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ABSTRACT
Accurate precipitation forecasts are crucial for applications such
as flood management, agricultural planning, water resource alloca-
tion, and weather warnings. Despite advances in numerical weather
prediction (NWP) models, they still exhibit significant biases and
uncertainties, especially at high spatial and temporal resolutions.
To address these limitations, we explore uncertainty-aware deep
learning models for post-processing daily cumulative quantitative
precipitation forecasts to obtain forecast uncertainties that lead to
a better trade-off between accuracy and reliability. Our study com-
pares different state-of-the-art models, and we propose a variant
of the well-known SDE-Net, called SDE U-Net, tailored to segmen-
tation problems like ours. We evaluate its performance for both
typical and intense precipitation events.

Our results show that all deep learning models significantly
outperform the average baseline NWP solution, with our imple-
mentation of the SDE U-Net showing the best trade-off between
accuracy and reliability. Integrating these models, which account
for uncertainty, into operational forecasting systems can improve
decision-making and preparedness for weather-related events.
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1 INTRODUCTION
Accurate precipitation forecasts are essential for flood manage-
ment, agricultural planning, water resource allocation, and weather
warnings. Despite significant advancements in numerical weather
prediction (NWP) models, these models still exhibit biases and un-
certainties, especially at high spatial and temporal resolutions. This
is due to the complex, nonlinear nature of atmospheric processes
and inherent approximations in NWP models [4, 25]. The direct
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model output (DMO) of NWPs is highly sensitive to initial con-
ditions, boundary conditions, and parameterization schemes (e.g.,
orography). Consequently, predictions are incomplete without a
characterization of the associated uncertainty [7, 8]. For instance,
forecast uncertainty is crucial for the Italian Civil Protection in
issuing localized severe weather warnings.

Post-processing techniques have been developed to mitigate
NWP limitations and improve prediction reliability. Traditional
statistical methods like model output statistics (MOS) and ensemble
model output statistics (EMOS) have been somewhat successful,
but often fail to capture the complexity of precipitation patterns
and uncertainties [14, 27].

Recently, machine learning (ML) has shown remarkable results
in improving weather forecasts by processing large datasets and
recognizing complex patterns that conventional methods struggle
with [2, 28].

Our contributions focus on enhancing the reliability and con-
sistency of rainfall forecast uncertainty estimates through post-
processing daily cumulative quantitative precipitation forecasts
(QPF) from NWPs in northwestern Italy. We aim to improve pre-
diction accuracy while ensuring reliable uncertainty estimates in
precipitation forecasts. By reinterpreting rainfall estimation as an
image segmentation task, we explore the application of various
deep-learning approaches to develop a post-processing tool that
integrates forecasts from multiple NWP models. Alongside state-
of-the-art solutions, we introduced SDE U-Net, a variant of SDE-
Net. [17], specifically designed for segmentation tasks.

This multi-model approach leverages the strengths of individual
numerical models, combining them to enhance overall forecast ac-
curacy and reliability [12]. We then comprehensively evaluated the
proposed algorithms, particularly focusing on uncertainty estima-
tion for typical and intense weather events. Our analysis addresses
the accuracy-reliability tradeoff, balancing confidence in model pre-
dictions with the risk of forecasts missing the physical outcomes.

The post-processing systems investigated in this work can be
integrated into operational forecasting systems, leading to more in-
formed decision-making and better preparation for weather-related
events.

2 BACKGROUND
Uncertainty can have different sources. In a machine learning con-
text, the definitions of aleatoric and epistemic uncertainties help
us understand and manage the limitations and reliability of our
models’ predictions. Aleatoric uncertainty is due to inherent noise
in the data: this type of uncertainty is present in the observations
and cannot be reduced even if we collect more data. It arises from
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the natural variability in the data generation process. Epistemic
uncertainty reflects the model’s uncertainty about its predictions
due to insufficient training data or limited model capacity [18].

