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A B S T R A C T

With the proliferation of Internet of Things (IoT) sensors and metering infrastructures in buildings, external
energy benchmarking, driven by time series analytics, has assumed a pivotal role in supporting different
stakeholders (e.g., policymakers, grid operators, and energy managers) who seek rapid and automated insights
into building energy performance over time. This study presents a holistic and generalizable methodology
to conduct external benchmarking analysis on electrical energy consumption time series of public and
commercial buildings. Differently from conventional approaches that merely identify peer buildings based on
their Primary Space Usage (PSU) category, this methodology takes into account distinctive features of building
electrical energy consumption time series including thermal sensitivity, shape, magnitude, and introduces
KPIs encompassing aspects related to the electrical load volatility, the rate of anomalous patterns, and the
building operational schedule. Each KPI value is then associated with a performance score to rank the energy
performance of a building according to its peers. The proposed methodology is tested using the open dataset
Building Data Genome Project 2 (BDGP2) and in particular 622 buildings belonging to Office and Education
category. The results highlight that, considering the performance scores built upon the set of proposed KPIs,
this innovative approach significantly enhances the accuracy of the benchmarking process when it is compared
with a conventional approach only based on the comparison with the buildings belonging to the same PSU.
As a matter of fact, an average variation of about 14% for the calculated performance scores is observed for
a testing set of buildings.
1. Introduction

The building sector is one of the top primary energy users, con-
tributing to 40% of final energy consumption and 36% of greenhouse
gas emissions in Europe [1]. As a consequence, there is a pressing need
to enhance building energy performance to achieve the decarbonization
targets set for 2050 [2]. Within this context, considering that the
operational phase of a building life cycle accounts for at least 80% of
total energy consumption [3], and with the proliferation of IoT sensors
and metering infrastructure, the research is increasingly focused on the
analysis of monitoring data to track and optimize the actual energy
performance of buildings. The availability of data on the actual energy
performance of buildings makes it possible to address the so-called
energy performance gap, which refers to the difference between the
intended and actual measured energy consumption, caused by several
reasons, such as occupant behavior, micro-climate, and design versus
as-built configurations [4,5]. To reduce such a gap, external energy
benchmarking plays a key role in the identification of sub-optimal
performance of a building by means of a comparison against its peers,
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such as buildings with the same PSU under the same boundary condi-
tions (i.e., climatic conditions) [6]. A benchmarking process is usually
used by regulators or public authorities to push owners to improve the
energy efficiency of their buildings identified as poorly performing. In
this sense, the identification of reference baseline, that is representative
of the current/intended performance of similar buildings is at the basis
of an external building energy benchmarking process [7]. In this per-
spective, data-driven energy benchmarking leverages the measurement
of actual energy consumption data to define a reference baseline, by
employing statistical approaches [8], data analytics techniques [9], and
machine learning models [10].

One of the most common tasks in conventional energy benchmark-
ing systems is the identification of reference target values or baseline
models to estimate performance indicators such as the EUI for a specific
PSU category as a function of influencing variables [11]. However,
this approach has shown limitations, due to the fact that indicators
as EUI are not always able to properly describe the causes of energy
inefficiencies. The literature also demonstrated that the PSU cannot
vailable online 29 December 2023
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Acronyms

ANN Artificial Neural Network
AMI Advanced Metering Infrastructures
BDGP2 Building Data Genome Project 2
CDD Cooling Degree Days
EDM E-Divisive with Medians
EEI Energy Efficiency Index
EPBD Energy Performance of Buildings Directive
EPC Energy Performance Certificate
EUI Energy Use Intensity
GEPIII Great Energy Predictors III
HDD Heating Degree Days
K-NN K-Nearest Neighbors
KPI Key Performance Indicator
MLR Multiple Linear Regression
MOB MOdel-Based recursive partitioning
MSTL Multi Seasonal and Trend decomposition
PSU Primary Space Usage
RLP Reference Load Pattern
SWH Service Water Heating
SVR Support Vector Regression
PS Performance Score
F Load shape factor
LV Load Volatility
AR Anomaly Rate
AEC Anomalous Energy Consumption
FR load shape Frequency Ratio
LP Load Profile
MAD Median Absolute Deviation
DB Davies Bouldin index
DR Demand Response

be considered as the only driver to normalize the evaluation of a
target KPI to benchmark buildings, while there is a need to deeply
analyze the operational performance over time and identify consistent
peers for extracting credible targets [12,13]. As a consequence, the
concept of energy benchmarking in buildings is increasing its com-
plexity becoming more focused on how the energy is consumed over
time rather than on how much energy is consumed during a specific
reference period. Nowadays, the availability of building energy-related
data provides the opportunity to go beyond the use of standard KPIs
investigating, by means of more sophisticated analysis, energy use
inefficiency and improper or infrequent operational patterns [14,15].
To this aim, the definition of user-friendly KPIs extracted from energy
consumption time series can support building owners in identifying
buildings with sub-optimal performance in a more straightforward
way [14]. As a result, the use of data-driven energy benchmarking
systems is increasingly being developed to meet this need [16–18].
Data analytics techniques, both unsupervised and supervised, have
experienced a rapid spread in the field of building energy bench-
marking especially due to their enhanced capability to handle huge
collections of operational data and to support the systematic extraction
of helpful knowledge [19–21]. In this context, this paper introduces
a novel external energy benchmarking methodology based on data-
driven processes that relies on the analysis of electrical energy time
series for a stock of buildings, using the open dataset Building Data
Genome Project 2 (BDGP2) [22]. The work proposes a robust peer
identification framework to properly identify similar buildings for the
2

definition of a reference baseline. Moreover, a number of compact and
powerful operational KPIs extracted from building energy consumption
time series are introduced.

