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Tracing the identity of Parmigiano Reggiano “Prodotto di Montagna - 
Progetto Territorio” cheese using NMR spectroscopy and multivariate 
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H I G H L I G H T S  

• For the first time a NMR metabolomic characterization of Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” was obtained. 
• A MATLAB toolbox was developed allowing pure metabolites profiles determination and putative identification. 
• It has been possible to highlight metabolites capable to differentiate Mountain Parmigiano Reggiano from conventional Parmigiano Reggiano PDO cheese.  
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A B S T R A C T   

Background: Nuclear magnetic resonance (NMR) spectroscopy is one of the well-established tools for food 
metabolomic analysis, as it proved to be very effective in authenticity and quality control of dairy products, as 
well as to follow product evolution during processing and storage. The analytical assessment of the EU mountain 
denomination label, specifically for Parmigiano Reggiano "Prodotto di Montagna - Progetto Territorio" (Moun
tain-CQ) cheese, has received limited attention. Although it was established in 2012 the EU mountain denom
ination label has not been much studied from an analytical point of view. Nonetheless, tracing a specific profile 
for the mountain products is essential to support the value chain of this specialty. 
Results: The aim of the study was to produce an identity profile for Parmigiano Reggiano “Prodotto di Montagna - 
Progetto Territorio” (Mountain-CQ) cheese, and to differentiate it from Parmigiano Reggiano PDO samples 
(conventional-PDO) using 1H NMR spectroscopy coupled with multivariate data analysis. Three different ap
proaches were applied and compared. First, the spectra-as-such were analysed after proper preprocessing. For the 
other two approaches, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was used for signals 
resolution and features extraction, either individually on manually-defined spectral intervals or by reapplying 
MCR-ALS on the whole spectra with selectivity constraints using the reconstructed “pure profiles” as initial 
estimates and targets. All approaches provided comparable information regarding the samples’ distribution, as in 
all three cases the separation between the two product categories conventional-PDO and Mountain-CQ could be 
highlighted. Moreover, a novel MATLAB toolbox for features extraction via MCR-ALS was developed and used in 
synergy with the Chenomx library, allowing for a putative identification of the selected features. 
Significance: A first identity profile for Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” ob
tained by interpreting the metabolites signals in NMR spectroscopy was obtained. Our workflow and toolbox for 
generating the features dataset allows a more straightforward interpretation of the results, to overcome the 
limitations due to dimensionality and to peaks overlapping, but also to include the signals assignment and 
matching since the early stages of the data processing and analysis.  
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1. Introduction 

EU Regulation 1152/2012 [1] introduced the indication “Mountain 
Product” to enhance the value of food products from mountain areas by 
making them immediately recognizable to consumers. Normally specific 
valence is attributed to these products, which are very often rewarded 
with greater willingness to buy; this may allow mountain producers an 
adequate income that could contribute to the permanence of agricul
tural activity in these disadvantaged areas and to the overall vitality of 
mountain areas. Set against these potential benefits is the issue of 
falsification and adulteration with respect to product identity and 
authenticity. Thus, the need to evaluate analytical methods capable of 
objectively identifying the identity characteristics of mountain products 
to ensure their origin and traceability. However, studies focusing on the 
mountain denomination are still limited [2–4]. 

In this study, a NMR-based foodomic approach was used, since NMR 
spectroscopy can detect low-molecular weight metabolites which may 
bring valuable information useful to reveal identity traits linked to the 
mountain denomination. Parmigiano Reggiano “Prodotto di Montagna - 
Progetto Territorio” [5] was selected as a Case of Study. 

Parmigiano Reggiano cheese, with its unique and inimitable taste, 
was recognized as Protected Designation of Origin (PDO) food and it is 
appreciated all over the world. This name is usually associated with a 
single product idea, however different varieties can be found. In 
particular, the product “Prodotto di Montagna - Progetto Territorio” 
(Mountain-CQ in the text) represents a quality denomination for 
Parmigiano Reggiano cheese that in addition to the PDO also respect the 
mountain denomination [1] and must comply with additional rules, as 
detailed in the following, established by the producer consortium [5]. In 
particular, Mountain-CQ Parmigiano Reggiano cheese production insists 
in mountain areas, with over 30 dairies, located in the Apennines, that 
everyday help to strengthen the national economy and preserve the 
uniqueness of the mountain areas of Parma, Reggio Emilia, Modena and 
Bologna districts. The mountain certification must meet the following 
requirements: (i) 100% stables milk from mountain areas; (ii) more than 
60% of the cows feed coming from the mountain area, while the addi
tional specific requirements are: (iii) dairy and maturing up to 12 
months; (iv) qualitative selection at 24 months with “hammer” evalua
tion of the Consortium’s experts and (v) it should pass the sensory 
evaluation. 

In this scenario, considering the production protocol and the diffi
culties in terms of production costs, lower yields, etc., there has been an 
increasing demand, from both dairy farmers and consortia, to safeguard 
the authenticity of Mountain-CQ Parmigiano Reggiano cheese from the 
analogues. In fact, this high added value product plays an important role 
in supporting the sustainability of the mountain areas where it is pro
duced, offering revenue opportunities for the local economy. Further
more, to promote the Mountain-CQ Parmigiano Reggiano cheese as a 
higher quality product (of high added value) and to protect its unique
ness require a great knowledge of the product itself. 

Comprehensive analytical techniques can support this target by 
furnishing an objective assessment of quality and identity by extended 
characterization, as well as distinctive criteria. Among these techniques, 
high-resolution proton nuclear magnetic resonance (1H NMR) spec
troscopy has been widely used for a metabolic characterization [6–8]. 
The potentiality of this technique relies on obtaining a broad amount of 
information related to metabolites with a single analytical run [8] 
therefore resulting perfect for untargeted metabolomics. As a matter of 
fact, 1H NMR can provide detailed information about the molecular 
structure, connectivity, and conformation of organic compounds, 
including the relative positions of atoms, presence of functional groups, 
being a valuable tool for biomarkers identification. With respect to other 
-omics analytical techniques (i.e., LC-MS, GC-MS) NMR spectroscopy is a 
more stable and reproducible technique, resulting more suitable for 
quantitative analysis, as it can determine the concentration of specific 
compounds within a mixture, even though, compared with MS, its 

sensitivity is definitively lower. In the food context, NMR spectroscopy 
has been widely used [9], just to cite a few applications concerned: the 
detection of water loss, uptake or migration of nutrients, protein dena
turation and starch crystallisation [9–12], as well as identification of 
sugars, small organic acids, vitamins, nucleotides, and aromatic com
pounds [7,13–19]. Furthermore, NMR coupled with multivariate anal
ysis have provided optimal results in food characterization and 
authenticity [20–22]. 

