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Abstract: Centrifugal pumps (CPs) are widely utilized in many different industries, and their
operations are maintained by their reliable performance. CPs” most common faults can be categorized
as mechanical or flow-related faults: the first ones are often associated with damage at the impeller,
while the second ones are associated with cavitation. It is possible to use computational algorithms to
monitor both failures in CPs. In this study, two different problems in pumps, the defective impeller
and cavitation, have been considered. When a CP is working in a faulty condition, it generates
vibrations that can be measured using piezoelectric sensors. Collected data can be analyzed to extract
time- and frequency-domain data. Interpreting the time-domain data showed that distinguishing the
type of defect is not possible. However, indicators like kurtosis, skewness, mean, and variance can
be used as input for the multi-layer perceptron (MLP) algorithm to classify pump faults. This study
presents a detailed discussion of the vibration-based method outcomes, emphasizing the benefits
and drawbacks of the multi-layer perceptron method. The results show that the suggested algorithm
can identify the occurrence of different faults and quantify their severity during pump operation in
real time.

Keywords: vibration analysis; multi-layer perceptron; centrifugal pump; cavitation; fault detection

1. Introduction

Centrifugal pumps are important in oil, gas, and other industries. Therefore, knowl-
edge and understanding of the behavior of these types of pumps are essential. Experimental
tests are a suitable method for troubleshooting devices. For example, measuring and iden-
tifying different vibration frequencies related to the pump impeller, rotating shafts, and
bearings is a crucial test in diagnosing potential issues and ensuring the efficient and
reliable operation of the pump. By identifying specific vibration patterns, it is possible
to detect early signs of wear or damage, allowing for timely maintenance and reducing
the risk of unexpected failures. Vibration signals in the time, frequency, or time-frequency
domains provide information about the status of equipment and devices [1-3]. In CPs,
various problems, such as impeller failure and cavitation, can occur. Detecting and fixing
these defects requires a detailed understanding of how the device works and the reasons for
the defect. Predictive maintenance involves monitoring the vibration of rotating machines
to discover defects in the early stages and prevent the progression of failure. Predictive
maintenance helps to determine the conditions of the working equipment to define the
appropriate maintenance time [4-7]. In other words, predictive maintenance uses the actual
operating conditions of factory equipment and devices to optimize the overall operation of
the equipment [8-10].
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Mousmoulis et al. [11] investigated cavitation in centrifugal pumps, concentrating
on its emergence and growth in three distinct impellers. They also demonstrated that
impeller geometry significantly influences cavitation behavior, affecting inception points
and behavior. Using flow visualization, acoustic emissions, and vibration monitoring,
they found that accelerometers and acoustic emission sensors were effective in detecting
cavitation onset well before the total head drop. Cavitation inception occurs at higher flow
rates, consistently appearing at the suction side of leading blade edges. Al-Obaidi [12]
investigated the effect of pump rotational speed on the performance and detection of
cavitation using vibration signals. The results showed that the amount of cavitation has
a direct relationship with the rotational speed and the flow rate. Mousmoulis et al. [13]
investigated the vibration analysis, flow observation technique, and wave propagation
technique on the plexiglass impeller pump to detect cavitation. They showed that the
cavitation values increased with the increase in flow rate. Sun et al. [13] used the Hilbert
spectrum to detect cavitation in a CP. They concluded that the Hilbert transform is suitable
for processing transient and unsteady signals, and time-frequency domain characteristics
can be extracted. Murovec et al. [14] used the acoustic diffusion method to detect cavitation
in a radial CP. Using acoustic criteria and mathematical parameters, they provided an
effective method for predicting and classifying cavitation in a CP. Kumar et al. [15] used
time-frequency domain analysis and support vector machines to detect faults in a CP. At
first, they trained the machine using the obtained data, and then they used it to identify
defects such as cavitation and bearing defects. Azizi et al. [16] employed the hybrid feature
selection technique to identify the degree of cavitation. Using this method, it is possible
to differentiate between three states: no bubbling, limited bubbling, and cavitation that
occurred at the outflow. Birajdar et al. [17] studied the sources of vibration and noise in CPs
and the methods of troubleshooting this type of pump. They listed the sources of vibration
in CPs as unbalanced rotors, defective impellers, broken shafts, damaged bearings, and
cavitation at critical speeds. They concluded that cavitation is created randomly and in
a high-frequency energy range, but it has sometimes been mistaken for blade passing
frequency. They presented a diagram for the range of the frequency spectrum. Sakthivel
et al. [18] investigated fault diagnosis and fault prediction in CPs with the help of a soft
computing approach. They used different classification patterns, such as support vector
machines, genetic algorithms, and wavelet analysis, to classify the defects. Six parameters,
including the bearing defect, impeller defect, leakage defect, impeller and bearing defect
together, and cavitation, were considered, and an algorithmic decision tree was used to
select the defect. They analyzed the results using a genetic algorithm (GA), support vector
machine (SVM), and wavelet analysis (WA) and finally observed that both the GA and SVM
have better performance compared to other classifications for defects. Askari et al. [19]
investigated the troubleshooting and diagnosis of the cavitation phenomenon by using
the vibration analysis method and provided solutions to solve it. They investigated the
abnormal performance of the CPs of a refining unit with the modal analysis method and
finally determined the vibration sources of the pump according to the frequency range
determined for cavitation, predicting the existence of this phenomenon in the pump. Al-
Braik et al. [20] investigated the troubleshooting of CPs to detect impeller defects. They
conducted a test on a healthy impeller and five impellers with varying degrees of defects
on the vane tips. Vibration data were collected at different flow rates, and they obtained the
frequency spectrum for these conditions. They showed that discrete spectral components
at vane-passing frequencies and higher-order harmonics of the shaft frequency are effective
for diagnosing impeller faults and that primary spectral components of the turbulent
flow occur above 1 kHz. Spadafor et al. [21] conducted dynamic system simulations and
optimizations of a CP to investigate impeller failure. They aimed to determine whether
the failure was due to metallurgical issues, such as improper heat treatment, corrosion,
or mechanical factors. After replacing the pump with another impeller with the same
geometry but made from a stainless steel alloy, they observed the same failure results.
Vibration analysis revealed that torsional vibrations introduced by motor oscillations were
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affecting the pump. Their experimental research, using a hydraulic response system,
demonstrated that pressure fluctuations were closely related to shaft speed variations and
changes in engine torque, ultimately causing damage to the pump impeller. Wang and
Cheng [22] used wavelet transmission (WT) and a partially linearized neural network
(PNN) to extract the characteristics of cavitation from the vibration signals and then used
non-dimensional symptom parameters like the mean and standard deviations as input
for the artificial neural network (ANN) to determine whether the pump was healthy or
defective. The results obtained showed that WT successfully processes cavitation vibration
signals, and other processing methods are also effective. Barrio et al. [23] investigated radial
loads on centrifugal pump impellers and found significant unsteady components that were
challenging to estimate. They showed that the unsteady component (the fluctuating part
of the radial load on the impeller) could represent 40% to 70% of the average load when
operating at off-design conditions (deviations from the optimal flow rate and pressure for
which the centrifugal pump was designed). The CFD simulations demonstrated strong
agreement with the experimental data in terms of both global performance and unsteady
pressure distribution. Their findings highlight the importance of accounting for unsteady
loads in pump design to prevent fatigue failure. Casoli et al. [24,25] studied a vibration
signal-based method for fault identification and classification in hydraulic axial piston
pumps. Based on the vibration signals and the use of SVM and ANN, they proposed
an algorithm to detect the health state of a variable displacement axial piston pump. By
using the time-sampling raw signals, they achieved a satisfying accuracy. They showed
that the proposed algorithm can identify the faults in the axial piston pump for each
working condition.