The paper is organized as follows. Sections 1.1 and 1.2 provide the
research context and highlight the contribution of the work accord-
ingly. Section 2 describes the dataset used in this work. Then, Section 3
introduces the proposed methodological framework to perform a data-
driven building energy benchmarking analysis. In Section 4, all the im-
plemented KPIs, algorithms, and statistical analyses are presented and
discussed. Consequently, Section 5 reports the results of test buildings
to prove the robustness of the proposed methodology while Section 6
critically discusses the outcomes and summarizes the results. Eventu-
ally, Section 7 provides the conclusions of this work and an overview
of the future perspective.

1.1. Related works on data-driven energy benchmarking of buildings

In the last recent years, the topic related to building energy bench-
marking has been widely discussed in the literature. Specifically, a great
effort has been devoted to data-driven approaches that can be employed
to address this task. Typically, two types of data-driven approaches
can be found in the literature: statistical-based benchmarking and data
analytics-based benchmarking.

Statistical models have been widely employed for the development
of energy benchmarking systems in the building sector [19] to extract
baseline models from aggregated data such as those collected from
monthly bills or referred to the total seasonal or annual energy con-
sumption. For example, the authors in [23] employed the Energy Star
score method [24] to develop an energy benchmarking model based on
a Multiple Linear Regression (MLR) for Malaysian hospitals, to identify
parameters that mainly affect the building energy consumption. To
characterize building attributes and energy performance of Brazil’s non-
residential buildings, the authors in [25] have conducted a top-down
analysis of more than 10,000 buildings classified in 12 typologies. The
authors employed a statistical analysis to assess the correlation between
EUI and influencing variables, and an ANOVA test and a regression
analysis to investigate the influence of energy usage indicators for each
building typology. Statistical baseline models to estimate EUI have been
also employed in [26], where 587 bank buildings in Turkey have been
analyzed by means of a MLR model, using as explanatory variables
attributes related to climate conditions and building features. In less
recent years, research has been focused on the definition of general
Energy Efficiency Index (EEI)s to assess in a quantitative way the
energy performance at the building system level [27–29]. In fact, with
the advent of Advanced Metering Infrastructures (AMI), the increased
detail of monitored data allowed energy and facility managers to assess
and track the energy performance over time for each energy service
and sub-system. As a reference, authors in [30] have introduced a set
of system-level KPIs, which cover four major end-use energy services
in buildings: lighting, plug load, HVAC, and Service Water Heating
(SWH). However, energy benchmarking systems that merely rely on the
calculation of compact and aggregated indicators such as EUI, do not
take into account changes in the operational behavior of buildings over
time. Different researchers faced this issue using time series analytics
techniques to extract meaningful KPIs from energy consumption data
of buildings. In [31] the authors employed a novel framework based
on multiple data-mining techniques on residential building load pro-
files to characterize occupant behavior, filtering unrelated effects, and
ranking buildings in terms of achieved and potential savings thanks to
the definition of a performance indicator. Authors in [14] extracted
operational KPIs from time series data of office buildings and ranked
them on percentile values assessing the potential energy saving for
each building. As a reference, in [15] was introduced an innovative
KPI that indicates the discrepancy between working hours and facility
hours to estimate the impact on the prediction of EUI. Eventually,
with the introduction of the recent regulatory framework (e.g., the

Energy Performance of Buildings Directive (EPBD) [32]) and concepts
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related to grid-interactive efficient buildings, the energy benchmarking
is evolving also considering the analysis of a set of KPIs to assess the
flexibility potential of buildings by measuring their capability to pro-
vide load matching/load shifting services and the reduction of energy
demand during demand response events [33–35].

With regard to energy benchmarking systems based on data analy-
sis, two main tasks have been addressed in the literature: the develop-
ment of energy performance estimation models, and the extraction of
reference load patterns through energy load profiling processes.

Several research works focused on the use of machine learning
techniques to estimate the expected energy consumption for a building
that can be compared against the actual one in order to assess its
performance. To this aim supervised learning techniques, in the form of
both regression and classification models, have been widely employed
as reported in [36,37].

Authors in [38] employed Support Vector Regression (SVR) opti-
mized, with different heuristic methods, to predict heating and cooling
loads for both residential and commercial buildings, achieving low
estimation error. On the other hand, authors in [39] used a linear
regressor, over a transformed feature, space to predict the energy
consumption of industrial buildings. Authors in [40] determined the
most important features extracted from time series electricity con-
sumption to predict building type, performance class, and operational
strategy, by using a random forest model. Galli et al. [6] introduced an
explainable framework to predict the performance class of buildings
using data from Energy Performance Certificate (EPC) collections. In
the field of feature importance assessment, authors in [10] introduced
a holistic energy benchmarking system for the city of Singapore to
predict total energy usage, finding the air conditioning floor area as
the most affecting variable on energy consumption. Authors in [20]
extracted quantitative and qualitative features from energy consump-
tion time series of office buildings to analyze energy performance and
predict building PSU category, magnitude of energy consumption, and
type of operational strategy. A similar approach was adopted in [41],
where the authors extracted features from time-series data to train
an ensemble classifier that predicts PSU category of buildings. They
found that 22.4% of buildings were mislabeled or used for different
purposes than those declared. The authors in [42] employed clustering
and random forest algorithm to decompose the interaction among the
factors that affect building energy performance, identifying 36 principal
factors that reliably explain building energy efficiency variations in
CBES dataset [43]. On the same data-set, authors in [44], applied
a MOdel-Based recursive partitioning (MOB) and identified the most
influencing variables on energy consumption in buildings. Quevedo
et al. [45] used synthetic data generated from parametric simulation of
archetypes of university buildings to develop an energy benchmarking
system that classifies buildings as efficient or inefficient, giving insights
into the causes of poor performance. Geraldi et al. [46] applied an
Artificial Neural Network (ANN) to several building archetype models
to reduce the modeling uncertainty and predict the EUI, benchmarking
their performances. What emerged as a common finding is the need for
effective segmentation of buildings in groups/classes of similar peers
to achieve good performance in the estimation without over-fitting
problems. This aspect is particularly crucial in the definition of a robust
energy benchmarking system given that the comparison of a building
against a group of peers that do not share enough similarity could lead
to misleading results and to the identification of not credible energy
performance targets [47,48]. For what is concerned the definition of
load profiling processes for benchmarking purposes, several researchers
pushed towards the concept of load similarity focusing on the anal-
ysis of energy consumption patterns over a certain period of time to
understand how energy is used in buildings [49,50].

