
26 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Variability propagation in manufacturing systems: the impact of the processing time distribution / Alfieri, Arianna;
Castiglione, Claudio; Pastore, Erica. - In: JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING. - ISSN
2168-1015. - (2024), pp. 1-15. [10.1080/21681015.2024.2346080]

Original

Variability propagation in manufacturing systems: the impact of the processing time distribution

Taylor and Francis preprint/submitted version

Publisher:

Published
DOI:10.1080/21681015.2024.2346080

Terms of use:

Publisher copyright

This is an Author’s Original Manuscript of an article published by Taylor and Francis in JOURNAL OF INDUSTRIAL AND
PRODUCTION ENGINEERING on 2024, available at http://wwww.tandfonline.com/10.1080/21681015.2024.2346080

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988282.8 since: 2024-05-27T09:23:07Z

Taylor and Francis Online



Graphical Abstract

Variability propagation in manufacturing systems: the impact of
the processing time distribution

Author One, Author Two, Author Three

1



Highlights
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• In balanced and unpaced lines, the propagated variability increases
with processing time skewness;

• Other affecting factors are inter-arrival and processing time variability,
utilisation, line size;

• Low inter-arrival time variability and medium utilisation levels increase
variability propagation;

• Longer lines propagate more variability, and processing time distribu-
tion can further amplify it;

• Industry 4.0 and 5.0 systems are more exposed to the effects of the
processing time distribution.
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Abstract

In manufacturing and service systems, variability deteriorates system perfor-
mance by increasing cycle times, work in process, and their unpredictability.
Approximation models and other tools, such as simulation and optimisation
algorithms, are adopted for investigating and limiting variability propaga-
tion in multi-stage systems. Often, these approaches exploit only the mean
and variance of the distributions of job arrivals and processing times, or they
assume distributions with particular characteristics to define closed-form for-
mulas. This paper investigates the conditions in which these assumptions are
ineffective and the result of considering only the mean and variance of the
processing time distribution. Balanced and unpaced lines modelled through
Discrete Event Simulation are considered. The results show the impacts of
the entire processing time distribution (beyond its mean and variance) on
the inter-departure times, whose variability is also influenced by utilisation
levels, line sizes, and inter-arrival and processing time variability. Flexible
and reconfigurable manufacturing systems, largely adopted in Industry 4.0,
are subjected to a variability propagation increasing with the skewness of
the processing time distribution. In these cases, the entire processing time
distribution should be considered in system performance assessment and op-
timisation to avoid misleading results due to significatively underestimated
variability propagation.
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1. Introduction

Variability reduction is crucial for manufacturing and service systems to
reduce inefficiencies related to variability propagation. Specifically, variabil-
ity is known to increase the average cycle time (CT) (Romero-Silva et al.,
2019b) and the average work in process (WIP), which, in turn, might de-
crease customer service level and require larger in-stage buffers (Tiacci, 2017).
Moreover, in multi-stage systems, variability propagates from one stage to
the other, thus negatively impacting also on throughput variability (and,
hence, service predictability) (Khalil et al., 2008). Therefore, variability
has become a key measure for the overall system performance (Roda and
Macchi, 2019). As increasing the average throughput is a common goal for
companies, addressing the throughput variance is important to improve per-
formance (Taylor and Heragu, 1999).

Beyond variability reduction strategies, recent studies highlighted the
need to investigate the variability sources and how they are intertwined with
the operational performance of the systems (Romero-Silva et al., 2019b; Bat-
tesini et al., 2021). Investigating the sources of variability is particularly
important for the manufacturing systems based on Industry 4.0 (I4.0) and
Industry 5.0 (I5.0) paradigms. I4.0 manufacturing solutions such as Flexi-
ble Manufacturing Systems and Reconfigurable Manufacturing Systems al-
low dealing with mass customization by increasing product variety, and fre-
quent market demand fluctuations (Yadav and Jayswal, 2018; Bortolini et al.,
2018). Therefore, these types of systems are particularly exposed to variabil-
ity effects.

In this context, I5.0 aims at simultaneously maximizing economic, envi-
ronmental, and social profit through flexibility and reconfigurability centred
on human skills and creativity (Xu et al., 2021; Maddikunta et al., 2022), and
an increased decision-making role of the robots (Lu et al., 2022). Therefore,
understanding the causes of the variability and its propagation is relevant
because it can lead to workers’ injuries and stress and eventually reduce the
overall workers’ performance (Malik et al., 2021).

In I4.0 and I5.0 contexts, the use of data to improve process synchroniza-
tion (Felsberger et al., 2022), anomaly detection (Kuo et al., 2021), and dy-
namic task allocation or re-allocation (Zanchettin, 2022) might allow having
a more accurate estimate of system variability and, hence, more effective use
of planning tools (e.g., simulation, optimisation, and approximation models
and algorithms).
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However, approximation models and simulation-optimisation algorithms
used in production planning often focus only on the mean and the variance
of inter-arrival and processing time distributions. This is mainly due to two
elements: (i) usually the single manufacturing process has small variability
(Inman, 1999) and (ii) manufacturing lines are usually designed to work with
a little product variety and utilisation close to 100% (Chen and Yao, 2001).
However, these assumptions become weaker in the I4.0 and I5.0 paradigms
because these systems need to be more flexible and more easily reconfig-
urable to meet demand fluctuations (Morgan et al., 2021) by requiring larger
installed capacity, long transient, and frequent setups (i.e., utilisation can no
longer be close to 100%)(Wang et al., 2021). Moreover, the context is usu-
ally a multi-product one (i.e., single-product dedicated lines are no longer
adopted), which increases processing time variability (Curry and Feldman,
2010). In these cases, still assuming small variability and high utilisation can
lead to errors larger than 10% (Tarasov, 2016; Gross and Juttijudata, 1997).

This paper investigates whether the processing time distribution shape
(beyond mean and variance) affects the variability of a line under different
assumptions of utilisation, system size, and inter-arrival time variability. The
effects are measured at the end of the line, that is, on the inter-departure time
distribution. From the numerical results, insights are discussed to support
strategies that allow for reducing variability, especially in contexts adopting
the new industrial paradigms.

The remainder of the paper is organised as follows. The related literature
is reviewed in Section 2. Section 3 presents the study methodology and the
design of experiment. Results are presented in Section 4 and discussed in
Section 5. Section 6 concludes the paper.

