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Abstract— The present work analyses the actual production profiles of a group of tens of thousands of PV 

plants. Actual PV generation profiles are represented as hourly average powers gathered from the energy 

meters measured at the point of common coupling with the grid. After filtering, data cleaning and statistical 

analysis, reference PV plants are selected for the improvements of the PV generation models. Production 

profiles are calculated by using literature generation models, with weather data as inputs. An optimisation 

is performed on the parameters of the literature models to minimise the differences between the cumulative 

distribution functions of calculated profiles and measured data. The study compares the performance of the 

different models and shows how the optimisation increases the quality of the calculated profiles. 

Keywords— photovoltaic systems, modelling, optimisation. 

I. INTRODUCTION 

The integration of renewable energy systems into the electricity grid is one of the key points in the energy 
transition. For example, in Italy more than one million of photovoltaic (PV) plants are currently operating in 2022, 
leading to new challenges in the grid management. To properly manage the intermittent generation of huge groups 
of actual PV plants, adequate and realistic models for their cumulative production are necessary. The literature 
presents many works with PV generation models [1][2]. Nevertheless, in these models there are two main issues. The 
first issue is that the models typically refer to well-working ideal PV plants, which do not represent the real situation 
for the installed PV generators. For example, many of the actual PV plants do not have adequate design and 
installation, so that components are not correctly working [3], and shadows often occur [4]. The second issue is the 
correct calculation of the temperature of the photovoltaic cells, which is a function of type of installation and weather 
conditions. To solve these issues and obtain more accurate simulated profiles, the models can be improved using new 
parameters in the original model, and by changing some of the default parameters to better match experimental data. 
The values of the new parameters are defined by an optimisation method described in the present work. The 
optimisation is performed on a cluster of selected plants, which represents all the generators in a wide geographic 
area. A stratified sampling technique is used to check if the selected plants statistically represent the whole population 
of generators. 

II. MODELLING OF PRODUCTION FROM PHOTOVOLTAIC GENERATORS 

A. Active power production model 

The active power production from a generic photovoltaic plant can be calculated by a model proportional to 
irradiance G and dependent on the temperature of the PV modules (5): 

 𝑃𝐴𝐶  = 𝐺 ·  𝜂𝑆𝑇𝐶 ∙   𝜂𝑙𝑜𝑤,𝐺 ∙ 𝐶𝑇 ∙ 𝜂𝑚𝑖𝑥 ∙ 𝜂𝑐𝑜𝑛𝑣 ∙ 𝜂𝑙   (1) 

where: 

• ηSTC is the rated efficiency of the plant defined in the Standard Test Conditions (STC, irradiance G=1000 W/m2, 
cell temperature T = 25°C and air mass 1.5) [6]. 

• ηlow,G is the efficiency used to take into account the nonlinearity effects of semiconductor technology as irradiance 
G changes:  

 𝜂𝑙𝑜𝑤𝐺  = 1 − 𝐺 𝐺0⁄  (2) 

• G0 is defined as the irradiance value for which modules do not produce due to loss effects within modules. This 
value is in the range 10÷50 W/m2; as a result, with G <500 W/m2 the efficiency of the PV modules is strictly non-
linear, while it is almost linear for higher G values. Obviously, in case of G≤G0, the PV production PAC is null 
[6]. 

• CT is the parameter that describes the linear dependence of production on the cell temperature: 

 CT = 1+γT(T-TSTC)  (3) 



When the cell temperature T is above TSTC = 25°C, the production decreases proportionally. The thermal 
coefficient of power γT. is in the range -(0.3÷0.5) %/°C for crystalline silicon technology. Regarding the correlation 
between the cell temperature and the weather data, a detailed description is present in the next paragraphs.  

• ηmix = ηlife ηdirt ηrefl ηmis ηcable is the overall performance of the PV plant. Production decreases due to the reflection 
effect and dirt deposited on the glass of the modules, the mismatch of I-V curves, and the joule losses in cables. 
These experimental loss parameters are considered constant [7]. 

• The loss by ageing ηl = 1-γlife·nlife is proportional to the age of the plant nlife by the annual loss coefficient γlife. 
According to the specifications in the datasheets, the PV modules are certified to reduce their efficiency down to 
80% of the initial value after 20 years (γlife=-1%/year). Nevertheless, experimental results in [8] and in [9] show 
that the efficiency reduction is lower and proportional to the parameter γlife=-0.5%/year. 