Following the studies in the literature, vibration analysis and fault detection in CPs
are presented in this paper. Most of the researchers explored the utilization of statistical
parameters in the frequency domain as input for an ANN. Moreover, there has been a
noticeable absence of emphasis on investigating the time-domain, frequency-domain, and
classification methods, such as MLP, within the scope of centrifugal pumps. The main
objective of this work is to present the practical vibration analysis method for a CP and use
statistical parameters of the time domain, including mean, kurtosis, variance, RMS, and
skewness in the MLP algorithm to identify the faults in CPs. This study offers superior
advantages of MLP over fast Fourier transform (FFT). Unlike FFT, MLP automates the
feature extraction process from time-domain signals, eliminating the need for manual
interpretation and reducing reliance on expert knowledge. Furthermore, MLP’s ability
to handle non-stationary and transient signals enhances its effectiveness for real-time
fault detection.

2. Methodology

In this section, the test method is explained, and then the multi-layer perceptron neural
network method is introduced.

2.1. Test Method

The test bench used, as seen in Figure 1, is made of several parts, such as a DC
motor, a voltage converter, suction and discharge tanks, a centrifugal pump (radial flow),
a pressure sensor, and a flow and pressure adjustment valve. Vibration signals in our
experiment were measured using a piezoelectric accelerometer under the trade name 2224C
(Endevco, Halifax, NC, USA), which was mounted horizontally and parallel to the pump
axis. Specifically, the accelerometer was installed on the body of the centrifugal pump, near
the impeller housing, and on the horizontal ventilation bolt, as this area is highly sensitive
to vibrations induced by impeller defects or cavitation. Equipment such as a piezoelectric
accelerometer, an amplifier, and a DS20080A two-channel oscilloscope card (OC) -(TNM
Electronics, Tehran, Iran) were used to collect the signals. The specifications of the Endevco
2224C accelerometer are presented in Table 1.
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Figure 1. (a) Laboratory test rig, (b) pump with healthy impeller, (c) defective impeller, (d) voltage
converter, and (e) tachometer.

Table 1. Key parameters of the Endevco 2224C accelerometer.

Attribute Testing Conditions/Remarks Measurement Unit
Sensitivity +12 pC/g
Sinusoidal limit 1000 g
Shock limit 2000 g
Operating temperature —55—+177 °C (°F)
Frequency response 0.1-10,000 +1dB Hz

The pump used in this experiment is the SAER CMP76, which is used to pump the
water with an impeller made of polyethylene. The pump’s and impeller’s specifications
are shown in Table 2.