2.1 Related Works
One of the most popular research directions for quantifying un-
certainty in neural networks involves Bayesian neural networks
(BNNs) [20, 21], which quantify prediction uncertainty by imposing
probability distributions over model parameters instead of using
point estimates. While BNNs provide a principled method for quan-
tifying uncertainty, the exact derivation of parameter posteriors is
often computationally difficult, especially for large input data sets,
such as in computer vision tasks.

Among the non-Bayesian approaches, a prominent method in
this category is model ensembling [15], in which multiple deep neu-
ral networks (DNNs) with different initialization are trained and
statistics on their predictions are generated for uncertainty estima-
tion. However, training an ensemble of DNNs can be prohibitively
expensive.

Other non-Bayesian methods [10] often mix aleatory uncertainty
with epistemic uncertainty. Separating these two sources of uncer-
tainty is crucial for many tasks [1]. SDE-Net [17] addresses this
problem by introducing a Brownian motion term into the network
architecture to capture epistemic uncertainty and view DNN trans-
formations as state evolution in a stochastic dynamical system.
However, this architecture is demonstrated on simple classifica-
tion and regression tasks with tabular data and cannot be directly
applied to segmentation tasks and rainfall prediction without mod-
ifications.

Several studies have used Monte Carlo (MC) dropout to estimate
uncertainty. Wang et al. [31] analyzed the epistemic and aleatory
uncertainty for CNN-based medical image segmentation at both
pixel and structural levels.

To our knowledge, only a few works have provided estimates
of uncertainties in QPF post-processing. Moosavi et al. [22] have
recently applied machine learning strategies to estimate and predict
NWP errors in precipitation forecasting. Unfortunately, it is specific
to the Weather Research and Forecasting (WRF) model and may
not generalize well to other weather models.

3 METHODS
We can formulate our task below with a double interpretation. In
the deterministic interpretation, given a true precipitation map 𝑃 for
a given event and a set of 𝑛 imperfect predictions {𝑃𝑖 }𝑖=1,...𝑛 which
are results of as many different NWP models, our deep learning
algorithm — represented as a parametric function of weights 𝜃 —
must produce an output 𝑃 of the form

𝑃 = 𝑓 ({𝑃𝑖 };𝜃 ) (1)

such that the distance function

L = | |𝑃 − 𝑃 | |2 (2)

is minimized. This equation presents an 𝐿2 loss function, but other
alternatives can be employed as needed.

Alternatively, from a probabilistic point of view, we can think of
the NWP outcomes 𝑃𝑖 as different i.i.d. samples from a distribution

of a stochastic process of the form

𝑃𝑖 = 𝑃 + 𝛿𝑝𝑖 (3)

Where the 𝛿𝑝𝑖 represents the epistemic error provided by each
numerical model. In this framework, we expect an uncertainty in
the model prediction 𝑃 due to the type of input it was trained on. At
the same time, we expect some aleatoric uncertainty due to inherent
measure errors in observational data. In this work, we will not
directly distinguish between the two and will just provide overall
forecast uncertainty estimates where we consider both sources of
error.

Conventional deep learning models are generally used determin-
istically, providing no access to prediction uncertainty. To address
this limitation, we propose to reformulate the problem by replacing
the parametric model 𝑓 with a variant that can produce a distribu-
tion of outcomes instead of a single value. In other words, the model
prediction can be represented as a sample from this distribution:

𝑃 ∼ 𝑓 ({𝑃𝑖 };𝜃 ) (4)

Where 𝑓 represents the variational model. Given 𝑌 = {𝑃𝑖 }𝑛 a set of
𝑛 samples from the predictive distribution, we can define the predic-
tion intervals (PIs) with a confidence level of 𝛾 ∈ [0, 1) as the range
[𝑙 (𝑌 ), 𝑢 (𝑌 )] such that the probability P

(
𝑙 (𝑌 ) < 𝑃𝑛+1 < 𝑢 (𝑌 )

)
= 𝛾 ,

which indicate the expected error between the prediction and the ac-
tual targets. A large PI indicates greater uncertainty in the model’s
predictions. While the actual precipitation value is likely to be
within the specified interval, the predictions may not be very ac-
curate. Essentially, a large PI indicates that the model has less
confidence in its predictions, reflecting greater variability in the
input data or inherent challenges in the prediction process.