• ηconv is the non-linear performance of the AC/DC converter, which into account Maximum Power Point Tracking 
(MPPT) and inverter. This efficiency is determined by a quadratic model, based on experimental data [10]. First, 
the model includes the no-load losses P0 (W) due to the supply of auxiliary circuits. Then, the linear term of the 
losses is expressed by using the parameter CL (W-1) that takes into account conduction of diodes and IGBT, and 
switching losses. Finally, the quadratic term of the losses is expressed by using the parameter CQ (W-2) for the 
conduction of MOSFETs and the resistive contribution. The maximum efficiency of the converter is about 98%. 
The formula of the converter efficiency is: 

 𝜂𝐶𝑂𝑁𝑉 =
𝑃𝐴𝐶

𝑃𝐴𝐶+𝑃0+𝐶𝐿⋅𝑃𝐴𝐶+𝐶𝑄⋅𝑃𝐴𝐶
2  (4) 

In order to use the same AC/DC converter model for plants with different sizes, the previous formula is 
normalised. 

B. Calculation of photovoltaic module temperature 

Regarding the use the PV model described in (1), it is necessary to calculate the temperature Tc of the PV cells.  

The model in [11] is based on the Normal Operating Cell Temperature (NOCT) and the environmental data used 
as inputs are the air temperature Tair and irradiance G:  

 𝑇𝑐 
 = 𝑇𝑎 +

𝑁𝑂𝐶𝑇−25°𝐶

𝐺𝑁𝑂𝐶𝑇
∙ 𝐺 (5) 

The Normal Operating Cell Temperature (NOCT) is the experimental temperature indicated by the manufacturer 
in the datasheet of the PV module. It is measured in steady-state conditions, i.e., NOCT = 20 °C, GNOCT = 800 W/m2 
with module inclined at 45° in stable open circuit conditions and wind speed of 1 m/s. As a result, the NOCT of 
commercial crystalline silicon modules is between 42÷50°C [12]. 

Another possible solution is the use of a formula based on a measurement campaign of weather data and PV 
modules temperature, as in the work presented in [13]. In this case, the cell temperature is calculated as a function of 
air temperature Ta, irradiance and wind speed ws (m/s): 

 𝑇𝑐  = 𝑎𝑇 · 𝑇𝑎 + 𝑏𝑇 ∙ 𝐺 − 𝑐𝑇 · 𝑤𝑠 + 𝑑𝑇 (6) 

where the first parameter aT=0.943 is dimensionless, bT is equal to 0.028 °C/W, cT =1.528 °C·s/m and dT=4.3 °C. 

With respect to the above-described models, the work presented in [14] proposes a different calculation of cell 
temperature (from now, this model will be called “MATTEI”). It is based on a simplified energy balance, in which 
radiative thermal exchange is considered negligible. Moreover, the temperature difference between the glass (cover) 
and the cell is neglected, and the temperature on the surface of the PV module is considered uniform. By including 
the phenomena of solar energy conversion in electricity, the calculation of the temperature of the module is expressed 
as follows: 

 𝑇c =
𝑈pv𝑇a+ф[(𝛼𝜏)−𝜂r−µ𝑇r]

U𝑝𝑣−µф
 (7) 

where ηr is equal to the efficiency of the module at STC, τ is the transmittance of materials, while α is the absorption 
coefficient. Both coefficients are the subject of study, and in the literature, there are different estimations. For 
example, the product ατ is equal to 0.9 in [15], while ατ=0. 875 in [16]. Upv is a parameter that takes in consideration 
the heat exchange with air; thus, it strongly depends on the wind speed ws. Generally, a simplifying hypothesis is that 
the heat exchange is present on the faces of the module neglecting the small lateral surfaces. In [16] there are different 
formulations of Upv, deriving from different assumptions. In every case, the linear equations include the two terms 
eT and fT: 

 U𝑝𝑣 = 𝑒𝑇 + 𝑓𝑇 ∙ 𝑤𝑠 (8) 



Finally, another model for the calculation of the PV module temperature is presented in [17]. In this model (from 
now it will be called KING), the temperature is proportional to the ratio between the reference irradiance GSTC=1000 
W/m2 and the incident irradiance G on the surface of the PV module: 