Table 2. Main parameters of SAER CMP76 centrifugal pump.

Name Value
Flow rate 0-6 m3/h
Head 21-29 m
Efficiency 75%
Impeller inlet diameter 36 mm
Impeller outlet diameter 148 mm
Impeller outlet width 2 mm
Power 0.75 kW
Blade number 6
Specific speed 58.45
Flow coefficient 0.00165
Head coefficient 0.1233

To test a case representing faulty mechanical conditions, the impeller was damaged by
removing a triangular piece from it, as shown in Figure 1c. This type of defect in pump
impellers, known as a notch defect, usually occurs at the outlet diameter because of the
higher speed. The size of the notch defect can indeed vary depending on several factors,
such as the operational conditions of the pump (e.g., speed and flow rate), the material
of the impeller, and the duration of exposure to mechanical stress or cavitation. In our
study, we removed a triangular piece of the impeller to simulate a typical notch defect often
observed at the outlet diameter due to high-speed and tension operations. However, in
real-world scenarios, the size and shape of the defect can differ. Notch defects may grow
over time as the pump continues to operate under faulty conditions, especially if cavitation
or abrasive particles are present in the fluid, further aggravating the damage. Thus, our
experiment used a controlled defect size for repeatability, but the same methodology can
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Charge Tank

be applied to varying sizes of impeller damage. Indeed, changing the size of the notch
will change the amplitude of the peaks, but the frequency range will remain constant. The
defect notch was created specifically on the impeller shroud, not the diffuser or volute.
Regarding the dimensions, the notch was a triangular cut with approximately 10 mm sides
and a 15 mm height, located at the impeller outlet where the tension is highest. The notch
was positioned facing the shroud. Figure 1 depicts a test bench with both healthy and
defective impellers, while Figure 2 shows a schematic representation of the test bench. “AS”
in Figure 2 refers to the accelerometer sensor used to measure vibration signals.

A.S
. Oscilloscope Card

Computer

Pressure Gauge

3t

Voltage Transducer

Discharge Tank

Figure 2. Schematic diagram of the experimental setup.

A single-phase induction motor is directly coupled to the pump and drives it. For
changing the rotational speed of the motor, a voltage converter was used, and the speed was
measured with a portable tachometer. The pump speed ranges from 500 to 2880 r/min. The
tank that supplies water for the pump was positioned to ensure sufficient head at the inlet
and to prevent any inherent cavitation. Vibration signals were acquired by the accelerometer
sensor and transferred to the OC and computer to save the data. The sampling frequency
of the OC was 100,000 samples per second. When the pump is operating, the procedure
consists of gradually closing the valve on the inlet pipe to create cavitation until the bubbles
are visible through the transparent suction pipe. The cavitation bubbles were visually
detected through the transparent suction pipe, and no additional optical devices were
used for this purpose. The transparent pipe provided sufficient visibility for the manual
observation of cavitation onset and progression during the experiments. The procedure
was first carried out with a healthy impeller and then with the damaged one.

2.2. Multi-Layer Perceptrons

An artificial neural network (ANN) is characterized by its internal connectivity and
associative connections used to process information. In most cases, an ANN is a flexible
system that adjusts its structure in response to input from either the outside or inside
domain [26,27]. One of the main types of ANN is the feedforward neural network (FNN),
characterized by the unidirectional flow of information between its layers. A significant
sub-branch of the FNN is the multi-layer perceptron (MLP). MLP neurons typically use
nonlinear activation functions, allowing the network to identify complex patterns in the
data. An output signal is generated by every unit (neuron), and this signal is a function of
the sum of its inputs. The output as a function of the input and weights is expressed as:

yi= H(w) g
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The activation function can be any function; however, sigmoid functions (also known
as the hyperbolic tangent) are most frequently employed. An MLP consists of layers stacked
one after another, with varying numbers of processing units in each layer. The units in the
first layer are fully connected to the units in the hidden layer and receive input from the
external environment [27]. Meanwhile, the units in the hidden layer are fully connected to
the units in the output layer, and the units in the output layer produce the MLP’s output,
as shown in Figure 3.

Input Layer Hidden Layer Output Layers

’ More layers
Weight

OQutputs

Bias Bias
Figure 3. Architecture of the MLP network.

2.2.1. Training Method

To achieve a desired task, an MLP must first be trained. This means that the network’s
connection weight values need to be defined so that it can produce the correct output
for each input pattern. A training algorithm calculates these appropriate weights. There
are numerous training methods and their variations. For instance, the backpropagation
algorithm is a commonly used method where the error is propagated backward through the
network to iteratively adjust the weights. This process involves passing an input forward
through the network to obtain an output, calculating the error by comparing this output
to the expected result, and then updating the weights to minimize this error over many
iterations. It should be noted that another goal of training a neural network is to achieve a
good generalization ability rather than merely memorizing the training set. In other words,
the network should generate accurate output values for inputs that were not seen during
training [28]. During training, the early stopping technique [29-31] is employed to enhance
the network’s generalization performance and prevent overtraining. This method involves
selecting a validation set that is distinct from the training set. The validation error serves as
the stopping condition during the training process. In this study, early stopping criteria
are implemented to achieve optimal performance. The training algorithm adopted in this
study is the Levenberg-Marquardt algorithm.

