the case in which all the phase-change cells are amorphized (blue line), and for the 
case in which all the cells are amorphized but one that is fully crystalline (green line). (l) Change in 
transmittance as a function of the pulse number, where the pulse power is 5.3408 mW and for wavelengths 
corresponding to 1550.17 (blue line), 1551.06 (green line), 1551.85 (red line), and 1552.63 nm (cyan line). 

 

Phenomenological Model: 

The time evolution of the change in transmittance Δ𝑇 as a function of the pulse number 𝑘 is going 

to be given by the following differential equation (Eq. 1): 

 

𝑑Δ𝑇

𝑑𝑘
= 𝑟(Δ𝑇 − Δ𝑇𝑐𝑟) (1 −

Δ𝑇 − Δ𝑇𝑐𝑟

Δ𝑇𝑎𝑚 − Δ𝑇𝑐𝑟
) 

 

In this equation, 𝑟 is the rate of change, Δ𝑇𝑐𝑟 the asymptote for the fully crystalline level, 

and Δ𝑇𝑎𝑚 is the asymptote for the fully amorphised level, see Figure S4c. If we integrate this formula 

we obtain: 

Δ𝑇(𝑡) =
1

𝑒−𝑟(𝑘−𝐶) +
1

Δ𝑇𝑎𝑚 − Δ𝑇𝑐𝑟

+ Δ𝑇𝑐𝑟 

 

And applying the initial condition Δ𝑇(0) = Δ𝑇0, we obtain an expression for the constant: 

𝐶 =
1

𝑟
log (

1

Δ𝑇0 − Δ𝑇𝑎𝑚
−

1

Δ𝑇𝑎𝑚 − Δ𝑇𝑐𝑟
) 

 

Using this expression we can try to fit the experimental data, obtaining the results in Figure 

S4d. The parameters obtained as a result of this fitting are collected in Table S3.  

 

These results are susceptible to be improved just by adding a linear negative component to 

Eq. 1. The function describing the data would be then given by (Eq. 2): 

Δ𝑇(𝑡) =
1

𝑒−𝑟(𝑘−𝐶) +
1

Δ𝑇𝑎𝑚0 − Δ𝑇𝑐𝑟0

+ Δ𝑇𝑐𝑟0 − 𝛼𝑘 

 

And applying the initial condition Δ𝑇(0) = Δ𝑇0, we obtain an expression for the constant: 

𝐶 =
1

𝑟
log (

1

Δ𝑇0 − Δ𝑇𝑎𝑚0
−

1

Δ𝑇𝑎𝑚0 − Δ𝑇𝑐𝑟0
) 

 

In this case, the curve will approach an asymptote with slope given by 𝛼 and their intercepts are 

Δ𝑇𝑐𝑟0 and Δ𝑇𝑎𝑚0 for the fully crystalline and amorphized state respectively, see Figure S4e. The 

fitting using this formula is represented in Figure S4f and the fitting parameters are reported in 

Table S4. 

 

 



 

Table S3. Fitting parameters for curves in Figure S4d from the model using Eq. 1. 

 
ΔTcr ΔTam r 

Line 1 (blue) 0.05427162 0.16440019 -1.427641e-2 

Line 2 (Orange) 0.04909846 0.16440133 -2.939557e-2 

Line 3 (Green) 0.03314425 0.16456956 -2.17343e-2 

Line 4 (Red) 0.00970504 0.1646608 -2.993188e-2 

 

Table S4. Fitting parameters for curves in Figure S4f from the model using Eq. 2. 