 𝑇𝑐 = 𝑇𝑚 +
𝐺

G𝑆𝑇𝐶
∙ 𝑔𝑇 (9) 

where Tm (°C) is the temperature of the backside of the module. The cell temperature is slightly different from the 
temperature of the backside of the module. Nevertheless, the two temperatures are correlated according to the simple 
relationship shown above, based on the assumption of one-dimensional heat exchange [17]: 

 𝑇𝑚 = 𝐸 ⋅ [𝑒ℎ𝑇+𝑖𝑇∙𝑤𝑠] + 𝑇𝑎 (10) 

As in the previous models, the wind direction is not considered, because it does not lead to improvements in the 

results of the model. The parameters gT, hT and iT are empirical coefficients, obtained for modules made of different 

materials and related thicknesses, as a function of different installation conditions. All the sets of parameters are 

available in [17]. 

III. PROCEDURE FOR THE ANALYSIS OF A CLUSTER OF PV PLANTS 

The procedure for the analysis of a big cluster of PV plants requires the collection of the data about the plants, the 
measured production profiles, and the weather data. After that, production profiles are filtered to remove wrong data, 
and a classification of the database of plants is performed. The classification is necessary to check the statistical 
validation of the data remaining after the filtering with respect the whole cluster of plants. After the definition of the 
group of plants representing the whole cluster, the energy models are used to calculate the production profiles, which 
are compared with measured data. Finally, the energy deviations are minimised by the optimisation procedure. The 
details about the main step of the procedure are presented in the next subparagraphs and in Section IV. 

A. Import of weather data and PV plants information 

The measured production profiles of photovoltaic plants can be analysed, and simulation can be performed, only 
if same basic information is available. First at all, the rated power is necessary to analyse the measured profiles, and 
to perform simulations. As explained in the next subparagraph, rated powers are also the variables used to classify 
the plants. The site coordinates are essential to obtain meteorological data [18,19]. The tilt and azimuth of the PV 
modules can be obtained by the layout of the plants, by inspections, or by satellite/street images [20]. This info is 
necessary to obtain the irradiance on their surface at each considered time step. Finally, the installation year is 
necessary to calculate the degradation losses [21].  

B. Production profiles filtering 

Production profiles obtained by distributed meters can be affected by issues. In many cases, it is not possible to 
define the source of the wrong data; errors can occur in data measurement, transmission, and storage. Profiles with 
unexpected trends could be the results of plant shutdowns and failures of the components. Thus, an accurate filtering 
process of the data is necessary. The procedure presented in [22] deals with the filtering of thousands of profiles, 
without the possibility of accessing detailed information of the plants. The available information is only the basic 
information described in the previous sub-paragraph. The first criterion is the check of the absence of production 
during night hours, as such production is obviously physically impossible. The second criterion is the check of the 
absence of days of data, due to the failure of the monitoring infrastructure. In fact, the profiles with missing days, 
weeks, and months of data affect the calculation of the performance of the plant. The third criterion is the check of 
the typical territorial range productivities. In particular, if the yearly specific production in kWh/kW/year is out of an 
accepted range, the performance is too low or too high, and the profile cannot be considered acceptable. Productivity 
maps, such as those available in the PVGIS database [18] can be used to define the boundaries of the acceptable 
performance ranges, depending on the site location. 

C. Data classification based on rated powers of the plants 

Inferential statistical methods allow us generalising the results of a whole population of elements with an 
acceptable confidence, by analysing a small sample of elements. These methods can be used in the present work, i.e., 
in case of large clusters of PV systems, where most of the data about the plants (the power profiles) are affected by 
errors, resulting not useable. Thus, the elements of the population are the sizes of the PV plants, and the Neyman’s 
Stratified Sampling (SS) technique [23] is applied. As described in [22], the SS techniques indicate the production 
profiles surviving the data filtering that are significant enough to statistically represent the whole population of PV 
plants. 



D. Power profiles comparison and energy deviations 

The analysis of the results is carried out through the hourly comparison of the estimated profile with the measured 
production. The estimated profiles are calculated by using the energy model (1) and one of the temperature models 
described in Section II. The error between the different profiles is assessed in energy terms: 

 ∆𝐸%,𝑠,

∆𝑡

𝑖 
 = 100 ∙

𝐸𝑠,𝑖−𝐸𝑚,𝑖

𝐸𝑚,𝑖
|

∆𝑡
 (11) 

where Es,i is the simulated energy in the sth-model s = 1,2…,5 and Em,i is the measured energy for the ith plant, for the 
same timeframe Δt equal to one year. To evaluate errors for shorter periods, such as one day, it may be useful to 
calculate the residual ratio for each configuration: 

 𝑅𝑠,𝑖
∆𝑡

 
 =

𝐸𝑠,𝑖

𝐸𝑚,𝑖
|

∆𝑡
 (12) 

The error calculated with (11) and (12) is positive or greater than unity when the model overestimates production 
with respect to the measurements. 