2.2.2. Levenberg-Marquart Algorithm

The Levenberg-Marquardt (LM) algorithm is an optimization method that effectively
combines the gradient descent and Gauss—Newton algorithms to solve nonlinear least
squares problems. It aims to minimize the sum of squared errors between predicted and
actual outputs. The algorithm updates parameters iteratively using the following formula:

~1
Pis1=Pi— (Jk+AL)  Jex @)
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where ]y is the Jacobian matrix of partial derivatives, ey is the error vector, A is a damping
factor, and I is the identity matrix. The damping factor A adjusts the blend between gradient
descent and the Gauss-Newton method. For large A, the algorithm behaves like gradient
descent, ensuring stability, while for small A, it behaves like the Gauss—Newton method,
ensuring fast convergence. This adaptive approach makes the LM algorithm particularly
suitable for training neural networks and curve fitting, providing a balance between
efficiency and robustness, although it can be memory-intensive due to the computation of
the Jacobian matrix [32].

2.3. Statical Parameters as Input Data

Statistical parameters like mean and variance are primarily used for data normalization
and understanding the spread of data. Skewness and kurtosis help in understanding the
asymmetry and tailenders of data, guiding data transformation processes, while root
mean square (RMS) provides an accurate measure of the magnitude of varying quantities,
making it essential for assessing prediction errors and fluctuations in data. The accuracy
and reliability of an MLP can be significantly improved by ensuring that the data input
into the model is well-prepared by utilizing these statistical properties [33].

In the following, statistical parameters like mean, kurtosis, variance, skewness, and
RMS are described.

Calculating the average of measured data is done by:

Z\+Zr+... Zn
n

Z= )
where Z is the mean value, Z1, Z,, ... Z,, are measured data at each time, and n is the time
of data recorded.

Variance is the parameter used to measure the distribution and dispersion of data
around their average value:

Vary = % [leil (x; — X)Z} 4)

where N is the number of samples, x is the time signal sample, and X is the mean value.
Standard deviation is the amount of variation or dispersion in a set of data values. It
indicates how much individual data points differ from the mean (average) of the dataset.

o= VVar, = \/ AN (5)

Skewness measures the distortion or asymmetry of a signal, which can be visually
interpreted by examining the signal’s distributional shape, and is given as:

i (i — x)°

NG (6)

X =
where X is the mean value, and o is the standard deviation of the data [33].
Kurtosis is defined as the fourth-order moment of data and shows the degree of a peak
in a set of data [33]. In other words, kurtosis is an index to detect larger peaks among the
data, or it can be said that it determines the shape of a data distribution and is given as:

=\4
K:Nzllil (Xii X)

)
{Z%il (x; = f)z]z

Our interpretation of the time-domain data also included the use of the root mean
square (RMS) parameter. The RMS value is a statistical measure of the magnitude of a
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varying quantity. It is especially useful in contexts where the values can be both positive
and negative [33]. RMS is given as:

RMS, — % [Zﬁl xi2} ®)

where x is the time signal sample, N is the number of samples, and i is the sample index [33].

The statistical convergence of skewness and kurtosis was ensured by employing a
sufficiently large sample size during data collection and analysis. Additionally, to measure
the stability of the statistical assessment, a test was conducted across multiple trials to
confirm their reliability.

2.4. Training Procedure

The training procedure for an MLP network involves feeding the network with input
data and corresponding target outputs and then adjusting the network’s weights and biases
through backpropagation to minimize the error between predicted and actual values. The
neural network employed here consists of three layers: the input, middle, and output
layers. The input layer has neurons that represent the normalized features of the extracted
vibration signals. To minimize the mean square error or functional function between the
network’s output and the target, networks are alternately trained. The application also
automatically generates the network’s initial weights and biases. This is the reason why
the network has undergone several iterations of training. Only 1 and 0, which denote
the healthy and faulty states of the pump, respectively, can be the target values for the
two output neurons. However, since the combination of the intermediate and output
transfer functions is considered a mix of hyperbolic and linear transfer functions, the neural
network’s output can range from zero to one and may even exceed one. Extracted statistical
parameters from the time domain were collected in the form of a 5 x 20 matrix. The
number 5 represents the statistical features used, and 20 is equivalent to the data in four
different functional states and tested at five rotational speeds (500, 1000, 2000, 2500, and
2880 rpm). From the 5 x 20 matrix, a 5 x 16 matrix was used for training the algorithm,
while a 5 x 4 matrix was reserved for validation to determine if the algorithm can correctly
anticipate faults. The target matrix of the neural network was chosen as 2 x 1. The data
used for training and testing the ANN is shown in Table 3.

Table 3. Input data of neural network.