 
ΔTcr0 ΔTam0 r α 

Line 1 (blue) 6.90221660e-02 1.64400003e-1 -1.86670428e-02 -7.50113898e-06 

Line 2 

(Orange) 

6.62199605e-02 1.64400012e-1 -4.13942051e-02 -2.05652361e-05 

Line 3 

(Green) 

5.41460542e-02 1.6441011e-1 -3.09090564e-02 -2.50893370e-05 

Line 4 (Red) 3.82633208e-02 1.6440007e-01 -6.98856804e-02 -3.73433007e-05 

 

The sigmoidal behavior of crystallization that appears in the experimental data, at first 

approximation, is similar to the behavior expected in a Avrami framework (JMAK/ Nouv Cim D 20, 

1171–1182 (1998)). If we consider the following expression for the crystalline fraction χ(t): 𝜒(𝑡) =

1 − exp (−𝑘 ∙ (𝑡 − 𝑡0)𝑚), for 𝑡 > 𝑡0, where the parameters k and m determine the evolution of the 

crystalline fraction in time (t). We approximate t to be equal to the crystallization pulse number n in 

our analysis. As well, we introduce an incubation time of t0. Assuming that the change in 

transmittance 𝛥𝑇 in the experimental data is directly proportional to the crystallinity 𝜒 in the cell, 

which is a valid assumption according to our results, we could then write the following expression 

Δ𝑇(𝑡) = Δ𝑇𝑐𝑟 − (Δ𝑇𝑐𝑟 + Δ𝑇𝑎𝑚0) ∙ exp[−𝑘 ∙ (𝑡 − 𝑡0)𝑚], where Δ𝑇𝑎𝑚0 is the change in transmittance at 

𝑡 = 0, and Δ𝑇𝑐𝑟 is the value of the change in transmittance when the crystallization process finishes. 

See supplementary Figures S4 (g and h). We find the data to not be captured by such a fit. However, 

we note that the fit improves when a linear negative contribution unique to our photonic devices is 

added: Δ𝑇(𝑡) = Δ𝑇𝑐𝑟 − (Δ𝑇𝑐𝑟 + Δ𝑇𝑎𝑚0) ∙ exp[−𝑘 ∙ (𝑡 − 𝑡0)𝑚] −  𝑡𝛼 , for 𝑡 > 𝑡0 . This negative term 

arises because crystallization becomes more and more difficult as the amorphous volume at the 

input port is approached. This is due to the coupling length required to direct light to GST for optical 

heating, thus phase transformation, to occur. 

 

 

 

 

 

 

 

 

 



 

Table S5. Fitting parameters for curves in Figure S4h 

 

 

 

 

System Level Simulations: 

In this section, we describe how the phenomenological model in the previous section can be 

integrated within a photonic circuit simulator. Specifically, we refer to the integration in Caphe, a 

photonic circuit simulator inside the IPKISS 3.3.0 design platform. Using Caphe we are therefore 

able to define the different components constituents of the circuit (such as waveguides and ring 

resonators), connect them together and combine their operation with phase-change elements, and 

extract the frequency and time-domain operation of the whole system. 

 

Definition of waveguides, couplers and ring resonators 

The different components are defined by several parameters that describe their behavior. In the 

case of the waveguides, the specified parameters are the length 𝐿 of the waveguide, the group 

index 𝑛g, and the value of 
𝑑𝑛eff

𝑑𝜆
 where 𝑛eff are the effective refractive index and 𝜆 represents the 

wavelength (𝑛g and 
𝑑𝑛eff

𝑑𝜆
 are calculated using FEM obtaining values 2.044 and -3.1x105 m-1). Note, 

that using 𝑛g and 
𝑑𝑛eff

𝑑𝜆
 we can obtain 𝑛eff as a function of the wavelength using the expression 

𝑛eff(𝜆) = 𝑛g + 𝜆
𝑑𝑛eff

𝑑𝜆
. We also add to the definition of the waveguide the propagation loss reported 

in Figure S3g of the supplementary information. 

 

In the coupling region of the ring resonators, the relationship between the amplitudes of the 

modes that are transmitted and coupled to the input mode is done through the parameters 𝑡 and 𝑘 

respectively. The following relationships are satisfied for the coefficients |𝑘|2 + |𝑡|2 = 1 and 𝑘 =

𝑗√1 − |𝑡|2. In our simulations, we have considered all coupling regions to have the same 𝑘. Under 

this symmetric condition the highest throughput is achieved (assuming low internal losses, which is 

our case given the low propagation losses of the waveguides). The value for 𝑘 is extracted using 

the full width half maximum (FWHM) from the experimental data which was found to be 0.15±0.02 

nm. The obtained value for the coupling coefficient is 𝑘 = 𝑗0.332, and therefore 𝑡 = 0.943. 