IV. OPTIMISATION PROCEDURE OF PV MODEL PARAMETERS 

A. Improvements in the production model 

The main issue of the models described in the previous paragraphs is that (as in most of the models in the literature) 
these models are used to calculate the production in case of ideally fully functional PV systems. Nevertheless, the 
main goal the present work is to better match the actual production of working PV plants. Thus, the model can be 
improved by using new parameters in the original model and by changing some of the default values to better match 
the experimental data. Regarding the introduction of new parameters, an adjustment coefficient of power Ca is 
multiplied to the rated efficiency of the system ηSTC to consider all the phenomena that are not taken into account in 
the original model. For example, a change of Ca with respect to the unitary value could lead to a high mismatch in 
current-voltage characteristics of the PV modules. The high mismatch can be due to a non-uniform installation 
condition (different tilts and azimuths), or to the use of PV modules with different specifications. ACP can decrease 
due to the failure of components (e.g., AC/DC converters), due to the disconnection of portions of the plants or due 
to large amounts of dirt and bird dropping. 

B. Optimisation problem formulation 

The optimisation problem attempts to minimise the differences, over a defined time frame, between the measured 

production profiles and the calculated production profiles. The quality of the match between these profiles is 

quantified by calculating the sum of their root mean square difference at each time step of the measurement data. 

In case of an analysis of a group of j plants, the average quadratic deviation σP is calculated on the difference 

between the estimated power values PAC and the measured values PAC,m. For each plant, this quantity is normalised 

by the PPV rated power of the plant. The calculation is performed over the time optimisation Topt discretised with k 

elements. 

The optimisation problem is formulated as follows: 

 {
𝑚𝑖𝑛

𝑥
𝜎(𝐱)

𝑠. 𝑡 ∶  𝑙𝑏 ≤ 𝐱 ≤ 𝑢𝑏
 (13) 

 𝜎(𝐱) = ∑

√ 1

𝑇𝑜𝑝𝑡
∑ (𝑃𝐴𝐶−𝑘

𝑗
 (𝐱)– 𝑃𝐴𝐶,𝑚−𝑘

𝑗
)

2
𝐾

𝑘=1

𝑃𝑃𝑉,𝑗

𝐽
𝑗=1  (14) 

where x is the vector that includes the variables of the optimisation problem defined in (13). For the sake of clarity, 
x can be divided in two sub-vectors of variables x=[x1, x2]. The first sub-vector x1 includes the thermal factor γT%, the 
low irradiance level G0, and the new adjustment coefficient CA: 

 𝑥1  = [𝛾𝑇%,  𝐺0,  𝐶𝐴]  (15) 

The second sub-vector x2 includes the variables to be modified for better calculation of the cell temperature T. For 
example, in case of the model in (5), the NOCT is optimised. The reason is that NOCT is calculated by manufacturers 
as a steady-state temperature, created in laboratory. Such equilibrium condition is strongly affected by the installation 
condition, which often does not permit an optimal heat dissipation in actual plants. It happens particularly in case of 



building applied or building integrated plants, in which modules have actual steady-state temperatures at TNOCT = 20 
°C, GNOCT = 800 W/m2 higher than the declared NOCT. 

 𝑥2 = 𝑥2,𝑁𝑂𝐶𝑇 
 = [𝑁𝑂𝐶𝑇]  (16) 

In case of the model defined in (6), all the four parameters can be modified. The change of the parameter aT quantifies 
the effect of air temperature on the module temperature; the same approach is individually applied by considering bT 
and cT for the effect of irradiance and temperature, respectively. In every case, the parameter dT is also changed. The 
analysis of individual parameters can be done to compare the variation of each one on the module temperature 
calculation. If all the four parameters are changed, the vector of optimised parameters will be: 

 𝑥2 = 𝑥2,𝑤 
 = [𝑎𝑇 , 𝑏𝑇 , 𝑐𝑇 , 𝑑𝑇]  (17) 

Following the same criteria, similar vectors of variables can be created to optimise the other temperature models. 
In case of the MATTEI model (7), the sub-vector x2 is: 