Conversely, a small PI indicates a higher confidence in themodel’s
predictions, which suggests that the actual precipitation value is
likely to be very close to the predicted value. However, this also
increases the risk that the actual values will lie outside these PIs.
The optimal PI range, therefore, depends heavily on the practical
application and is a tradeoff between accuracy and reliability.

In the context of rainfall prediction, NWP simulations 𝑃𝑖 typi-
cally exhibit a large PI due to varying mathematical assumptions
in the different models. While this broad PI is beneficial for cap-
turing intense meteorological events, it can also lead to excessive
uncertainty. Ideally, a refined model should reduce this range while
maintaining sufficient width to capture significant weather events
effectively.

3.1 Case study
Our study aims to estimate forecast uncertainties in daily cumu-
lative QPF over northwestern Italy, specifically focusing on the
Piemonte and Valle d’Aosta regions over 24 hours. These areas
present a particular challenge for precipitation forecasting due to
their varied topography, significantly influencing local precipitation
patterns.

To address this task, we compiled a dataset of gridded daily cu-
mulative precipitation observations from ground stations provided
by ARPA Piemonte, covering the Area of Interest (AoI) with a spa-
tial resolution of approximately 12 km. These observations, namely
the 𝑃𝑖s, are interpreted as images of size 𝐿 ×𝑊 , with each pixel
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being the precipitation within the associated land area. For each
real observation, 𝑛 NWP outcomes are collected and gridded to
match the shape of the ground truth, producing an image of size
𝐿 ×𝑊 × 𝑛 when stacked together along the channel axis.

3.2 Deep learning architectures
Within this framework, the problem can be phrased as a segmenta-
tion task. We chose a U-Net architecture [26] as our deterministic
backbone network. Despite the availability of many newer alterna-
tives, U-Net remains extremely popular in fields such as medical
imaging, remote sensor analysis, and diffusion models [23, 29].
Its skip-connected encoder-decoder structure is particularly well
suited for capturing both local and global contexts, making it ideal
for our task, for which we have experimentally found that other
more complex architectures do not yield remarkable results. How-
ever, it is worth noting that our choice of U-Net is not crucial for
the subsequent analysis. All the model changes we will present can
also be applied to other segmentation backbones.

Based on this, we have developed several models for segmenta-
tion under uncertainty that incorporate the best-known strategies
from the literature to achieve this property for different tasks. In the
following sections, we briefly introduce these models and highlight
our contributions to the development of some of them.

3.2.1 Monte Carlo Dropout U-Net. HenceforthMCDU-Net, this ap-
proach enhances the backbone model with a Monte Carlo Dropout
(MCD) strategy [24]. Dropout, originally introduced as a regulariza-
tion procedure, involves randomly discarding a subset of neurons
during training to prevent overfitting and improve the generaliza-
tion of the model. In MCD, this concept is extended to the testing
phase to estimate uncertainty, as the dropout at the time of in-
ference can be considered as a Bayesian approximation. Dropout
layers are applied during inference, and multiple forward passes are
performed to generate a distribution of predictions. The variance of
these predictions is then a measure of the uncertainty of the model.

3.2.2 Deep Ensemble U-Net. Henceforth Ens U-Net, in this tech-
nique, several U-Net models are trained independently of each other
with different initializations [15]. As with the previous method, this
approach also leads to variability in the model results, although
the number of trained models limits the possible different output
patterns.