Several frameworks have been introduced in the literature to an-
alyze energy consumption data gathered from various buildings, typ-
ically with the aim of identifying homogeneous groups of energy cus-
3

tomers that share similarities among their typical daily load patterns in
terms of shape and/or magnitude [51]. In that way, according to the
membership of a building to a specific group of customers, it is possible
to assess its performance against its peers [52,53]. To this purpose,
usually, an unsupervised clustering technique is employed to identify
the most representative groups of daily load profiles among customers,
while a supervised classification algorithm is used to estimate the
membership of a new customer to one of the pre-identified groups [54].
The use of clustering techniques in load profiling processes was widely
explored in recent years by [55–57], finding that K-means algorithm
and its variations, coupled with the Euclidean distance as proximity
measure, is one of the most employed configurations. Authors in [58]
employed clustering to discover misfit buildings in the same PSU cate-
gory, finding that around 30% of buildings were misclassified according
to their load patterns. Load profiling analysis can be developed also by
exploiting features extracted from energy consumption time series. As
a reference, authors in [59,60] employed clustering algorithms using
statistical features, peak and valley information extracted from load
profiles to characterize Reference Load Pattern (RLP)s of buildings.

Although the load profiling process showed good performance in
the characterization of the building’s energy usage patterns for en-
ergy benchmarking, some issues emerged from the reference literature.
Specifically, in most cases, load profiling is performed only on the
whole building’s electrical energy consumption time series, de facto
making the energy benchmarking task a monovariate problem. As a
consequence, the shape similarity between the electrical load profiles
of buildings becomes the only driver for conducting a comparison
among them. In addition, other aspects such as the load magnitude,
the climatic conditions, and the presence of thermal-sensitive electri-
cal sub-loads, were not properly taken into account by the existing
literature. For example, if one building is equipped with a gas boiler
as a heating system and another similar building with the same PSU
is instead equipped with a heat pump, their electrical loads during
the winter season may not be comparable, posing a potential risk of
labeling the former as more efficient in terms of electrical load density
per unit of floor area. In this sense, a good identification of peers
still remains the key aspect to develop a robust benchmarking process.
According to the reviewed literature, the next section introduces the
main contributions of this work.

1.2. Research gap and contribution of this paper

The electrical energy consumption of a building can be challenging
to be benchmarked due to differences in building characteristics such
as PSU, size, layout, age, and equipment. Furthermore, the presence
of thermal-sensitive loads and different occupancy patterns can also
significantly affect the way the energy is used over time. Consequently,
relying solely on the PSU category as a key driver for peer identification
can result in partial or inaccurate benchmarking process [48,49,61].
Data analytics technologies can support the characterization of dis-
tinctive features of energy consumption time series and through the
definition of KPIs is then possible to benchmark the energy behavior of
buildings during operation. Different works have already covered the
topic of KPI definition for energy benchmarking purpose [14,15,20,62],
but more effort is needed to better generalize some of them and to
introduce new ones to enable a novel energy performance comparison
among buildings.

From this perspective, the main contributions of this paper can be
summarized as follows:

• A clear pipeline to benchmark electrical energy consumption of
a building against consistent peers based on time-series analysis
is introduced. The benchmarking process automatically analy-
ses yearly electrical energy consumption time series evaluating
distinctive features and performing a dynamic and robust identi-
fication of the baseline for deploying the benchmarking process.
The pipeline was conceived to be easily deployed as an automatic

tool.
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Fig. 1. Number of buildings included in the raw dataset [22,63] with evidence of the two PSU categories considered in this study.
• Development of an automatic and dynamic peer identification
process to identify, in an existing stock of buildings, the group
against which benchmark the performance of a new (i.e., out-
of-sample) building according to its specific features and energy
behavior. In the proposed framework, beyond the PSU category
(e.g. office, education, residential, etc.), the peer identification
process takes into account the magnitude of the electrical load,
its shape, its sensitivity to the climatic conditions. The proposed
process allows the analyst to identify in relation to the distinctive
features of the building to be benchmarked a reference group of
consistent similar peers from which extract target values for a set
of KPIs.

• Definition of a set of meaningful KPIs based on time-series fea-
ture extraction processes to effectively benchmark the energy
usage of a building against its peers. Once a reference group
of peers is identified, a set of KPIs is introduced to rank the
energy performance of a building considering aspects related to
energy consumption volatility, operational schedules, and rate of
potential energy anomalies associated with its operation.

In order to demonstrate the added value of the proposed methodology,
the whole process has been tested on hourly electrical energy consump-
tion data available for a stock of buildings as described in the following
section.

2. Description of the dataset

The proposed methodology is validated on a subset of the BDGP2
dataset [22], i.e. the 2017 data of all the meters and sites from the Great
Energy Predictors III (GEPIII) competition [63]. The employed dataset
originally includes, for about 1200 buildings, the energy consumption
time series related to (i) electricity, (ii) chilled water, (iii) steam, (iv)
and hot water production, together with outdoor air temperature, and
metadata such as the PSU, gross floor area and year of construction.

For the purposes of the study, the dataset used in this paper is a
subset of the one used in the GEPIII competition which has been fil-
tered considering only buildings with electrical energy measurements,
outdoor air temperature time-series and gross floor area.