 𝑥2 = 𝑥2,𝑀𝑎𝑡𝑡𝑒𝑖 
 = [𝑒𝑇 , 𝑓𝑇 , ατ]  (18) 

In case of the KING model (9), the sub-vector x2 is: 

 𝑥2 = 𝑥2,𝐾𝑖𝑛𝑔 
 = [𝑔𝑇 , ℎ𝑇 , 𝑖𝑇]  (19) 

In every simulation, the optimisation is constrained. The terms lb and ub are respectively the lower and upper 
bounds vector of the inequality constraint, which limits the values that the variables can take. In case of parameters 
referring to technical aspects of the PV plants, there are ranges defined in the literature. For example, in case of the 
thermal coefficient of power, it is in the range -(0.3÷0.5) %/°C for crystalline Silicon modules. When referring to the 
adjustment coefficient CA, this parameter could be close to unity, but a specific range cannot be defined at priori. In 
any case, the limits are imposed to avoid affecting the optimisation results. 

V. CASE STUDY 

The group of PV plants under analysis includes plants installed in Lombardia, a region in northern Italy. A total 
of 125,483 plants are installed in this area: the sum of the rated powers of the whole cluster is ≈2.3 GW. Only 1% of 
these plants has power higher than 200 kWp, but these generators reach about 70% of the total installed power. 85% 
of the plants have polycrystalline silicon modules, while 14% have m-Si modules. The remaining 1% is made of 
plants with amorphous silicon modules. The Italian Transmission System Operator (TSO) [24] provided the general 
data about the plants, i.e., coordinates of the installation sites, rated powers, and the installation year. The hourly 
production profiles are not available for all the plants; they are provided for a subgroup of 20,471 plants. A clustering 
procedure [22] is applied on the 125,483 values of rated power. The result is the definition of 10 classes of plants, as 
shown in Table I. 

TABLE I.  CLASSES OF PLANTS AND RELATED POWER RANGES  

Class Power ranges (kW) Number of plants 

1 P≤3.5 49290 

2 3.5<P≤6.5 49605 

3 6.5<P≤12.5 7482 

4 12.5<P≤25 8118 

5 25<P≤70 4693 

6 70<P≤120 3316 

7 120<P≤500 2021 

8 500<P≤1200 696 

9 1200<P≤3600 54 

10 3600<P 9 

In parallel to the creation of the classes, a data filtering procedure is applied on the 20,471 power profiles. 
Following the criteria defined in [21], wrong profiles are removed, and a sample of plants is selected for the 
optimisation of the parameters of the models. Due to the presence of a high number of measured profiles affected by 
issues (errors in data measurement, transmission, and storage, or poorly functioning generators) most of the profiles 
are removed. The sample of plants remaining for the optimisation is composed of 139 generators. The criteria are 
applied in a very restrictive way, by removing the profiles even in case of only one missing or incorrect data. Table 
II shows the distribution of the 139 plants in the classes (the classes that are not present in the table are empty): 

TABLE II.  DISTRIBUTION OF PLANTS AFTER FILTERING IN THE CLASSES  



Class 4 5 6 7 8 9 10 

Number of plants after filtering 1 10 26 25 66 9 2 

Finally, to statistically validate the subgroups of 139 PV plants with respect the whole cluster of 125,483 plants, 
the stratified sampling procedure is applied, as defined in Section III. The result is that the statistical validation is 
confirmed mainly for the classes including the biggest PV plants (classes 6, 8, 9 and 10), as shown in Table III. The 
first consideration is that bigger PV plants have better maintenance and check of the energy production; thus, 
production profiles are adequate (and not removed during filtering of data). Secondly, the monitoring and data 
collection infrastructure have to be strongly improved, especially for small PV plants. 

TABLE III.  DISTRIBUTION OF PLANTS AFTER FILTERING IN THE CLASSES  

Class 4 5 6 7 8 9 10 

Min. number of plants for the 

statistical validation 
5 13 10 51 31 9 2 

Validation no no yes no yes yes yes 

A. Comparison of the temparature calculations 

For every PV plant in the group, the cell temperature is calculated hour by hour by using the models presented in 
Section II. For the sake of simplicity, a single PV plant is used as an example. The selected PV plant is in class 9 
with a nominal power of 3.2 MW. Table IV shows the average cell temperature calculated for winter and summer. 
The results are presented for the four models after the optimisation of their parameters. 