M, h500
K, h500
S,h500

V,h500

RMS, h500

M,h2880 M, hc500 M, hc2880 M, d500 M,d2880 M, dc, 500 M, dc, 2880
K,h2880 K, hc500 S,hc2880  K,d500 S, d2880 K, dc, 500 K, dc, 2880
S,h2880 S,hc500 - S, hc2880 S,d500 .- 5,d2880 S,dc,500 --- S,dc,2880
V,h2880 V, hc500 V,hc2880 V,d500 V,d2880 V,dc,500 V,dc, 2880

RMS, h2880 RMS, hc500 RMS, hc2880RMS, d500 RMS, d2880RMS, dc¢, 500 RMS, dc, 2880

In this matrix, M is the mean, K is the kurtosis, S is the skewness, V stands for the
variance, and RMS shows the root mean square value. Also, h represents healthy status, hc
is for health with a cavitation status, d is for the defect status, and dc is for a defect with
cavitation status. The numbers after the letters show the rotational speed. For example, M,
hc2880 means the mean value of the health with a cavitation status at 2880 rpm.

There are ones and zeros in the target matrix. In this selected target matrix, if the
output of the neural network is closer to the value of one, it is a sign of the health of the
pump, and if it is closer to the value of zero, it indicates the presence of a defect.

The flowchart of the process for training ANNSs is shown in Figure 4.
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Health Health impeller
impeller with cavitation
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Acquisitions data in time domain

l
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}

I l Feature Extractions l l

Mean Root Mean square Variance Skewness Kurtosis

ANN Input

ANN Train

l

ANN Output

Figure 4. Flowchart of the neural network training process.

3. Results and Discussion

Time-domain analysis was conducted, and graphs were generated using the data
obtained from the accelerometer. In the next step, statistical factors such as the mean,
kurtosis, skewness, variance, and RMS were extracted from the normalized time signals.
Subsequently, frequency-domain analysis was performed using Fourier transform to diag-
nose and monitor the faults. Finally, an MLP neural network was employed to predict the
defects based on the statistical data.

3.1. Time-Domain Analysis

The time domain displays the range value of signals and vibrations measured by
the accelerometer at moments during sampling. Basic troubleshooting techniques were
performed to analyze the signals in the time domain. Since the maximum input frequency
is 48 Hz (the maximum rotational speed of the pump is 2880 rpm), the periodicity of the
signals is 0.0208 s. The interval of the horizontal axis can be selected from 0 to 208 samples,
and since the sampling rate is equal to 10,000 samples per second, this interval shows
the periodicity of the signal with the input frequency. However, due to the nature of the
randomness of the signal, this interval was chosen from 0 to 416. It should be noted that
the value of the data collection frequency has been chosen to prevent the occurrence of
an aliasing phenomenon. It is important to make sure that the sampling rate for transient
monitoring is high enough to capture the parameters of the system dynamics. Data were
normalized to fix the data range between —1 and 1 based on this formula:

;:2><< X_min(x)(x)>—1 9)

max(x) — min

In this formula, x is the original value, X is normalized value, and min(x) and max(x)
are the minimum and maximum values in the dataset, respectively. The normalized graphs
in the time domain for different states of the pump at 2880 rpm are shown in Figure 5.
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Figure 5. Time domain diagrams for 4 different statuses of the pump (2880 rpm).

The negative values in Figure 5 indicate that the measured vibration signals exhibit a
shift in their amplitude relative to the baseline level. This could suggest that the vibrations
are oscillating around a mean value, which may occur due to factors like noise in the system
or the inherent characteristics of the signal processing method used. As it is well known,
detecting pump defects using this diagram is challenging. Consequently, variations in the
instantaneous time signals do not provide a comprehensive understanding of identifying
the pump defects. Therefore, further analysis is needed to analyze the signals in the time
domain and detect the defects using various statistical features. For better diagnosis and
analysis of the time-domain graphs, statistical parameters such as the mean, variance, and
kurtosis could be extracted. The mean value is presented in Figure 6.

Health Cavitation Defect Defect with cavitation
0.00
0.05
0.10
-0.15 =0.12
= 0.15
S 020 0.17
-
-
0.25
-0.30
0.35 0.34
-0.40

Pump Status

Figure 6. Mean values for different pump statuses.

This analysis shows that the average signal level varies across different pump states,
with the cavitation state showing the most significant decrease, followed by the defect with
cavitation state, the defect state, and finally, the healthy state with the smallest decrease.

The kurtosis diagram for the extracted data for the 2880 rotational speed is shown in
Figure 7.



Eng 2024, 5

2521

3.2636

2.8441 3.0223

2.1445

Kurtosis

Health Cavitation Defect Defect with cavitation

Pump Status

Figure 7. Kurtosis values for different pump statuses.

The kurtosis value indicates a distribution with higher peaks and heavier tails than a
normal distribution. The kurtosis value for the cavitation state is 2.84; this kurtosis value is
more than that of the healthy state, indicating that the cavitation state has a higher peak
and heavier tails compared to the healthy state. The kurtosis value for the defect state is
3.26; this value shows that the defect state has the highest kurtosis value, suggesting a
spike distribution with heavier tails compared to all other states. This analysis shows that
the defect with and without cavitation states exhibit higher peaks and heavier tails in their
distributions, indicating more extreme values. In contrast, the healthy state has a flatter
distribution, suggesting fewer extreme variations.

The unequal distribution of a signal about its mean value is measured by its skewness.
Therefore, in the next step, the value of the signal’s skewness was calculated, as shown in
Figure 8.