2. Literature review

In the literature regarding the performance evaluation and optimisation of
manufacturing and service systems in stochastic environments, the stochas-
ticity of the input parameters (e.g., inter-arrival and processing times) is
usually addressed by only considering the mean and the variance, instead
of the complete distribution. The main reason is the possibility of tackling
complex problems with a limited amount of resources. For example, two-
moment approximation models require smaller samples than more complex
models with higher order moments (Gross and Juttijudata, 1997). Further-
more, approximating stochastic parameters with simple distributions (such
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as Exponential) allows obtaining closed-form formulas for estimating system
performance indicators, such as the queue length (WIP) and the waiting time
(CTq), to deal with real contexts in the presence of little available data, and
to address complex problems (Coito et al., 2022).

In queuing theory, using only mean and variance is based on the as-
sumption of system utilisation close to 100% (the so-called heavy traffic
condition) (Wu et al., 2018). Some studies showed that two-moment ap-
proximation models are sufficiently reliable when the squared coefficients of
variation (SCV) of inter-arrival and processing time distributions are lower
than one (Shanthikumar and Buzacott, 1980) so that also the skewness has
a negligible impact (Myskja, 1990). These approximation models are useful
to identify the upper bounds of the performance indicators (Gross and Jut-
tijudata, 1997) and to explain most of the variability of system performance
measures such as the throughput (TH) (Tan, 1998) and the WIP (Johnson
and Taaffe, 1991b).

However, some studies in the field of queuing theory found that the shape
of inter-arrival and processing time distributions has a non-negligible effect
on the variability when single-stage approximation models are considered.
Specifically, the impact of the skewness is strictly related to both utilisation
and coefficients of variation of inter-arrival and processing time distributions
(Johnson, 1993).

Although the magnitude of the impact on system variability of both the
inter-arrival and processing time distribution shapes depends on utilisation
and coefficients of variations, they seem to have different effects on system
variability. In particular, the inter-arrival skewness influences both the mean
and the variance of CTq, while the processing time skewness influences only
the variance of the CTq (Sahin and Perrakis, 1976).

Wu et al. (2018) compared several two-moment approximations with a
three-moment approximation model for the average CTq in a single server
system with general distributions for both inter-arrival and processing times.
They showed that, in the approximation models, the skewness has an impact
when the coefficient of variation of the inter-arrival time distribution is larger
than 1, regardless of the value of the coefficient of variation of the processing
time distribution.

Brandwajn and Begin (2009) observed that, in single server systems with
Exponential inter-arrival times and general distribution for the processing
times, the average WIP increases when the coefficient of variation and the
skewness of the processing time distribution increase. Instead, Johnson and
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Taaffe (1991a) graphically showed, through a three-moment approximation
model for a system single-stage with parallel machines, general distribution
for inter-arrival times and exponentially distributed processing times, that
the skewness of the inter-arrival time distribution becomes relevant when its
CV increases.

All the papers just cited consider the effect of the skewness on single-
stage systems while few papers studied the effects of the inter-arrival and
processing time distribution shape on the variability in multi-stage systems.
Hendricks and McClain (1993) investigated the inter-departure time of a
manufacturing line under different conditions, and they show that the inter-
departure time distribution has some relationships with the line size and the
processing time skewness. In particular, the processing time skewness can be
considered a predictor of the output variability, and the mean inter-departure
time is slightly lower with low skewness.

Powell and Pyke (1994) investigated two-moment approximation models
for production lines through a simulation approach, and they noticed that
neglecting skewness and kurtosis (the fourth-order moment) led to approx-
imation errors up to 20%. Kurtosis seems to amplify the skewness impact
on TH variability. Also, the longer the lines, the more they are exposed to
processing time distribution shape effects on variability although an upper
bound seems to exist. However, as Powell and Pyke (1994) noted, estimat-
ing the impact of skewness and kurtosis is quite difficult, as they are largely
influenced by small numerical variations, which also affects the sensitivity to
outliers.

These insights fostered further empirical studies, based on simulation,
to analyse the effects of the inter-arrival and processing time distributions
on variability. To the best of the authors’ knowledge, only three papers
specifically focused on skewness impacts, and they paved the way for this
research.

LAUf and Martin (1987) studied the effects of skewness and kurtosis on
unpaced lines and observed that high-order moments, under certain condi-
tions, can influence variability levels up to 5%. They showed that the lower
the processing time distribution skewness, the higher the utilisation, while
kurtosis seems to lead to more complex patterns but with a marginal impact.
Furthermore, they observed correlated effects between line size, skewness,
and kurtosis.

Romero-Silva et al. (2019a) explicitly investigated the effects of skewness
on throughput variability in single-stage systems. They also found impacts
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for low CVs (i.e., CV ≤ 0.75, Hopp and Spearman (2008)) and observed that
the CV of the inter-departure time distribution is reduced when the skew-
ness of the inter-arrival time distribution is positive and that of processing
time is negative. A further study, however, showed that the opposite skew-
ness combination reduced both the average CTq and the WIP (Romero-Silva
et al., 2020). Also, the interaction between the skewness of inter-arrival and
processing time distributions seems to change with different CV values.

Although the impact on the system variability of the inter-arrival and
processing time distribution shapes has been shown in the literature, a com-
prehensive investigation of the role of the processing time distribution shape
is missing so far. There is still the need to further investigate the inter-
actions between different levels of CV of inter-arrival and processing time
distributions, line size, and system utilisation.

2.1. Contribution

This paper investigates the impact of processing time distribution shape
on the mean and the variance of the inter-departure time of balanced lines.
The objective is to assess how the processing time distribution shape af-
fects the variability of such systems. The conditions that are relevant for
manufacturing systems under the new industrial paradigms of I4.0 and I5.0
are explicitly considered in the paper. Specifically, it considers several com-
binations of the inter-arrival time SCV (influenced by fluctuating demand),
processing time SCV and utilisation level (influenced by system requirements
of flexibility and reconfigurability), and line size.

While recent studies specifically focused on the skewness impacts on
single-stage systems (Romero-Silva et al., 2019a, 2020) and the older ones
on unpaced balanced lines (LAUf and Martin, 1987), this paper addresses
short, medium, and long balanced flow lines. Also, differently from some
previous works that assessed the impacts of the skewness and kurtosis by
using different distributions (Hendricks and McClain, 1993), this paper ex-
plicitly focuses on varying the asymmetry of the same distribution shape to
isolate its effect.