TABLE IV.  ANALYSIS OF THE TEMPERATURE MODELS  

Model 
Average module temperature in 

winter [°C] 

Average module temperature in 

summer [°C] 

NOCT - optm. 11.2 29.4 

WIND model - optm. 8.7 30.1 

MATTEI - optm. 10.2 27.2 

KING - optm. 10.9 29.5 

The optimised WIND model evaluates the highest PV cell temperature in the summer period, while, in winter it 
presents a low average value. This model underestimates the PV cell temperature, since the optimisation increases 
the dissipation parameter correlated to the wind speed, thus increasing heat removal. On the contrary, the optimised 
MATTEI model presents relatively low temperatures in the summer, and high in the winter. Finally, the optimised 
KING model calculates relatively high temperatures in every season (that are lower only than MATTEI values). To 
better understand the temperature trends calculated with the different models, two examples of sunny days in the 
summer are presented. The main difference is the wind speed: during the first day (June 1st), the wind speed is 
relatively high, ranging from 3.8 to 5.2 m/s, with an average value of 4.3 m/s. 

 
Fig. 1.  Comparison of the cell temperatures calculated with the different models – day with high wind speed Jun, 

1st 

During the second day under analysis (June 16th), the wind speed is relatively low, ranging from 0.7 to 2.1 m/s, 
with an average value of 1.2 m/s. Calculated temperatures (hourly values) are presented in Fig. 1 and Fig. 2 for the 
two days, respectively. 

The two graphs show that in every condition there are differences between the PV cell temperatures calculated 
with the four optimised models. In fact, the maximum deviation between the models reaches 15° C in both days. 
During the windiest day (June 1st), the WIND model calculates a temperature of ≈60°C, while the KING and NOCT 
models result in similar temperature ≈54°C. The MATTEI model has the lowest value corresponding to ≈43°C. 
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Fig. 2. Comparison of the cell temperatures caculated with the different models – day with low wind speed June 

16th 

During the least windy day (June 16st), the models follow a similar ranking; the main difference is that the KING 
and NOCT models have more different results with temperature deviation of ≈2°C at midday. 

B. Comparison of the power profiles 

Fig. 3 shows the power profiles calculated with the different models during the example day with high wind speed 
(June 1st). The profiles refer to the same plant used as an example in the previous sub-paragraph with rated power of 
3.2 MW. To better show the power deviations, the figure zooms on powers higher than 1 MW; the deviations early 
in the morning and in the late afternoon are negligible. As visible in Fig. 3, the models underestimate the power 
production during the sunny days. The model with the best performance is KING with a deviation of -8% with respect 
the measurement at midday. The NOCT and MATTEI models have a similar deviation of -9.5%, while the WIND 
model calculates -13% less power. 

 
Fig. 3. Comparison of the power profiles calculated with the different models – day with high wind speed June 1st 

The results obtained in the second example of day (June 16st) are similar, confirming a general underestimation 
in the summer production for all the models. The reason is that the optimisation process has the goal to decrease the 
deviation between measurements and calculate values during all the year (not only during summer), for the whole 
group of plants under analysis. Thus, energy deviations in daily trends for each single PV plant are acceptable and 
consistent with the goal of calculating the production of the whole cluster of PV plants. 

Table IV shows the monthly energy deviations between the results from measurements and models without 
optimisation. The results refer to the whole group of PV plants. The results show that non-optimised models 
underestimate the PV production during all months of the year, with peaks in summer (deviations in the range -12÷-
14%). During December the production can be very variable, and the models overestimate it with deviations between 
11% and 13%. Nevertheless, the energy production in December is low with respect the yearly production; thus, the 
overestimations have negligible effect on the yearly results. The best model is MATTEI, with yearly underestimation 
of -8%, while KING and WIND models have -9%, and NOCT calculates -10% of production. 

