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ARTICLE INFO ABSTRACT

Keywords: Due to the increasing frequency of natural and man-made disasters, the scientifc community has
Community resilience paid considerable attention to the concept of resilience engineering. On the other hand, au-
PEOPLES framework thorities and decision-makers have been focusing their efforts on developing strategies that can
Fuzzy logic help increase community resilience to different types of extreme events. Since it is often
F;;;Z?:‘Li"tir’:s”ieme impossible to prevent every risk, the focus is on adapting and managing risks in ways that

minimize impacts to communities (e.g., humans and other systems). Several resilience strategies
have been proposed in the literature to reduce disaster risk and improve community resilience.
Generally, resilience assessment is challenging due to uncertainty and the unavailability of data
necessary for the estimation process. This paper proposes a Fuzzy Logic method for quantifying
community resilience. The methodology is based on the PEOPLES framework, an indicator-based
hierarchical framework that defnes all aspects of a community. A fuzzy-based approach is
implemented to quantify the PEOPLES indicators using descriptive knowledge instead of complex
data, accounting for the uncertainties involved in the analysis. To demonstrate the applicability of
the methodology, three cases with different levels of data availability are performed to obtain a
resilience curve and resilience index of two out of seven dimensions of the PEOPLES framework.
When numerical data does not exist, descriptive data based on expert knowledge is used as input.
Results show that the proposed methodology can cope with both numerical and descriptive input
data with different uncertainty levels providing good estimates of resilience. The methodology
can be used as a decision-support tool to assist decision-makers and stakeholders in assessing and
improving their communities’ resilience for future events, focusing on specifc indicators that
suffer from resilience defciencies and need improvements.

Social wellbeing

1. Introduction

Past global disaster events have shown an upward trend over the years, suggesting that modern communities are often not resilient
enough to natural and man-made disasters. In recent decades, an increase in the intensity and frequency of extreme weather events (e.
g., rainfall, temperature, and wind) has ultimately led to climate change-related hazards, such as increased fooding, heatwaves, and
sea-level rises [1]. Previous events, such as the intense fooding in Thailand (2011) and Hurricane Sandy (2012), have indicated that
extreme events can have far-sighted impacts upon communities [2]. Therefore, research on disaster resilience has gained increased
attention. Since resilience is a multidisciplinary concept and encompasses different research areas, several defnitions of resilience can
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be found in the literature. The term resilience was introduced by Allenby and Fink [3] as “the ability of a system to remain in a practical
state and to degrade gracefully in the face of internal and external changes”. Bruneau et al. [4], and later Cimellaro et al. [5], defned
resilience as “the ability of social units to mitigate hazards, contain the effects of disasters when they occur, and carry out recovery
activities to minimize social disruption and mitigate the effects of future earthquakes”.

Disaster resilience is often classifed into technological units and social systems [6]. The literature offers state-of-the-art approaches to
guantify community resilience [7-13], mostly indicator-based approaches. Resilience indicators provide a way to cope with the
complexity of community systems while computing their resilience. Among the available indicator-based resilience frameworks, there
is the Hyogo Framework for Action (HFA) [14,15], which is an internationally agreed top-down framework to increase the resilience of
nations and communities through the implementation of detailed measures at the government and policy levels. Based on the Hyogo
Framework, Kammoubh et al. [16] have introduced a quantitative method to quantify resilience at the country level. Another top-down
resilience framework is the Baseline Resilience Indicator for Communities (BRIC) [17], a quantitative framework that focuses on the
inherent resilience of communities. A qualitative framework that measures resilience along with the ability to recover from seismic
events is the San Francisco Planning and Urban Research Association framework (SPUR) [18]. It considers the recovery of buildings,
infrastructures, and services to determine the resilience of physical infrastructure. Another hierarchical framework for evaluating
community-level resilience was proposed by Kwasinski et al. [19]. The model consists of community dimensions and their relation-
ships with community services, systems, and resources.

Similarly, Cimellaro et al. [20] presented the PEOPLES framework, a top-down theoretical framework that addresses all aspects of a
community. These aspects are classifed under seven community dimensions: Population; Environment; Organized government ser-
vices; Physical infrastructure; Lifestyle; Economic; and Social capital. Later, the PEOPLES framework was upgraded into a quantitative
framework for measuring community resilience [21-24]. Alshehri et al. [25] proposed a quantitative and qualitative assessment tool to
measure community resilience to disasters. The dimensions of the framework were developed using the census-based Delphi tech-
niques. Another resilience-based risk assessment approach at the community level was developed by Marasco et al. [26]. The PEOPLES
framework was adopted as the community resilience blueprint for determining resilience through its comprehensive indicators and
structure. Joerin and Shaw [27] developed the Climate Disaster Resilience Index (CDRI), focusing on physical, social, economic,
institutional, and natural dimensions of a community to quantitatively assess the resilience of communities against climate-related
disasters such as foods, landslides, etc. Shammin et al. [28] adopted a holistic approach to designing community-based adaptation
programs against climate change impacts.

Recently, several data-driven frameworks have been investigated to assess community resilience. For instance, Hong et al. [29]
proposed a generalizable method using large-scale smartphone geolocation data to evaluate community resilience. Abdel-Mooty et al.
[30] developed a data-driven community food resilience categorizations framework that can be used to develop realistic disaster
managements strategies and risk mitigation measures.

Despite this robust literature on community resilience quantifcation, there is still considerable disagreement about the indicators
that defne resilience and the most useful frameworks for measuring it. The scientifc community is aware that data availability is one
of the main issues. The modeling approaches presented require accurate data inputs to be incorporated into the models to be func-
tional, time, and technical expertise. Access to this data is limited, and often, data collection comprises uncertainties and a lack of
knowledge, and the accuracy is insuffcient. An important aspect missing from different existing resilience assessments is the inclusion
of uncertainty. Assessing uncertainty will help understand the studied system and reduce critical areas of uncertainty [31-34]. The
engineering community’s typology and defnition of uncertainty are extensive and often discordant [35]. Klir and Yuan [36] cate-
gorized uncertainty into two basic types: vagueness and ambiguity (see Ref. [37] for an extensive list of the uncertainty types).