Concerning the dairy production chain, several NMR-based studies 
were performed to characterise and discriminate different cow, goat and 
sheep cheese through lipid biomarkers and metabolite profiles [6,14, 
23–26], also highlighting the ability of 1H NMR to differentiate cheese 
samples as function of their ripeness, brine composition and adjunct 
cultures [17,27,28]. 

As regards Parmigiano Reggiano cheese, several studies were focused 
on the development of analytical methodologies able to discriminate 
Parmigiano Reggiano from non-authentic products. Very interesting 
results were obtained by using both un-targeted approaches, such as 
liquid chromatography coupled with high resolution mass spectrometry 
[29] (or quadrupole time-of-flight mass spectrometry [30]), Raman 
spectroscopy [31], 1H NMR [13] and targeted approaches, such as stable 
isotope ratio analysis [32]. In most of these studies chemometrics tools 
were applied and allowed obtaining interpretable models with prom
ising results in terms of classification capabilities. Notably, most of the 
studies on the chemical profile of Parmigiano Reggiano cheese have 
been focused on its ripening, authentication, and geographical charac
terization, while, to the best of the authors’ knowledge, none of the used 
analytical techniques (including the NMR-based approaches) has been 
used to study Mountain CQ Parmigiano Reggiano cheese or products 
coming from a restricted geographical area. 

In general, the mountain denomination label has been less investi
gated and specifically the evaluation of potential different metabolic 
profiles with respect to the same food commodity from plane area has 
been limited to few types of cheese [3,4,33]. 

In this study, the metabolic profiles of Mountain-CQ Parmigiano 
Reggiano cheese and conventional PDO Parmigiano Reggiano (con
ventional-PDO) cheese were evaluated by using NMR spectroscopy. 
Notwithstanding the richness of information held in NMR signals, the 
NMR profiles are rather complex to be analysed, mainly due to their high 
dimensionality, the presence of shifts among peaks and overlaps among 
signals. Furthermore, the extracted information needs to be examined 
altogether considering the uniqueness of the NMR spectrum as well as 
the non-triviality in the assignment of resonance to a given compound. 
Therefore, in this study, three different chemometrics strategies were 
used and compared. In the first, the spectra-as-such dataset was analysed 
by means of principal component analysis (PCA), without any 
compression and after a proper preprocessing. 

In the latter two approaches, Multivariate Curve Resolution–Alter
nating Least Squares (MCR-ALS) was applied to obtain a satisfactory 
resolution of the individual peaks in 1H NMR spectra [34] and to pu
tatively identify the different metabolites. In both strategies, a resolution 
by intervals approach is applied [20], however, whilst in the first, the 
features obtained from each defined spectral interval were kept distinct, 
in the second, the resolved features corresponding to the same metab
olite were combined to obtain whole pure spectral profiles. Finally, the 
latter were used as initial guess, and to define selectivity constraints in 
MCR-ALS then applied to the spectra-as-such NMR signals, according to 
a modified version of the method described in Puig et al. [35]. The 
selected features were also compared with specific spectral reference 
libraries (Chenomx software) for a putative identification of the selected 
compounds/metabolites. 
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2. Materials and methods 

2.1. Samples collection 

A total of 39 cheese samples was collected from Parmigiano 
Reggiano producers affiliated to “Consorzio Parmigiano Reggiano” (the 
Parmigiano Reggiano consortium): 20 were Italian Parmigiano 
Reggiano cheese with “Prodotto di Montagna - Progetto Territorio” 
denomination (Mountain-CQ), and 19 were conventional PDO Parmi
giano Reggiano cheese (Conventional-PDO). The conventional-PDO 
samples were collected from dairies located in plain areas excluding 
those production sites located in the mountain areas (Figure S1 shows 
the sampled locations over the PDO production region map). The 
ripening time of the collected samples was about 24 months, with 
variability in the range from 23 to 35 months (Table S1). All cheese 
samples, soon after collection, were grated at 4500 rpm for 15 s 
(Grindomix GM200, Retsch, Germany) and stored in airtight bags at 
− 20 ◦C until further analysis. The pH was measured (in aqueous envi
ronment) for each sample and resulted in the range 5.53–5.68, consis
tently with the study by Consonni et al. [13]. 

2.2. Samples preparation 

Regarding sample preparation as related to the NMR untargeted 
metabolomics workflow, the extraction procedure was carried out as 
previously reported in literature by Consonni et al. [13]. Briefly, after 
thawing samples at 5 ◦C overnight, 100 mg of grated Parmigiano 
Reggiano cheese were dissolved into 600 μL of D2O, mixed by vortexing 
(Vibration Mix, Falc, Italy) for 15 min and then subjected to sonication 
(Branson 3510 Mt, Electron Microscopy Sciences, Hatfield, PA, USA) for 
15 min. After centrifugation at 12.000 rpm for 10 min, 540 μL of su
pernatant were transferred into the NMR tube. All NMR tubes were filled 
up to the required volume of 600 μL, by adding 60 μL of sodium-3-(
trimethylsilyl)propionate-d4 (TSP-d4). The samples were then analysed 
by NMR spectroscopy following a predetermined random order. To 
check the variability and the analytic reproducibility of the extraction 
procedure, one Mountain-CQ sample and one conventional-PDO sample 
were used as ‘control samples’ and replicated in each preparatory ses
sion. The list reporting the sample number, the ripening date, ageing in 
months, and the corresponding classification according to the different 
denominations (i.e., Mountain-CQ vs conventional-PDO samples) can be 
found in the supplementary material (Table S1). 

2.3. 1H NMR data acquisition 

The 1H NMR spectra were acquired on a Bruker Avance III 600 
spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) operating 
at the Larmor frequency of 600.13 MHz for protons, equipped with a 
double-tuned cryoprobe (TCl) set for 5 mm sample tube and a cooled 
autosampler (SampleCase, at 5 ◦C). The spectra were acquired with 
TOPSPIN 2.1 (Bruker Biospin GmbH, Rheinstetten, Germany), using the 
NOESYGPPR1D sequence [36,37]. Presaturation of the water signal 
(4.77 ppm) [17,24,27,38] was employed. All experiments were per
formed at 298 K with a fixed receiver gain. Each free induction decay 
(FID) was collected using a total of 64 scans plus four dummy scans. 
Acquisition time was set to 7.8 s with a spectral width of 8403.361 Hz. 
Prior to Fourier transformation, the FIDs were zero-filled to 64 k points, 
and a 0.3 Hz Lorentzian line broadening was applied. The spectra were 
baseline- and phase-corrected using TOPSPIN built-in processing tools. 
This correction was performed automatically for all spectra and then, 
depending on the obtained results, further manual adjustments were 
performed when strictly necessary. For all spectra, the ppm scale was 
referenced to the TSP peak (0.00 ppm). The spectral window was set to 
20.5 ppm (− 5 to 15 ppm). 