In this work, only Office and Education PSU categories are con-
sidered, which include a substantial number of buildings (i.e., 307
Office buildings and 617 Education buildings) as shown in Fig. 1. These
buildings are then further filtered, according to the pre-processing
analysis described in Section 3.1, to obtain the final reference dataset.
Eventually, from the final reference dataset, 10 Office buildings and
10 Education buildings are randomly selected and used as test cases to
validate the methodology developed, as reported in Section 5.
4

3. Methodology

This section introduces the methodological framework at the basis
of the proposed benchmarking process. The framework is based on the
analysis of yearly electrical energy consumption time series of buildings
by means of data analytics and statistics with the aim to characterize
their operational behavior. To this purpose, for each building included
in the analyzed dataset, are extracted the following data: one year of
hourly electrical energy consumption data, one year of hourly mean
outdoor air temperature, the PSU category, and the gross floor area.
The outcome of the benchmarking process are performance scores for a
number of KPIs, which provide feedback about the energy performance
of a building against a set of its similar peers.

As shown in Fig. 2, the methodological framework unfolds over
three main steps: preliminary analysis, identification of peers, KPI
calculation and evaluation of performance scores.

3.1. Preliminary analysis

The first step of the analysis is devoted to clean and pre-process
the data. This process aims to identify and replace outliers, missing
values, zeros, and continuous constant values in the time series. In
particular, the Multi Seasonal and Trend decomposition (MSTL) method
is employed to automatically identify statistical outliers considering the
seasonality and trend of the considered time series. Details on the em-
ployed algorithm are provided in Section 4.1.1. In addition, during this
step of the analysis, the pre-processed yearly energy consumption time
series is further analyzed to extract features and statistically identify the
so-called ‘‘ON-hours’’ and ‘‘OFF-hours’’ during workdays, without any
a-priori knowledge of the actual operational schedule of the building.
During a workday, ‘‘ON-hours’’ are those characterized by an energy
consumption above a certain statistical threshold [49] during which it
is possible to infer that there is activity inside the building (e.g., the
building is occupied, energy systems are turned on). Specifically, for
each workday included in the yearly energy consumption time series,
each hour is then labeled as ON or OFF hour. Details on the employed
algorithm for the labeling are provided in Section 4.1.2.

3.2. Identification of peers

The peer identification process is aimed to identify a group of
similar buildings against which to compare an out-of-sample new build-
ing to be benchmarked. This identification process considers several
aspects, such as:
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Fig. 2. Methodological framework of the energy benchmarking process.
• The PSU category of the building: when a new building is bench-
marked, its peers are searched among buildings with the same
PSU category;

• Reference load conditions among the yearly electrical energy
consumption time series: when a new building is benchmarked
its yearly energy consumption time series is firstly chunked into
sub-sequences of daily length and all the obtained daily load
profiles are then grouped in ‘‘Load conditions’’ a-priori identified
with a domain-expert approach (i.e., winter workdays, winter
weekends, summer workdays, summer weekends, non-working
days and holidays).

• The sensitivity of the electrical load to the outdoor air temper-
ature: when a new building is benchmarked, for some of the
pre-identified load conditions (i.e., winter workdays, summer
workdays) the electrical load is classified, by means of a statistical
correlation analysis, as thermal sensitive or not.

• The mean daily energy consumption: when a new building is
benchmarked, for some of the pre-identified load conditions
(i.e., winter workdays, summer workdays) is calculated the mean
daily energy consumption.

• A load shape factor 𝐹 : when a new building is benchmarked, for
some of the pre-identified load conditions (i.e., winter workdays,
summer workdays) is calculated an indicator that is representa-
tive of the shape of daily load profiles.

In that way, a building is benchmarked, individually for each load
condition, against a group of peers that share the same PSU category,
that exhibit similar sensitivity of the electrical load to outdoor air
temperature during winter workdays and summer workdays, and for
the same two load conditions have daily load profiles that on aver-
age are similar in terms of both magnitude (i.e., mean daily energy
consumption) and shape. The process of peer identification is further
detailed in Section 4.2.

3.3. KPI calculation and evaluation of performance scores

After the identification of peers, to effectively benchmark the load
condition of a new building it is necessary to evaluate KPIs and compare
those values with a reference distribution extracted from the considered
peers. The KPIs calculated in this step are derived from five different
indicator categories:

• Energy Use Intensity: the ratio between the total energy consump-
tion and the floor area. In the case of a load condition that is
5

classified to be sensitive to the outdoor air temperature this KPI
is also normalized on degree days.

• Operational schedules: this group of KPIs summarizes the impact
of energy usage during weekends and workday OFF-hours against
to workday ON-hours.

• Volatility of energy consumption: this KPI summarizes the degree
of variability or fluctuations that characterize the daily load
profiles of a building in a specific load condition [62].

• Anomalies in energy consumption: this group of KPIs is associated
with the rate of anomalous daily load profiles of a building in a
specific load condition.

• Load shape pattern frequency: this KPI describes the shapes of the
daily load profiles of a building in a specific load condition in or-
der to understand if those shapes are frequent or not, considering
all the buildings within the same PSU.

Once the KPIs are calculated for a new building, those values are
compared with the statistical distributions extracted from the peers and
converted into percentile values. To return to a common convention of
a Performance Score (PS) where a score of 0 is representative of low
performance and a score of 100 means excellent performance [14], the
following calculation is applied when needed:

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 (𝐾𝑃𝐼𝑖) = 100 − 𝑝𝑐𝑡 (𝐾𝑃𝐼𝑖) (1)

where pct is the percentile associated to the value of the KPI i. In the
case the percentile is already consistent with the 0–100 convention,
then it is directly used as a performance score.

4. Methods and algorithms

According to the methodological framework above described, this
section introduces the methods and algorithms used in each step of the
benchmarking process.

4.1. Preliminary analysis

This subsection describes the steps followed to conduct the prelim-
inary analysis (i.e. pre-processing of data and feature extraction).