3. Methodology

The impact of the processing time distribution on the mean and vari-
ance of the inter-departure time is assessed using Discrete Event Simulation.
The experiment considers several combinations of utilisation rate, line size,
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and SCV of both the inter-arrival time and processing time distributions.
Simulation is a tool largely adopted in the literature to deal with variability
propagation as the analytical investigation of such issue is complex for dis-
tributions other than Exponential and Normal, and when several impacting
factors are considered (Romero-Silva et al., 2019a, 2020).

3.1. Assumptions and performance measures

In this paper, the impact of processing time distributions on the variabil-
ity propagation is assessed by observing the SCV of the inter-departure time
at the last stage of the line:

SCVd,n =
σ2
d,n

µ2
d,n

, (1)

where µd,n and σd,n are the mean and the standard deviation, respectively, of
the inter-departure time distribution d at the last stage n. In the experiment,
the lines are assumed to be balanced (i.e., each stage has the same average
processing time µp) and all the stages have the same probability distribution.
Buffers at each stage are assumed to have infinite capacity. Also, the average
inter-arrival time is assumed to be larger than the average processing times
to have a stable system.

3.2. Inter-arrival and processing time distributions

In the literature, inter-arrival times are usually modelled by using an Ex-
ponential distribution (due to its memory-less property) (Vaughan, 2008).
Instead, processing times are sometimes modelled by Exponential distribu-
tions; however, they are often modelled by Log-normal distributions Hillier
(2013); Sabuncuoglu et al. (2002), to include specific characteristics such as
human server processing time (Slack, 2015), unexpected failures Rodriguez
and de Souza (2010); Vineyard et al. (1999), and setup between different
products (Robb and Silver, 1993). In the following, the same reasoning has
been used and, then, inter-arrival times will be modelled by exponentially
shaped distributions, and processing times by exponentially shaped and Log-
normal distributions. The aim is to assess the impact of such different shapes
on the system variability.

The shape of a probability distribution is described by its moments, and
the most important are: mean, variance, skewness, and kurtosis. However, in
many cases, some moments can hardly be independently controlled as they
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are intertwined with each other. Specifically, the Exponential distribution
has fixed SCV, skewness, and kurtosis (SCV = 1, µ̃3 = 2, and kurt = 6).
In this paper, to overcome the impossibility of changing these parameter
values, the Beta distribution is used, whose parameters can be set to obtain
a distribution shape similar to the Exponential one, whose moments can be
changed in the design of the experiment. Specifically, the Beta distribution
has four parameters: α and β control the shape, and a and b control the
support. Varying a and b keeps the distribution shape while changing the
mean and variance. Figure 1 shows an Exponential distribution (in blue)
and two Beta distributions with different parameter values (in green and
red). The two Beta distributions have the same µ, µ̃3, and kurt of the
Exponential distribution but different σ2, leading to SCV = 0.67 for the
green Beta distribution and SCV = 0.33 for the red one.

Figure 1: Exponential distribution with mean=1.5 (blue) and two Beta with the same
mean, skewness, and kurtosis of the Exponential distribution but SCV=0.67, and 0.33 (in
green and in red, respectively).

Instead, in the Log-normal distribution, the skewness, and the kurtosis
are proportional to the standard deviation, and they increase as σp increases.

In this paper, the impact of the processing time distribution shape on the
inter-departure time variability is assessed by comparing the SCVd,n of sys-
tems in which different distributions are used to model stage processing time
(p), but with the same distribution for the inter-arrival time (a). Specifically,
two systems are compared. Both systems have the same Beta inter-arrival
distribution (with the same moments), but different distributions of process-
ing times: one system has Beta and the other has Log-normal processing
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time distributions. These two processing time distributions have the same
mean and variance, but different skewness and kurtosis, and the skewness
and kurtosis of the Lognormal distribution are larger than those of the Beta
distribution. Moreover, the α and β parameters of all the involved Beta dis-
tributions approximate an Exponential distribution that has skewness and
kurtosis fixed and independent from mean and variance. Therefore, it is pos-
sible to vary the mean and variance of Beta distribution keeping fixed the
distribution asymmetry to exploit it as a benchmark in the comparison with
the system with Log-normal distributed processing time. As a consequence,
by the comparison of these two systems, the impact of having larger skewness
and kurtosis can be assessed.

3.3. Design of experiment

The experiment involves the following five factors:

• the inter-arrival time variability measured through the SCVa (three
levels: 0.33, 0.67, and 0.99);

• the processing time variability measured through the SCVp (three lev-
els: 0.33, 0.67, and 0.99);

• the stage utilisation u (ten levels: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 0.95);

• the processing time distribution type (two levels: Beta exponentially
shaped Exp and Log-normal Log);

• the line size n (three levels: 3, 7, and 17);

The full factorial experiment consists of 540 different instances.
In all the instances, the mean processing time µp is set to 1.5. As the

utilisation depends on µp and on the mean inter-arrival time µa, the values
of µa are set to obtain the ten levels of u. For each instance, the values of the
standard deviations of the inter-arrival distribution (σa) and of the processing
time (σp) are set to obtain the level of SCVa and SCVp, respectively. For
example, if µa = 15, the three σa values are 8.62, 12.28, and 14.92 to obtain
SCVa levels equal 0.33, 0.67, and 0.99, respectively.

Skewness µ̃3,p and kurtosis kurtp are fixed and depend on the distribution
shape (type = Exp or type = Log) and, in the case of type = Log, on the
value of σp. Table A1 of the electronic companion shows the values of the
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first four moments of the inter-arrival and processing time distributions of
each instance of the experiment.

4. Results

The initial analysis focuses on the impact of the experimental factors on
the variability of the inter-departure times at the end of the n-stage line,
SCVd,n, called response in the following. The effect of every single factor
on the response is investigated through the one-way analysis of variance
(ANOVA). Then, the two-way ANOVA looks into the pairwise factor inter-
actions to evaluate whether compensation effects might influence the results.
Finally, statistical tests are performed to investigate the differences between
both the means and the standard deviations of the processing time distribu-
tions of the two system types, to identify when the line size and the processing
time distribution have an effect on variability.

Figure 2 shows the factor main effects on the SCVd,n through the one-way
ANOVA. The variability of processing times SCVp has the largest impact on
SCVd,n. Therefore, the SCVd,n increases with SCVp, while the other factors
show a smaller impact. The inter-arrival time variability SCVa covers the
second largest influence on SCVd,n, followed by the utilisation u, and, finally,
the system size n and the distribution type. The utilisation u does not have
a monotonous impact on line variability; in fact, it amplifies variability when
increasing from 0.1 to 0.5, while it dampens it when it increases over 0.5.