2.4. Data analysis 

The raw NMR spectra were imported and processed under the 
MATLAB environment. The uninformative areas at the extremes of the 
spectrum (i.e., above 9 ppm and at negative ppm values, with no signals 
of appreciable intensity) together with the area corresponding to the 
water peak (around 4.77 ppm, with a broken residual water signal after 
presaturation) were removed from the spectral data, leading to a dataset 
with 66,200 experimental data points. The data were then down- 
sampled (for ease of computation) and arranged into a numerical ma
trix of dimensions 49 × 33,100 (samples × variables), which also 
included the replicates of the both control samples. 

Data preprocessing is a critical and case-dependent step in any 
multivariate data analysis workflow. Since in this study three different 
approaches were tested and compared, the employed preprocessing 
methods will be individually described for each approach. 

The analytical workflow is depicted in Fig. 1. The aligned NMR 
spectra on the left-hand side, were firstly analysed “as such” by means of 
principal component analysis (PCA, Fig. 1a). These spectra then un
derwent interval-wise integration by means of multivariate curve reso
lution (MCR, Fig. 1b), which led to the creation of the “features dataset”, 
also explored using PCA. Finally, the MCR-resolved signals corre
sponding to individual metabolites were combined to obtain a set of 
“reconstructed pure profiles” (Fig. 1c), which were in turn used as initial 
estimates for another run of MCR, this time on the “full spectra dataset”, 
to try to unravel the mixture using the whole spectral information. 

2.4.1. Spectra alignment 
Spectra alignment was performed using the icoshift algorithm [39]. 

Signal alignment is needed since even small changes of experimental 
conditions may determine horizontal peak shifts, which, despite being 
reduced in scale, may introduce variability not imputable to real dif
ferences among the samples. 

The alignment was directly done by intervals, as a preliminary global 
alignment (an option allowed by icoshift [40]) did not provide any clear 
alignment improvement. Therefore, a set of manually chosen small in
tervals was defined so that each one of them would contain individual 
peaks or small groups of signals, to allow better alignment. The average 
spectrum multiplied by a factor of 3 (option “average2” in icoshift [40]) 
was used as the alignment target. The result of the alignment process led 
to the definition of 80 intervals. The aligned dataset was the input for all 
multivariate data analysis methods as described in Sections 2.4.2 and 
2.4.3 and is referred to as the “spectra-as-such dataset”. 

2.4.2. Multivariate curve resolution (MCR) for features extraction 
Multivariate Curve Resolution (MCR [41,42]) was applied to extract 

features, i.e., peak areas of resolved metabolites, from the NMR spectra 
[20]. Eighty intervals were defined and MCR was automatically applied 
to each one of them to build four models of increasing complexity, from 
2 to 5 components. To this aim a set of in-house MATLAB routines (a first 
version of a toolbox) was assembled. The toolbox allows: i) to easily 
visualize the modelled interval (Fig. 2, with the raw data plotted in 2a) 
and the resolved spectral profiles for the MCR models of increasing 
complexity models (Fig. 2b–e show the pure spectral profiles for the 2 to 
5 components models, respectively); ii) automatically matching the 
resolved spectral profiles provided by MCR with a list of metabolite 
assignments obtained from literature sources (light blue bars in 
Fig. 2b–e) and, thus iii) selecting the components to retain and gener
ating the features data set holding the resolved peak areas corresponding 
to the selected components. This setup also allows a quick and simple 
comparison between the resolved spectral profiles and the Chenomx 
reference library (version 9.02, Chenomx Inc., Edmonton, Alberta, 
Canada, https://www.chenomx.com, last access: March 06, 2023), as 
detailed in Section 2.4.2.1. 

The joint use of literature sources and Chenomx was aimed at making 
the putative identification and assignment procedure more robust. 
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However, the level of confidence of the metabolite assignments can be 
more objectively assessed using the framework defined by the Chemical 
Analysis Working Group of the Metabolomics Standards Initiative [43, 
44]. In this framework, our work would approximately correspond to 
level 2 (i.e., “Putatively annotated compounds”). All metabolites’ as
signments are reported in Table 1: for each putative compound chemical 
shift, signal multiplicity and literature references that support each 
identification are provided. 

2.4.2.1. MCR interval MATLAB toolbox. As introduced above, we 
developed an ad hoc toolbox (this novel toolbox will be made available 
on request from the authors, and a GUI development is in progress), to 
assist and automatize the interval processing procedure and visualize 
the MCR modelling results (Fig. 2). In particular, to guide the choice of 
the correct number of components, four MCR models are automatically 
built for each defined spectral interval (intervals are manually defined 
and provided in input on an excel file as a list indicating starting and 
ending point for each interval). Regarding the default settings for MCR 

Fig. 1. The whole data analysis workflow. Starting from the aligned NMR data, three routes were taken: a) PCA analysis of the “spectra-as-such” dataset; b) interval- 
MCR resolution procedure to obtain and analyse the “features” dataset; c) full spectra MCR decomposition using the recombined signals as initial estimates. 

Fig. 2. Example of the graphical output of the ad hoc developed in-house MATLAB toolbox. The raw data in the selected interval are shown on the left side (a), while 
on the right side there are as many subplots as the computed MCR models (b–e). The resolved spectral profiles (one for each MCR component) are plotted in different 
colours, and the positions of the putative metabolites that could be present in the interval, based on literature references, are reported as light blue vertical lines, 
together with the corresponding metabolite’s name. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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Table 1 
List of resolved compounds with tentative names, chemical shifts (δ, ppm), 
signal multiplicity, signal assignment and references supporting the signal 
identifications. (a reported without information about chemical shift and mul
tiplicity;b pure MCR-resolved feature obtained;c no MCR-resolved pure feature 
obtained, only mixed;d signals combined as an individual compound-related 
feature in the final “features dataset”).   