4.1.1. Pre-processing of data
The first step of the analysis involves data cleaning and

pre-processing. Specifically, extreme values related to very low or very
high observations in the energy consumption time series are removed
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Fig. 3. Effect of breakout identification on the assessment of ON hours for the building encoded as Bear_education_Chun. (a) Identification of breakouts in the summer season. (b)
Representation of summer workday load profiles according to the identified breakouts. (c) ON-hours distribution with and without the implementation of the breakout detection
process.
using threshold values. The thresholds are identified by using the
following Eqs. (2) and (3).

𝐿𝑇 =
𝑝𝑐𝑡5
2

(2)

𝐻𝑇 = 𝑝𝑐𝑡95 ⋅ 2 (3)

where 𝐿𝑇 is the low value threshold, 𝐻𝑇 is the high value thresh-
old and 𝑝𝑐𝑡𝑛 indicates the n-percentile of distribution of the energy
consumption time series. As a second step, the MSTL decomposition
technique is employed to further pre-process the building energy con-
sumption time series, using the forecast package in R [64]. This tech-
nique takes into account seasonal and trend-related information to
identify outliers through the decomposition of the time series into
three components: seasonality, trend, and remainder. The way in which
these components are extracted is reported in [64,65]. Specifically,
outliers are evaluated on the remainder component of the time series,
employing the interquartile range method.

Once the outliers and constant observations have been detected,
they are removed from the original dataset and treated as missing
values. Eventually, after the implementation of the pre-processing step,
the buildings that have more than 10% of time series records corrupted
(i.e. outliers, missing values, or continuous constant values) are filtered
out from the analyzed dataset. For the remaining buildings, all the
missing values are then replaced using linear interpolation if there are
less or equal to two consecutive missing values, or with a look-up table
for longer gaps in the time series of consecutive missing values. The
lookup table is filled with the mean values of the energy consumption
calculated per day of the season, week, and hour of the day. After this
step of analysis, the total number of buildings analyzed is 622, of which
201 belong to the Office PSU category, and 421 to the Education one.

4.1.2. Feature extraction
The second step of the preliminary analysis consists in the extraction

of features from the pre-processed energy consumption time series, in
order to label 𝑂𝑁 and 𝑂𝐹𝐹 hours in workdays without any a-priori
knowledge of the building operational schedules. For this reason, a
statistical approach is employed, identifying as ON-hours those charac-
terized by an energy consumption above a certain statistical threshold,
with an approach similar to the one introduced in [49].
6

In order to robustly extract energy consumption thresholds a break-
out detection process is carried out, using the BreakoutDetection library
from Twitter, an open-source R library that makes use of the E-Divisive
with Medians (EDM) algorithm [66].

In particular, a breakout is a significant change observed in a time
series that can consist of a mean shift or a sudden increase from one
steady state to another. An example of breakout detection is shown in
Fig. 3. Specifically, Fig. 3(a) graphically identifies two breakouts on a
time series while in Fig. 3(b) are reported the corresponding daily load
profiles.

Once the breakouts are identified, the minimum load variation
threshold 𝛥𝐿 to distinguish ON-hours from OFF-hours is extracted from
each of them as follows:

𝛥𝐿 = 0.25 ⋅ (𝑝𝑐𝑡95 − 𝑝𝑐𝑡15) (4)

where 𝑝𝑐𝑡95 and 𝑝𝑐𝑡15 are the 95𝑡ℎ and 15𝑡ℎ percentile respectively
extracted from the hourly electrical energy consumption data that
pertain to the workdays of an identified breakout. Then, for all the
workdays belonging to the same breakout, an ON-hour is identified by
means of the following Eq. (5).

𝑂𝑁 − ℎ𝑜𝑢𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑐𝑡15,𝑑𝑎𝑦 + 𝛥𝐿 (5)

where 𝑝𝑐𝑡15,𝑑𝑎𝑦 is the 15𝑡ℎ percentile extracted from the hourly elec-
trical energy consumption data of a workday included in the same
breakout for which 𝛥𝐿 is calculated. An example of ON/OFF-hour
identification is shown for three working days in Fig. 4. In addition,
as a further demonstration of the positive effect of breakout analysis
in the ON/OFF-hour identification, in Fig. 3(c) the daily ON-hour
distribution for the analyzed time series is reported. In particular,
without breakout identification (red histogram) there is a significant
occurrence of days with 24 or 0 ON-hours per day differently from
what happens when the breakout identification is performed. In fact
the change in the mean energy consumption between breakout 1 and
2, if not properly considered, could determine the labeling of 24 ON-
hours for the working days with an energy consumption above the
mean (i.e., in breakout 2) and 0 ON-hours for the days below the mean
(i.e., in the breakout 1). However, if the ON-hour threshold is evaluated
for each breakout this effect is minimized generating a more compact
distribution of daily ON-hours (i.e., blue histogram).
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Fig. 4. Identification of ON and OFF hours in three different days for the building encoded as Wolf_education_Ursula.
Fig. 5. Identification of load conditions on a part of the energy consumption time series referred to the building encoded as of Cockatoo_education_Brendan. (a) Preliminary
identification of load conditions based on expert knowledge. (b) Identification of non-working days in the winter workdays load condition by means of statistical analysis. (c) Final
results of the load condition identification process.
4.2. Identification of peers

The peer identification process is based on different steps of analysis
that aim to identify and highlight similarities among buildings as
reported in the following subsections.

4.2.1. Load condition identification
In order to effectively compare the energy consumption patterns

among buildings, four reference load conditions are identified as shown
in Fig. 5.

Specifically, from the energy consumption time series, the daily
load profiles pertaining to bank holidays are filtered out according
to the geographic location of each building. Then, a domain-expertise
approach is used to categorize the remaining daily load profiles in
four load conditions i.e., Winter workdays, Winter weekends, Summer
workdays, and Summer weekends (Fig. 5(a)), where the winter sea-
son is referred to the months between October and March and the
summer season to the months between April and September. On the
7

other hand, the workdays are defined according to the conventional
working week i.e., from Monday to Friday. As a further step, in the
case the holiday filter is not sufficient to remove all the non-working
days from the dataset, in the load conditions of Winter workdays
and Summer workdays the load profiles with low variability and low
energy consumption are identified, and removed following the same
process reported in [54], as represented in Fig. 5(b). For the sake of
completeness, Fig. 5(c) reports an example of the final result of the load
condition identification process by displacing each daily load profile in
the pre-determined groups.

