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for Silicon Photonics: Dependence on the Number of
Dot-in-a-Well Layers
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Matteo Buffolo Y, Member, IEEE, Alberto Tibaldi
Justin Norman“”, Chen Shang

Robert W. Herrick

Enrico Zanoni

Abstract—TFor the first time, we analyze the optical degradation
of 1.3 yum InAs quantum dot laser diodes (QD LDs) epitaxially
grown on silicon as a function of the number of dot-in-a-well layers
(DWELLS). To this aim, we tested the reliability of two kinds of de-
vices differing only in the number of DWELL:s in the active region:
QD LDs with three vs. five quantum dot layers (3 vs. 5 QDLs). To
induce degradation, we submitted the devices to highly accelerated
stress tests: in the current step stress, we tested the degradation
of the devices as a function of the stress current, whereas with a
constant current stress, we evaluated the degradation as a function
of the stress time. Both experiments confirmed that the device with
more QDLs (5 QDLs) has better reliability than the structure with
a lower number of DWELLSs (3 X QLDs), while exhibiting the very
same degradation modes. We hypothesize that a higher number
of active layers favors the redistribution of carriers across the
active layers, lowering carrier density and therefore non-radiative
recombination rates. This is beneficial in terms of reliability, as
the non-radiative recombination lowers the radiative efficiency of
the laser and, in turn, can enhance degradation via recombination-
enhanced defect reaction (REDR). To support our assumption, we
employed a quantum-corrected Poisson-drift-diffusion simulation
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tool to evaluate the carrier distribution and the Shockley-Read-Hall
(SRH) recombination rate within the active region. The simulation
results confirmed that the device with five QDLs has a lower carrier
concentration per DWELLSs and, therefore, a lower SRH recombi-
nation rate per active layer, thus resulting in a lower degradation
rate.

Index Terms—Degradation, quantum dot, dot-in-a-well layers
(DWELL), defects, Shockley-Read-Hall (SRH).

1. INTRODUCTION

HE ever-increasing demand for data and information has
T reached annual internet data traffic volumes of zettabytes
[1]. Silicon photonics (SiPh) promises to fulfill the request for
higher volumes and bandwidth, providing higher capacity and
lower-cost optical transmission systems, leveraging the CMOS
fabrication process [2], [3]. One fundamental step towards the
widespread use of SiPh is the integration of IR optical sources
onto silicon substrates. To overcome the inefficiency of silicon
as an optical emitter, wafer bonding of III-V materials onto
SOI (Silicon on Insulator) was first employed [4]. Recently an
alternative approach was proposed: the direct growth of III-V
materials onto silicon also called direct or monolithic integration
[5]. This last method results in lower costs and eliminates the
complex wafer bonding process but introduces some drawbacks
related to formations of crystalline defects: anti-phase domains
(APDs) [6], threading dislocations (TDs) [7], and also misfit
dislocations (MDs) [8], [9]. To mitigate the reduction of optical
performance and lifetime originated by defects, quantum dots
can be employed together or in place of quantum wells (QWs)
to reduce the sensitivity to extended defects [10]. Additional
valuable features of QDs in laser diodes are lower threshold
current density [11], higher efficiency at high temperatures
[12], reduced linewidth enhancement factor [13], and reduced
sensitivity to spurious optical back reflections [14].

During the device optimization process, one of the crucial
features to be tuned is the number of active layers. Indeed, a
higher number of QDLs (quantum dot layers) generally results
in a lower threshold current, because of the larger optical gain
[15]. However, if the number of active layers exceeds an optimal

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
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Fig. 1. Epitaxial structure of the devices under test.

value, the carrier distribution within the QDLs becomes highly
non-uniform and, as a consequence, the performance may be
worse [16]. Indeed, most QD LDs feature the so-called p-
modulation doping in the barriers to enhance hole injection into
the QDs, thereby improving device characteristics. Nonetheless,
these p-doped layers form potential barriers for electrons in the
CB, which may limit injection into the QDLs closer to the p-side
when dealing with a large number of DWELLs. The carrier
distribution within the active layers may also impact the lifetime
of the devices, by influencing non-radiative recombination rate
and the possible activation of excited states [17].