The two-way ANOVA in Figure 3 highlights the effects of the pairwise
factor interactions on SCVd,n. In each graph, the different colours represent
the levels of the factor in the row while the markers represent the levels of the
factor in the column. For example, the first picture on the top left represents
the interactions among the SCVa levels (0.33, 0.67, and 0.99) and the ten
levels of u (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95). The right vertical
axis indicates the values of SCVd,n.

The top-left graph in Figure 3 shows that the SCVa levels (green, red, and
blue lines), which are the second main effect in Figure 2, have a different im-
pact on SCVd,n only for low u levels (overlapping markers). The SCVa levels
have an impact on SCVd,n also when considered together with other factors
(green, red, and blue lines are not overlapping in graphs SCVa-SCVp, SCVa-
n, and SCVa-type). Specifically, there is a monotonous and constant inter-
action between SCVa-SCVp levels (parallel lines with non-negligible slope
in picture SCVa-SCVp), weak interaction between SCVa-type (parallel lines

10



Figure 2: Main effects plot of inter-arrival time variability, stage utilisation, processing
time variability, number of stages, and distribution types, on the squared coefficient of
variation of the inter-departure time from the last stage.

with small slope in SCVa-type), and an inverse interaction with SCVa-n lev-
els (in picture SCVa-n, the value of SCVd,n decreases for high SCVa and
increasing n, and it increases for low SCVa and increasing n).

The n levels present an inverse interaction with SCVa and SCVp, while
only medium and large n sizes seem to be influenced by type (red and green
lines overlapping and with a steeper slope with respect to the blue line in the
n-type graph). Furthermore, the longer the system, the greater the impact
of u. Conversely, the overall impact of type, that is, the impact of increasing
skewness and kurtosis (µ̃3 = 2 and kurt = 6 for type = Exp, µ̃3 = 2, 3, 4 and
kurt = 7, 19, 37 for type = Log and increasing σp) seems weak or null. In
particular, type seems weakly influenced by SCVa levels, and only influenced
by high SCVp and long lines. However, the interactions between SCVa-n,
which are opposite with respect to SCVa-type, and the interactions between
SCVp-n and SCVp-type, which may amplify the interactions n-type, suggest
further analyses to deepen the overall impact of type. In fact, the two-way
ANOVA cannot capture the interactions among more than two factors, and
its results may be affected by compensation effects.
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Figure 3: Pairwise factor interaction impacts on SCVd,n (vertical axis on the right).

The effects of type and its interactions with n are deepened by focusing
first on the line size and then on the distribution. The analysis on line size
aims at highlighting whether the type affects in different ways the impacts
of n on variability propagation by amplifying or dampening it. Successively,
the analysis on type investigates the overall impact of the processing time
distribution shape on variability propagation when the experimental factors
vary.

4.1. The impact of the system size

As seen in the previous analyses, the line size impacts the SCVd,n; how-
ever, the effects on the single σd,n and µd,n have still to be assessed. The first
step is comparing µd,n and σd,n of instances with different line size, while
SCVa, SCVp, u, and type are the same. Two comparisons are performed:
(1) lines with n = 3 and n = 7; (2) lines with n = 7 and n = 17. The
comparison between lines with n equal to 3 and 17 can be inferred from
comparisons (1) and (2); in fact, the main effects plot of Figure 2 shows that
line size has a monotonic effect on variability, and in Figure 3, the pairwise
interactions plot does not highlight opposite interactions with respect to the
line size.
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First, the hypotheses that the means and the standard deviations are sta-
tistically different are tested, and the results are shown through the coloured
grid graphs. Then, only the cases of statistically different means and stan-
dard deviations are investigated to assess the magnitude of the size impact.

Figure 4: Hypothesis tests for the differences between the means (sets on the left) and
between the variances (sets on the right) when type = Exp (sets on the top) and type =
Log (sets on the bottom), for n = 3 and n = 7.

Figures 4 and 5 show the minimum significance level α with which the null
hypothesis (e.g., H0,µ : µd,3 ≥ µd,7 or H0,µ : µd,3 ≤ µd,7) cannot be rejected,
for each combination of factors, for the mean and the standard deviation of
the lines in comparisons (1) and (2). In particular, in each figure, there are
four sets of three grids. The two sets on the top are related to the test for the
differences in the means (the set on the left) and the standard deviations (the
set on the right) when type = Exp. Conversely, the two sets on the bottom
show the tests for means and standard deviations when type = Log. In each
set, the three vertical grids represent SCVp levels (increasing SCVp from left
to right). In each grid, the three columns represent the three SCVa levels,
increasing from left to right. The ten rows in each grid identify the u levels,
increasing from top to bottom. The squares are white when the means or the
standard deviations cannot be considered statistically different. Conversely,
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Figure 5: Hypothesis tests for the differences between the means (sets on the left) and
between the variances (sets on the right) when type = Exp (sets on the top) and type =
Log (sets on the bottom), for n = 7 and n = 17.

they have darker shades of red when the means or the standard deviation of
the first member of the test is lower than the second, and darker shades of
blue when the second is lower than the first.

Figure 4 shows that the mean of the inter-departure time is never affected
by the line size except for the case of type = Exp, SCVa = 0.99, SCVp = 0.99,
and u = 0.8, in which the blue colour indicates that, with an acceptance α
level lower than 0.05, µd,3 ≥ µd,7. Conversely, the standard deviation of the
inter-departure times is affected by both the line size and its interactions
with processing time type.

However, the size effect on the standard deviation is not constant, and
there is a turning point that shows how the effect changes. The shorter lines
propagate less variability than the longer ones for small values of SCVa (the
first columns of the coloured grids). When SCVa increases, the behaviour
is reversed (blue squares replace the red ones). The turning point depends
on SCVp and u; specifically, the larger the SCVp, the larger the u values
corresponding to the turning point. For example, in Figure 4 for type = Exp
and SCVp = 0.33, the turning point is for SCVa = 0.67 and u = 0.4; when
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SCVp = 0.67, the turning point is for SCVa = 0.67 and u = 0.95.
For type = Exp, when SCVa and SCVp are large, the difference between

standard deviations of shorter and longer lines becomes less significant (in-
crease in the number of white squares in the boxes in the middle and on the
right).

Figure 5 shows that the differences between n = 7 and n = 3 are similar
to those between n = 17 and n = 7 with the exception of slightly lower
differences when u is large, type = Exp, and SCVp = 0.99. Therefore, the
impact of line size on variability propagation is monotonously increasing with
the number of stages.