4.2.2. Temperature sensitivity analysis
The temperature sensitivity analysis aims to assess the strength of

the correlation between the electrical energy consumption of a building
and the outdoor air temperature. For each building, this analysis is per-
formed only in two load conditions i.e., Winter workdays and Summer
workdays. After carrying out the analysis, those two load conditions can
be labeled as ‘‘Thermal sensitive’’ or ‘‘Non-thermal sensitive’’ and as a
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Fig. 6. Methodological framework of temperature sensitivity analysis.
consequence also the corresponding season (i.e., winter and summer
season).

The analysis consists of a two-step process as shown in Fig. 6.
Firstly, the Spearman’s rank correlation coefficient 𝜌 is estimated,

using the top 90 hottest or coldest workdays of the summer and winter
season respectively, using the daily electrical energy consumption and
the daily average outdoor air temperature. Then all the load conditions
with 𝜌 > 0.4 are tagged as ‘‘Potentially thermal sensitive’’, whereas
for lower values of 𝜌 the load condition is labeled as ‘‘Non-thermal
sensitive’’. Secondly, for all the ‘‘Potentially thermal sensitive’’ load
conditions, a simple linear regression analysis between the normalized
daily electrical energy consumption and the average daily outdoor air
temperature is performed. For the normalization of daily electricity
consumption, the max value across the load condition is considered,
as highlighted in Eq. (6).

𝐸𝑖,𝑛𝑜𝑟𝑚 =
𝐸𝑖 [kWh]

𝑚𝑎𝑥 ⃖⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑐,𝑛 [kWh]
(6)

where 𝐸𝑖,𝑛𝑜𝑟𝑚 is the normalized daily energy consumption of the day
𝑖, 𝐸𝑖 is the daily energy consumption of the day 𝑖, and ⃖⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑐,𝑛 is the
vector of the daily energy consumption for the days included in the
load condition 𝑛.

The slope value (i.e., 𝛼) of the fitted regression line is then used to
distinguish dubious cases in ‘‘Thermal sensitive’’ and ‘‘Non-thermal sen-
sitive’’ conditions. The threshold value selected, employing a domain-
expert approach, is 𝛼 = 0.005, which means that for ‘‘Thermal sensitive’’
load conditions the daily electrical energy consumption varies by at
least 0.5% of the maximum daily electrical energy consumption per
unit change of the average daily outdoor air temperature.

4.2.3. Identification of similar peers in the building stock
When a new building(i.e., out-of-sample) is benchmarked, its yearly

time series of electrical energy consumption is segmented into the
above-defined load conditions. In particular, its peers are identified
separately for the summer and winter season through the analysis of
Summer and Winter workdays (i.e., the peers for the load condition
winter weekends are the same as the load condition winter workdays).
Then, individually for winter and summer workdays, the building is
compared with its peers that share similarities in the energy consump-
tion patterns and belong to the same PSU category. In addition, the
peer identification is conducted also considering the membership to the
‘‘Thermal sensitive’’ or ‘‘Non-thermal sensitive’’ class as a constraint.
Once the main categories in which search the potential peers are
defined, the identification of the most similar peers to the building
under analysis is performed considering two different metrics. The first
metric is F defined as:

𝐹 =
𝐸𝑛𝑖𝑔ℎ𝑡 [kWh]
𝐸𝑑𝑎𝑦 [kWh]

(7)

where 𝐸𝑛𝑖𝑔ℎ𝑡 is the amount of energy consumption in the time interval
(20:00–07:00) and 𝐸 is the amount of energy consumption in the
8

𝑑𝑎𝑦
interval (08:00–19:00) separately evaluated for all the days in a load
condition (i.e., Winter workdays or Summer workdays). This indicator
is then averaged (𝐹 ) among all the days in the same load condition. A
value of 𝐹 much lower than 1 is associated with load conditions during
which buildings consume energy mainly during the daytime, while an
𝐹 value greater than 1 means that the energy consumption is much
more concentrated during night hours. On the other hand, the second
metric is the mean daily energy consumption 𝐸 calculated in the load
condition analyzed (i.e., Winter workdays or Summer workdays).

In this way, both Winter and Summer workday load conditions of
each building included in the analyzed dataset are identified by a tuple
(𝐹𝑙𝑐 , 𝐸𝑙𝑐 ) and in order to perform the peer identification for a new
building all the tuples are scaled through a min–max normalization by
extracting the min and max values for both metrics from the entire sam-
ple. Then, when a new building is benchmarked, after the identification
of the category of potential peers and the computation of the nor-
malized tuple (𝐹𝑛𝑜𝑟𝑚,𝑙𝑐 , 𝐸𝑛𝑜𝑟𝑚,𝑙𝑐 ), the 30 nearest neighbors are extracted
from the dataset using the Euclidean distance as a similarity measure
in the geometrical space separately for Winter and Summer workdays.
As a result, the set of peers identified for the winter workdays are
the same for the entire winter season and could differ from those
identified for the summer season, de facto increasing the flexibility of
the entire benchmarking process. In particular, the calculated Euclidean
distance is differently weighted among the two metrics, giving 70% of
the importance to the peer similarity on 𝐸 and the remaining 30% of
the importance to the peer similarity on the load shape factor 𝐹 .

Eventually, from the identified 30 nearest neighbors is extracted a
statistical distribution for a set of KPIs to assess the performance of
the building under analysis. The calculated KPIs are in the following
described.

4.3. Key performance indicators

In the following subsections, all the implemented KPIs are discussed
and explained. In particular, some of those KPIs are evaluated for
each load condition, while others are assessed for an entire season
(e.g., considering Summer workdays and weekends together).