TABLE V.  MONTLY ENERGY DEVIATIONS BETWEEN  MEASUREMENTS AND MODELS RESULTS WITHOUT 

OPTIMISATION 

 NOCT WIND MATTEI  KING 

Jan -7% -6% -6% -6% 

Feb -5% -5% -4% -4% 

Mar -6% -5% -4% -5% 

Apr -12% -10% -9% -10% 

May -11% -10% -9% -10% 

Jun -13% -11% -10% -11% 

Jul -14% -12% -12% -13% 

Aug -14% -12% -11% -12% 

Sept -11% -9% -9% -10% 
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 NOCT WIND MATTEI  KING 

Oct -10% -9% -8% -9% 

Nov -5% -5% -5% -4% 

Dec 11% 11% 12% 13% 

Year -10% -9% -8% -9% 

The optimisation of the parameters leads to significant improvements in all the models. Deviations decrease down 
to 1÷2% on an annual basis, with higher variations on a monthly basis. In particular, there is a generalised 
underestimation of the production in summer, compensated during winter. From June to August the underestimation 
is lower than -1%, while during winter the overestimations of the production are in the range 20÷25% in December. 
The best models are WIND and MATTEI: excluding December, the absolute values of the deviations are always less 
than 4% per month. 

TABLE VI.  MONTLY ENERGY DEVIATIONS BETWEEN  MEASUREMENTS AND OPTIMISED MODELS  

 NOCT WIND MATTEI  KING 

Jan 5.1% 1.6% 1.8% 5.4% 

Feb 5.2% 1.8% 2.6% 5.2% 

Mar 5.0% 2.7% 3.9% 5.2% 

Apr 0.1% -0.5% 0.9% 0.4% 

May 0.8% -0.1% 0.8% 0.7% 

Jun -0.3% -0.4% 0.7% -0.3% 

Jul -0.7% -1.1% -0.1% -1.0% 

Aug -0.4% -0.7% 0.0% -0.6% 

Sept 1.6% 1.3% 2.1% 1.4% 

Oct 1.9% 1.2% 1.4% 2.2% 

Nov 8.5% 3.8% 3.1% 8.8% 

Dec 24.6% 20.0% 21.6% 24.7% 

Year 1.9% 0.9% 1.7% 1.9% 

Table VII shows the optimised variables that are common for every model under analysis (e.g., the sub-vector x1 
containing the first part of the optimised parameters, as defined in Section IV). In every case, the thermal coefficient 
of power is higher than the default value equal to -0.4 %/°C. The reason is that the cumulative production includes 
PV plants with different installation conditions, such building integrated systems, in which the heat dissipation is 
lower than in the case of free-standing plants. The increased G0 takes into account not only the losses due to low 
irradiance, but also all the phenomena that can occur when the PV production is low. Finally, the CA parameter shows 
the most interesting change: it is higher than unity in every case. Thus, the original models underestimate the whole 
production of the cluster. The reason could be an overestimation of the losses due to the aging of the plants; this 
aspect will be studied in further works. 

TABLE VII.  OPTIMISED PARAMETERS FOR THE PV PRODUCTION MODELS 

Model 𝜸𝑻%  𝑮𝟎  𝑪𝑨 

NOCT - optm. -0.43% 28.0 1.09 

WIND model - optm. -0.44% 33.8 1.13 

MATTEI - optm. -0.42% 27.0 1.06 

KING - optm. -0.43% 34.9 1.12 

Finally, the values for the other optimised parameters (different for each model) are the following. In the case of 
NOCT model, the optimal NOCT value is ≈47°C, while the initial value was 45°C. Regarding the wind model 
optimisation, the first parameter is aT=0.994, bT is equal to 0.040 (°C/W), cT =1.524 (°C·s/m) and dT=4.4 °C. All 
these values are higher than the default ones, demonstrating that the cell temperature was underestimated. In case of 
the MATTEI model, eT=24.4, fT=3.2, and ατ=0.82. Finally, in the KING model gT=-3.19 (°C), hT is equal to -0.058, 
and iT=1.68 °(s/m). (DA CORREGGERE). 

VI. CONCLUSIONS 

The calculation of photovoltaic generation can be improved to better match the actual measured production from 
big groups of existing PV plants. The work presented in this paper demonstrates that the temperature models for the 
PV panels differ in the calculated profiles. Then, the energy models have deviations in the range -8÷10% on an annual 
basis. After the optimisation of the parameters of the analysed models, the calculation of the energy production 
improves, with deviations lower than 2% for the whole cluster of PV plants. On a monthly basis, deviations are ≤1% 
in summer, when there is most of the annual production. In some winter months the deviations can be still high 



(≈20%) demonstrating that the models were initially created mainly for summer and clear sky days. Finally, the 
analysis of the data demonstrates that the actual monitoring infrastructure is not fully adequate. An improvement in 
the data quality collection will permit to repeat the proposed procedure with higher statistical validity for PV plants 
of any rated power. 
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