The magnitude of the impacts of the differences between the standard
deviations on SCVd,n is shown in Figure 6. Figure 6 reports nine bar charts
in which SCVp increases from left to right from 0.33 to 0.99, and SCVa

increases from the top to the bottom from 0.33 to 0.99. Each bar chart
shows four bars, one for each of the following indicators:

• GAP3,7,Exp =
SCVd,3−SCVd,7

SCVd,7
when type = Exp (blue bars);

• GAP3,7,Log =
SCVd,3−SCVd,7

SCVd,7
when type = Log (orange bars);

• GAP7,17,Exp =
SCVd,7−SCVd,17

SCVd,17
when type = Exp (gray bars);

• GAP7,17,Log =
SCVd,7−SCVd,17

SCVd,17
when type = Log (yellow bars);

Bars with positive height in Figure 6 are related to the blue squares of
Figures 4 and 5, that is, the shorter the line, the higher the propagated
variability in terms of SCVd (considering that coloured grid charts showed
no differences among µd and statistically significant differences among σd).
Conversely, bars with negative height are related to the red squares, that
is, the shorter the line, the lower the propagated variability. The turning
points identified in Figures 4 and 5 are here represented by the changes in
bar orientations from negative to positive.

On the one hand, when SCVa increases, the variability propagated by the
longer lines is reduced (this can be appreciated by comparing the graphs from
the top to the bottom of Figure 6). On the other hand, when SCVp increases
(i.e., when moving from the graphs on the left to those on the right of Figure
6), the variability propagated by larger line size is amplified. Furthermore,
the maximum of the variability propagated by longer lines moves from u =
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Figure 6: Bar charts for the differences of the squared coefficient of variation of inter-
departure time comparing lines with 3 and 7 stages, and lines with 7 and 17 stages, with
type = Exp and type = Log.

0.3 to u = 0.6 when SCVa increases (i.e., observing the graphs in Figure 6
from top to bottom, the highest bars of each graph moves from u = 0.3 to
u = 0.6).

The interaction between type = Log and the levels of n increases when
SCVp increases (orange and yellow bars are higher than blue and grey, re-
spectively), thus amplifying the variability propagated by longer lines. The
interaction between type = Log and the levels of n is amplified by higher u,
but the difference in the variability propagation due to the line size tends
to 0 when u tends to 1. Finally, larger SCVp have different impacts when
comparing line sizes 3-7 and 7-17. Two main effects can be identified: the
size impacts variability propagation, and it interacts with the distribution
shape.

The first impact is evaluated by comparing the blue bar with the grey bar
and the orange bar with the yellow bar in the bar charts for SCVp = 0.99.
For u ≥ 0.2, the blue and the orange bars are shorter than the grey and the
yellow ones; thus, the difference between lines with n = 7 and n = 3 is larger
than that one between lines with n = 17 and n = 7; however, the longer the
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line, the greater the propagated variability, with no distribution shape effect.
Hence, the variability propagated by the line size seems to increase, with a
decreasing rate, towards an upper bound.

The second effect, that is, the interaction between line size and distribu-
tion shape, is evaluated by comparing blue and grey bars with orange and
yellow bars. When SCVp = 0.33 (the three bar charts in the left column), the
skewness is the same (it is equal to 2 for both type = Exp and type = Log)
while the kurtosis is only similar (it is equal to 6 for type = Exp and it is
equal to 7 type = Log) and there is a negligible difference between orange and
blue bars and between yellow and grey bars. However, higher SCVp values
amplify the difference of variability between shorter and longer lines; in fact,
orange and yellow bars are higher than blue and grey bars even though a
decreasing rate can still be observed. Hence, the more skewed the processing
time distributions, the more amplified the variability propagated by the line
size.

The utilisation level is important to determine the size effect on the vari-
ability propagation. In particular, for low utilisation levels, the longer the
lines, the larger the difference. Instead, for medium utilisation levels, the
differences in the inter-departure time variance decrease when the line sizes
increase.

When both SCVa and SCVp proportionally increase, the experiment
shows the impact on the variability of the processing time distribution asym-
metrical shape. The overall line size effect decreases from SCVa = 0.33 −
SCVp = 0.33 to SCVa = 0.99 − SCVp = 0.99. However, a direct amplifica-
tion effect of processing time distribution asymmetry on the line size effect
emerges. In fact, in SCVa = 0.99 − SCVp = 0.99, there is no line size
impact on inter-departure time variability when inter-arrival and processing
time distributions have the same skewness and kurtosis; while when skewness
and kurtosis increase, the longer the line, the larger the inter-departure time
variability.

These analyses assess the line size contribution to the inter-departure
time variability and how and when the distribution shape can amplify such
an effect.

4.2. The impact of the processing time distribution

The analysis done in Section 4.1 shows that the distribution shape can
contribute to amplifying or dampening the propagated variability in some
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cases (i.e., depending on the combination of the other factors). Therefore,
the overall impact of type is investigated by fixing all the other factors.

Figure 7 shows the coloured grid graphs for the results of the hypothesis
tests for means (the three sets on the top) and variances (the three sets on the
bottom). Each set includes three grids for the three levels of SCVp, increasing
from the left to the right, and each grid consists of three columns (the three
SCVa levels) and ten rows (the u levels). Each square shows the results of
a hypothesis test through its colour: white if the difference is negligible, red
shades when the mean or the variance of type = Exp is greater than that of
type = Log, and blue shades in the opposite case.

Also in this case, the mean inter-departure time is not influenced by the
processing time distribution. Conversely, the inter-departure time variance
is affected by the processing time distribution. The variability has the same
trend for all three levels of n. When SCVp = 0.33, the system with type =
Exp has a larger variance. Instead, for higher SCVp, the system with type =
Log propagates greater variability except for u = 0.1. Differently from the
previous analysis, the results of Figure 7 show that shorter lines are scarcely
affected by processing time distribution for u ≤ 0.3, while longer lines are
scarcely affected for u ≤ 0.1 and u ≥ 0.9 when SCVa = 0.33.

Figure 8 shows the magnitude of the impact of type on variability propa-
gation. There are nine bar charts in which SCVp increases from left to right
moving from 0.33 to 0.99, and SCVa increases from the top to the bottom,
moving from 0.33 to 0.99. Each bar chart shows three bars, whose heights
are computed as:

• GapLog,Exp,3 =
SCVd,Log−SCVd,Exp

SCVd,Exp
when n = 3 (blue bars);

• GapLog,Exp,7 =
SCVd,Log−SCVd,Exp

SCVd,Exp
when n = 7 (orange bars);

• GapLog,Exp,17 =
SCVd,Log−SCVd,Exp

SCVd,Exp
when n = 17 (grey bars).