Tentative 
compound 
name 

Chemical 
shift (δ, 
ppm) 

Multiplicity 
and 
assignment 

References 
with NMR 
information 

References 
mentioning 
the 
metabolitea 

1 Acetate (acetic 
acid) 

1.94b s, α-CH3 [13–17]; 
Chenomx 

[7] 

2 Alaninec 3.76c q, α-CH [13,14, 
16–18]; 
Chenomx 

[7,19] 

1.48c d, β-CH3 [13–18]; 
Chenomx 

[6,19] 

3 Arginine 3.75c t, α-CH [13,18]; 
Chenomx 

[7] 

3.25b t, δ-CH2 [13,18]; 
Chenomx 

[7] 

1.9c m, β-CH2 [13,15,18]; 
Chenomx 

[7] 

1.65b m, γ-CH2 Chenomx [7] 
4 Asparagined 4.0b m, α-CH [13,14,18, 

19]; 
Chenomx 

[7] 

2.96b m, β-CH2 [13,14, 
17–19]; 
Chenomx 

[7] 

2.86b m, β′-CH2 [13,19]*, 
[14,17,18]; 
Chenomx 

[7] 

5 Aspartate 
(aspartic acid) 

3.9b m, α-CH [13,14]; 
Chenomx 

[7] 

2.82b m, β-CH2 [13,14,17, 
19]; 
Chenomx 

[7] 

2.69b,c m, β′-CH2 [14,17]; 
Chenomx 

[7] 

6 Butyrate 
(butyric acid) 

2.15c t, α-CH2 [17]; 
Chenomx 

[7] 

1.57b sext, β-CH2 [17]; 
Chenomx 

[7] 

0.9b t, γ-CH3 [17]; 
Chenomx 

[7] 

7 Cadaverinea 3.03c t Chenomx [17] 
8 Choline 4.1c m, CH2 [14,16]; 

Chenomx[ 
[7] 

3.2b s, CH3 [14–16]; 
Chenomx 

[7] 

9 Citrate (citric 
acid) 

2.73b,c d, CH2 [14,17]; 
Chenomx 

[7] 

2.55b d, CH2 [14,15,17]; 
Chenomx 

[7] 

10 Creatinine 4.04b s, CH2 [16]; 
Chenomx 

[7,15] 

11 Ethanol 1.18b t, CH3 [15]; 
Chenomx 

[7] 

12 Glutamate 
(glutamic 
acid)c 

2.36c m, γ-CH2 [13–15,17, 
18]; 
Chenomx 

[7,16] 

2.13c m, β-CH [14,17]; 
Chenomx 

[7,16] 

2.05c m, β′-CH [17–19]; 
Chenomx 

[7,16] 

13 Glycerol 3.8c m, CH [14,17,18]; 
Chenomx 

[7] 

3.65b m, CH2 [14,17,18]; 
Chenomx 

[7] 

3.56b q, CH2 [14,17,18]; 
Chenomx 

[7] 

14 Glycine 3.56b s, α-CH2 [13–19]; 
Chenomx 

[7]  

Table 1 (continued )  

Tentative 
compound 
name 

Chemical 
shift (δ, 
ppm) 

Multiplicity 
and 
assignment 

References 
with NMR 
information 

References 
mentioning 
the 
metabolitea 

15 Isoleucined 3.67b d, α-CH [13,14,18, 
19]; 
Chenomx 

[7,16] 

1.46c m, γ-CH2 [13,14,18]; 
Chenomx 

[7,16] 

1.27b m, γ′-CH2 [13,14]; 
Chenomx 

[7,16] 

1.01b d, γ-CH3 [13–15,18, 
19]; 
Chenomx 

[7,16] 

0.94c t, δ-CH3 [13,14,18]; 
Chenomx 

[7,16] 

16 Lactate (lactic 
acid) 

4.13b,c q, α-CH [13,14, 
16–19]; 
Chenomx 

[7] 

1.34b d, β-CH3 [13–19]; 
Chenomx 

[7] 

17 Leucinec 3.72c m, α-CH [13,14,18]; 
Chenomx 

[7,16] 

1.71c m, β-CH2 [13–15, 
17–19]; 
Chenomx 

[7,16] 

0.97c d, δ-CH3 [13–15, 
17–19]; 
Chenomx 

[7,16] 

0.96c d, δ′-CH3 [13–15, 
17–19]; 
Chenomx 

[7,16] 

18 Lysine 3.03c t, ε-CH2 [13–15,17, 
18]; 
Chenomx 

[7,16] 

1.9c m, β-CH2 [13,14,17, 
18]; 
Chenomx 

[7,16] 

1.73c m, δ-CH2 [14,17–19]; 
Chenomx 

[7,16] 

1.5c m, γ-CH2 [14,18,19]; 
Chenomx 

[7,16] 

1.45 m, γ′-CH2 [14,18]; 
Chenomx 

[7,16] 

19 Methionine 3.87b m, α-CH [13,14,18]; 
Chenomx 

[7,16] 

2.64b t, γ-CH2 [13,14, 
17–19]; 
Chenomx 

[7,16] 

2.14c m, S-CH3, 
β-CH2 

[13,14, 
17–19]; 
Chenomx 

[7,16] 

20 N- 
acetyltyrosinea 

4.39b m Chenomx / 

21 Ornithine 3.06b t, δ-CH2 [18]; 
Chenomx 

[7,16] 

22 Phenylalanined 7.42b m, 3,5-CH [13,14,17, 
18]; 
Chenomx 

[7,16] 

7.37 m, 4-CH [13,14,17, 
18]; 
Chenomx 

[7,16] 

7.33b m, 2,6-CH [13,14,17, 
18]; 
Chenomx 

[7,16] 

3.98c m, α-CH [13,14,18]; 
Chenomx 

[7,16] 

3.28b d, β-CH2 [13,14, 
17–19]; 
Chenomx 

[7,16] 

3.13b m, β′-CH2 [13,14, 
17–19]; 
Chenomx 

[7,16] 

23 Proline 3.42b m, δ-CH2 [13,14,17, 
18]; 
Chenomx 

[7,16] 

(continued on next page) 
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modelling, the initial spectral profile matrix is estimated by using the 
SIMPLISMA algorithm [45]. Then, the non-negativity constraints are 
applied to both the concentrations and the profiles directions, using in 
both cases the fast non-negative least squares algorithm. The maximum 
number of iterations is set to 1000. The resolved spectral profiles are 
normalised using the Euclidean norm. Finally, through the plot, as in 
Fig. 2, the results for each interval can be inspected to identify and select 
the chemically meaningful components, while background and 
baseline-like profiles could be discarded. An example of discarded 
components can be seen in Figure S2c, where one citrate signal was 

obtained from a 3 components MCR model, while the other two com
ponents represented baseline-like behaviour and spurious signals. 