Within this paper, for the first time, we studied the reliability of
similar QD LDs differing only in the number of DWELLSs (dot-
in-a-well layers) in the active region (i.e., 3 vs. 5 DWELLSs). The
experimental results demonstrated that the structures featuring
a higher number of quantum dot layers (QDLs) exhibit a longer
lifetime compared to the three QDLs devices. According to our
degradation model, the worsening of the optical performance
is caused by the increased non-radiative recombination in the
Ing.15Gag g5As wells acting as carrier reservoir for QDs. This
hypothesis is supported by the results of Poisson-drift-diffusion
simulations aimed at estimating both the carrier distribution and
the SRH recombination in the DWELLSs at high current density.

II. SAMPLES UNDER INVESTIGATION

The devices analyzed within this work are state-of-the-art
InAs quantum-dot laser diodes epitaxially grown by MBE on Si
substrates. The samples are designed for an emission wavelength
of 1.3 um. The epitaxial structure, listed in Fig. 1, is formed by
a periodic active region enclosed by two GaAs wave-guiding
layers and two AlGaAs cladding layers, grown on top of a
~3 pm thick GaAs buffer layer. The active region of the lasers
is composed of five or three equal DWELLs, each featuring
undoped GaAs barriers and a 10 nm thick Be-doped (Np =
5 x 107 ecm~3) layer separated from the InGaAs well containing
the layer of self-assembled InAs QDs, whose areal density is
5 x 10' cm~? (further details on the growth processes can be
found in [18]). The processing of the devices was then finalized
with the etching of the ridge, the thinning of the Si substrate and
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the cleaving of the end facets of the Fabry-Pérot optical cavity.
The samples used for the experiments described in this work
have the following dimensions: 3 pm ridge width and 1000 pm
cavity length for the 3 x QDL devices (labeled Al and A2),
whereas the 5 x QDL devices featured 3 pm ridge width and
1100 pm cavity length (sample B1) or 2.5 pm ridge width and
1100 pm cavity length (for sample B2).

III. METHODOLOGY

For our experimental purposes, wafer-level samples have been
stressed and characterized using probe manipulators to connect
the devices to the instruments. Temperature control was achieved
by means of a TEC-controlled baseplate. The electrical charac-
terization was performed by means of a Keysight source-meter,
connected to the device in a four-wire (Kelvin) configuration.
The optical measurements were carried out by means of a
bifurcated optical fiber placed in front of one of the laser facets.
One fiber end was connected to a Yokogawa Optical Spectrum
Analyzer (OSA), whereas the other one was coupled to an
amplified Ge photodiode. This configuration let us perform fast
and highly-repeatable L-I characterizations, while also being
capable of performing high-resolution spectrally-resolved EL
measurements. Both stress and characterization were carried out
at a fixed baseplate temperature of Taoyp = 35 °C.

In order to preliminarily evaluate the impact of current on
the degradation processes, the devices were submitted to a
current step-stress experiment; stress current was increased by
~330 A/cm? every hour, starting from 330 A/cm?. The stress ex-
periment was interrupted at ~20 kA/cm?, i.e., when a significant
degradation of the device performance was reached. After each
stage of the step-stress experiment, a full characterization (L-I
measurements and spectra) of device performance was carried
out. For the stress experiment, the samples were never moved
from their position.

Afterward we submitted one equivalent device of each group
to a constant-current stress at a bias level of 5 kA/cm?2, which was
chosen based on the results of step-stress test. During stress, we
monitored the variation of the optical characteristics at regular
intervals.