 

The diameters of the ring resonators are around 60 μm, and finely tuned around this value 

to achieve resonance at the wavelength of interest. Using the length of the ring resonators, the 

effective refractive index of the waveguides, and assuming we are at 1.55 μm wavelength, we can 

estimate the resonant order of the resonators which was found to be m=190. When a ring is 

instantiated in the circuit simulator, we specify the desired resonant wavelength and using the 

expression 𝑚𝜆 = 𝐿𝑛eff we can find the correspondent length/geometry of the ring. We can also 

Curve ΔTcr k t0 m 

Line 1 (blue) 5.956e-2 3.636e1 5.839e-1 3.626 

Line 2 (Orange) 4.903e-2 4.083e2 2.138e-1 3.626 

Line 3 (Green) 3.375e-2 1.233e2 6.641e-2 3.626 

Line 4 (Red) 1.019e-2 5.938e2 5.799e-2 3.626 



 

estimate the free spectral range in the ring resonators using the formula FSR =
𝜆2

𝑛g𝐿
. With 𝜆 =

1551.5 nm, 𝑛g = 2.044, and 𝐿 = 𝜋 ∙ 60 μm we have a calculated FSR=6.248 nm, which matches very 

well with the experimental value of 6.25 nm.  

 

Frequency and time response of the system: 

The simulated system, in this case, allows us to directly compare with the case shown in Figure 2f 

of the main text. A schematic of such a system is shown in Figure S4i. From the simulation point of 

view, the system is composed of a unit cell that is successively connected to form the complete 

system. Each unit cell is composed of two add-drop ring resonators with the geometry appearing in 

Figure S4j, and both ring resonators are connected by a wavelength containing a phase-change cell. 

This unit cell will therefore perform an accumulation operation as shown in the previous section but 

at the wavelength selected by the ring resonators, see Figure S4k. The propagation loss for the fully 

crystalline phase-change cell is taken from Figure S3c of the supplementary information.  

 

The frequency response of the system when four unit cells resonant at 1550.17, 1551.06, 

1551.85, and 1552.63 nm are connected as shown in the main text and we show it here again to 

properly contextualize the results in this section. We also show the time evolution of the 

transmittance of each cell when the system is excited with a train of pulses with power 5.3408 mW. 

More specifically, four simulations are run for an excitation power corresponding to 5.3408 mW and 

wavelengths corresponding to 1550.17, 1551.06, 1551.85, and 1552.63 nm (resonant wavelength 

of the four cells) in each one of the four simulations, and the change in transmittance is plotted 

against the pulse number, see Figure S4l. 

 

In the case of the time-domain simulation the following equation is introduced in the time 

domain solver of the photonic circuit simulator Caphe, inside IPKISS 3.3.0: 

 

𝑑Δ𝑇

𝑑𝑘
= 𝑟(Δ𝑇 − Δ𝑇𝑐𝑟) (1 −

Δ𝑇 − Δ𝑇𝑐𝑟

Δ𝑇𝑎𝑚 − Δ𝑇𝑐𝑟
) 

 

And adding the linear component – 𝛼𝑘 to the solution. The parameters Δ𝑇𝑐𝑟, Δ𝑇𝑎𝑚, 𝑟, and 𝛼 were 

obtained by fitting the experimental data, see Table S4, and they are interpolated according to the 

power arriving at the phase-change cell. Only powers in the interval delimited by the experimental 

data are used in the simulations. Note also that the equation is defined in terms of 𝑘 instead of 𝑡, 

which is the variable used for the solver. This is just a scale problem as we can pass from 𝑘 to 𝑡 

having into account how many seconds a pulse 𝑘 last. Therefore, we just have to multiply the 

derivative by a scale factor and run the simulation for the correspondent span. 