The diffculty in the data and indicators acquisition process, as well as in defning the interaction between them, makes resilience
assessment so complex that decision-makers and industry cannot use it. Stakeholders and practitioners often lack the resources to use
the available data-intensive methods. To respond to this challenge, many studies have focused on developing methods for quantifying
community resilience and assessing the impacts of recovery strategies through probabilistic approaches, such as Bayesian Networks
[38]. For example, Abdelhady et al. [39] proposed a novel framework that integrates damage estimated after a hurricane through
vulnerability models with a probabilistic community recovery model. Schultz and Smith [40] developed a Bayesian network-based
approach to evaluate the resilience of infrastructure networks and buildings in Jamaica Bay, New York. Kammouh et al. [41] intro-
duced a novel approach to assess the time-dependent resilience of engineering systems using resilience indicators through the Dynamic
Bayesian Network (DBN). Another Bayesian network-based approach for seismic resilience quantifcation was proposed by Ref. [42].
Cai et al. [43] employed a Bayesian network to investigate interdependencies of resilience components and improve disaster resilience.
Furthermore, Kameshwar et al. [44] developed a probabilistic decision support framework for community resilience planning under
multiple hazards using Bayesian Network. Despite the advantages of the Bayesian network, such as updating the system to which it is
applied when new data and information become available, the main concern is its application in case of epistemic uncertainties and the
computational effort in determining conditional probabilities [45]. When dealing with uncertainty, choosing an appropriate model
depends on the characteristic of the uncertainty presented in the problem description. Generally, probabilistic models are used to
characterize random variables and treat their uncertainties through statistical information. Statistical information is required for
comparing probability distribution functions (PDFs) with data. If this information is insuffcient (e.g., no numerical data are available),
an alternative uncertainty model must be utilized. When few data are available with signifcant uncertainty, expert knowledge with
linguistic assessment is most frequently required. The Fuzzy set theory provides the basis for modeling a non-probabilistic uncertainty
model that considers fuzzy sets, subjective information, and human knowledge to represent the uncertainty in the parameters.
Moreover, in fuzzy systems, the uncertainties contained in both inputs and output of the system are used to formulate the system
structure itself, unlike conventional systems that formulate a model based on assumptions and then consider uncertainties.
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The primary goal of this paper is to cover the previously mentioned shortcomings of existing scientifc literature by introducing a
Fuzzy Logic-based method within the context of the PEOPLES framework. The proposed method utilizes the resilience indicators
presented in Ref. [22] to develop an extensive resilience model that accounts for all aspects of a community. Since some indicators may
be challenging to quantify in specifc scenarios, the fuzzy logic technique is used for inference to account for the data-related un-
certainties. The methodology here derived does not require precise and deterministic data but rather expert knowledge and experience
for its implementation to determine the different parameters involved in the resilience evaluation of urban communities and provide
consistent resilience values.

The contributions of this work are summarized as follows:

1. Developing a comprehensive hierarchical framework that captures casual and logical relationships among the PEOPLES di-
mensions belonging to a specifc component.

2. Implementing the weighting technique developed in Ref. [22] to rank the indicators according to their importance.

3. Employing the fuzzy logic inference technique to account for data uncertainties of the analyzed indicators.

4. Presenting three cases with different levels of uncertainty to demonstrate the applicability of the introduced resilience estimation
methodology.

5. Verifying the methodology by comparing the model output with the output obtained from Ref. [22].

The resilience quantifcation methodology presented in this paper can be used as a decision-support tool by decision-makers to (i)
determine the state of their communities after a hazardous event and (ii) prioritize planning and management strategies, assign
appropriate resources for enhancing the individual indicators that suffer from resilience defciencies, and improving the resilience of
their communities to future hazardous events. The remainder of the paper is organized as follows. Section 2 reviews the PEOPLES
framework along with its seven dimensions. Section 3 is dedicated to reviewing the basic knowledge of the Fuzzy Logic and its
implementation within the PEOPLES framework. Section 4 describes the proposed methodology for estimating community resilience.
Section 5 presents three cases with different levels of uncertainty to demonstrate the applicability of the methodology and verify the
proposed resilience estimation model by comparing the model output with the output of the benchmark system. Sensitivity analysis for
membership functions and defuzzifcation methods is presented in Section 6 to reduce the subjectivity of the fuzzy system. Finally,
conclusions are drawn in Section 7 together with the proposed future work.

2. PEOPLES framework

PEOPLES is a multi-layered framework developed at the Multidisciplinary Center of Earthquake Engineering Research (MCEER,
State University of New York) that aims to identify different resilience characteristics of a community at different scales (spatial and
temporal) and assess possible responses of a community by taking into account the interdependence between community levels [7].
The PEOPLES framework consists of seven dimensions of a community divided into a set of components, each of which is subdivided
into several indicators. The seven dimensions are summarized by the acronyms PEOPLES as follows [6,46] (see Fig. 1): Population and
demographics, Environment and ecosystem, Organized government services, Physical infrastructure, Lifestyle and community
competence, Economic development, and Social-cultural capital.

Every dimension of the PEOPLES framework is divided into a set of components and every component is further broken down into a

Fig. 1. Peoples resilience framework — dimensions (adapted from Ref. [46]).
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set of indicators. Regarding the indicators, a list of 115 resilience indicators found in the literature was collected and allocated to the
proper components of PEOPLES [22]. Each indicator has a numerical value assigned to it to enable an analytical examination of the
indicator’s performance and make all indicators computable. Furthermore, each value is normalized to the target value (TV). The
target value provides the baseline for measuring the resilience of a system and represents the quantity at which the analyzed value is
considered fully resilient [47]. For instance, considering the measure “Number of beds per 100,000 population” (Indicator 4.2.1 in
Appendix), the output of this measure would be an absolute number of beds that cannot be incorporated into other measures unless it is
normalized; thus, the result is divided by TV, which in this scenario represents the “optimum’ number of beds per 100,000 people (e.g.,
TV = 1000 beds/100,000 people). If the ratio of the value of the measure and the TV is less than one, this means that the indicator
could still be improved; while if the ratio is greater than one, a value of 1 is assigned to the measure [22]. Furthermore, the measures
are classifed into “static measures (S)” and “dynamic measures (D). A static measure is a measure that is not impacted by a hazardous
event, while a dynamic measure is a measure that is event-sensitive (i.e., the value of the measure changes following a hazard event).
The variables (i.e., dimensions, components, and indicators) included in the PEOPLES framework do not contribute equally to the
resilience output. Therefore, they are classifed according to their importance. Each variable in the same group is assigned an
importance factor (1) which is normalized using a min-max rescaling technique. The min-max rescaling technique is used to scale the
importance score of each variable between 0 and 1, where 0 corresponds to the worst rank and 1 represents the best rank. To represent
the functionality of each variable (i.e., dimensions, components, and indicators) within the PEOPLES framework, a set of parameters
obtained from past events or by performing hazard analysis is used: un-normalized initial functionality go,, normalized initial func-
tionality before the event qg, post-disaster functionality q;, the functionality after recovery g, and the restoration time T, required to
complete the recovery process [22].

3. Background on fuzzy logic

Zadeh [48] introduced the concept of fuzzy set theory and fuzzy logic to address the subjectivity of human judgment in the use of
linguistic terms in the decision-making process [49,50]. The purpose of fuzzy logic is to solve high degree uncertainty problems and to
represent vague, ambiguous, and chaotic information [51,52]. Over the years, Fuzzy Logic has become a key factor in many felds due
to its effectiveness and reliability.

In the existing literature, fuzzy set theory and fuzzy logic have been applied in Machine Intelligence Quotient (MIQ) to simulate
human ability, in earthquake engineering for seismic damage evaluation [37,53,54], in fragility curve analysis [55], and natural
disaster risk management [56].

