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Abstract: The use of theory-based knowledge in machine learning models has a major impact on
many engineering and physics problems. The growth of deep learning algorithms is closely related
to an increasing demand for data that is not acceptable or available in many use cases. In this context,
the incorporation of physical knowledge or a priori constraints has proven beneficial in many tasks.
On the other hand, this collection of approaches is context-specific, and it is difficult to generalize
them to new problems. In this paper, we experimentally compare some of the most commonly used
theory-injection strategies to perform a systematic analysis of their advantages. Selected state-of-the-
art algorithms were reproduced for different use cases to evaluate their effectiveness with smaller
training data and to discuss how the underlined strategies can fit into new application contexts.

Keywords: theory-based machine learning; domain knowledge in data-driven modeling; physics-
informed neural networks

1. Introduction

Many applications, from research to industry, including many aspects of our daily
lives, currently benefit from advances in deep learning (DL) techniques.

We are living in a data deluge: petabytes of data are produced worldwide every
year. This is exactly the ideal terrain for the growth of a variety of techniques capable of
extracting patterns or, more generally, extracting knowledge from data. The paradigm
of data science springs from the idea of extracting knowledge from this enormous set of
data patterns [1]. However, scientific progress has historically been associated with the
process of generating and validating theories that should be subjected to observations. This
opposite paradigm has been known as the scientific method since the 17th century. In the
era of Big Data, samples are continuously collected without any specific theoretical basis.
On the one hand, this can lead to the creation of new frameworks for knowledge discovery
in many applications [2,3], but on the other hand, it can also lead to systematic neglect of
scientific theories. Indeed, the success of black-box applications of data science can be seen
as “the end of theory” [4] since they generally do not require scientific assumptions.

Between these two extremes, new strategies have been developed in recent years that
take advantage of both sides. All techniques that attempt to incorporate theory-based
(e.g., laws of physics) domain knowledge into otherwise blind, data-driven models can
be grouped under the paradigm of Theory-Guided Data Science (TGDS) [5]. This new
approach aims to enrich the classical integration of prior knowledge into machine learning.
In the past, feature engineering and labeling were applied to make the models aware of the
real-world constraints of the solution before inferring them. New approaches include the
addition of logical rules [6], algebraic [7,8] or differential [9] equations as constraints on the
loss functions of neural networks.

The need for models that take prior knowledge into account is paramount in all
contexts that suffer from a lack of data. Moreover, scientific problems generally exhibit
non-stationary patterns that change dynamically over time. Purely data-driven solutions
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therefore might fail to capture the true meaning of past measurements, leading to unreli-
able conclusions.

In recent years, some surveys [5,10,11] have tried to collect the different techniques
that combine theory-guided and data-driven modeling. The main difficulty is that any
state-of-the-art solution is a priori very domain specific. Therefore, it is very difficult to
compare the contribution that a selected strategy can make in solving a particular problem.
To the best of out knowledge, we found no other works in literature addressing the task of
comparing the different ways of implementing theory-injection techniques to multiple use
cases. Then, the contribution of this paper is to perform such an experimental comparison
by highlighting the key building blocks offered by different state-of-the-art solutions in
three popular application contexts. Thus, the contribution is twofold:

1. experimentally replicating different state-of-the-art algorithms applied in three scien-
tific contexts in a comparable manner;

2. providing a unified formalism that groups the theory-driven elements proposed in
the prior art and their corresponding experimental evaluation to measure their contri-
bution to the final model performance when varying the cardinality of the datasets.

The works analyzed in this paper have been chosen among the most representative
found in the cited surveys for which both data and code are available.

The paper is organized as follows. Section 2 presents the related work from which
the solutions were selected to be compared experimentally. Section 3 describes the se-
lected solutions and highlights the differences in context and strategies used. Section 4
shows the experimental results of the comparative analysis, measuring the impact of each
theory-guided strategy on the overall performance of the model. Finally, Section 5 draws
conclusions and presents future work.

2. Related Works

The Theory-Guided Data Science (TGDS) [5] paradigm has been successfully applied
in various scientific domains, from climate science [12,13], to cyberphysical systems [14],
turbulence modeling [15], material discovery [16,17], biological sciences [18], quantum
chemistry [19], and hydrology [8].