0.10
0.02 0.05

0.00 -
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Figure 8. Skewness values for different pump statuses.

The negative skewness value indicates that the signal for the healthy pump status
shows a significant left skew distribution, suggesting that the data points are spread out
more on the left side of the mean. A skewness value close to zero indicates that the signal
distribution for the cavitation state is almost symmetrical. A slightly positive skewness
value indicates that the signal for the defect state has a longer tail on the right side of the
distribution, suggesting that the data points are spread out more on the right side of the
mean. The negative skewness value indicates that the signal for the defect with cavitation
state has a longer tail on the left side of the distribution, like the healthy state, but less than
that. This analysis suggests that the skewness of the signal varies depending on the pump
status, with the healthy and defect with cavitation states showing left-skewed distributions
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and the cavitation and defect states showing near-symmetrical or slightly right-skewed
distributions. Figure 9 shows the RMS values for 2880 rpm.
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Figure 9. RMS values for different pump statuses.

The RMS value for the healthy pump status indicates a relatively lower value of the
signal compared to the other states. The defect with a cavitation state has a higher RMS
value. The RMS values in the chart provide a clear indication of the pump’s condition.
Lower RMS values suggest stable and healthy operation, while higher RMS values indicate
increased signal power or intensity due to cavitation or defects.

Figure 10 shows the variance values for the obtained data.
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Figure 10. Variance diagram.

The variance value for the healthy pump status indicates a moderate level of spread in
the signal values. The cavitation state shows a lower variance value, indicating less spread
in the signal values compared to the healthy state. The defect state has the highest variance
value, indicating a significant level of spread in the signal values. The defect with the
cavitation state has a variance value like the healthy state, indicating a moderate level of
spread in the signal values. This analysis suggests that the diffusion of signal values varies
across different pump states, with the defect state showing the most significant variation,
followed by the healthy and defect with cavitation states, and finally, the cavitation state
with the least variation.

In general, the results of time-domain analysis are challenging, revealing that different
pump states exhibit distinct statistical features. Specifically, the defect state shows the high-
est kurtosis and variance, indicating extreme and widely spread values, while the healthy
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state maintains the lowest RMS and moderate variance, suggesting stable operation. These
variations underscore the necessity of using multiple statistical parameters to effectively
diagnose pump conditions. While time-domain analysis alone may not provide compre-
hensive insights into complex signal patterns, the statistical parameters calculated in this
domain can be used to train artificial intelligence networks, such as ANNS, to establish
suitable criteria for fault diagnosis in devices. It should be noted that one of the effective
methods for fault diagnosis is through frequency-domain analysis. The next section will
explore the analysis of data in the frequency domain.

3.2. Frequency Domain Analysis

In the frequency domain, the range of signals is shown in terms of amplitude and
frequency. Therefore, with the help of fast Fourier transform, time-domain signals can be
converted into a frequency spectrum. Fourier transform is given as:

+o0 .
Flw)= [ f(he 1*'at (10)
where f(t) is the time-domain data and F(w) is Fourier transforms £(t) in the time domain.

Figure 11 shows the frequency spectrum of the installed sensor in a healthy state for a
rotational speed of 2880 rpm. In this figure, the horizontal axis shows the frequency range
in Hz, and the vertical axis shows the amplitude of the signal in decibel voltage (dbv).

0.2
0.18 Rfl
0.16 Z
1xBPF
2xRf

4xRf
3xRf.

IxRf 8xRf
5xR]

e
=)
3

e
=3
=N

Amplitude(dbv)
_ =} o
05 ®
«— —

=
=3
£

0.02

' J“[.h. A N

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Frequency(Hz)

Figure 11. Frequency spectrum of the pump in a healthy state.

Pressure fluctuations can be detected at discrete frequencies that are multiples of
the rotation frequency and the number of blades. These frequencies are also called blade
passage frequencies (BPF). They are generated by the interaction of the rotating blades with
a stationary component. Each blade passing a fixed point produces a distinct frequency,
known as the blade pass frequency:

BPF =N x Rf (11)

In this equation, N is the number of blades, and Rf is the rotational speed in revolutions
per second.

The amplitude of such pressure fluctuations depends on the number of blades, diffuser
design parameters, and operational parameters. Figure 12 shows the periodicity in the
centrifugal pump. It can be observed that two main dominant frequencies are present in the
frequency range; the dominant frequency in this range is associated with the shaft rotating
frequency (Rf), the blade passing frequency (BPF), and their harmonics. These effects result
from the interaction between the impeller blades and the pumped flow, as well as the
significant interaction between the impeller blades and the stationary components. Blade
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passage frequencies appear at the lower end of the frequency spectrum. However, they
are not evident for a specific number of blades in most spectra, which can be attributed to
the unique vibration characteristics and design of the pump. Blade passage frequencies
typically appear at the lower end of the spectrum, as they correspond to the fundamental
mechanical vibrations of the rotating blades. Figure 12 shows the frequency spectrum of
the pump in the state of cavitation.
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Figure 12. Frequency spectrum of the pump in a cavitation state.