4.3.1. KPI for energy use intensity
EUI is a metric used to measure the energy efficiency of a building

and it is defined as the amount of energy consumed by a building per
unit of floor area per year. EUI is useful because it allows building
owners, managers, and energy professionals to compare the energy
performance of different buildings, immediately identifying those with
lower performance. In the proposed benchmarking process the EUI is
calculated in the two seasons: Winter and Summer. However, when
the considered season is classified as ‘‘Thermal sensitive’’ the EUI is
further adjusted considering a weather-related variable, in order to
make buildings located in different regions and climates comparable
between each other [67,68]. In Eqs. (8) and (9) is summarized the
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calculation of EUI for both thermal and non-thermal sensitive seasons
of a building.

𝐸𝑈𝐼𝑛𝑜𝑛−𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 =
𝐸𝑠𝑒𝑎𝑠𝑜𝑛 [kWh]
𝐹 𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 [m2]

(8)

𝑈𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 =
𝐸𝑠𝑒𝑎𝑠𝑜𝑛 [kWh]

𝐹 𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 [m2] ⋅𝐷𝐷 [◦C]
(9)

here 𝐸𝑠𝑒𝑎𝑠𝑜𝑛 is the total electrical energy consumption during the
onsidered season, while 𝐷𝐷 are the degree days calculated on the
ame period (Heating Degree Days (HDD) or Cooling Degree Days
CDD) according to the season). Degree days are calculated as the sum
f the daily differences between a reference indoor air temperature of
8.3 ◦C and the average daily outdoor air temperature [68].

.3.2. KPIs for the characterization of operational schedule
Operational schedule KPIs aim to report useful insights about the

se of energy over time during the day. In particular, these KPIs allow
o compare the energy use during OFF-hours and weekends against
he energy consumption during workdays and workday ON-hours [49].

hen the ON/OFF-hours are tagged for each workday based on what
s described in Section 4.1.2, two schedule-based KPIs are calculated
i.e., OFF-impact and weekend impact).

In particular, the OFF-impact is calculated for each workday load
ondition (i.e., Winter workdays and Summer workdays) while the
eekend impact is assessed for an entire season (e.g. calculated for
inter workdays and Winter weekends) as reported in the following

quations:

𝐹𝐹 − 𝑖𝑚𝑝𝑎𝑐𝑡 =
𝐸𝑂𝐹𝐹−ℎ𝑜𝑢𝑟𝑠 [kWh] − 𝐸𝑂𝑁−ℎ𝑜𝑢𝑟𝑠 [kWh]

𝐸𝑂𝑁−ℎ𝑜𝑢𝑟𝑠 [kWh]
⋅ 100 (10)

𝑒𝑒𝑘𝑒𝑛𝑑 𝑖𝑚𝑝𝑎𝑐𝑡 =
𝐸𝑤𝑒𝑒𝑘𝑒𝑛𝑑𝑠 [kWh] − 𝐸𝑂𝑁−ℎ𝑜𝑢𝑟𝑠 [kWh]

𝐸𝑂𝑁−ℎ𝑜𝑢𝑟𝑠 [kWh]
⋅ 100 (11)

Specifically, the OFF-impact is the ratio between the difference of
he energy that is consumed during workday OFF-hours and workday
N-hours with respect to that consumed during workday ON-hours,
hile the weekend impact is the ratio between the difference of energy

onsumed during weekends and workday ON-hours respect to the
mount of energy consumed during the ON-hours of the workdays
elonging to the same season. Similar indicators have been already
mplemented in [14], but with a different approach for the encoding
N/OFF-hours.

These two KPIs are essential to extract insights into the operation
f buildings. In fact, both indicators should be negative and have the
owest value as possible, which means that the building consumes a
ower amount of energy during periods when it is statistically reason-
ble that there is no activity inside the building. On the other hand,
igh OFF-impact values would mean that the building is characterized
y a relatively high energy consumption during OFF-hours (i.e., high
aseload consumption or few hours of operation). A similar reasoning
an be then applied to the weekend impact KPI which is related to the
ntensity of load reduction during weekends with respect to workdays.

.3.3. KPI for volatility of energy consumption
The assessment of volatility of energy consumption is crucial in

ifferent tasks related to building energy management such as energy
enchmarking and forecasting [62,69]. Determining a KPI for energy
onsumption volatility for a given temporal period can effectively
dentify buildings that exhibit non-regular electrical loads with respect
o their peers. The volatility of energy consumption generally refers
o the concept of variability of the Load Profile (LP) in buildings [62]
here a low volatility is associated with load profiles that share both

hape and magnitude similarities under the same conditions.
In the proposed benchmarking process, the volatility KPI is eval-

ated for each load condition with different approaches for those
9

elonging to thermal and non-thermal sensitive seasons. M
Specifically, considering a non-thermal sensitive load condition of
building, a K-Nearest Neighbors (K-NN) algorithm is employed on

ach daily electrical load profile 𝐿𝑃𝑖 in order to retrieve its K-nearest
eighbors (in terms of Euclidean distance) in the same load condition.
n this study, the number of neighbors considered is 10% of the load
rofiles included in the load condition. Indeed for a load condition with
00 LPs, only the 10 nearest LPs to the day 𝑖 are considered for the
alculation of the Load Volatility (LV) referred to the day 𝑖 itself (𝐿𝑉𝑖).