IV. EXPERIMENTAL RESULTS
A. Current Step-Stress Results

The outcome of the step-stress experiment is reported in
Fig. 2. The graph shows the normalized integral (with respect
of the maximum value of the ES for each device) of the excited
state (ES) and ground state (GS) peaks (peaking at 1170 nm and
1240 nm, respectively) of the spectra collected during the step
stress experiment.

From the experimental data, we observe that at some point,
when increasing the stress current density, the GS integral starts
to drop, and, at the same time, the ES integral starts to increase.
This feature was already observed when dealing with similar
QD LDs [19], and was ascribed to the competition for holes
of the GS and ES-related stimulated recombination at high
injection levels [20], [21], when the excited state gain exceeds
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that for the ground state. Once the ES reaches the threshold,
the stimulated recombination from this state will subtract holes
to the GS, resulting in a strong reduction of its optical gain and
ultimately the GS will not satisfy the lasing condition. Increasing
the current furthermore will result in a final drop of also the ES
integral, as in ES-only regime carriers are closer to the band
edges [17] (Fig. 3). In this condition, excess carriers can easily
escape from the QDs and enhance non-radiative recombination
in the wells, that reduces device efficiency and promotes the
formation of additional defects in the structure [22]. For the
3 x QDL device, the ES-onset occurs at 7.66 kA/cm? and the
device does not lase above approximately 10 kA/cm?, whereas
for the 5 x QDL device, the ES-onset occurs at 11 kA/cm? and
the device does not lase above around 16 kA/cm?. In devices
with more DWELLS, the current density is shared with more
active layers. Therefore, the carrier density (and the ES carrier
population) per DWELL will be lower in sample B1 than in the
device labeled as A1. This also means that to reach the ES lasing
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Comparison of threshold current degradation kinetics: 3 vs. 5 QDLs
lasers.

a higher current density has to be provided to the 5 x QDL
device, which will consequently show degradation for higher
injection currents compared to the 3 x QDL structure.

B. Constant-Current Stress Results

To measure the degradation kinetics as a function of time, we
carried out a constant current stress for both types of devices.
The two experiments were carried out by imposing the same
current density, in order to inject the same number of carriers
per unit time in the active region, and to evaluate how the carrier
distribution affects the reliability. The stress current density,
Tiress = 5 kA/cm? was chosen in accordance with the results
of the current step stress. At such bias level the onset of the
ES lasing has not occurred: the device is therefore stressed in
GS-only (ground-state only) regime, which avoids additional
escape-enhanced processes that could further accelerate device
aging. Indeed, the ES-only operation does not represent the
conventional operation mode for QD LDs [23].

In order to monitor the degradation rate during the constant
current stress (Joiress = 5 KA/cm?), we extrapolated the threshold
current from the L-I curves measured at specific intervals: the
resulting threshold current variation for the two devices is shown
in Fig. 4. The initial threshold current density is different for the
two structures: the 3 x QDL device (A2) has Ji, = 670 A/cm?,
whereas the 5 x QDL sample (B2) has J;}, = 560 A/cm?. This
difference can be explained by considering that the higher the
number of active layers, the higher is the optical gain at a given
bias [15]. Moreover, if we consider the same optical mode profile
for both devices, the 5 x QDL device, which has more active
layers (and therefore a greater active volume), can benefit from
a larger confinement factor that increases the net modal gain.
Additionally, the shorter cavity length of the 3 x QDL device
contributes to higher mirror losses, which in turn leads to a higher
threshold current. Therefore, considering the same optical losses
oot for both devices, the laser with higher optical gain will reach
the threshold condition at a lower carrier density. Concerning the