Section S5. Bag of words approach used in Twitter analysis 

In our experiments of correlation detection in live tweets on social media, we used a bag-of-words 

approach. This approach simplifies the representations used in natural language processing. In this 

approach, a text (such as a sentence or a tweet) is represented as the bag of its words, disregarding 



 

grammar. Each word is in turn associated with a plurality of other words which all have the same 

meaning or fit into a context without changing the overall message conveyed in the text. When a 

tweet arrives at the detector of our computational memory module, it is converted into a list 

containing the words making the tweet. The list is then compared with the words associated with 

PCM devices. Each PCM device is associated with not only one keyword but multiple, each given the 

same significance in our analysis. Every time listed words in the tweet match the catalog of words 

associated with PCM devices, binary spikes corresponding to write pulses are issued. In Figure S5, 

we list the words that we associated with individual PCM devices for Figure 4c and Figure 4d in the 

main text. 

 

Figure S5: Twitter Analysis. (a) A list of words associated with individual PCM devices for analysis of the 

subject COVID on Twitter. (b) A list of words associated with individual PCM devices for analysis of the US 

2020 elections. (c) Histograms showing the distribution of device transmission values at the end of the 

experiment for different values of c. (d) (i) A trace showing rate normalization on incoming tweets using 

exponential averaging. (ii and iii) The rate for incoming keywords on the Republican candidate, without and 

with (α=0.015) rate correction for two different time-periods of tweets. 

The ability to detect temporal correlations depends on the extent of correlation. For example, the 

task becomes progressively easier with increasing c. Two parameters in our in-memory algorithm 

importantly govern the efficacy of clustering correlated events from the uncorrelated ones. The first 

is the variability in the accumulative switching processes across devices.  When the switching 

variability becomes large, events can get incorrectly clustered. For example, for small c the number 

of correlated events is sparse, thus incomplete switching may -even in a few cycles- lead correlated 



 

devices to not appear correlated. The second is the time-duration of the input streams. For fixed 

hyperparameters in our algorithm, such as γ and tduration, µinput, where tduration and µinput are the period 

and mean frequency with which input streams arrive, the number of correlated events monotonically 

reduce as tduration and/or c reduces. This leads to the incomplete crystallization of correlated devices. 

To illustrate these points, in Figure S5c, using experimental data we simulate different cases for the 

example of computer networks shown in Section c of the manuscript. The variability in the switching 

processes is small in our photonic devices and its contribution can be neglected. Thus, the dominating 

factor affecting the minimal achievable correlation detection is dictated by the time-duration of the 

input streams. In the top panel of the Figure S5c, the correlator correctly clusters the input streams 

for correlation coefficients approach c=0.25. For c=0.15 and smaller, however, we note that the 

increase in the sparsity results in incomplete switching of the correlated devices, i.e. the transmission 

in correlated devices stays above the threshold. However, when µinput (a proxy for tduration) increases, 

the correlator can detect even smaller coefficients.  Because of such dependencies, prior knowledge 

of the nature of the experiment can be utilized to adjust the algorithm in accordance with the input 

stream. For example, changes in the hyperparameters and/or use of adaptive threshold for allowing 

input events that are marginally correlated to get detected.  

The α parameter used for normalization of the input rates is fixed in our experiment. 

However, the parameter can well be adjusted to match the input rates. Supplementary Figures S5c  

shows the influence of α on the event rates. The data used here the same that is used in Figure 4 

of the manuscript.  

 

Section S6. Alternate device architectures 

In Figure 1c of the main text, we described the building blocks of our photonic correlation engine, 

and in the manuscript, we used a chip design with two resonators for DEMUX and DEMUX at the 

input/drop ports respectively. Here we discuss another design. Here we use ring resonators as MUXs 

to couple input signals to the PCM devices, but the drop port uses directional couplers of a fixed 

length. An optical micrograph of such a layout with 4 devices is shown in Figure S6a. In Figure S6b 

we plot the transmission spectra of such a photonic circuit. We note minimal crosstalk (<-10 dB) 

between different channels, suggesting our ability to WDM signals. 