3.2.3 SDE U-Net. SDE-Net was recently proposed by Kong et
al. [17] to integrate Stochastic Differential Equations (SDEs) into
deep learning models for capturing uncertainty. Neural networks
can be viewed as continuous-time transformations of input dy-
namics, with model epistemic uncertainty accessed by viewing this
process as a stochastic dynamical system governed by the following
stochastic differential equation:

𝑑𝑥𝑡 = 𝑓 (𝑥𝑡 , 𝑡 ;𝜃 𝑓 )𝑑𝑡 + 𝑔(𝑥0;𝜃𝑔)𝑑𝑊𝑡 (5)

Here, the diffusion term𝑔modulates the Brownian motion𝑑𝑊𝑡 , rep-
resenting the stochastic component of the process. The parametric
functions 𝑓 (·;𝜃 𝑓 ) and 𝑔(·;𝜃𝑔) are two neural networks trained to
model aleatoric and epistemic uncertainty, respectively. The train-
ing strategy ensures that 𝑔 provides a small variance for data within
the training distribution and a large variance for data outside it.

This is obtained by addressing the following objective function:

min
𝜃 𝑓
E [L(𝑥𝑇 )] + min

𝜃𝑔
E𝑥0

[
𝑔(𝑥0;𝜃𝑔)

]
+ max

𝜃𝑔
E�̃�0

[
𝑔(𝑥0;𝜃𝑔)

]
, (6)

where L is the task-dependent loss function enforcing stochastic
process’ terminal outcome 𝑥𝑇 to approach the target prediction and
𝑥0 is an out-of-distribution sample obtained by adding Gaussian
noise to the initial state 𝑥0 sampled from the training data.

The original implementation of SDE-Net develops the input-
output system over the time interval [0,𝑇 ] using an Euler-Maruyama
scheme, where the two components of the equation 5 are added iter-
atively with a fixed step size. This allows using the same networks
at each time step, reducing the overall number of weights.

Extending this strategy to the U-Net architecture is a challenge
because the main advantage of U-Net lies in its networked encoder-
decoder structure. In U-Net, the input signal going into each encoder
block generates an output that serves as the input for the next
encoder block and is also passed to the corresponding decoder block
via skip connections. These blocks have different input and output
channels, which makes it impossible to share weights between
them. To incorporate the SDE-Net strategy, we set the number of
time splits to match the number of encoder blocks. For each encoder
block, we construct a diffusion block placed at each skip connection
and simulate an integration step at each encoder-decoder exchange.

This network is trained using the strategy proposed in [17] to
assign higher uncertainty to out-of-distribution inputs, enabling
effective uncertainty quantification in segmentation tasks while
preserving the essential U-Net structure.

3.3 Experimental design and Validation metrics
To measure the benefits of uncertainty-aware architectures in rain-
fall prediction tasks, we train themodels to reconstruct precipitation
maps from different typical events. In contrast, we also collect a
set of events labelled as intensive and separated from the training
data. Intensive events are all those where the maximum recorded
precipitation within the RoI (Region of Interest) exceeds the 99th
percentile for the corresponding season. Further insights are given
in the following section. Based on this separation, we expect a deep
learning model to perform better when evaluated on typical events,
while the performance degrades for intense events. We compare
the uncertainty provided by a PoorMan’s Ensemble (average of
NWP forecasts), which is our benchmark, with the forecast un-
certainty from each considered machine learning model. To get a
basic uncertainty estimate, we use normalized rMSE, while to quan-
tify the trade-off between accuracy and reliability, we introduce a
coverage-length-based criterion (CLC) as defined in [19]

𝐶𝐿𝐶 =
𝑁𝑀𝑃𝐼𝐿

𝜎 (𝑃𝐼𝐶𝑃, 𝜂, 𝜇) , (7)

where 𝜎 is a sigmoid function with scaling parameter 𝜂 and trans-
lation parameter 𝜇:

𝜎 (𝑃𝐼𝐶𝑃, 𝜂, 𝜇) = 1
1 + 𝑒−𝜂 (𝑃𝐼𝐶𝑃−𝜇 )

(8)

We aim to achieve low values of Normalized Mean Prediction Inter-
val Length (NMPIL), as it indicates a narrower spread in ensemble
predictions, which we seek to minimize for more meaningful and
useful predictions. However, reducing NMPIL negatively affects the
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coverage of Prediction Intervals (PIs), resulting in an undesirable
number of predictions falling outside the PIs. To address this issue,
we aim for high PI Coverage Probability (PICP) values, which mea-
sure the proportion of target values within the prediction interval.
Consequently, we strive for the smallest possible values of CLC.
The parameter 𝜂 controls the penalty when PICP falls below the
minimum acceptable level 𝜇.