threshold current kinetics, the 3 DWELLSs device clearly shows

a much faster degradation compared to the sample with five
QDLs.
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The optical degradation of QD LDs grown on Si was already
studied in detail in previous publications [24], [25], [26]. The
root cause was ascribed to REDR (Recombination Enhanced
Defect Reaction), a process which promotes the formation of
NRRCs within the active region. Since the device is not grown
on native substrate, dislocations are present in the laser stack,
including the active region [7]. As shown in [16] the trap assisted
SRH occurs almost in the wetting layer (or 2D state) while
it is negligible in the barrier states for the very low carrier
density. Hence the amount of SRH non radiative recombination
depends on the 2D carrier density in each well layer and on the
density of traps in the wells. At such current density (5 kA/cm?),
some carriers escape (or are not injected to) the QDs and rather
recombine non-radiatively in the InGaAs well, thus favoring
the generation of additional defects that act as non-radiative re-
combination centers (NRRCs) (see Fig. 5). This process lowers
the injection efficiency, that is the relative fraction of carriers
injected into the InAs QDs over the amount of carriers provided
at the terminals of the device. This process ultimately lowers
the optical gain and therefore increases the lasing threshold
of the device [26]. This feature is common for both types of
devices tested in this work. The phenomenon that enhances the
degradation of sample A2 (3 x QDL) over sample B2 (5 x QDL)
is the different redistribution of carriers across the active layers.
Indeed, for a given injection current, we expect a lower carrier
concentration per QDL in the 5 x QDLs structure, and therefore
a lower non-radiative recombination rate resulting in a slower
degradation kinetics. On the contrary, for the 3 x QDL device,
the same carrier density is split across three DWELLs only,
therefore we expect a higher SRH recombination thus resulting
in a more rapid defect growth by REDR process.

V. SIMULATION RESULTS
A. Simulation Framework

To confirm our degradation model, we simulated the car-
rier distribution inside QD LDs at high injection levels

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 31, NO. 2, MARCH/APRIL 2025
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(5 kA/cm?). The simulation framework consists in the standard
drift-diffusion model with the inclusion of the Poisson equation
and quantum corrected to include the capture and thermal escape
of carriers into/from the QD states. QD carrier rate equations are
then coupled with the rate equations of photons emitted by the
ES and GS The model is able to reproduce GS and ES lasing,
the quenching of the GS power at the turn-on of the ES and
returns the carrier distribution in the QDs and 2D wells of the
different layers at any current below and above threshold [16].
An accurate description of the model and the parameters adopted
to simulate the devices characteristics can be found in [16].

The code included the detailed description of the laser struc-
ture (Fig. 1) including the material composition, the doping
levels, and QDs characteristic parameters.

B. Carrier Distribution and SRH Recombination

The simulated carrier distributions (at 5 kA/cm?) in the sep-
arate confined heterostructure (SCH) and in the InGaAs well
(QW) are shown in Fig. 6. The two graphs report both electron
and hole distributions in the active region of the device: in the
2D wetting layer (QW state) and the barrier layers (SCH state)
along the growth direction. Carrier density in the GS and ES
of the QDs are not shown in the graphs because focused our
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attention on the variation of the SRH recombination in the WLs
rather in the QDs. It is indeed assumed negligible in the QDs
because the probability of having a defect state inside a QD is
extremely small.

To better compare the results of the two simulations we
superimposed the electron and hole carrier densities inside the
QWs in the same graphs (Fig. 7). Considering the first three
(common) layers starting from the n-side (labeled as #1, #2,
and #3) in each device, we see that both electron and hole
distributions exhibit higher concentration in the 3 x QDL device
(except for the carrier density in the first layer of the 3 x QDL
device). These results confirm our hypothesis about the higher
carrier concentration at equal current density level (5 kA/cm?)
in devices featuring 3 DWELLs.

Another interesting result can be derived from the trend of
SRH recombination rate in each QW as a function of current.
Indeed, from the graph in Fig. 8, we see that the SRH rate of
the first (layer #1, closer to the n-side) and third (layer #3,
closer to the p-side) QDLs in the 3xQDLs structure is higher
compared to the corresponding first (layer #1, closer to the
n-side) and fifth (layer #5, closer to the p-side) QDLs in the
5 x QDL configuration. Concerning the intermediate QDLs
(layer #2 for both 5 x QDL and 3 x QDL) the trend is almost
the same for both structures. To further confirm the outcome
of the comparison, we calculated the average SRH rate per
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intermediate layers (layer #2 for 3 x QDL and layer #2, #3, and 4# for 5 x QDL).
(c) SRH recombination in the layers closer to the p-side (layer #3 for 3 x QDL
and layer 5# for 5 x QDL). The dashed vertical line indicates the stress current
density for the constant current stress shown in Section IV.