Fuzzy logic assigns different membership grades () ranging between 0 and 1 to a variable x to indicate the membership of the
variable to several classes (fuzzy sets). The strength of the fuzzy logic inference system relies on the following two main features: (i)
fuzzy inference system can handle both descriptive (linguistic) knowledge and numerical data; (ii) fuzzy inference system uses
approximate reasoning algorithm to determine relationships between inputs by which uncertainties can be propagated throughout the
process [57]. In this work, the Mamdani Fuzzy Logic inference method, known as the Max-Min method, is implemented as it is the most
suitable when the fuzzy system relies on expert knowledge and experience [58]. Implementing fuzzy logic as an inference system to
guantify the resilience requires three main steps: 1) fuzzifcation and membership functions (MFs); 2) Fuzzy Inference System (FIS) to
aggregate the indicators, and 3) defuzzifcation (Fig. 2). Theoretical information and detailed applications of fuzzy logic can be found
in Refs. [36,59].

4. Fuzzy-based methodology to estimate community resilience

The methodology proposed in this work enhances the previous work introduced by Ref. [22] by incorporating fuzzy logic in the
computation process. The methodology can be divided into the following (see Fig. 3):

e Resilience modeling and indicator grouping: a hierarchical rule base model is built based on the structure of the PEOPLES
framework. According to predefned criteria, indicators belonging to a specifc component are further divided into subgroups. This
step is necessary to have a manageable and straightforward hierarchical structure for each dimension to simplify the subsequent
implementation of Fuzzy Logic and reduce its computation requirements.

¢ Interdependency analysis and importance factor: weighting factors and importance factors are allocated to each PEOPLES variable
(i.e., indicators, components, and dimensions) as they do not contribute equally to the overall resilience output.

INPUTS OUTPUTS
A

A4

Fuzzy
Input Sets

Fuzzy
Output Sets

Inference system

Fig. 2. Fuzzy inference system (FIS).
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Fig. 3. Hierarchical rule base model applied to PEOPLES framework.

o Inference: the last step of the methodology is to combine the indicators through a Fuzzy Logic (FL) inference system and obtain the
Ffnal output of the framework.

4.1. Step 1: resilience modeling and indicators grouping

The frst step of the methodology is the defnition of a hierarchical scheme for the seven dimensions of the PEOPLES framework. A
total of eight Fowcharts are presented (Fig. 4-Fig. 11); i.e., seven fowcharts for the seven dimensions and an additional fowchart for
the Fnal resilience output. Indicators within each component are further clustered into subgroups with no more than three indicators
each to simplify the implementation of fuzzy logic. That is, in a fuzzy-based model, a high number of inputs results in an exponential
increase in the number of fuzzy rules as well as membership functions. This paper adopts a decomposition technique at the level of
indicators proposed in Ref. [60] to reduce the computational complexity. Further details are provided in Section 5.

Fig. 4. Population and demographics dimension hierarchical scheme.



M. De luliis et al. ,QWHUQDWLRQDO -RXUQDO RI'LVDVWHU 5LVN 5F

4.1.1. Population and demographics

This dimension contains indicators that describe the population and demographics in a given community. It considers the socio-
economic composition of the community and measures social vulnerabilities that could affect the emergency response and recovery
systems (e.g., minority and socioeconomic status, age distribution, population density). For instance, median income and age distribution
information is essential to measure the community’s economic health. The Population and demographics dimension comprises three
components, Distribution/density, Composition, and Socioeconomic status, with nine indicators. Indicators within this dimension are
clustered into six subgroups: Percentage of population, Family asset, Economic diversity, Aggregation, Population equity, Disparities,
and Demography. The hierarchical scheme designed for the Population and demographics dimension is shown in Fig. 4.

4.1.2. Environment and ecosystem

The Environment and ecosystem dimension serves as indicators for measuring the ability of the ecological system to return to or near
its pre-event state. Environmental degradation has strongly contributed to increasing risks from natural hazards by altering the fre-
guency and intensity of climate-related hazards and decreasing ecosystems’ physical buffering capacity [61].

One such indicator is the Normalized Difference Vegetation Index (NDVI) that can be applied to quantify ecosystem structure
following disturbances caused by climate change impact, such as fre, Fooding, and hurricanes [46]. For instance, the main soil
changes resulting from climate change would be soil temperature regimes and soil hydrology. The community response to climate
change risks would be determined by considering the resource users and their access to new technologies [62].

The Environment and ecosystem dimension contains six components: Water, Air, Soil, Biodiversity, Biomass (Vegetation), and Sus-
tainability, with 13 indicators. Indicators within this dimension are classifed into fve subgroups: Environment quality, Percentage of
land, Land type, Land use, and Vegetation index (see Fig. 5). Note that components with a single indicator are processed as a single
component. In other words, the indicators of those components are clustered within the same subgroup.

4.1.3. Organized governmental services

The Organized governmental services dimension includes information about traditional legal and security services such as police,
emergency, and fre departments as well as services provided by public health, hygiene departments, and cultural heritage de-
partments. The indicators within this dimension are also related to disaster emergency plans, training, and other operations that might
help ensure proper disciplined responses. The Organized governmental services dimension comprises 5 components: Executive/admin-
istrative, Judicial, Legal/security, Mitigation/preparedness, and Recovery/response, with 26 indicators. As the Judicial component presents
one indicator, it has been linked to the Executive/administrative component indicators. As shown in Fig. 6, the hierarchical scheme
consists of 10 subgroups where indicators are aggregated to get the result of the Organized governmental services dimension.

4.1.4. Physical infrastructure

The Physical infrastructure dimension emphasizes the built environment of a community. It incorporates both Facilities and Lifelines
components with 21 indicators, as illustrated in Fig. 7. Indicators included within the Facilities component refer to housing, commercial
and cultural facilities. Indicators under the Lifelines component consider food supply, health care, utilities, transportation, and
communication networks. The hierarchical scheme is structured in 7 subgroups: Communication, Evacuation, Healthcare, Services,

Fig. 5. Environment and ecosystem dimension hierarchical scheme.
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Fig. 6. Organized governmental service dimension hierarchical scheme.

Commercial activities, Housing, and Supply.
Among PEOPLES dimensions, Physical infrastructure is often the dimension that needs urgent attention after a hazardous event.
Authorities and government services work to restore the utilities’ functionality to allow critical facilities to perform their functions.

4.1.5. Lifestyle and community competence

This dimension deals with the ability of a community to develop solutions to complex problems, including warning plans, pro-
cedures, and disaster training programs. Also, the participation of community members in the activities required to sustain the
community is a crucial indicator to measure community resilience. It is believed that communities that collectively believe that they
can stand complex problems are more likely resilient against environmental and governmental obstacles.

Lifestyle and community competence is divided into two components: Quality of life and Collective actions and effcacy, with seven
indicators. The hierarchical framework of the Lifestyle and community competence dimension is organized into three subgroups: Abil-
ities, Security, and Neighborhood (see Fig. 8).