From Figure 12, the first rotational frequency occurs at 48 Hz with an amplitude of
0.17 dbv. The first harmonic amplitude in healthy status was 0.148, so the amplitude of
harmonics increased in this status. The amplitude of the first and second BPF in this status
increased, and the amplitude of the other harmonics increased. In fact, more bubbles
form and burst in the pump as cavitation progresses, which causes the pump to vibrate
more intensely, leading to increased fluctuations in amplitude. Cavitation occurs in the
high-frequency range and can be seen; the frequency peaks in the high-frequency range
increase with the start of cavitation. In Figure 13, the frequency spectrum for the defective
impeller is shown.

0.2

Rf

0.18
/ 1xBPF

0.16
4xRf

0.14 2xRf

0.12 Z
2xBPF

7 0.08

Amplitude(dbv)
°

0.06

0.04

0.02

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Frequency(Hlz)
Figure 13. Frequency spectrum of the pump under a faulty impeller condition.
In Figure 13, the amplitude of 1xRf and 2xRf, compared to the healthy status, has

increased. The BPF also increased in this status from 0.092 to 0.138 dbv. Additionally, the
frequency range of the other harmonics has increased. A defective impeller introduces
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additional mechanical vibrations and irregularities in the flow, and it is clear that many other
frequencies are produced by various sources, including the driving motor and the bearing
misalignment, as observed. It can be concluded that in a pump with a defective impeller,
the maximum peak corresponding to the Rf and blade passing frequencies increases.

Figure 14 shows the frequency spectrum for the state of the defective impeller with
cavitation. In this spectrum, the frequency harmonic is shown, along with the frequency
range of cavitation.
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Figure 14. Frequency spectrum of the pump with cavitation-induced impeller damage.

In Figure 14, the amplitudes of the harmonics of 1x Rf, 2x Rf, 4x Rf, and 5x Rf
have increased, and these harmonics have higher amplitudes compared to the cavitation
and defect statuses. The BPF also increases compared to the defective and cavitation
statuses. The combined effects of cavitation and a defective impeller significantly amplify
across all of the vibration levels. The interaction between impeller defects and cavitation
bubbles generates complex vibration patterns, leading to increased amplitude in both the
low-frequency and high-frequency ranges. In fact, defects in the impeller cause turbulence,
which alters the pressure contours on both the impeller and the pump body. This results in
an increase in amplitude in the frequency domain.

3.3. Fault Diagnosis Using ANN

While the analysis of vibration signals in the frequency domain is effective for de-
tecting faults in pumps, interpreting these signals accurately requires a comprehensive
understanding of signal processing techniques and the operational dynamics of pumps.
This interpretation becomes even more complex when considering signals across multiple
domains, such as time, frequency, and time-frequency, which demand experience and ex-
pertise. To address the challenge of accurately diagnosing pump faults, an automatic, fast,
and reliable troubleshooting method has been developed. ANNs can analyze vast amounts
of vibration data, learn from patterns, and provide predictive maintenance insights, thereby
reducing downtime and maintenance costs. By automating the signal interpretation pro-
cess, these Al-based methods enhance the efficiency and reliability of pump condition
monitoring, making it accessible, even to those with limited expertise in signal processing.

After trying different layers and making many try-and-error processes, the number of
hidden layers was finally chosen to be ten layers. A linear transfer function was used for
the output layer, and a hyperbolic tangent transfer function was used for the intermediate
layer to spread the data regarding zeros and ones. To predict the output value from the
primary matrix, which is a 5 x 20 matrix, a 5 x 16 matrix was assigned for training the
neural network, and a 5 x 4 matrix that included the five statistical parameters for four
states of the pump at specific speeds was assigned as a test matrix. The first column of this
matrix includes a healthy impeller with cavitation at a rotational speed of 1000 rpm; the
second column includes a defective impeller at a rotational speed of 2000 rpm; the third
column includes a defective impeller with cavitation at a rotational speed of 2500 rpm; and
the fourth column includes a healthy impeller at a rotational speed of 2880 rpm.
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Figure 15 shows the regression percentages for eleven iterations of the neural network.

100

0 “ll ||“
cI II

mRegresions  58.196 96.42 98.27 98.46 97.66 58.41 58.419 91.878 83.146 99.991
Iteration Number

Regression%
[ W = w (=3 ~ [} =
< < =1 < =3 < <

—_
=1

Figure 15. Percent accuracy of the trained network.

In Figure 15, the best regression results are observed for iterations 10 and 11. To ensure
the accuracy of network prediction, the columns have been randomly extracted at different
speeds. In Figure 16, the regression percentage is shown for seven and eleven repetitions.
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Figure 16. Regression graph: (a) seventh iteration and (b) eleventh iteration.