An example of the resolved profile selection, matching with refer
ence information and identification process is given in Fig. 3, in which 
the amino acid phenylalanine is investigated and identified thanks to its 
very distinctive NMR profile (Fig. 3a). The presence of phenylalanine in 
cheese has been reported in literature [13,14,17–19] and in some cases 
also its chemical shifts and assignments have been provided. In this 
example, the resolved profiles of the four MCR models are shown in 
Fig. 2b–e: this is a simplified visualisation of the one provided by the 
developed toolbox, and the real look of the MATLAB interface is shown 
in Fig. 2. This representation of the models allowed us to easily compare 
and match the resolved profiles with the NMR profile of phenylalanine 
that can be found in the reference library of Chenomx (Fig. 3f). It is 
possible to recognize the signal related to phenylalanine (plotted in pink 
and red) in all four MCR models, while at the same time it is possible to 
make considerations on how models with different numbers of compo
nents result in different profile extraction performances. The first model 
(Fig. 3b, fitted with two components), and more specifically the first 
resolved component highlighted in red, provides the best performance 
in resolving the correct spectral profile, while at the same time filtering 
out peculiar signals (e.g., the shoulder signal between 7.315 and 7.32 
ppm belonging to one sample alone) and unravelling the contribution 
due to another chemical compound (which has a peak different from 
phenylalanine at about 7.34 ppm). The other three models (Fig. 3c–e), 
fitted using from three to five components, show very similar perfor
mances, but with increasing model complexity some artefacts start 
appearing in the multiplet profile of phenylalanine. Based on these 
considerations, the two-components model was selected, and the 
resolved profile of the first component was identified as phenylalanine 
and therefore included in the features dataset. 

2.4.2.2. Construction of the “features dataset”. The result of the interval- 
based resolution process consisted of 93 resolved chemical components, 
whose relative concentrations (corresponding to the values in the con
centrations matrix obtained by MCR decomposition) obtained by MCR 
were merged column-wise to generate a new dataset, hereinafter 
referred to as the “features dataset” of dimensions 49 × 86 (8 of the 
features, signals of the same compounds, were combined as detailed in 
Table 1). The lack of fit (l.o.f.) value ranged between 0.03 and 1.62% 
considering all selected MCR models. Most models however show l.o.f. 
values below 0.5%. Of the 86 extracted features 48 were tentatively 
assigned to many different signals of individual chemical compounds 
and 13 features to mixtures of different metabolites signals. The 
remaining 25 extracted features were labelled as “unknown”, as re
ported in Section 3.1. A list reporting the 31 individual metabolites of 
which all or most signals were assigned is also provided in Table 1. 

2.4.2.3. The “full spectrum-MCR” approach: reconstruction of the pure 
profiles from the resolved features. The MCR-resolved spectral profiles 
originating from different intervals but referring to the same metabolite 
were joined to recreate the compound’s pure profile, including as many 
real characteristic signals as possible. Following this procedure, a set of 
reconstructed “pure” and complete profiles was obtained. This spectral 
matrix was used as the initial estimates input for an additional MCR 
modelling step, this time running on the spectra-as-such dataset 
following a modified version of the approach originally suggested by 
Puig et al. [35]. 

The key aspect of this approach is to resolve the individual metab
olites profiles directly from the NMR spectra-as-such, thus operating on 
the whole spectral width. Due to the complexity of the NMR signals, this 
cannot be achieved in a single step. Puig et al. [35] proposed to proceed 
first by applying MCR on small intervals (as we did for obtaining the 
NMR features data set), then to recursively use Pearson’s correlation 
coefficient among the resolved features to highlight the ones most likely 

Table 1 (continued )  

Tentative 
compound 
name 

Chemical 
shift (δ, 
ppm) 

Multiplicity 
and 
assignment 

References 
with NMR 
information 

References 
mentioning 
the 
metabolitea 

3.33b m, δ′-CH2 [13–15, 
17–19]; 
Chenomx 

[7,16] 

2.36c m, β-CH2 [13,14,17, 
18]; 
Chenomx 

[7,16] 

2.04c m, β′-CH2 [13,17–19]; 
Chenomx 

[7,16] 

1.99 m, γ-CH2 [13,14,17, 
18]; 
Chenomx 

[7,16] 

24 Pyroglutamate 
(pyroglutamic 
acid) 

4.18b m, α-CH [13,18]; 
Chenomx 

[7] 

2.5b m, β-CH2 [13,18]; 
Chenomx 

[7] 

2.4b m, β′-CH2 [13,18]; 
Chenomx 

[7] 

25 Serine 3.96b m, β-CH2 [13,14,18, 
19]; 
Chenomx 

[7] 

3.90c m, β′-CH2 [13,14,18, 
19]; 
Chenomx 

[7] 

3.85b m, α-CH [13,14,18]; 
Chenomx 

[7] 

26 Threonine 4.26b m, β-CH [13,14,18, 
19]; 
Chenomx 

[7,16] 

3.58b d, α-CH [13,14, 
17–19]; 
Chenomx 

[7,16] 

1.33 d, γ-CH3 [13,14,18]; 
Chenomx 

[7,16] 

27 Tryptophana 7.74b m Chenomx [7,16] 
7.54b m Chenomx [7,16] 
7.28b m Chenomx [7,16] 
7.19c m Chenomx [7,16] 
4.06b m Chenomx [7,16] 
3.48b m Chenomx [7,16] 

28 Tyrosine 7.18b,c m, 3,5-CH [13,14,17, 
18]; 
Chenomx 

[7,16,19] 

6.9b m, 2,6-CH [13–15,17, 
18]; 
Chenomx 

[7,16,19] 

3.2b m, β′-CH [14,17,18]; 
Chenomx 

[7,16,19] 

3.06b m, β-CH [14,17,18]; 
Chenomx 

[7,16,19] 

29 Uracila 5.8b d Chenomx [7] 
30 Valine 3.61b d, α-CH [13,14,17, 

18]; 
Chenomx 

[7,16] 

1.04b d, γ-CH3 [13,14, 
17–19]; 
Chenomx 

[7,16] 

0.99b d, γ′-CH3 [13–15,18, 
19]; 
Chenomx 

[7,16] 

31 Xanthinea 7.92b s Chenomx /  
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Fig. 3. Identification procedure of the amino acid phenylalanine. The aligned raw data are shown in (a). Four models (b–e) were built using from two to five 
components: the resolved profiles were compared with the real profile of phenylalanine (f), provided here by the reference library Chenomx, reported here as a 
screenshot from the software interface. The profiles matching with phenylalanine are represented in pink, while the one selected for building the features dataset is 
plotted in red (b, model with 2 components). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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to be associated to a single metabolite. Finally, the resolved “recom
bined” pure profiles, which are in principle directly linked to the 
assigned metabolites, are used as the initial guess of the pure spectra 
matrix, with the aim of helping the MCR algorithm to converge to a 
feasible solution. In this way, each metabolite can be modelled as one 
individual component. 