4.1.6. Economic development

The Economic development dimension includes the static evaluation of a community’s current economy (economic activity) and the
dynamic evaluation of a community’s economic growth (economic development). The former accounts for the provision of labor to
produce economic goods and services, while the latter measures a community’s productive capacities in terms of technologies,
technical cultures, and the capacities and skills of those engaged in production. Key indicators of the Economic development dimension
also focus on life expectancy and poverty level. Thus, it is evident that this dimension is closely connected with the Population and
Demographics dimension. Other vital indicators cover the availability of evacuation plans and drills for structures, adequacy plans for
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Fig. 7. Physical Infrastructure dimension hierarchical scheme.

Fig. 8. Lifestyle and community competence dimension hierarchical scheme.

damaged buildings, and commercial reconstruction following a disaster. The Economic development dimension consists of 3 compo-
nents: Financial services, Industry production, and Industry employment services, with 16 indicators. Seven subgroups are used to group
indicators in the hierarchical framework, as illustrated in Fig. 9.

4.1.7. Social-cultural capital

The last dimension of the PEOPLES framework, namely Social-cultural capital, incorporates education, social, and cultural services,
child and elderly services, and community participation in formal organizations such as religious congregations, schools, and resident
associations. The Social and cultural capital dimension is measured through the acquisition of surveys concerning the number of
members of civil and community organizations, and the quality of life. Furthermore, key indicators include adequacy plans and
management plans following a hazard.

The Social-cultural capital dimension is split into seven components: Community participation, Nonproft organization, Place
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Fig. 9. Economic development dimension hierarchical scheme.

Fig. 10. Social-cultural capital dimension hierarchical scheme.
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attachment, Child and elderly activities, Commercial centers, Cultural and heritage services, and Education services, with a total of 17 in-
dicators (see Fig. 10). Indicators within this dimension are classifed into six subgroups: Social organizations, Participation classes,
Participation, Social and civic programs, Risk reduction programs, and Education.

4.1.8. The fnal resilience output

The Fnal hierarchical scheme that combines the seven dimensions is shown in Fig. 11. The Population and demographics dimension is
closely related to the Economic development dimension as the latter involves the life expectancy and poverty rates of the population, and
therefore they are grouped. The Physical infrastructure dimension is related mainly to the Organized governmental services dimension,
which considers the infrastructure robustness and assessment, and the availability of resources for recovery programs. The Environment
and ecosystem dimension depends on the Organized governmental services dimension, which verifes the availability of local government
plans to support the restoration, protection, and sustainable management of ecosystem services [63]. Finally, the Social-cultural capital
dimension is considered a prerequisite to Lifestyle and community competence as the Social-cultural capital dimension incorporates
different services that a community has provided for itself [64].

4.2. Step 2: interdependency analysis and importance factor

PEOPLES indicators do not contribute equally to the overall resilience outcome; hence, their interdependencies can affect the fnal
result [22]. To include interdependencies in this work, weighting factors are assigned to each variable through an interdependency
analysis. In the analysis, variables of the PEOPLES framework are classifed into three main groups [22]:

1. Indicators within a component are considered as a group (29 groups in total).
2. Components that fall within a dimension are taken as a group (7 groups in total).
3. The seven dimensions of PEOPLES make up a group (1 group).

The interdependency analysis assumes that the importance of a variable is related to the number of other variables in the same
group that depends on it. Variables in the same groups are given importance factors using the [n x n] adjacency matrix in Fig. 12, where
n is the number of variables in the analyzed group. Each cell (aj) in the matrix represents the degree of dependence between two
variables and can take the values O or 1. A value of 0 indicates that the variable in the row does not depend on the variable in the
column, while 1 indicates that the variable in the row depends entirely on the variable in the column. The importance factor is carried
out by summing up the values in each matrix column.

An interdependency matrix is built for each group of variables. A single interdependency matrix is constructed for the seven di-
mensions of PEOPLES, for each group of components under the dimensions, and Fnally for every group of indicators under the
components. This results in 37 matrices to perform the interdependency analysis for the different variables of the PEOPLES framework.

The level of interdependency between two variables can be identifed using descriptive knowledge in the form of a walk-down
survey Flled by a team of experts. For instance, “low” and “high” dependence between two variables can be translated into 0 and
1, respectively. Importance factors for different variables are collected through walk-down surveys flled by experts to reduce
subjectivity and possible uncertainty. More than one person (e.g., approximately a group of 10 experts) defnes the interdependency
between any two variables. Experts employ their knowledge to provide information in a yes/no or 1/0 format. Due to the compre-
hensive structure of the PEOPLES framework, the expert can quickly Fll out the survey without making arbitrary guesses. Then, the
average of all responses is considered as the Fnal importance factor that is used for further analysis.

Finally, a weighting factor for each variable (w;) is obtained by dividing the importance factor by the maximum importance factor,
as indicated in Equation (1) [22]:

Fig. 11. Resilience hierarchical scheme.
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Fig. 12. Interdependency matrix between variables in a same group (adapted from Ref. [22]).
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4.3. Step 3: inference system

The last step of the methodology is implementing the fuzzy logic inference system for combining the PEOPLES variables to get the
resilience index. In the following, the fuzzy logic process is described.

Fuzzifcation process — Membership functions: The fuzzifcation process is helpful when it comes to uncertainties in the estimation
of system inputs as it can cope with both numerical and descriptive variables. In the case of numerical input, the fuzzifcation process is
straightforward and depends on the shape of the MFs. MFs can have different forms, such as triangular, trapezoidal, and Gaussian
shapes. The simplest MFs are formed using straight lines. Both triangular and trapezoidal fuzzy MFs have been widely used due to their
simple formulas and computational effciency in representing linguistic variables [65,66]. Descriptive inputs, instead, must be con-
verted in fuzzy terms by assigning different membership degrees to the different granularities. For example, within the PEOPLES
framework, if the average number of internet connections, television, radio, and telephone per household in a community is classifed
as “poor”, the indicator Telecommunication can be converted in fuzzy terms by assigning the membership degrees to the granularities
[L, M, and H] as follows: [pL, pm, pr] = [0.9, 0.1, 0]. The chosen membership degrees show a low level of functionality for the
Telecommunication indicator. If the average number of internet connections, television, radio, and telephone per household in a
community is classifed as “good”, the membership degrees assigned to the granularities [L, M, and H] would be: [, pm, pu] = [0.2,
0.8, 0.2], showing a medium level of functionality. Finally, if the average number is classifed as “rich”, the indicator Telecommuni-
cation can be converted in fuzzy terms by assigning the membership degrees to the granularities [L, M, and H] as follows: [p., pm, p] =
[0 0.1, 0.9]. The chosen membership degrees show a high level of functionality for the Telecommunication indicator.