Positive bars refer to dark blue squares in Figure 7 in which the system
with type = Log propagated more variability than the system with type =
Exp, while negative bars refer to dark red ones. When SCVa increases,
the difference between the lines decreases. Instead, when SCVp increases,
it amplifies the variability led by the processing time distribution shape.
Moreover, the longer the line, the larger the variability difference, that is,
GapLog,Exp,17 is larger thanGapLog,Exp,7 (grey bars are the highest, followed by
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Figure 7: Hypothesis tests for the differences between the means (sets on the top) and
between the variances (sets on the bottom).

the orange ones). The type impact increases from u = 0.1 to a maximum, and
then it decreases until u = 0.9. The shorter the line, the greater the u where
the maximum is achieved. For example, in SCVa = 0.33 and SCVp = 0.99
the peak for n = 3 is in u = 0.8, for n = 7 is in u = 0.6, and for n = 17 is in
u = 0.5.

The effects of processing time distribution asymmetry can be observed
in the bar charts where SCVa = SCVp as the two compared systems (i.e.,
the one with exponentially shaped processing times and the other with Log-
normal processing times) are equal except for skewness and kurtosis of the
processing time distributions. The increasing asymmetry coupled with the
increasing σp propagate more variability on the inter-departure times than
the system with constant asymmetry of the processing time distribution.

The differences in the propagated variability of the more skewed process-
ing time distribution are maximum for medium utilisation levels even though
it also affects higher and lower utilisation levels.

The bar chart SCVa = 0.33 − SCVp = 0.33 in Figure 6 shows the non-
negligible effect of the kurtosis. In fact, the two system processing time dis-
tributions have the same mean, variance, and skewness, but the Lognormal
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Figure 8: Bar charts for the differences of the squared coefficient of variation of inter-
departure time comparing lines with type = Exp and type = Log, for n = 3, n = 7, and
n = 17.

distribution has a slightly larger kurtosis that increases the inter-departure
time variance. It seems that larger kurtosis mitigates the propagated vari-
ability.

The increasing of SCVa has a twofold effect on the propagated variability.
It slightly reduces the difference of the propagated variability in the inter-
departure times, and, according to Figure 6, it reduces the line size effect
on the propagated variability even though the larger the asymmetry of the
processing time distribution, the larger the propagated variability.

5. Discussion

The results show that the distribution shape has an effect on the variabil-
ity propagation also for low levels of inter-arrival and processing time SCV
and utilisation. The mean inter-departure time is not affected by the line size
and the processing time distribution under any of the considered conditions.
Instead, line size and processing time distribution shape directly influence
the variance of the inter-departure time, and the larger the processing time
variance and its asymmetry, the larger the propagated variability. Hence,
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theoretical approximation, simulation models and optimisation algorithms
that neglect the distribution shape might give inaccurate results, especially
for systems with medium utilisation levels.

Also, the interaction between the processing time distribution and many
other factors (e.g., inter-arrival and processing time SCV, utilisation levels,
and the number of stages of the system) makes the prediction of system
variability difficult. In fact, the propagated variability is sensitive to changes
in utilisation levels and inter-arrival and processing time SCV in a way that
depends on the asymmetry of processing time distribution.

The impact of line size and processing time distribution on the variabil-
ity propagation seems to suggest that the inter-departure time distribution
(and then the throughput) changes stage after stage. However, the numer-
ical results seem to suggest that an upper bound exists on the variability
propagated when increasing line size in processing time skewed distributions
(Powell and Pyke, 1994).

The system size and the processing time distribution have a joint effect
on variability propagation. Therefore, in all the cases in which the system
configuration is flexible (such as supply chain design and production schedul-
ing in presence of workstations able to work different tasks), the approaches
for system design or reconfiguration should consider the number of stages,
their utilisation level, and the entire processing time distribution rather than
only its mean and standard deviation.

All in all, the experimental results suggest including the processing time
distribution shape in production planning algorithms by exploiting the dis-
tribution fitting and not to consider only mean and variance when utilisation
levels are far from 100%.

5.1. Managerial insights

The results of this paper have a twofold objective: they highlight the
impact of approximating processing times of the single stages with mean and
variance, and they also quantify the negative impact on variability propaga-
tion. These findings can support production managers and process engineers
in several activities, such as production planning, reconfiguration of Recon-
figurable Manufacturing Systems, production monitoring, and control.

Although the rising complexity is caused by large product variety, small
lot size, and outsourced maintenance activities, a deep understanding of pro-
cessing time distribution is fundamental for improving the system perfor-
mance as mean and variance are insufficient. A processing time distribution
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characterised by many processing times slightly under the average and others
abundantly larger than the average requires further analyses.

Maintenance issues can cause some processing times over the average. In
this case, further maintenance strategies should be investigated. For exam-
ple, according to the Lean Management principles, the production rate can
be fixed by a takt time slightly larger than the mean processing time to in-
clude short maintenance activities that avoid less frequent longer stops. This
approach can achieve the twofold result of avoiding both small and large pro-
cessing time by smoothing the production pace and concentrating processing
time density around the distribution average by reducing even the variance
beyond skewness.

In multi-product environments, aggregating processing times of different
products in production planning and in the evaluation of the system reconfig-
urations can lead to a significant underestimation of variability propagation.
Specifically, although different production lot can have the same processing
time mean and standard deviation, the product variety within a production
lot or in a system configuration can affect variability propagation and the
actual system variability. Therefore, in multi-product production planning
activities, production lots should have processing times as homogeneous as
possible to be comparable.

Manufacturing and service systems, in the Industry 4.0 and 5.0 paradigms,
are exposed to variability propagation due to under-utilisation (Prasad and
Jayswal, 2019; Diaz et al., 2021), fluctuations in the demand (Abbasi and
Houshmand, 2011) and in the production volumes (Kara and Kayis, 2004),
which often are subjected to long transients (Chen and Shen, 2022), large
processing time SCV because of different manufactured products (Arteaga
and Calvo, 2021) and frequent setups, reorganization and re-skilling of the
workforce (El-Khalil and Darwish, 2019). Variability propagation can be
erroneously assumed intertwined only with high inter-arrival variability and
stage utilisation levels. However, inter-arrival variability is poorly relevant for
variability propagation caused by asymmetrical processing time distribution,
while medium utilisation levels are the most affected ones. Therefore, vari-
ability propagation can be underestimated and it can cause injuries, stress,
ineffective workloads, and underperformance.