Our approach is similar, but the profiles to be recombined, differ
ently from Puig’s, were selected based on putative identification 
through the literature and Chenomx library search instead of correlation 
analysis of the resolved features. Starting from the 86 resolved features 
(Section 2.4.2.2), a total of 33 pure profiles were obtained, of which 26 
corresponding to individual metabolites, 5 to overlapped signals of two 
metabolites, and 2 to overlapped signals of two non-identified metab
olites. After using these 33 profiles as initial estimates for MCR on the 
NMR spectra-as-such dataset (the "full spectrum MCR" approach) a new 
dataset of resolved MCR components was obtained and will be hereafter 
referred to as the “full-MCR dataset”. 

2.4.3. Exploratory data analysis 
Exploratory analysis was performed using principal component 

analysis (PCA [46,47]) on all datasets (i.e., the NMR spectra-as-such 
dataset, the features dataset and the full-spectrum MCR dataset). The 
obtained PCA results were compared in terms of extracted information, 
interpretability, and workload. 

Blockscaling to unit block variance was applied to the aligned NMR 
signals in the case of the spectra-as-such dataset. The same intervals as 
defined for the alignment step with icoshift were used. Autoscaling was 
used on the features dataset and the full-spectrum MCR dataset. 

2.5. Software 

Data analysis was carried out on MATLAB 2019a and 2021a 
(Mathworks, Natick, MA, USA) using a combination of functions, tool
boxes, and in-house written routines. Data preprocessing, MCR and PCA 
modelling were performed using the functions included in the 
PLS_Toolbox (version 9.0, Eigenvector Research Inc., Manson, WA, 
USA). Peak alignment was performed using the icoshift algorithm [39], 
downloadable from https://ucphchemometrics.com/186-2/algorith 
ms/, last accessed April 20, 2023). Peak identification and assignment 
of the resolved MCR components were based on the reference library of 
Chenomx NMR Suite (version 8.3, Chenomx Inc., Edmonton, Alberta, 
Canada). 

3. Results and discussion 

3.1. Extracted chemical features by MCR 

The list of identified compounds is reported in Table 1. Note that 
some signals listed on the table do not correspond to an individual 
resolved chemical feature, but all of them are represented in the features 
dataset. Together with the literature references that support the as
signments of each identified metabolite, their presence on Chenomx is 
also reported, as well as possible mentions of the metabolite in refer
ences about cheese (last column of Table 1). All unassigned signals 
(marked as “unknown”) are reported in Table S2 (Supplementary 
material). 

The Parmigiano Reggiano cheese spectra resulted rich in protein and 
non-protein amino acid spin systems, namely proline, aspartic acid, 
leucine, valine, methionine, tyrosine, phenylalanine and serine and, to a 
lesser extent, amines, alcohols, organic acids and nucleotides. The last 
two chemical classes present contributions characterised by low in
tensities which are indeed rather difficult to resolve. As reported in 
previous studies [13], most of the detectable metabolites in Parmigiano 
Reggiano cheeses could be the product of enzymes and/or microor
ganism activity during manufacturing or coming from biochemical re
actions during cheese ripening. As regards amino acids, they can also 

result from proteolysis concerning the casein matrix degradation during 
the ripening time and their contents could change as a function of time 
[13]. 

A representation of a typical spectrum of Parmigiano Reggiano is 
provided in Fig. 4, together with the metabolites reported on Table 1. 
Metabolites with very weak signals may not be reported in the figure, as 
well as some of the unknown signals. 

3.2. Analysis of spectra-as-such vs MCR extracted features 

The discussion of the results is focused on the grouping related to the 
different denominations defined by PCA analysis for both datasets. In 
Fig. 5 are reported the scores and loadings plots for the most relevant 
principal components for spectra-as-such (Fig. 5a and b) and MCR- 
extracted features (Fig. 5c, d and 5e) datasets. 

The Mountain-CQ and conventional-PDO replicated samples 
(described in section 2.2) lie very close in the scores plot (encircled by a 
dashed line in Fig. 5a and c) testifying good reproducibility. 

Starting from the information about the different denominations (i. 
e., Mountain-CQ vs conventional-PDO), the PCA analysis on the NMR 
spectra-as-such dataset provided a clear grouping trend related to the two 
different denominations (Fig. 5a), mainly visible on the first principal 
component, where Mountain-CQ samples are generally located at 
negative values and conventional-PDO samples at positive ones. Few 
samples are mislocated and are the same for the two data sets, in 
particular two conventional-PDO samples, i.e., number 34 and 19 
(which looking at the single features show a higher citrate and lactate 
content w.r.t. the others of the same category); samples number 5, 8 and 
27 of Mountain-CQ which show a combination of higher pyroglutamate, 
phenylalanine and lower citrate w.r.t. to their category. These samples 
are worthy of further investigation also considering that samples 5 and 
27 (as well as 30) are produced in a very close specific mountain area. 

Fig. 5b shows the loadings of PC1, as a line plot coloured according to 
the variance accounted for by each individual spectral variable on PC1. 
The spectral regions that have been considered most relevant are regions 
characterised by an absolute loading value greater than 0.01 and 
attaining an explained variance higher than 70% (as highlighted by the 
black squares on the x-axis in Fig. 5b), and those regions showing the 
most negative loadings values. In particular, the most influential spec
tral regions are mainly related to amino acids, as well as spectral regions 
which can be related to organic acids and esters. These are summarised 
in Table 2, along with their chemical shift values, distinctly for each 
denomination (based on the sign of PC1 loadings, those metabolites with 
positive sign are directly related to conventional-PDO and those with 
negative sign to Mountain-CQ). In particular, for conventional-PDO 
samples we detected spectral regions that could be associated with 
pyroglutamic and glutamic acids, lysine, valine, glycine, phenylalanine, 
and nucleosides. 

However, the interpretation of loading information is laborious 
because the different peaks are strongly overlapped and only for a few of 
them was possible to attempt a putative identification. 