Fuzzy Inference System (FIS) — fuzzy rules: a Fuzzy Inference System (FIS) aims to map the input information into an output space
exploiting the previously defned fuzzy sets. The relationships between inputs and outputs are defned through the fuzzy rule base (FRB)
that comes from the heuristic knowledge of experts or historical data. As mentioned above, in this work, the Mamdani Fuzzy Logic
inference system, known as the Max-Min method, is adopted Mamdani system consists of if-then statements (rules) that link the input
(antecedent) to a consequent (output). Each rule delivers a partial conclusion, which is aggregated to the other rules to provide a
conclusion (aggregation). In a complex system with many input indicators, the number of rules must cover all the possible
combinations.

Defuzzifcation process — crisp number: the defuzzifcation step is carried out to obtain a crisp number from the fuzzy output set
resulting from the inference process. The defuzzifcation is performed according to the MF of the output variable and represents the
inverse of the fuzzifcation process. Several defuzzifcation techniques have been developed, such as the center of gravity, the center of
area, and the mean of maximum method [67].

5. Demonstrative example and verifcation

To demonstrate the applicability of the proposed fuzzy logic-based methodology, three different cases for evaluating the resilience
of San Francisco city have been applied.

1. Case 1: Physical Infrastructure dimension with complete data.
2. Case 2: Physical Infrastructure dimension with partial data.
3. Case 3: Lifestyle and Community competence with no data available.

In Case 1, the hazard event considered in the analyses is the 1989 Loma Prieta earthquake, characterized by a moment magnitude of
6.9 My,. The introduced methodology has been implemented focusing only on the Physical Infrastructure and Lifestyle and Community
competence dimensions. In the Frst case, the list of indicators and components within the Physical Infrastructure and the corresponding
functionality and repair time parameters required to quantify the resilience (see Appendix A) is considered as input data. For this
study, open database sources were investigated to determine the parameters of the San Francisco community [68]. In Appendix A, qoy
is the un-normalized initial functionality that must be normalized to be combined with the other parameters. The normalization of the
initial functionality qp is done by dividing the un-normalized functionality qo, over the Target Value TV described before. According to
their nature (i.e., static, or dynamic), the classifcation of indicators is indicated in Appendix A as Nat. Furthermore, the recovery time



Table 1

Interdependency matrix between indicators under the Lifelines component.
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Table 2

Interdependency matrix between indicators under the Facility component.
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parameter T, is normalized based on a 3-year time span, which is usually the time reference for civil applications.

Case 2 is equivalent to Case 1 with an additional assumption that some of the data are not available. This case is introduced to study
the effect of partial unavailability of data. Case 3 is an application of the methodology to another dimension of the PEOPLEs
framework, assuming no availability of data. For this case, a group of experts was asked to evaluate the missing indicators and
components by providing information in linguistic terms.

In the following sections, the three cases are described.

5.1. Case with available numerical data

Step 1: Resilience modeling and indicators grouping.

The frst step of the proposed methodology is defning a hierarchical framework for the analyzed dimension. As illustrated in Fig. 7,
indicators together with the corresponding parameters belonging to Facilities and Lifelines components are divided into subgroups with
no more than three indicators each. The indicators are clustered in 7 subgroups following the PEOPLES structure: Housing, Com-
mercial Activities, Services, Healthcare, Evacuation, Supplies, and Communication. In every subgroup, indicators (e.g., telecommu-
nication, high-speed internet infrastructure, etc.) are combined through fuzzy rules to obtain Facilities and Lifelines components. Finally,
the components in turn, are combined to get the resilience output.

Step 2: Interdependency analysis and importance factor.

Once the hierarchical framework for the studied dimension is built, the second step of the methodology starts. The weighting
factors of the different variables under the Physical infrastructure dimension are determined using the interdependency matrix tech-
nique. The interdependency matrix of the indicators within the Lifelines and Facility components is shown in Table 1 and Table 2 [22].
The report by the National Institute of Standards and Technology [69] and the Lifelines Council [70] were used to Fll the interde-
pendency matrix.

Once the importance factors have been extracted from the interdependency matrix, weighting factors for indicators and compo-
nents under the Physical infrastructure dimension are obtained through Eq. (1).

Table 3 lists the weighting factors of the different variables under the Physical infrastructure dimension.

Step 3: Inference — Fuzzy logic.

The design of the hierarchical framework and the calculation of the weighting factors of the variables within the analyzed
dimension allow implementing fuzzy logic as an inference system. Weighting factors are used to determine fuzzy rules for aggregating
indicators and components. Assuming to mapping the three granularities [L, M, H] into the numerical values [F., Fyv, Fy] = [1-3],
which indicate an increase of functionality (F) of the system, and considering two inputs x; and X with w; = 0.75 and w, = 0.5
respectively, where w; signifes a higher impact of the input towards the output, Eq. (2) is used to evaluate rules:

Table 3

Weighting factors of variables within Physical infrastructure dimension for city of San Francisco.
Component/Indicator w
4.1 Facility 0.5
Housing
4.1.1 Sturdy housing types 0.5
4.1.2 Temporary housing availability 0.5
4.1.3 Housing stock construction quality 0.75
Commercial activities
4.1.4 Economic infrastructure exposure 0.75
4.1.5 Distribution commercial facilities 0.5
Services
4.1.6 Community services 1
4.1.7 Hotels and accommodations 0.75
4.1.7 Schools 0.5
4.2 Lifelines 1
Healthcare
4.2.1 Mental health support 0.09
4.2.2 Medical care capacity 0.27
4.2.3 Physician access 0.18
Evacuation
4.2.4. Access and evacuation 0.73
4.2.5 Transportation 0.82
4.2.6 Evacuation routes 0.36
Supplies
4.2.7 Effcient energy use 1
4.2.8 Effcient water use 0.64
4.2.9 Gas 0.45
4.2.10 Industrial resupply potential 0.27
4.2.11 Wastewater treatment 0.55
Communication
4.2.12 Telecommunication 0.73

4.2.13 High-speed Internet infrastructure 0.18
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where Foy is the granularitiy of the output, Finp is the numerical value corresponding to the belonging granularity of the input i, w; is the
weighting factor for indicator i, and n is the total number of indicators in the subgroups. Consider the following example of a fuzzy rule:
IF X is Low AND xj is High, THEN the output is Foyt = 1.8, which can be rounded to 2. Therefore, the level of the output is Medium.

The aggregation is done by following the relationships between the variables provided by the hierarchical model.

The following steps to implement the fuzzy logic inference system are performed:

Step 3.1: Fuzzifcation process — membership functions.