Von Rueden et al. [10] categorized each approach according to (i) the source of the
integrated knowledge, (ii) the representation of the knowledge, and (iii) its integration, i.e.,
where it is integrated into the learning pipeline.

2.1. Knowledge Source

The Source of the knowledge and whether it is formalized into a theoretical set of
equations or rules can differentiate the kind of source in one of the following cases.

2.1.1. Scientific Knowledge

Typically formalized and validated through scientific experiments and/or analytical
demonstrations. In this category, all subjects of science, technology, engineering, and
mathematics can be considered.

2.1.2. World Knowledge

General information from everyday life, without formal validation, can be considered
an important element in enriching the learning procedure. This kind of knowledge is
generally more intuitive and refers to human reasoning on the perceived world, for instance,
the fact that a cat has two ears and can meow. Within this class, we can also consider
linguistics, with syntax and semantics as examples.

2.1.3. Expert Knowledge

Still not necessarily formalized, expert knowledge is generally held by a restricted
group of specialists. It can be formalized, for instance, by human-machine interfaces and
validated through a comparison with a group of experienced people.
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2.2. Knowledge Representation

The Knowledge Representation category effectively corresponds to the formalized
element of the prior information. Depending on the knowledge available for each specific
task, different representations can be adopted. The most widespread alternatives, and the
more interesting for this discussion, are briefly reported in the following.

2.2.1. Equations

Since differential equations or algebraic equations are involved, the final solution
could follow a partially known behavior or be subject to some constraints that can be
formalized in equations. Constraints are generally associated with algebraic equations or
inequalities. Notable examples are the energy-mass equivalence (i.e., E = mc2) or the mass
invariance reflected in the Minkowski metric, which has been integrated, for example, by a
Lorentz layer in [20]. With respect to inequalities, final or intermediate solutions may have
some physical upper or lower bounds (e.g., the velocity of a body is always less than the
speed of light). This scenario is analyzed in [21], where the authors explore methods for
incorporating priors such as bounds and monotonicity constraints into learning processes.
Analogous considerations can be made for differential equations that govern the dynamic
behavior of state variables, inputs, and outputs. This background is sometimes known
but may not be feasible, partially known but not fully representative of the real solution,
or completely unknown [22]. For these scenarios, machine learning algorithms can be
applied to solve differential equations, as in [9], to learn the residual dynamics with known
prior assumptions about the behavior of the solution, as in [23], or finally to learn the
spatiotemporal dynamics itself, as in [24].

2.2.2. Simulation Results

Many physical systems can be modeled with simulators, which typically solve a
mathematical model with variable precision. These results can be added together with the
input data, eventually allowing the DL model to find the corrective terms to be added [8].

2.2.3. Domain-Specific Invariances

Input data might have a peculiar invariance due to their structure, i.e., images to be
classified can preserve some properties even with translations or rotations. Other kinds
of data can be permutationally invariant or even time-invariant, or subject to periodicity.
For each of these cases, some particular model architectures can better express these
features [25].

2.3. Knowledge Integration

The integration of knowledge into machine learning algorithms can occur either at
the beginning of the pipeline, e.g., within the training dataset, or in the middle, in defining
tailored architectures for learning strategies, or at the end, in driving model results.

The classic approach to embedding prior information into the data is feature engineer-
ing, where secondary data are generated from the sampled data to emphasize something
that is already known in the specific domain. A well-known alternative is to add synthetic
information obtained from simulated data, as in [8] so that a final algorithm finds the
residuals of such approximated solutions.

Prior information can then be introduced to constrain the learning procedure by
adding a physically oriented loss function to the normal supervised functions. This general
strategy can be summarized as follows [11]:

L = LSUP(YTRUE, YPRED) + γLPHY(YPRED) + λR(W) ; (1)

where LSUP is the measure of the supervised error (e.g., MSE, cross-entropy), R is an
eventual additional regularization term to limit the complexity of the model, and LPHY
is the theory-guided contribution. Finally, γ and λ are real-valued coefficients that can
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be used to weight the different contributions of the loss function. The last term can
either incorporate algebraic, differential, or logical equations. In this scenario, the work
of Willard et al. in [11], when predicting the lake temperature over the variation of the
depth, introduces a penalty for predictions leading to water density not respecting the
theory-bounded increase with depth.