Moreover, variability propagation is particularly critical for the key per-
formance indicators of flexible and reconfigurable manufacturing systems. In
fact, these systems are commonly adopted in assembly-to-order and make-
to-order industries in which variability propagation is crucial to ensure order
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deadlines and competitive cycle times.

6. Conclusion

This paper addresses the impact of the inter-arrival and processing time
distribution shapes on the variability propagated at the end of a flow line.
The experimental results, which refer to balanced small, medium, and large
lines with unlimited buffer capacity, show the impacts of inter-arrival and
processing time distributions on the inter-departure time variability. The
inter-arrival time variability reduces the variability propagated by skewed
processing time distributions, while larger skewness and kurtosis of the pro-
cessing time distributions increase the inter-departure time variability.

Positively skewed processing time distributions amplify the variability of
larger lines. However, this amplification effect due to increasing line size
seems to have a lower impact on longer lines.

The mean inter-departure time never results affected by the processing
time skewness and kurtosis and by the line size, which all impact only the
variance of inter-departure times. The stage utilisation is crucial because
when utilisation is close to 1, the line size and the inter-arrival and processing
time distribution shapes have minor effects.

In the production field, all the potential causes of larger skewness (i.e.,
positive asymmetry) of the processing time distributions should be investi-
gated and limited. In fact, the larger the skewness, the larger the amplifica-
tion effect on the propagated variability.

Finally, the results shed light on those situations that can be immedi-
ately identified as more critical for the variability propagation by helping
production and operation managers, practitioners, and process engineers to
prioritise analyses, investigations, and further actions. For example, in the
design and reconfiguration phases adding a new manufacturing stage in small
systems creates relevant changes in the propagated variability, which is still
more relevant when the processing time skewness is large. Instead, the ad-
ditional variability propagated by adding a stage in a large size line has a
marginal impact. However, the overall variability propagated by the distri-
bution shape outperforms the line size effect.

This paper investigates the effects of the processing time distribution
shapes by highlighting the connection between the moments of third and
fourth order with the effect on the variability propagation. However, the
distribution shape cannot be exactly described by the first four moments
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because also other factors can have an influence (such as the spread of the
interquartile ranges and the moments of order higher than four). Therefore,
the connection between distribution shape and skewness and kurtosis has
to be considered as a measure of asymmetry rather than the effects on the
variability propagation of specific values of skewness. Future research should
assess if different distributions with different asymmetry can lead to different
results although the same values of skewness and kurtosis.

Differently from what is suggested by the state-of-the-art literature, this
work proves that the contribution of kurtosis might not be irrelevant. Hence,
future research should try to separate the impacts of skewness and kurtosis.

Largely variable processing time distribution should be investigated to
deepen the distribution shape behaviour in systems affected by high vari-
ability. Also, in future research, the effect on the variability of assem-
bly/disassembly stages, the role of parallel machines, the position of bot-
tlenecks in unbalanced lines, and other performance measures (e.g., WIP
and CTq) should be investigated.

References

Abbasi, M., Houshmand, M., 2011. Production planning and performance
optimization of reconfigurable manufacturing systems using genetic algo-
rithm. The International Journal of Advanced Manufacturing Technology
54, 373–392.

Arteaga, A., Calvo, R., 2021. Influence of product variety on work allocation
and server distribution of flexible manufacturing lines, in: IOP Conference
Series: Materials Science and Engineering, IOP Publishing. p. 012046.

Battesini, M., ten Caten, C.S., de Jesus Pacheco, D.A., 2021. Key factors
for operational performance in manufacturing systems: Conceptual model,
systematic literature review and implications. Journal of Manufacturing
Systems 60, 265–282.

Bortolini, M., Galizia, F.G., Mora, C., 2018. Reconfigurable manufacturing
systems: Literature review and research trend. Journal of manufacturing
systems 49, 93–106.

Brandwajn, A., Begin, T., 2009. A note on the effects of service time distri-
bution in the m/g/1 queue, in: SPEC benchmark workshop, Springer. pp.
138–144.

24



Chen, H., Yao, D.D., 2001. Fundamentals of queueing networks: Perfor-
mance, asymptotics, and optimization. volume 4. Springer.

Chen, J., Shen, Z.J.M., 2022. Fast algorithm for predicting the production
process performance in flexible production lines with delayed differentia-
tion. IISE Transactions , 1–23.

Coito, T., Martins, M.S., Firme, B., Figueiredo, J., Vieira, S.M., Sousa,
J.M., 2022. Assessing the impact of automation in pharmaceutical quality
control labs using a digital twin. Journal of Manufacturing Systems 62,
270–285.

Curry, G.L., Feldman, R.M., 2010. Manufacturing systems modeling and
analysis. Springer Science & Business Media.

Diaz, C.A.B., Aslam, T., Ng, A.H., 2021. Optimizing reconfigurable manu-
facturing systems for fluctuating production volumes: A simulation-based
multi-objective approach. IEEE Access 9, 144195–144210.

El-Khalil, R., Darwish, Z., 2019. Flexible manufacturing systems perfor-
mance in us automotive manufacturing plants: a case study. Production
planning & control 30, 48–59.

Felsberger, A., Qaiser, F.H., Choudhary, A., Reiner, G., 2022. The impact of
industry 4.0 on the reconciliation of dynamic capabilities: Evidence from
the european manufacturing industries. Production Planning & Control
33, 277–300.

Gross, D., Juttijudata, M., 1997. Sensitivity of output performance measures
to input distributions in queueing simulation modeling, in: Proceedings of
the 29th conference on Winter simulation, pp. 296–302.

Hendricks, K.B., McClain, J.O., 1993. The output process of serial produc-
tion lines of general machines with finite buffers. Management Science 39,
1194–1201.

Hillier, M., 2013. Designing unpaced production lines to optimize throughput
and work-in-process inventory. IIE Transactions 45, 516–527.

Hopp, W., Spearman, M.L., 2008. Factory Physics. 3 ed., McGraw Hill
Higher Education, Maidenhead, England.

25



Inman, R.R., 1999. Empirical evaluation of exponential and independence
assumptions in queueing models of manufacturing systems. Production
and Operations Management 8, 409–432.