Ideally, the threshold value of acceptability 𝜇 should be as close
as possible to 1, so we set it to a reasonably high value, namely
𝜇 = 𝛾 = 0.95. In [5] the parameter 𝜂 is explored in the context of
neural networks training in order to study learning sensitivity and
dynamics, leading to a useful range 1 < 𝜂 < 10: this contribution
can be applied also in other contexts such as CLC, so we examine
the behaviour of CLC as a function of 𝜂 ranging from 0 to 12, which
slightly extends the suggested range. Of course, predictions falling
outside a PI with 𝜇 = 0.95 should be strongly penalized, so we are
particularly interested in the CLC values for high 𝜂 (i.e. around 10).
Accordingly, we provide tabular values for rMSE, PICP, NMPIL, and
CLC with 𝜂 = 12, the maximum value considered in our analysis.

MCD U-Net and SDE U-Net use 20 sampled predictions, while
Ens U-Net (3.2.2) is based on 5 repetitions, i.e., as many ensem-
ble models. This approach estimates forecast uncertainty for each
model, reflecting epistemic error. We then repeat the process in a
9-fold cross-validation to ensure statistical significance, accessing
aleatoric uncertainty. This involves training the models on nine
different training-validation-test subsets, derived using weather
physics considerations detailed in subsection 4.1. Uncertainty esti-
mates for each validation metric 𝑉𝑀 are provided as:

𝑉𝑀 = 𝑉𝑀𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ±𝑉𝑀9−𝑓 𝑜𝑙𝑑 𝐶𝑉 . (9)

4 EXPERIMENTS
4.1 Dataset building
As previously mentioned, the dataset includes observations from
ground stations provided by ARPA Piemonte, preprocessed using
optimum interpolation [13] to generate images on a fixed grid.
These observations span from 1957 to the present, providing a
continuous and comprehensive record of precipitation across vari-
ous meteorological conditions. The dataset also includes precipita-
tion forecasts from four NWP models: BOLAM-CNR [6], ECMWF-
IFS [11], COSMO-2I [3], and COSMO-5M [9].

Events were classified as “intense" if their spatial maximum
precipitation exceeded the seasonal 99th percentile, with thresholds
of 64.58mm in winter, 95.71mm in spring, 93.26mm in summer, and
140.40mm in autumn. This classification resulted in 436 events, 40
of which were marked as intense and set aside during the training
phase.

For typical events, we applied K-means clustering based on the
variability-average plane to categorize events into convective, strat-
iform, and intermediate types. These types are characterized by
high spatial variability and low spatial average precipitation, low
spatial variability and high spatial average precipitation, and inter-
mediate characteristics, respectively [16, 30]. The dataset was then
divided into nine distinct training-validation-test subsets, ensuring
uniform event type distribution across all subsets. The code for our
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Figure 1: CLC Score of the model over the parameter 𝜂

experiments is available online 1, while the dataset can be shared
upon request.

4.2 Results
Figure 1 displays the behaviour of CLC for 𝜇 = 0.95 and 𝜂 values
ranging from 0 to 12 for typical and intense events, comparing
all deep learning models to the average of the weather models
(PoorMan’s Ensemble, PME). Error bars are omitted for readability.
Smaller CLC values indicate a better trade-off between accuracy
and reliability, achieved through low NMPIL and high PCIP values,
particularly at higher 𝜂 values. Table 1 summarizes the results of
our analysis in terms of CLC with 𝜇 = 0.95 and 𝜂 = 12, alongside
rMSE, PICP, and NMPIL for all uncertainty-aware models compared
to PME.