Beucler et al. [26] instead enforced conservation laws in the context of climate model-
ing. Starting from these constraints, they apply them both as soft constraints in the loss
function and as hard constraints by reducing the cardinality of the prediction of optimizable
neural networks and computing the residual ones through fixed layers. An analogous idea
applied to the AC optimal power flow is found in [27].

A more sophisticated strategy for incorporating physical information into DL models
can be conducted in the design of the model architectures themselves or, more generally,
in the hypothesis set [10]. When addressing tasks in which some intermediate variables
are known to be relevant in the evaluation of the solution, a known approach is to give a
physical value to some output neurons, e.g., by means of a loss function enforcing them
to be equal to those variables [19], or by using models pretrained on an intermediate
task [28]. From another point of view, DL architectures can be designed to naturally
express relational inductive biases [25] even before the training procedure. In this sense,
convolutional layers are inherently suited for dealing with spatial invariants on images,
while recurrent layers can track sequential features, such as time series. The component
of DL, capable of applying this reasoning to arbitrary relational structures, is the Graph
Neural Network (GNN). Graph layers can be the CNN’s counterpart to graph-structured
data [29] or even improve representation over knowledge graphs in image processing or
natural language processing [30].

In the context of TGDS, we have selected for this experimental comparison the best
papers that provide both code and datasets and are representative of the above strategies.
They are listed below:

1. enforcing domain-specific constraints within the loss function (LF);
2. reducing the network output space in order to make the solution exactly fulfill the

known hard constraints (HC);
3. incorporating the semantics of the problem to build a use-case specific model architec-

ture in order to express the prior knowledge (MA).

These theory-guided building blocks are summarized in Figure 1. In the next part of
the section, we will show the analyzed works both highlighting the {source, representation,
integration} triad and adopted building blocks.

Figure 1. Pictorial representation of the underlined theory-guided approaches applied to a generic
neural network.
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3. Datasets and Methods

For each of the proposed strategies, we experimentally compare the state of the art
in two application contexts, each defined by a specific dataset whose main characteristics,
e.g., cardinality and size, are listed in Table 1. The last row of the table refers to a graph
dataset. Then, the cardinality and attribute dimension are specified for both vertices (here
the product of static graph vertices and time samples) and edges.

Table 1. Dataset and characterization of the use cases under comparison.

Cardinality Dimensions Disk Space

Lake temperature 76,050 11 12 Mb

Convective movements 84 M 304 171 Gb

Climate prediction 105,216 (Vert.) 10 (Vertices) 8.1 Mb1014 (Edges) 1 (Edges)

3.1. Lake Temperature

The first study concerns the problem of modeling water temperature in a lake as a
function of depth and weather conditions. We selected two papers by Daw et al. who first
presented the Physics-Guided Neural Network (PGNN) [8] and later addressed the same
task with a recurrent neural network called Physics-Guided Architecture (PGA-LSTM from
now on) [31]. We compared the proposed architectures with the same dataset provided
in [31], while previous works were conducted with different datasets. The available data
are a collection of weather measurements taken at Lake Mendota in Wisconsin, USA,
between April 2009 and December 2017. Additional information is provided by simulated
predictions of temperature.

PGNN consists of a multilayer perceptron (MLP) trained with a loss function with a
physical term following the approach of Equation (1). Such a loss formalizes the fact that
water density increases monotonically with depth. Given the known analytical relationship
between density ρ and temperature t, the difference between successive densities (i.e., from
depth i to i + 1), which are functions of the network predictions, must be negative to be
consistent with this property. This led to the following physical loss:

∆(i, t) = ρ̂(di, t)− ρ̂(di+1, t),

LPHY ∝ ∑
t

∑
i

ReLU(∆(i, t)); (2)

In Equation (2), ReLU function is applied to all density differences to consider only
the contributions of the positive ones.

We can classify the PGNN algorithm according to the criteria of source, representation,
and integration as follows: Source is scientific knowledge, representation is equations and
simulation results, and integration is achieved by enriching training data and constraints
in the learning procedure. The physical injection is performed here according to the
LF strategy.