Johnson, M.A., 1993. An empirical study of queueing approximations based
on phase-type distributions. Stochastic Models 9, 531–561.

Johnson, M.A., Taaffe, M.R., 1991a. A graphical investigation of error
bounds for moment-based queueing approximations. Queueing Systems
8, 295–312.

Johnson, M.A., Taaffe, M.R., 1991b. An investigation of phase-distribution
moment-matching algorithms for use in queueing models. Queueing Sys-
tems 8, 129–147.

Kara, S., Kayis, B., 2004. Manufacturing flexibility and variability: an
overview. Journal of Manufacturing Technology Management .

Khalil, R.A., Stockton, D.J., Fresco, J.A., 2008. Predicting the effects of
common levels of variability on flow processing systems. International
Journal of Computer Integrated Manufacturing 21, 325–336.

Kuo, T.C., Hsu, N.Y., Li, T.Y., Chao, C.J., 2021. Industry 4.0 enabling
manufacturing competitiveness: Delivery performance improvement based
on theory of constraints. Journal of Manufacturing Systems 60, 152–161.

LAUf, H.S., Martin, G., 1987. The effects of skewness and kurtosis of process-
ing times in unpaced lines. International Journal of Production Research
25, 1483–1492.

Lu, Y., Zheng, H., Chand, S., Xia, W., Liu, Z., Xu, X., Wang, L., Qin, Z.,
Bao, J., 2022. Outlook on human-centric manufacturing towards industry
5.0. Journal of Manufacturing Systems 62, 612–627.

Maddikunta, P.K.R., Pham, Q.V., Prabadevi, B., Deepa, N., Dev, K.,
Gadekallu, T.R., Ruby, R., Liyanage, M., 2022. Industry 5.0: A survey
on enabling technologies and potential applications. Journal of Industrial
Information Integration 26, 100257.

Malik, A.A., Masood, T., Kousar, R., 2021. Reconfiguring and ramping-up
ventilator production in the face of covid-19: Can robots help? Journal of
Manufacturing Systems 60, 864–875.

26



Morgan, J., Halton, M., Qiao, Y., Breslin, J.G., 2021. Industry 4.0 smart
reconfigurable manufacturing machines. Journal of Manufacturing Systems
59, 481–506.

Myskja, A., 1990. On approximations for the gi/gi/1 queue. Computer
networks and ISDN systems 20, 285–295.

Powell, S., Pyke, D., 1994. An empirical investigation of the two-moment
approximation for production lines. THE INTERNATIONAL JOURNAL
OF PRODUCTION RESEARCH 32, 1137–1157.

Prasad, D., Jayswal, S., 2019. Assessment of a reconfigurable manufacturing
system. Benchmarking: An International Journal 28, 1558–1575.

Robb, D.J., Silver, E.A., 1993. Scheduling in a management context: un-
certain processing times and non-regular performance measures. Decision
Sciences 24, 1085–1108.

Roda, I., Macchi, M., 2019. Factory-level performance evaluation of buffered
multi-state production systems. Journal of Manufacturing Systems 50,
226–235.

Rodriguez, C.E.P., de Souza, G.F.M., 2010. Reliability concepts applied to
cutting tool change time. Reliability Engineering & System Safety 95,
866–873.

Romero-Silva, R., Marsillac, E., Shaaban, S., Hurtado-Hernández, M., 2019a.
Reducing the variability of inter-departure times of a single-server queueing
system–the effects of skewness. Computers & Industrial Engineering 135,
500–517.

Romero-Silva, R., Marsillac, E., Shaaban, S., Hurtado-Hernández, M., 2019b.
Serial production line performance under random variation: dealing with
the ‘law of variability’. Journal of Manufacturing Systems 50, 278–289.

Romero-Silva, R., Shaaban, S., Marsillac, E., Hurtado-Hernandez, M., 2020.
Studying the effects of the skewness of inter-arrival and service times on
the probability distribution of waiting times. Pesquisa Operacional 40.

Sabuncuoglu, I., Erel, E., Gurhan Kok, A., 2002. Analysis of assembly sys-
tems for interdeparture time variability and throughput. IIE Transactions
34, 23–40.

27



Sahin, I., Perrakis, S., 1976. Moment inequalities for a class of single server
queues. INFOR: Information Systems and Operational Research 14, 144–
152.

Shanthikumar, J., Buzacott, J., 1980. On the approximations to the single
server queue. International Journal of Production Research 18, 761–773.

Slack, N., 2015. Work–time distributions. Wiley Encyclopedia of Manage-
ment , 1–1.

Tan, B., 1998. An analytical formula for variance of output from a series-
parallel production system with no interstation buffers and time-dependent
failures. Mathematical and computer modelling 27, 95–112.

Tarasov, V.N., 2016. Analysis of queues with hyperexponential arrival dis-
tributions. Problems of Information Transmission 52, 14–23.

Taylor, G., Heragu, S., 1999. A comparison of mean reduction versus vari-
ance reduction in processing times in flow shops. International journal of
production research 37, 1919–1934.

Tiacci, L., 2017. Mixed-model u-shaped assembly lines: Balancing and com-
paring with straight lines with buffers and parallel workstations. Journal
of Manufacturing Systems 45, 286–305.

Vaughan, T.S., 2008. In search of the memoryless property, in: 2008 Winter
Simulation Conference, IEEE. pp. 2572–2576.

Vineyard, M., Amoako-Gyampah, K., Meredith, J.R., 1999. Failure rate
distributions for flexible manufacturing systems: An empirical study. Eu-
ropean journal of operational research 116, 139–155.

Wang, M., Huang, H., Li, J., 2021. Transients in flexible manufacturing
systems with setups and batch operations: Modeling, analysis, and design.
IISE Transactions 53, 523–540.

Wu, K., Srivathsan, S., Shen, Y., 2018. Three-moment approximation for
the mean queue time of a gi/g/1 queue. IISE Transactions 50, 63–73.

Xu, X., Lu, Y., Vogel-Heuser, B., Wang, L., 2021. Industry 4.0 and indus-
try 5.0—inception, conception and perception. Journal of Manufacturing
Systems 61, 530–535.

28



Yadav, A., Jayswal, S., 2018. Modelling of flexible manufacturing system: a
review. International Journal of Production Research 56, 2464–2487.

Zanchettin, A.M., 2022. Robust scheduling and dispatching rules for high-
mix collaborative manufacturing systems. Flexible Services and Manufac-
turing Journal 34, 293–316.

29