As expected, rMSE is higher for intense events than for typical
events, with all deep learning models significantly outperforming
PME. The low uncertainty in rMSE estimates highlights the model
with the best rMSE. Ens U-Net achieves the lowest rMSE for typical
events (8.15 ·10−3), while SDE U-Net achieves the lowest for intense
events (2.637 · 10−2), indicating higher prediction accuracy.

The PICP column shows that PME has better percentage cover-
age than the learning models by 10 to 15%, but at the cost of much
wider prediction intervals, as indicated by the NMPIL column. PME
has NMPIL values of 1.489 · 10−2 for typical events and 3.605 · 10−2

for intense events, compared to the deep learning models’ range
of 2 · 10−3 to 8 · 10−3 for both event types. This suggests that PME
predictions are reliable but lack accuracy.

However, the trade-off between accuracy and reliability differs
for typical and intense events when considering CLC at 𝜂 = 12.
For typical events, CLC indicates no substantial advantage for deep
learning models over PME (0.09 < 𝐶𝐿𝐶 < 0.11 for PME, Ens U-Net,
and SDE U-Net), although MCD U-Net shows a slight improvement
(0.065). For intense events, SDE U-Net has the lowest CLC value
(0.229), with the differences between PME, MCD U-Net, and Ens

1https://github.com/simone7monaco/rainfall-prediction
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# Parameters (M) rMSE (×100) ↓ PICP ↑ NMPIL (×100) ↓ CLC (𝜇 = 0.95, 𝜂 = 12) ↓
Typical Intense Typical Intense Typical Intense Typical Intense

PME - 1.156 3.152 0.808 0.759 1.483 3.605 0.096 0.393
Ens. U-Net 5 × 31.0 0.779±0.113 2.746±0.037 0.626±0.032 0.608±0.005 0.222±0.074 0.681±0.053 0.110±0.036 0.419±0.020
MCD U-Net 31.0 0.834±0.091 2.849±0.063 0.787±0.027 0.628±0.004 0.791±0.074 0.804±0.048 0.065±0.017 0.393±0.026
SDE U-Net 12.4 0.815±0.167 2.637±0.016 0.665±0.016 0.602±0.001 0.299±0.011 0.345±0.019 0.095±0.014 0.229±0.009

Table 1: rMSE, PICP, NMPIL e CLC at 𝜂 = 12 in deep learning models vs PoorMan’s Ensemble. Up and down arrows indicate
whether the best value is the higher or the lower.

U-Net being negligible. While SDE-UNet does not have the high-
est PICP, its primary advantage is the small prediction intervals,
as reflected in NMPIL, especially for intense events (3.45 · 10−3).
This results in a highly favourable accuracy-reliability trade-off, as
shown by CLC.

For 8 < 𝜂 < 12, PME consistently shows higher CLC values
for typical events compared to deep learning models, though the
difference is minor. SDE U-Net and Ens U-Net perform comparably
or slightly better than MCD U-Net around 𝜂 = 9. For intense events,
PME consistently underperforms against the deep learning models.
MCD U-Net and Ens U-Net have similar CLC values, but SDE U-Net
demonstrates the best accuracy-reliability tradeoff.

Overall, these results highlight the effectiveness of deep learning
models, particularly the SDE U-Net, in providing accurate and
precise rainfall predictions while maintaining a reasonable level of
uncertainty quantification.

5 CONCLUSIONS
To summarise, our study demonstrates the effectiveness of deep
learning solutions to improve the accuracy and reliability of NWP
post-processing systems for precipitation forecasts. By evaluating
both typical and intense precipitation events, we found that all deep
learning models significantly outperformed the average baseline
NWP solution, with our implementation of SDE-UNet showing the
best trade-off between accuracy and reliability.

Integrating these models, which account for uncertainty, into
operational forecasting systems can improve decision-making and
better preparation for weather-related events. Future work will fo-
cus on refining these models and exploring alternatives to achieve
more comprehensive results in predicting precipitation while ac-
counting for uncertainty.
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