As mentioned before, a set of parameters is used to defne the functionality of PEOPLES indicators. The proposed methodology
adopts three of the four functionality parameters: initial functionality qg, functionality drop (robustness), defned as Aq = qo — q1,
where @ is the functionality after the event, and the restoration time T,. These parameters could have different states called linguistic
quantifers or fuzzy sets. To implement the fuzzy inference system in the PEOPLES framework easily, the number of states is set to three
states for all indicators’ parameters: low, medium, and high for the functionality parameters, short, long, and very long for the recovery
time parameter, and resilient, intermediate, and not resilient for the resilience index. Considering more than three states leads to a more
complicated fuzzy process. That is, if more states are considered (e.g., fve states), more MFs would then be necessary, and a high
number of fuzzy rules would be required to cover all the possible permutations of the states. A higher number of states can make the
results more specifc; however, this comes at the cost of input demand: the expert would then need to provide more detailed MFs and
more fuzzy rules, which could be not practical. Therefore, choosing three states would provide the best balance between input demand
and output clarity. The MFs considered in the methodology are based on trapezoidal fuzzy numbers and they are expressed by four
vertices (a, b, ¢, and d) as:

0; x<ny;

X —m

— n S x<m;

ny — ny

He\ 1, np <x<ing; 3

X — Ny

— m<x<ng

N3 — Ny

0, x>ny

where 8 is a trapezoidal fuzzy number and can be defned as (n1, nz, nz, ng), ”e(x) is the membership function.

The MFs have been frst designed relying on the intuition method, which relied on the authors’ opinion and understanding [59].
That is, membership functions have been generated to be as symmetric as possible to get the simplest trapezoidal membership
functions as depicted in Fig. 13.

For instance, in the Fgure, the linguistic variable “Low” of the initial functionality qo of Telecommunication indicator can be rep-
resented as (0, 0, 0.1, 0.2), the membership function of which is:

Fig. 13. Membership function and granulation for the initial functionality qo of Telecommunication indicator.
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Later, membership functions have been calibrated so that the resilience outcome predicted by the model is equal (or nearly equal)
to the resilience outcome obtained in the benchmark case study [22]. Calibration is a fundamental operation and consists of gradually
modifying the shapes of the MFs such that the Fnal output approximately matches that of the benchmark case study. An example of
granulation assigned to the initial functionality qo of the Telecommunication indicator and Resilience indicator is illustrated in Fig. 14.

The functionality and recovery time parameters for each indicator and component listed in Appendix A are used as numerical
inputs in the fuzzifcation process. That is, one can enter the corresponding membership graph using directly the numerical values
listed in Appendix A and obtain the membership degree.

The MFs used in the methodology associated with the Physical Infrastructure dimension along with its components and indicators
are based on trapezoidal fuzzy numbers (see Fig. 14) and they are listed in Table 4.

The membership degrees obtained through the fuzzifcation process for the components under the Physical Infrastructure dimension
are listed in Table 5.

Step 3.2: Aggregation through Fuzzy rules.

The most common type of FRB, known as the Mamdani type is adopted herein.

As shown in Fig. 7, many indicators with their corresponding parameters are considered in the physical infrastructure framework,
and consequently, several fuzzy rules are necessary to combine them. As mentioned before, a decomposition technique at the level of
indicators is adopted to have no more than three indicators in each subgroup aggregated through intermediate rules (temporary rules),
for example TRy, TRy, TR3, etc. By implementing the decomposition technique, a maximum of 3% = 27 rules per subgroup must be
determined. The output of the intermediate inference is combined through fuzzy rule based R; and R». For instance, indicators within
the subgroup Services are aggregated through TR3, indicators under the subgroup Commercial Activities are combined through TR,, and
fnally, the indicators under the subgroup Housing are aggregated through TR3. The outputs of these components are then aggregated
through R; to obtain the Facilities component. At each level of the hierarchical scheme, the three-tuple fuzzy set output is defuzzifed to
obtain a single crisp value. In turn, this value is fuzzifed into the next level.

An example of the fuzzy rules assigned for combining the recovery time parameter of the Commercial Activities indicators is given in
Table 6.

Table 6 shows that the output is mainly driven by the Economic infrastructure exposure indicator (w = 0.75), in agreement with the
fact that it is more important than the Distribution commercial facilities indicator (w = 0.5).

Using the fuzzy rule table (Table 6), the recovery time Tg parameter of the Commercial Activities indicator is computed as follows:

ue* = max(min(1;0:95); min(1;0); min(0;0:95)) = 0:95
uE* = max(min(1; 0); min(0; 0); min(0; 0:95)) = 0 (5)
45t = max(min(0; 0); min(0; 0); min(0;0)) =0
Step 3.3: Defuzzifcation process — crisp output.
The last step of the fuzzy-based methodology is the defuzzifcation process. The center of gravity (also called the center of area)
method is used here. Generally, the center of gravity method yields superior results and is the most commonly chosen [71]. The

advantage of this method is that it is easy to compute for triangular and trapezoidal functions [72]. Furthermore, one of the advantages
of the center of gravity defuzzifcation method is that in case of symmetrical membership functions in the output linguistic categories,

Fig. 14. Membership function and granulation for the initial functionality qo of Telecommunication indicator and Resilience indicator.
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Table 4

Membership functions for Physical Infrastructure dimension, components, and indicators.

Dimension/component/subgroups/
indicators

Initial functionality qo (ie, pm, HH)

Drop of functionality Aq (i, P, BH)

Repair time Ty (is, P, pvi)

4 - Physical infrastructure

4-1 - Facilities

Housing

4-1-1 - Sturdier housing types

4-1-2 - Temporary housing
availability

4-1-3 - Housing stock construction
quality

Commercial Activities

4-1-4 - Economic infrastructure
exposure

4-1-5 - Distribution commercial
facilities

Services

4-1-6 - Community services

4-1-7 - Hotels and accommodations

4-1-8 - Schools

4-2 - Lifelines

Healthcare

4-2-1 - Mental health support

4-2-2 - Medical care capacity

4-2-3 - Physician access

Evacuation

4-2-4 - Access and evacuation

4-2-5 - Transportation

4-2-6 - Evacuation routes

Supplies

4-2-7 - Effcient energy use

4-2-8 - Effcient Water Use

4-2-9 - Gas

4-2-10 - Industrial re-supply
potential

4-2-11 - Waste water treatment

Communication

4-2-12 - Telecommunication

4-2-13 - High-speed internet
infrastructure
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[0,0, 0.1, 0.2], [0.1, 0.2, 0.7, 0.8],
[0.7,0.9,1, 1]

[0,0,0.1, 0.2], [0.1, 0.2, 0.7, 0.8],
[0.7,09, 1, 1]

[0,0,0.1,0.2], [0.1, 0.3, 0.7, 0.8],
[0.7,0.9, 1, 1]

[0, 0,0.1, 0.1], [0.1, 0.3, 0.7, 0.8],
[0.7,0.9,1, 1]

[0, 0,0.1, 0.1], [0.1, 0.3, 0.7, 0.8],
[0.7,0.9,1, 1]

[0,0,0.1, 0.1], [0.1, 0.3, 0.7, 0.8],
[0.7,0.9,1, 1]

[0,0,0.1, 0.2], [0.1, 0.3, 0.7, 0.8],
[0.7,09 1, 1]

[0,0,0.1,0.2], [0.1, 0.3, 0.7, 0.8],
[0.7,0.9, 1, 1]