 



 

 

Figure S6: Directional coupler device and photonic array. (a) An optical micrograph of our devices using 

directional couplers instead of a second resonator at the drop port. (b) Transmission spectra from this 

device. (c) A conceptual sketch of a photonic circuit layout for incorporating multiple devices. (d) 

Micrographs of a fabricated chip implementing photonic circuit are shown in (c). (e) Correlation detection 

in multiple processes. A conceptual sketch of a photonic computational memory module for detecting 

correlations in multiple processes in parallel using the WDM property. 

In the main text, we described proof-of-principle demonstrations with 16 devices. We discuss now a 

potential architecture that incorporates many more usable devices by still using the same building 

blocks. A conceptual sketch of this architecture is shown in Figure S6c, which we previously utilized 

for multi-level memory module applications (IEEE Journal of Selected Topics in Quantum Electronics 

26.2 (2019): 1-7). Here we discuss its use of photonic computational memory. The module consists 

of N rows of the N PCM devices. For consistency with the main text, we consider 16 rows and in 

each row 16 devices- thus in total 256 devices. Like before, by tuning the radius of the resonators, 

the wavelength from the input spectrum that is coupled to the PCM device is adjusted. We access 

the devices for Read operations using the waveguide shown in blue and labeled as RN. This 

waveguide carries 16 unique wavelengths. A part of each wavelength signal is dropped by the lower 

resonators and coupled to the PCM before exiting at the output waveguide, which is shown in blue 

and is unique for each row. By tuning the coupling gaps between the resonators (both) and 

waveguides in turn gives control over the amount of light that is coupled. For example, the signal 

encoded in λ1 can be coupled equally by the 1st device in every row, such that each drops the 

amplitude in this signal. This equal splitting can be estimated using the expressions , 

where N is the number of rows and i the number of the row being addressed. Thus, by using this 

scheme all devices can be read in parallel. For the write operation, we use the output waveguides, 



 

specific to each row as input. These are shown in blue and labeled as WN. In this scheme, the output 

waveguide carries 16 wavelength-multiplexed write signals which are dropped selectively by the top 

resonators and coupled to the PCM devices. Thus, multiple devices can be also programmed in 

parallel both within a row and across rows. In Figure S6d, optical and scanning electron micrographs 

of 256 devices in the above-described format are shown. The overall device has a footprint of 1×2.4 

mm2. 

In the main text, we described the possibility to multiplex not only events within a certain 

process (application) but also processes themselves. This is illustrated in a conceptual sketch shown 

in Figure S6e. Here the devices are partitioned into different compartments (shown as columns in 

the figure), where each column is assigned to a certain process. Each process is assigned a set of 

distinct wavelengths, detectors, and encoders in the digital computational memory module. The 

WDM property thus allows correlation detection to be performed in parallel across different 

applications. Experimentally this can be realized using the photonics circuitry shown in Figure S6c. 

Each row in such a layout can be designated to a unique process and each device in that row to 

individual events. 

Section S7. Additional data on accumulation property 

In Figure S7a we plot accumulations as a function of the write pulse amplitude and the number of 

pulses in a different device to what was shown in the main text. Each data point is averaged over 

50 measurements and the data is plotted by taking the amorphous state as a reference (0% 

transmission). To verify such data sets, in particular the crystallization onset, we performed an 

additional experiment. In this experiment we amorphized the same device as in (a) to different 

extents, by modulating the amplitude of the erase pulses (see legend in the plot). Each amorphous 

state is taken as a reference of 0 % transmission. We then applied to write (crystallization) pulses 

to the device of increasing amplitude and measured the transmissions change. In Figure S7b we plot 

such data for 3 distinct initial amorphous volumes (color-coded). We observe that in all three cases 

the transmission changes from crystallization progressively, before dropping more dramatically 

beyond some threshold onset. This onset point is independent of the starting state. However, and 

intuitively the final state achieved is dependent on the starting state, with a larger transmission 

change achieved in devices programmed originally to larger amorphous volumes. 



 

 

Figure S7: Crystallization behavior of GST. (a) Accumulative behavior in a PCM device. (b) A plot showing 

progressive crystallization in 3 distinct amorphous phase-configuration of the device. 

Movie S1: Simulated crystallization process in photonic GST cell. 
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