The same physical information, but with a different strategy, is introduced in the
PGA-LSTM approach. Its architecture consists of an LSTM-based autoencoder that extracts
temporal features from the input data and exploits repetition in the temporal dimension.
The output of this first mesh is then appended and passed through a second recurrent
mesh, which now operates in the depth dimension and is specifically designed to preserve
the monotonicity of density over depth. This was accomplished by creating an additional
recurrent link between density within the base LSTM architecture, which is enforced as
a physical intermediate in a loss function that penalizes the mean square error between
ground truth and the predicted value of temperature and density:

L = LSUP(Y, Ŷ) + λDLSUP(ρ, ρ̂) + λRR(W). (3)
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The architecture PGA-LSTM has the same knowledge source as the PGNN, but rep-
resents the knowledge through spatial and temporal invariances instead of equations,
and integrates the knowledge into the model architecture itself. Therefore, we classify
PGA-LSTM as an example of the MA strategy.

3.2. Convective Movements in Climate Modeling

The second experimental comparison context is the application of neural networks
to climate modeling, as presented in [26]. The goal of the network is to predict the rate
at which heat and water are redistributed due to convective motions. The local climate
is described by a set of over 300 variables that relate to thermodynamic properties over
different elevation profiles as well as large-scale, non-elevation conditions. The goal of the
network is then to predict the associated time trends of convection and additional variables
from the system conservation laws. The total data are the simulated climate for 2 years
using a parameterized atmospheric model [32]. Among the many variables, the authors
highlighted 4 conservation variables, namely column integrated energy, mass, longwave
radiation, and shortwave radiation. These physical laws are translated into equations
relating to input and output. Since they are derived as linear relationships, they can be
substituted into a coefficient matrix C that yields zero when multiplied by the vector of
inputs and outputs such that:

H = C
[

x̄
ȳ

]
= 0. (4)

These constraints are then added either as soft constraints, i.e., the squared norm of
H as an additional loss function term, leading to an approach called LCNet; or as hard
constraints, producing an ACnet. The latter strategy is performed by developing an MLP
with trainable parameters and a number of initial features equal to the cardinality of ȳ minus
the number of constraints, concatenating the other features obtained in a deterministic way.

For both LCNet and ACNet, the information is provided by scientific knowledge as
the source and equations as the representation. Instead, we can determine the integration
by the loss function in the first case and by hypotesis set in the second case. For this reason,
the two strategies are compared as representatives of the solutions applying the LF and the
HC, respectively.

3.3. Climate Prediction

The third work in our comparison consists of a GNN architecture applied to the task
of climate prediction [23]. The authors use the graph network component to predict the
state at time t + 1, assuming it is the same at time t, to incorporate dynamical physics into
this formalism. They extend the natural definitions of temporal and spatial derivatives to
the inputs/outputs of the network and within the network itself, through nodes connected
by undirected edges. Therefore, the differential equations underlying the nature of the
problem are written in terms of these elements, and the process is then repeated recursively
to mimic the evolution of the system. The basic assumption is that the entire physical
system is much more complex than known physical knowledge. Therefore, the model
should be able to extract patterns from the data to express this complexity while following
the known components of the dynamics. Wind vectors and pressure most likely follow
diffusive properties, even though this is not the only component of motion. This physical
information is then provided by a physical loss term that expresses a diffusion penalty
using the proposed GNN formalism. One defined the way of calculating the velocities ṽi
on the graph nodes, such a loss function term become

LPHY = ∑
i
‖ṽi − ṽi−1 − α∇2ṽi−1‖2 ; (5)

where α is a fixed coefficient adjusting the diffusivity of the latent physics quantities.
Climate observations were collected over 16 days in the Southern California region.

Each vertex of the graph is a patch of the entire region and is connected to adjacent vertices
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by an edge. The vertices are expressed by 10 climate observations, while a static edge
attribute was generated to track the land use of the patches that the edge connects. The
final output of the network is then a temperature value for each node of the graph, obtained
with an MLP decoder applied to the GNN block, to which the monitored loss is applied.
In our experimental comparison, we analyze the average mean square temperature error
output by the network after 10 steps of predicted wheat configurations.