On the contrary, in the case of the features dataset, the application of 
MCR provided clear insights since the overlapped signals could be 
resolved, making the interpretation of PCA loadings more straightfor
ward, since the chemical information can be directly inspected in terms 
of specific metabolites. It can be noticed that, also in this case, the first 
PC is the one describing the separation between the two denominations 
(Fig. 5c): the Mountain-CQ samples are generally located at negative 
values of PC1 while the conventional-PDO samples are located at posi
tive values. As expected, free amino acids are the most influent metab
olites as it can be deduced from the corresponding loadings plot, that for 
ease of interpretation is split into two distinct subplots: in Fig. 5d the 
features corresponding to the amino acids are depicted, while in Fig. 5e 
the features corresponding to other metabolites, such as organic acids, 
amine, alcohols, and purine bases are shown. The two plots share the 
same scale. Thus, by applying the interval MCR approach the different 
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Fig. 4. A representation of a typical spectrum of Parmigiano Reggiano with all the identified signals (full assignments are reported in Table 1). Metabolites with very 
weak signals may not be reported in the figure, as well as some of the unknown signals. 
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denominations under investigation appear to be distinguished by the 
amino acids profile, as well as by several organic acids, which seem 
more abundant in conventional-PDO samples. 

The amino acids have been identified in previous studies based on 
NMR metabolomics analysis of Parmigiano Reggiano cheese [13,36,48]. 
In particular, our results show that Mountain-CQ samples can be char
acterised by few markers as tryptophan (which is associated with 

relatively negative loadings values on PC1 of the features dataset of all its 
three resolved signals from different intervals). Tryptophan in Parmi
giano Reggiano PDO cheese has been reported in literature as a possible 
marker of ripening age [49]. However, in our study the ripening age 
varies moderately, and in any case PC1 is not related to this difference 
(as shown in Figure S3, which is coloured according to ripening 
months). 

Arginine, citrate, lactate, and threonine are other metabolites which 
seem characteristic of the Mountain-CQ category, as highlighted by PCA 
analysis on both datasets. Arginine was reported in previous NMR 
metabolomics studies on Parmigiano Reggiano [13,36] as related to 
casein degradation occurring during ripening. Valine and serine were 
also reported as possible markers of conventional-PDO samples. In 
particular, valine was associated with seasonal variability of Parmigiano 
Reggiano production [48], while serine was reported to play a role in the 
cheese maturation process [13]. 

Several esters emerge as relevant in our results, more specifically 
acetate and butyrate, which seem more abundant in conventional-PDO 
samples. These findings seem consistent, since the most relevant esters 
(present in higher concentration) are short-chain even-numbered fatty 
acids [13,30]. In fact, these metabolites are usually associated with 
specific fruity and floral notes that characterise the organoleptic prop
erties of this cheese [50]. Other compounds like choline [7,14,16], 
glycerol [7,14,17,18] and uracil [7] were detected in cheese with NMR 
spectroscopy, but no indication could be found about their relationship 
with production zones or cow feeding regimens. 

Fig. 5. Comparison of the PCA results of the spectra-as-such and features data sets. PCA of spectra as such dataset: (a) - PC1 vs PC2 scores plot; (b) - PC1 loadings plot. 
The colour scale refers to the explained variance of each variable (i.e., a single wavelength) by PC1. The black squares on the x-axis correspond to wavelengths which 
have an absolute value greater than 0.01 and attaining an explained variance higher than 70%. PCA of features dataset: (c) - PC1 vs PC2 scores plot, (d) - PC1 vs PC2 
loadings plot highlighting the features corresponding to amino acids (orange colour); (e) - PC1 vs PC2 loadings plot with other classes of compounds highlighted 
(orange colour). The samples which are encircled in (a) and (c) are replicates. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 2 
List of putative metabolites corresponding to spectral regions depicted as salient 
by PC1 loadings (PCA on the full spectra) inspection.  

Chemical shift (δ, ppm) Mountain-CQ PR conventional-PDO PR 

8.52  unknowns 1 and 2 
8.46 \ formic acid 
7.92 \ xanthine 
7.90 \ unknown 6 
7.74; 7.54; 3.49 tryptophan \ 
7.6; 1.55 \ nucleotides 
7.42; 7.37; 3.98  phenylalanine 
4.18 \ pyroglutamic acid 
3.76; 1.48 \ alanine 
3.61; 1.04; 0.99 \ valine 
3.58 threonine \ 
3.56 \ glycine 
3.42; 2.04; 1.99 \ proline 
3.25 arginine \ 
3.03; 1.9; 1.73 \ lysine 
2.73 citrate \ 
2.36; 2.13; 2.05 \ glutamic acid 
2.15 \ butyric acid  
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3.3. Analysis of the full-MCR dataset 

The 31 metabolites putatively identified (Table 1) and two couples of 
unknowns whose areas were found to be strongly correlated (i.e., un
known 1 + 3 and unknown 6 + 11), constituted the set of 33 recombined 
spectral profiles which could be used as an initial guess (the spectral 
matrix S) to the MCR algorithm operating on the spectra-as-such data. 
For these 33 components the selectivity constraint was also applied, 
based on their spectral profile. After MCR resolution the relative con
centration values of these 33 components were used as the “full-MCR 
dataset”, and autoscaled prior to PCA. The results are reported in Fig. 6. 

The separation of the two denomination is also observable on the 
first PC (Fig. 6a), where Mountain-CQ samples are mostly located at 
negative PC1 values, the metabolites which attain negative PC1 loadings 
(Fig. 6b), hence characterised them, are: citrate, threonine, arginine, 
(tyrosine, lactate to a minor extent). These are mostly in agreement with 
the “MCR-extracted feature” model, the only exception being trypto
phan and glycerol which are only slightly contributing to PC1 but with 
positive signs and tyrosine which was not contributing to PC1 in the 
“MCR-extracted feature” model. On positive PC1 are found the 
conventional-PDO samples which are characterised by the same me
tabolites previously discussed for the “features data set”. The mislocated 
samples are less in this case (34, 5 and 27 are in common with the other 
two data sets). 

Overall, the results are similar to the “MCR-extracted feature” model 
and thus this extra step seems not necessary in this case. The observed 
differences could be due to the fact that the extracted features, which we 
were not able to putatively assign (labelled with “ND” in Fig. 5c), were 
also not correlated among them, so only two couples were merged with 
the Puig approach to obtain a whole spectrum (the 2 additional com
ponents with respect to the 31 identified metabolites reported above) 
and the other were not used in the analysis of the full-MCR data set. 