DWELL by summing the SRH rate in each layer and dividing
for the total number of DWELL. We obtained (at 5 kA/cm?)
an average SRH rate of ~7 x 10%° cm—3s~! for the 3 x QDL,
whereas for the 5 x QDL it results ~4 x 10*° cm~3s~'. In both
simulations the lifetime of the SRH recombination 7, ,, was kept
fixed along the entire structure. The value of 7, , was calculated
from considering the threading dislocation density (TDD) of the
devices in [16]. Along with this assumption, that hypothesizes a
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uniform distribution of defects in the active region, we have also
to consider a more realistic view. Indeed, MDs are running along
the bottom of the first QDL (on the n-side). The first DWELL
will be affected by a higher concertation of defects with respect
to the remaining QDLs [27], [28] and, therefore, will be the one
with lower radiative efficiency. As a result, 5 x QDLs lasers
can benefit from two more DWELLSs compensating for the first
low-efficiency DWELL thus explaining the better reliability of
5 x QDL over 3 x QDL devices. However, there is currently no
experimental evidence of this effect on the DUTSs. Therefore, it
was not possible to quantitatively know the exact location and
concentration of such defects. For this reason, we tried to explain
the experimental evidence only by considering the variation of
the DWELL number.

This last simulation demonstrates that not only the higher
number of DWELLSs in the structure redistributes the amount of
carriers in the QWs but also reduces the local SRH in the QWs
expected. Recalling Fig. 5, we can conclude that the additional
two DWELLs allow to lower SRH rate, and therefore a lower
REDR process, in the QWs of the 5 x QDLs device, thus
favoring the injection efficiency, which ultimately improves the
reliability of the device. Indeed, the 5 x QDLs device reached
an Iy;, degradation of +10% after 30000 min whereas the same
amount of degradation was induced in the 3 x QDLs after only
3000 min.

VI. CONCLUSION

In conclusion, in this work we analyzed the impact of
DWELLSs number on the reliability of 1.3 ym QD LDs grown
on Si for silicon photonics. The experimental results show that
the structure with five DWELLSs has a slower degradation with
respect to the 3 x QDLs device, both during the step-stress and
the constant current stress experiments. Therefore, the higher
number of active layers was experimentally demonstrated to
improve the reliability of the devices. According to our analysis,
the higher number of DWELLSs lowers the carrier density per
DWELL in the 5 x QDLs device with respect to the 3 x QDLs
structure. This is beneficial in terms of degradation, as the lower
carrier concertation in the wetting layers (InGaAs wells) also
reduces the rate of SRH recombination which is responsible for
preventing carrier injection into the QDs and to favor REDR
degradation processes. To prove our hypothesis, we employed a
Poisson-drift-diffusion simulation framework, which confirmed
that the carrier density per DWELL is lower if more active
layers are present in the structure. By simulating the SRH
recombination as a function of the current for each DWELL, we
also demonstrated that the local SRH rate in each wetting layer
is higher in the 3 x QDLs device for a wide range of currents
(0-7 kA/cm?). According to the well-established degradation
model proposed for InAs QD LDs, the locally increased non-
radiative recombination in lasers with lower number of DWELLSs
can explain the better reliability of 5 x QDLs lasers over
3 x QDLs devices, since in the latter case the higher SRH
recombination rate enhances the REDR process responsible for
the optical degradation of the devices. Nonetheless, the opti-
mization of the active region must consider a tradeoff, indeed,
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increasing excessively the number of active layers would lead
to asymmetric injection of carriers (as highlighted in Fig. 6).
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