We can classify this last TGDS approach as both LS and MA, since it has a scientific
knowledge source represented with physical equations and domain invariants, and is
integrated into both the loss function and the model architecture.

A summary of the knowledge source, representation, and integration for each of the
approaches analyzed can be found in Table 2.

Table 2. Summary of the analyzed state-of-the-art solutions.

Approach Knowledge
Source

Knowledge
Representation Knowledge Integration

PGNN [8] scientific equation, simulation
results

enrichment of training data,
physical loss function [LF]

PGA-LSTM [31] scientific equations
enrichment of training data,

model architecture [MA],
physical loss function [LF]

HCNet [26] scientific equation constrained architecture [HC]

LCNet [26] scientific equation physical loss function [LF]

DPGN [23] scientific equation, domain
invariances

model architecture [MA],
physical loss function [LF]

4. Experimental Results

Since the main contribution of a theory-guided algorithm is its ability to obtain a
reliable and physically consistent solution with a smaller amount of data, we evaluated all
strategies experimentally by measuring their predictive power with variations in the size
of the training data set. Each model was trained with a subset of the data, starting with
the first timestamp. The test data set, on the other hand, was set as a separate subset. In
order to obtain quantitative statistics on the results and their significance for comparison,
the entire process was repeated 10 times for each experiment, with an experiment being
identified by the tuple {use case, DL model, training-set percentage}. The results are then
evaluated both in terms of average value and standard deviation.

A limitation of the current work is due to the seasonal effect of the start date: different
algorithms may have different performance when selecting only a portion of the training
set in a specific period of the year, with respect to another period. We plan to address this
issue in future works. Currently, all comparisons were made under the assumption that
the potential benefits of choosing different periods for training are common to all models.

Both the code and the data sets are publicly available on https://github.com/simone7
monaco/theoryGalgorithms (accessed 3 September 2022).

4.1. Lake Temperature

In Figure 2, we compare the performance of the PGNN algorithm, its counterpart
without the physical loss function (denoted MLP), and the algorithm PGA-LSTM on
different training sets, alongside an additional experiment for PGA-LSTM without the
temporal features extracted by the encoder (denoted PGA-LSTM -noT). The first notable
observation is that the PGNN physical loss function does not contribute beneficially to
any subset of the training set. On the other hand, the simple MLP achieves a valuable
performance compared to other models by being the second best performing model after
PGA-LSTM and is even tied for small percentages of the training set (10–20%). This suggests
that the theory-based contribution may be limited for this simple problem. On the other

https://github.com/simone7monaco/theoryGalgorithms
https://github.com/simone7monaco/theoryGalgorithms
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hand, using the encoder to extract temporal features in PGA-LSTM contributes greatly to
improving the results over PGA-LSTM -noT, especially for small training sets.

20 40 60 80 100
Training set percentage

2

3

4

5

6

7

8

RM
SE

Model
MLP
PGNN
PGA-LSTM
PGA-LSTM-noT

Figure 2. Lake temperature, RMSE of the models varying the training set size.

4.2. Convective Movements in Climate Modeling

In Figure 3, we compare a purely data-driven MLP architecture and the two theory-
guided solutions LCNet and ACNet. Due to the much larger dimension of the data set (171
Gb compared to the few Mb of the other use cases), experiments are reported for 1–20% of
the training set, with a clear asymptotic trend suggesting unsurprising behavior at larger
sizes. With the largest training set (20%), the MLP achieves an RMSE of 888 W2/m4, about
four times higher than the two theory-guided approaches, with LCNet and ACNet at 176
and 208 W2/m4, respectively.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training set percentage

500

1000

1500

2000

2500

3000

RM
SE Model

MLP
ACNet
LCNet

Figure 3. Convective modeling, RMSE of the models varying the training set size.