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8],
[0.7,0.9,1, 1]

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8],
[0.7,09, 1, 1]

[0, 0, 0.3, 0.4], [0.2, 0.4, 0.7, 0.8],
[0.7,0.9,1, 1]
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Table 5
Fuzzifcation process.
Dimension/component/subgroups/indicators Fuzzifcation
Initial functionality qo (b, Pm, HH) Drop of functionality Aq (ML, v, HH) Repair time T, (ps, pL, Pvi)
4 - Physical infrastructure (0,0,0.63) (0.92, 0.37,0) (0,0.39,0)
4-1 - Facilities (0,0.67,0.33) (0.37,0.63,0) (0.31,0.69,0)
Housing (0,1,0) (0.62,0.38,0) (0,1,0)
Commercial Activities (0,0.53,0.47) (1,0,0) (0.95,0,0)
Services (0,0.76,0.24) (1,0,0) (0.23,0.77,0)
4-2 - Lifelines (0,0,0.76) (0.92, 0.37,0) (0.9,0.1,0)
Healthcare (0,0.78,0.22) (1,0,0) (0.72,0,0)
Evacuation (0,0.15,0.85) (1,0,0) (1,0,0)
Supplies (0.36,0.64,0) (0,1,0) (0,1,0)
Communication (0,0.15,0.85) (0.64,0.82,0) (0.93, 0.52,0)
Table 6
Fuzzy rule table for T, of Commercial Activities indicator.
Rule Economic infrastructure exposure w = 0.75 Distribution commercial facilities w = 0.5 Fout” Commercial Activities
1 s* S 1 S
2 S L° 1.4 S
3 S VL® 1.8 L
4 L S 1.6 L
5 L L 2 L
6 L VL 2.4 L
7 VL S 2.2 L
8 VL L 2.6 VL
9 VL VL 3 VL
2 Short.
5 Long.
¢ Very Long.

9 Granularity of the output.

the extend of overlapping of some membership functions does not affect the result of defuzzifcation. The method frst calculates the
area under the MFs and within the range of the linguistic variable, then calculates the geometric center of the area as follows:

R
e f(x) - xdx
CoA=-Ri (6)
- f(x)dx

where CoA is the center of area, f(x) is the function that shapes the output fuzzy set after the aggregation process, x stands for the real
values inside the fuzzy set support [0,1], and Xmin and Xmax represent the range of the linguistic variable.

Using the center of gravity method, the recovery time parameter Tr of the Commercial Activities indicator is defuzzifed as 0.086.
The defuzzifcation of the other indicators and components is done similarly. Physical Infrastructure dimension’s resilience is given by
inferencing the Physical Infrastructure functionality and recovery time parameters. The results obtained in terms of fuzzy functionalities
and recovery time are listed in Table 7.

The resilience index R of the city of San Francisco is computed as R = 0.73. The R is a percentage that refects the community’s
response to the earthquake event. That is, a higher R signifes a good response of the community. In this demonstrative example, the

Table 7
Fuzzy functionality and recovery time parameters for Lifelines and Facilities components and the Physical Infrastructure dimension.
Lifelines component Parameters Results
do 0.831
Aq 0.312
g1 0.518
Tr 0.117
Facilities component do 0.67
Aq 0.328
1 0.342
Tr 0.329
Physical Infrastructure dimension do 0.80
Aq 0.31
q1 0.49

Tr 0.2
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obtained value of R corresponds only to the physical infrastructure dimension of the community. To establish a resilience index for a
whole community, the functionality and recovery time parameters of other dimensions must be similarly evaluated and combined in
the same way the available measures were aggregated.

The loss of resilience of the Physical Infrastructure dimension can be computed using the following equation:

LORppysical =1 — Rpuysicatinfrastructure = 27% ©)

structure

Finally, the functionality curves for the Lifelines and Facilities components and the Physical Infrastructure dimension are shown in
Fig. 15.

From Fig. 15 it is possible to compare the functionality curves of the two components facilities and lifelines. The city of San
Francisco shows more problems in facilities than lifelines. It is evident that the LOR of facilities is higher than lifelines. In such a case,
authorities should focus more on improving facilities by prioritizing activities and choosing proper resilience measures to assure the
functionality of their systems and to assign appropriate resources to get resilient communities. Results from the case scenario can be
used to pursue the best strategies during the planning and management post-disaster processes as well as to manage and minimize the
impacts of seismic events. The usefulness of having the Fnal resilience metric and a graphical representation is to indicate whether the
community needs to improve in terms of resilience by comparing it to a given desirable level. Using the resilience index, the user can
establish immediately whether the community has a high functionality defciency. Furthermore, by looking at the functionality curves,
the user can focus on specifc components and indicators that have the highest impact on resilience and determine whether the
resilience defciency is caused by a system’s lack of robustness or by the restoration process.

The proposed methodology has been verifed by comparing the obtained R with the result given by Ref. [22], who analyzed the
same case study focusing on the estimation of the loss of resilience LOR. The verifcation phase has been conducted at each level of the
framework by calibrating the shape of MFs that strongly impact results. Within the proposed approach, the shape of MFs was frst
estimated through the authors’ opinion and it was designed to be as symmetrical as possible; then the angle points of the MFs were
modifed little by little to get R, and consequently LOR, as similar as possible to the result obtained from the benchmark system [22]. As
a result of the calibration, the MFs used in the methodology are neither equivalent nor symmetrical (e.g., the width of the MF “low”
may be larger than the width of the MF “high™).

It should be noted that focusing on a single resilience index can result in the loss of information about indicators that have resilience
defciencies and should be improved. To manage or improve resilience, close attention should be paid to the individual indicators that
infuence system resilience to highlight the strengths and weaknesses. In the methodology, this is possible by exploiting the inherent
hierarchical-based structure where indicators and components are combined. The application of fuzzy logic to the hierarchical
framework enables changing the input values of certain indicators or components (e.g., those that show resilience defciencies) to
update the whole system and improve the resilience accordingly. In addition, the layer-based structure permits performing sensitivity
and diagnostic analysis to determine the critical indicators.

5.2. Case with partial availability of data

The same case study has been investigated in this section, assuming partial availability of data inputs. A group of experts was asked
to provide qualitative information and observations on the missing parameters within the Physical infrastructure dimension. The steps
described in the previous section to compute the resilience index are implemented in the same manner, except for the fuzzifcation
step. While the fuzzifcation process is straightforward when numerical inputs are available, qualitative information and descriptive
inputs must be converted into fuzzy sets by assigning different linguistic quantifers (i.e., states). Table 8 lists the indicators whose
information is not available and the corresponding transformed values on a range [0 1], which are mainly based on expert knowledge.

Using the transformed values, it is possible to enter the corresponding membership graph and obtain the membership degrees
(Fig. 14). The results obtained in terms of fuzzy functionalities and recovery time are listed in Table 9.