4. Conclusions 

All datasets provided comparable information regarding the sample 
distribution, as in all three cases the separation between the two product 
categories conventional-PDO and Mountain-CQ could be highlighted. It 
is noteworthy that this separation is seen as the main data variance 
source (i.e., along PC1 in all models). This is the first study in which very 
closely related products, respecting the same PDO requirements, namely 
mountain denomination with additional quality requisites, i.e., 

Parmigiano Reggiano “Prodotto di Montagna - Progetto Territorio” 
(Mountain-CQ), and conventional-PDO Parmigiano Reggiano, selecting 
samples only produced in flatland areas, are compared. The obtained 
results are very promising notwithstanding some limitations which can 
be overcome by further investigations. 

The metabolites found relevant need to be confirmed enlarging the 
sampling as well as the analytical characterization by other techniques. 
In the metabolomic field both MS and NMR are widespread techniques, 
and they are generally seen as complementary, thus considering the 
higher sensitivity of MS additional information may come from high 
resolution LC-MS and analysis of volatile fraction by GC-MS. In addition 
to these it could also be interesting to evaluate other spectroscopic 
techniques, e.g., NIR and Raman spectroscopies. Work is in progress in 
these directions. 

In any case, this study provides a first indication that it could be 
possible to define identity traits of the Mountain-CQ. 

From another point of view, the datasets of the study are denoted by 
different ease of interpretation of the variables, i.e., of the metabolites 
causing the samples separation into the two categories. In other words, 
the chemical information was more or less available depending on the 
dataset (and the analysts’ NMR interpretation skills): the features 
dataset surely proved to be the easiest to interpret even if it contains, by 
definition, less information than its parent spectra-as-such dataset 
(which contains all signals). In this specific case, the full-MCR dataset 
did not provide any additional insights, nonetheless it is useful to have 
the whole NMR profile of each putative identified metabolite resolved, 
to ease interpretation and comparison with literature databases and/or 
standards. 

Obtaining the three datasets required different efforts, and the use of 
specific toolboxes and in-house MATLAB functions. From this point of 
view, we believe that the time and dedication toward the construction of 
the features dataset are worth the effort, since throughout the process 
we were able to efficiently gather a lot of information about the chem
ical content of our samples, digging deeper into the structure of the data. 
Moreover, the integration of a literature list of previously documented 
metabolites (together with the reference library of Chenomx) into the 
analytical workflow allowed us to profitably make decisions on the data 
modelling side, while combining our chemical and spectroscopic 
knowledge about the system under examination. 

The analytical workflow from raw data import to obtaining the MCR- 
resolved features dataset is quite demanding and it often prevents the 
inexperienced user from adopting it. Thus, to ease and improve this step 

Fig. 6. PCA results of the full-MCR dataset: (a) PC1 vs PC2 scores plot and (b) PC1 vs PC2 loadings plot. Black labelled samples in (a) are those falling among the 
opposite class of belonging. The gray labelled samples are those which were found among the opposite class of belonging in the previous PCA models (Fig. 5a, c). The 
samples which are encircled in (a) are replicates. 
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we developed the in-house MATLAB functions and routines for both 
processing the data efficiently, but also to make the data and modelling 
results visualisation as straightforward as possible. Easy visualisation 
allows direct comparison with the Chenomx database, speeding up the 
metabolites identification and results interpretation. Moreover, the 
developed code reads the signal assignments from literature organised 
as a simple Excel table, and it allows plotting them automatically onto 
the raw data as well as onto the resolved MCR spectral profiles. In this 
perspective, the further development of the in-house routines could 
result in an easy-to-use MATLAB toolbox, to help reducing the workload 
required to obtain both the starting aligned spectra-as-such dataset and 
the extracted features dataset, while at the same time making the 
approach available to a wider audience of NMR data analysts. 

CRediT authorship contribution statement 

N. Cavallini: Conceptualization, Investigation, Methodology, 
Writing – review & editing, Software, Formal analysis, Data curation, 
Visualization, Writing – review & editing. L. Strani: Conceptualization, 
Methodology, Formal analysis, Data curation, Validation, Writing – 
original draft, Writing – review & editing. P.P. Becchi: Investigation, 
Formal analysis, Validation, Visualization. V. Pizzamiglio: Resources, 
Data curation, Writing – review & editing. S. Michelini: Investigation, 
Data curation, Writing – review & editing. F. Savorani: Investigation, 
Formal analysis, Supervision, Validation, Writing – review & editing. M. 
Cocchi: Conceptualization, Project administration, Formal analysis, 
Supervision, Writing – review & editing. C. Durante: Methodology, 
Writing – original draft, Supervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Marina Cocchi reports financial support was provided by Consorzio 
Formaggio Parmigiano Reggiano. Marina Cocchi reports a relationship 
with Fondazione di Modena that includes: funding grants. 

Data availability 

The data that has been used is confidential. 

Acknowledgments 

This research has been supported by Consorzio Formaggio Parmi
giano Reggiano, and by University of Modena and Reggio Emilia - 
Fondazione Modena through FAR Mission Oriented 2021 funds (project: 
MOUNTAIN-ID). The authors wish to thank Prof. Anna De Juan for 
useful advices and guidance concerning the approach derived from Puig 
et al., used to process the full-MCR dataset. 

Appendix A. Supplementary data 

Supplementary data related to this article can be found at htt 
ps://doi.org/10.1016/j.aca.2023.341761. 

References 

[1] EUR-Lex - 32014R0665 - EN - EUR-Lex. https://eur-lex.europa.eu/legal-content/ 
IT/ALL/?uri=celex:32014R0665. (Accessed 20 April 2023). 

[2] L. Zhang, P. Wang, S. Li, D. Wu, Y. Zhong, W. Li, H. Xu, L. Huang, Differentiation of 
Mountain- and garden-cultivated ginseng with different growth years using HS- 
SPME-GC-MS coupled with chemometrics, Molecules 28 (2023) (2016), https:// 
doi.org/10.3390/molecules28052016. 

[3] L. Moran, A. Aldezabal, N. Aldai, L.J.R. Barron, Terpenoid traceability of 
commercial sheep cheeses produced in mountain and valley farms: from pasture to 
mature cheeses, Food Res. Int. 126 (2019), 108669, https://doi.org/10.1016/j. 
foodres.2019.108669. 

[4] S. Segato, G. Galaverna, B. Contiero, P. Berzaghi, A. Caligiani, A. Marseglia, 
G. Cozzi, Identification of lipid biomarkers to discriminate between the different 
production systems for Asiago PDO cheese, J. Agric. Food Chem. 65 (2017) 
9887–9892, https://doi.org/10.1021/acs.jafc.7b03629. 

[5] The biodiversity - Parmigiano Reggiano. https://www.parmigianoreggiano.com 
/product-biodiversity (accessed April 20, 2023). 
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