The HC strategy (ACNet) strongly depends on the size of the training set: when
the training set increases from 1 to 5% of the whole data set, the ACNet RMSE abruptly
decreases from 1612 W2/m4 to 310 W2/m4. The MLP and LCNet also show the same trend
for smaller training sets, below 1%. In this use case, the LCNet with the LF approach is
the best performing solution, and its theory-driven injection leads to a large improvement
over the purely data-driven MLP for all training sizes, and in particular, reaches a peak
performance asymptote when trained on only 1% of the data set size. However, for
such small training sizes (1%), the other theory-guided approach, ACNet, based on HC,
is outperformed by the data-driven MLP, making the choice of the specific knowledge
injection method a critical factor in TGDS solutions: it is not the case that all theory-guided
approaches provide beneficial effects in all situations. We can interpret this evidence by
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assuming that ACNet is practically equivalent to MLP in terms of the learning part, but
with a smaller number of weights to be trained. This leads to a relatively high RMSE when
the information for training may be insufficient. On the other hand, LCNet also seems to
offer advantages for smaller datasets. For a larger portion of the data set, LCNet shows a
better profile for all experiments, but the difference with ACNet results is getting smaller.
Considering that the latter network has the advantage of providing a full constraint match,
this relatively small additional error could be negligible in all those situations where this
second aspect is crucial. With respect to this analysis, we note that theoretical injection is
definitely advantageous, but the choice of the element to apply may depend on the specific
use case.

4.3. Climate Prediction

In Figure 4, we compare the DPGN solution exploiting the building blocks LF+MA
with its counterpart without the physical penalty in the loss function (GNN).

We know from the work of Seo et al. [23] that a data-only MLP solution performs much
worse compared to these two architectures: To avoid repetition, we refer readers to [23]
for details on this aspect. In our experiments, we observe that the DPGN outperforms the
GNN in all training subsets, by a fairly constant margin. Both models show an unexpected
behavior with a decreasing performance for the training set fraction between 30% and
50%. We hypothesize that this behavior can be explained by seasonal trends, which are not
currently accounted for in our results.

20 40 60 80 100
Training set percentage

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

RM
SE Model

GNN
DPGN

Figure 4. Climate prediction, RMSE of the models varying the training set size.

5. Conclusions

The aim of the paper is to experimentally compare selected modern theory-guided
approaches to evaluate the contribution of different techniques to the injection of a priori
knowledge. We have divided knowledge injection into the building blocks of loss function
(LF), hard constraints (HC), and model architecture (MA). Using three selected use cases
for which the authors provided datasets and code, we compared the contribution of the
different theory-guided injection techniques.

We evaluated the algorithms on variable portions of the datasets in order to test the
effectiveness of the approaches in reaching valuable solutions with less data. The experi-
mental comparison shows that not all the alternative methods always provide statistically
significant improvements, e.g., for different training set sizes. However, it is globally
evident that domain-injection methods can lead to benefits in performance with respect to
traditional ones.

Although the results are preliminary in terms of the breadth of the field, we found
that an architecture designed specifically for a physical phenomenon (MA) performs better
on smaller data sets, with greater benefits for more complex problems. The more complex
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the physical problem, the greater the expected theory-guided improvement. However,
theory-guided injection is not always advantageous for less complex problems, as in the
lake temperature use case.

Forcing hard constraints (HC) has been shown to be effective in the convective motion
use case, with comparable results compared to the soft loss function penalty approach.
Nevertheless, the application is difficult because the strict equality conditions between
input and output are not necessarily present in all use cases. In the literature [26], the
extension of this approach to inequality constraints, as upper bounds in parts of the solution,
has been proposed. We plan to investigate this possibility or enforce restrictions even in
situations where they are not strict, as in our third use case.

Finally, the domain-driven loss function (LF) seems to be the most promising. Al-
though it does not give the best results in all comparisons when considered alone, it is
easier to apply in most contexts. In fact, it is included in both proposed use cases of the
paper and can possibly be integrated with other strategies.

In future work, we plan to extend the experimental comparison to new use cases and
possibly provide more strategies for each use case, with the goal of identifying proposals
for the most promising theory-driven approaches for different classes of scientific problems.

This preliminary experimental comparison is a promising step toward improving tra-
ditional data-driven algorithms, and the implications are not limited to scientific problems.
In the future, we plan to conduct a systematic analysis of a larger number of use cases
and establish a unified framework for knowing which is the best theory-guided way to
formalize each aspect of human knowledge.
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