The resilience index R of the city of San Francisco in case of less availability of information is computed as R = 0.53. The loss of
resilience of the Physical Infrastructure dimension can be computed using the following equation:

LORpyysicatinfrastrucrre = 1 = Rpnysicatinfrastrucnure = 47% ®)

Finally, the functionality curves for the Lifelines and Facilities components and for the Physical Infrastructure dimension are shown in
Fig. 16.

The comparison between the functionality curves of the two components facilities and lifelines highlights that the LOR of facilities
is higher than lifelines, as in the previous case. While the lifelines component performs better, showing a small drop of functionality,
the facilities component has a small initial functionality (0.51) and with an additional 27% drop of functionality when the seismic
event occurs. Although the obtained R is not the same as that carried out from the case with numerical data, similar results in LOR
indicate that the proposed methodology can cope with both numerical and descriptive information. Of course, to improve the con-
sistency of the results, more experts could be asked to provide their observations on the data input.

5.3. Case with no available data

In this section, the applicability of the proposed fuzzy logic-based method is demonstrated by computing the resilience of the city of
San Francisco, focusing on the Lifestyle and Community competence dimension. It is assumed that no numerical input is available for
evaluating resilience. The list of indicators and components along with observations of functionality and recovery time parameters
provided by a group of experts is shown in Table 10.
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Fig. 15. Functionality curves of components Facilities and Lifelines under the dimension Physical Infrastructure.

Table 8
Indicators within the Physical Infrastructure dimension and the corresponding transformed values.
Indicators Parameters Field of observation Transformed values
Sturdier housing types qo Medium 0.55
Dg Low 0.07
Tr Short 0.22
Economic infrastructure exposure qo0 Medium 0.6
Dg Medium 0.45
Tr Short 0.1
Community services qo High 0.78
Dg Medium 0.43
Tr Short 0.28
Medical care capacity qo Medium 0.65
Dg Low 0.19
Tr Long 0.39
Transportation qo High 0.88
Dqg Low 0.15
Tr Long 0.55
Telecommunication qo Medium 0.7
Dq Medium 0.68
Tr Short 0.09
Table 9
Fuzzy functionality and recovery time parameters for Lifelines and Facilities components and the Physical Infrastructure dimension in case of less availability of data.
Lifelines component Parameters Results
Yo 0.84
Aq 0.503
g1 0.337
Tr 0.108
Facilities component do 0.51
Aq 0.27
J1 0.24
Tr 0.50
Physical Infrastructure dimension Jo 0.81
Aq 0.032
g1 0.778
Tr 0.142

Step 1: Resilience modeling and indicators grouping.

The hierarchical framework of the analyzed dimension is depicted in Fig. 8. The indicators are clustered in 3 subgroups following
the PEOPLES structure: Abilities, Neighborhood, and Security. In every subgroup, indicators and components are combined through
fuzzy rules to obtain the resilience output.

Step 2: Interdependency analysis and importance factors.
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Fig. 16. Functionality curves of components Facilities and Lifelines under the dimension Physical Infrastructure in case of less availability of data.

Table 10
Functionality parameters of indicators within the Lifestyle and Community competence dimension.

Dimension/component/subgroups/indicators Measure 1 Nat. O Dq Tr

5 — Lifestyle and community competence

5-1 — Collective action and decision making

5-1-1 — Authorities interdependency Less than three parties are involved in the decision-making 2 S Medium Low Short
(1) otherwise (0)

5-2 — Collective effcacy and empowerment

5-2-1 — Creative class Percentage of workfow employed in professional 3 S High Medium  Very long
occupations divided by TV
5-2-2 - Scientifc services Professional, scientifc, and technical hours services per 2 S Low Low Long

population divided by TV
5-3 — Quality of life

5-3-1 — Means of transport Percentage of households with at least 1 vehicle 2 S High Low Long
5-3-2 - Safety 1 crime rate 2 D Medium Low Short
5-3-3 — Quality of homes Sustainability rating systems (LEED, BREEAM) divided by 3 S High High Long
maximum index number
5-3-4 — Quality of neighborhood Sustainability rating systems (LEED, BREEAM) divided by 4 S Low Medium  Short
maximum index number
Table 11
Interdependency matrix between indicators under the Quality of life and Collective actions and effcacy components.
Indicator Authorities Creative Scientifc Means of Safety  Quality of Quality of
Interdependency class services transport homes neighborhood
Authorities 1 0 0 0 0 0 0
Interdependency
Creative class 1 1 1 0 0 0 0
Scientifc services 0 1 1 0 0 0 0
Means of transport 0 0 0 1 1 0 1
Safety 0 0 0 1 1 1 1
Quality of homes 0 0 0 0 0 1 1
Quality of neighborhood 0 1 0 0 0 1 1
Importance factor 2 3 2 2 3 4 4

The weighting factors of the different variables under the Lifestyle and community competence dimension are defned through the
interdependency matrix technique. The interdependency matrix of the indicators within the Quality of life and Collective actions and
effcacy components is determined in Table 11.

Weighting factors for indicators and components under the Lifestyle and Community competence dimension are carried out
through Eq. (1) (see Table 12).

Step 3: Inference — Fuzzy logic.

As mentioned above, qualitative observations must be converted into fuzzy numbers on a range [0 1] to obtain the membership
degrees. The indicators and the corresponding transformed values are depicted in Table 13.

Inference of indicators and components is made following the relationships between the variables provided in the hierarchical
model. Finally, the Lifestyle and Community competence’s resilience index is given by inferencing the Lifestyle and Community competence
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Table 12
Weighting factors of variables within the Lifestyle and Community competence dimension for city of San Francisco.
Component/Indicator W
5.1 Collective action and decision making 0.5
Abilities
5.1.1 Authorities interdependency 0.5
5.1.2 Creative class 0.75
5.1.3 Scientifc services 0.5
5.2 Quality of life 1
Security
5.1.4 Means of transport 0.5
5.1.5 Safety 0.5
Neighborhood
5.1.6 Quality of home 0.75
5.1.7 Quality of neighborhood 1
Table 13
Indicators within the Lifestyle and Community competence dimension and the corresponding transformed values.
Authorities’ interdependency qo Medium 0.55
Dqg Low 0.25
Tr Short 0.04
Creative class g0 High 0.75
Dqg Medium 0.62
Tr Very long 0.95
Scientifc services g0 Low 0.02
Dq Low 0.14
Tr Long 0.45
Means of transport qo0 High 0.88
Dq Low 0.15
Tr Long 0.55
Safety q0 Medium 0.47
Dq Low 0.023
Tr Short 0.11
Quality of homes qo High 0.95
Dq High 0.89
Tr Long 0.77
Quality of neighborhood qo Low 0.23
Dq Medium 0.5
Tr Short 0.14
Table 14
Fuzzy functionality and recovery time parameters for Quality of life and Collective actions and effcacy components and the Lifestyle and community competence dimension.
Quality of life component Parameters Results
Jdo 0.54
Aq 0.51
a1 0.003
Tr 0.523
Collective actions and effcacy component Jdo