The charts represent the performance of an ANN in predicting target values. The
horizontal axis shows the target values (T), while the vertical axis shows the output values
produced by the ANN (Y). The open circular symbols in Figure 16 represent the target
values during the neural network’s training process. These symbols indicate the expected
outputs for the various states of the pump being analyzed. This value represents the
correlation coefficient, indicating the strength and direction of the linear relationship
between the target and output values. An R-value of 0.58419 suggests a moderate positive
correlation. The fit line equation is given as Output ~ 0.37 x Target + 0.16. This indicates
that the ANN'’s output is only about 37% of the target value plus a small constant offset
(0.16). The slope of 0.37 suggests the ANN is under-predicting the target values. In this
figure, the dashed line represents the ideal scenario where the output perfectly matches
the target (Output = Target). As is clear from Figure 15, the regression percentage for the
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seventh iteration is 58.419%, and for the eleventh iteration, it is 100%. The eleventh iteration
has the best performance, so it has been used to train data and predict faults in the network
simulation part. The performance of the ANN based on the mean squared error is shown
in Figure 17.

Best Validation Performance is 1.1322 x 1071° at epoch 11.
100 [

Train
Validation | |
Test

102

104 1

106

108

Mean Squared Error (mse)

10—10 E

11 Epochs

Figure 17. Mean square error for the training artificial neural networks.

In Figure 17, the horizontal axis (epochs) represents the number of training epochs,
which is the number of times the learning algorithm has processed the entire training
dataset. The mean squared error (MSE) in the vertical axis represents a measure of the
difference between the predicted and actual values. A lower MSE indicates better model
performance. In this chart, the blue line represents the MSE for the training dataset over the
epochs, the green line represents the MSE for the validation dataset over the epochs, the red
line (test) represents the MSE for the test dataset over the epochs, and the dashed green line
represents the best validation performance achieved during the training process. The chart
demonstrates effective training of the ANN, with the MSE decreasing consistently across
training, validation, and test datasets. The model shows initial overfitting but quickly
improves, achieving optimal performance by epoch eleven. As it is clear, the best validation
performance is 1.1322 x 10~ !9 in epoch eleven. This interpretation indicates that the ANN
training process is highly effective, with the model achieving excellent performance and
minimal error by the final epoch.

To accurately predict faults in the pump, a neural network model was employed,
consisting of three layers, ten neurons per layer, and trained over eleven iterations. The
results of this neural network’s prediction were then calculated. Subsequently, the final
prediction matrix, sized 5 x 4, as mentioned earlier, was input into the algorithm to analyze
and validate the outcomes. This approach not only ensured precise fault detection but
also demonstrated the robustness and efficiency of using neural networks for predictive
maintenance in pump systems. The results are shown in Figure 18.

In this diagram, the first column is a number close to zero, which indicates that the
pump is defective (a healthy impeller with cavitation). The second column is a number close
to zero, which indicates that the pump is faulty (a defective impeller). The third column is
a number close to zero, which indicates that the pump is defective (a defective impeller
with cavitation), but the fourth column is a number close to one, which indicates that the
pump is healthy. As is evident, the neural network used has worked well. Therefore, it can
be said that the designed neural network is successful in detecting the fault.
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Figure 18. The result prediction of ANN.

4. Conclusions

In this study, the vibration analysis of a CP with a healthy and defective impeller, with
and without cavitation, was performed at different rotational speeds in two domains of
time and frequency. The data obtained from the time domain were used as input for the
neural network to predict faults in the pump. The results prove that the data obtained
from the normalized time domain do not provide interpretable information. Therefore,
statistical factors such as the kurtosis, mean, and variance were calculated using these
data to interpret the results. The calculated data reveal that the results are difficult to
interpret and that, in certain situations, different pump statuses exhibit diverse statistical
patterns. To proceed, the FFT diagrams of the frequency domain were used to identify the
defect, and it was shown that all defects in the CP can be detected and diagnosed using
these diagrams. Finally, the results of this research demonstrate that the MLP properties
of vibration and current signals could indicate pump function under faulty conditions.
The application of the MLP algorithm in this study has demonstrated its superiority. The
key advantage of using MLP is its ability to process and learn from large volumes of
time-domain data and automatically extract meaningful patterns. This reduces dependency
on expert knowledge for signal interpretation and allows for real-time monitoring and
diagnosis. The MLP’s robustness in handling non-stationary and transient signals further
emphasizes its potential as a powerful tool for predictive maintenance, enabling more
accurate and timely interventions to prevent pump failures. To make the model more
sensitive to the type of issue, we will attempt to investigate this in subsequent research.
The current work’s next phase is concentrated on creating an MLP that can classify all
the defects into different groups. To enhance the algorithm’s capability to differentiate
between various faulty states, we plan to expand our training dataset to include a broader
range of defect types. This can be achieved by modifying the ANN architecture to support
multi-class output that allows the model to recognize and differentiate among multiple
faulty conditions. The proposed method can also be used for frequency-domain analysis
to investigate pump fault detection. This study focused on a specific notch defect in the
impeller. Next, research could also focus on a wider range of defects, such as blade cracks,
impeller pitting, and other mechanical failures, or changing the dimensions of defect on
the impeller to assess how well the ANN generalizes to different fault conditions.
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Nomenclature

ANN  Artificial neural network
BPF Blade passage frequency

CP Centrifugal pump

FNN  Feedforward neural network
GA Genetic algorithm

LM Levenberg-Marquardt

MLP  Multi-layer perceptron

OoC Oscilloscope card

PNN  Partially linearized neural network
RMS  Root mean square

SVM  Support vector machine

RF shaft rotating frequency

WA Wavelet analysis
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