First, the full distance matrix 𝑀 among daily load profiles 𝐿𝑃𝑖 in the
same load condition is calculated, obtaining a symmetric matrix with
zero diagonal values, where each row/column of the matrix includes
the Euclidean distances of a daily electrical load profile 𝐿𝑃𝑖 from all
the others in the load condition. For each row, only the 𝐾-minimum
values of the distance are selected, representing the K-nearest profiles
𝑁𝑖, where K is the 10% of the load profiles included in the load
condition. Load volatility is then evaluated for each day calculating
𝐿𝑉𝑖, as reported in Eq. (12):

𝐿𝑉𝑖 =
𝑚𝑒𝑎𝑛( ⃖⃖⃗𝑑𝑖)

𝐸𝑖
⋅ 100 (12)

where ⃖⃖⃗𝑑𝑖 is the vector containing the distance values between each k-
nearest load profile 𝐿𝑃𝑖,𝑘, with k = 1, . . . K, also called 𝑁𝑖, and the load
profile of the day 𝐿𝑃𝑖, and 𝐸𝑖 is the energy consumption of the day 𝑖.
To obtain a single value for the entire load condition of the building,
the daily values of 𝐿𝑉𝑖 are averaged among all the days in the load
condition obtaining then 𝐿𝑉 .

A sketch of the methodology for the calculation of volatility is
presented in Fig. 7.

Regarding the ‘‘Thermal sensitive’’ load conditions the calculation
process of 𝐿𝑉 is the same, the only difference pertains to the identifi-
ation of the nearest neighbors for each day in the load condition. In
act, instead of directly using the electrical daily load profiles to identify
he nearest neighbors, in this case, the K-NN is applied to the daily
utdoor air temperature profiles. In that way, for each day is identified
he set of 𝐾 days that are similar from the climatic point of view and

then the corresponding daily electrical load profiles are considered, as
previously explained, to calculate 𝐿𝑉 .

As a final remark, the use of a number of nearest neighbors rather
than the entire set of available days for calculating 𝐿𝑉 , allows to
onsider the existence of different load patterns in the same load
ondition. This aspect is crucial given that the identification of the
oad conditions is defined a-priori and the presence of a single typical
attern is not guaranteed.

Eventually, after the evaluation of 𝐿𝑉 , a low value indicates that in
a load condition, there is the presence of one or more load patterns,
represented by at least the 10% of load profiles that exhibit high
similarities in load shape/magnitude or both of them. On the contrary,
if 𝐿𝑉 value is high, the nearest neighbor profiles are distant from each
ther, suggesting that the load condition is characterized by a high
parsity of energy consumption patterns.

.3.4. KPIs for anomalies in energy consumption
Following the process to quantify the LV, two KPIs are proposed

o assess the presence or not of energy anomalies in a specific load
ondition. Such anomalies may be caused by various factors, including
ailure to shut down systems overnight, and anomalies in lighting,
eating/cooling, or ventilation systems that result in excessive energy
onsumption during the day.

Once nearest neighbor load profiles are identified following the
pproach described in Section 4.3.3, the mean distance of each load
rofile with its k-nearest neighbor load profiles (𝑚𝑒𝑎𝑛( ⃖⃖⃗𝑑𝑖)) is evaluated
nd stored in the vector ⃖⃗𝑑. Then the components of the vector are
ubjected to 3 different statistical outlier detection methods, simi-
arly to [70]. Specifically, inter-quartile method, Z-score method, and
edian Absolute Deviation (MAD) are applied to detect upper outliers.
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Fig. 7. Process of analysis for the evaluation of the load volatility (𝐿𝑉 ) KPI in a load condition of a building.
Fig. 8. Identification of neighbor profiles for the day 2017-09-19 in a thermal sensitive load condition of the building encoded as Bull_education_Brady.
Each method produces a boolean vector 𝐵𝑖 = {0, 1}, defining
whether a load profile is considered an outlier or not in the ⃖⃗𝑑 vector.
Summing all the 𝐵𝑖 is obtained the severity score vector 𝑆 =

∑3
𝑖=1 𝐵𝑖, in

which each cell corresponds to a daily load profile and reports a score
in the range (0–3), based on the number of methods that tagged that
load profile as an outlier. Finally, only scores equal to three (i.e., all the
methods suggest that a daily load profile is anomalous) are considered
anomalies, in order to avoid false positives and spurious alerts.

Once the anomalous daily load profiles are identified, two KPIs are
calculated for the whole load condition considered: the Anomaly Rate
(AR) and the Anomalous Energy Consumption (AEC), reported in Eqs.
(13) and (14).

𝐴𝑅 = 𝑛◦ 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠
𝑁

⋅ 100 (13)

𝐴𝐸𝐶 =
∑

𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦,𝑖 [kWh]
∑

𝐸𝑖 [kWh]
⋅ 100 (14)

where in the same load condition, 𝑁 is the total number of daily load
profiles, 𝑛◦ 𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 is the number of anomalous daily load profiles,
∑

𝐸𝑎𝑛𝑜𝑚𝑎𝑙𝑦,𝑖 is the total amount of energy consumed during anomalous
days and ∑

𝐸𝑖 is the total amount of energy consumed in the load
condition.

Considering the example of a thermal sensitive load condition, pre-
sented in Fig. 8, it is possible to notice that the day 2017-09-19 is very
close to its nearest outdoor air temperature profiles. On the other hand,
the corresponding daily electrical load profiles are much more sparse.
As a result, the day 2017-09-19 has an energy consumption pattern
that is not consistent with the identified climatic boundary conditions.
Specifically, due to the high distance from its nearest neighbours, the
considered daily load profile obtained an anomaly score of 3 out of 3,
10
determining its labeling as 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 in the computation process of AR
and AEC.

4.3.5. KPI for load shape pattern frequency
The last KPI included in the proposed benchmarking process as-

sesses how many daily load profiles are characterized by frequent
shapes in a building load condition considering the energy behavior
of the entire building stock within the same PSU category.

To this purpose, all the energy consumption time series of the
buildings with the same PSU and pertaining to the four main load
conditions (i.e. Winter workdays, Winter weekends, Summer workdays,
and Summer weekends) are collected, chunked in daily load profiles,
and normalized on their own maximum. Then, a clustering analysis
employing the K-means algorithm is applied, in order to find among
different buildings the most relevant groups of normalized daily load
profiles. The clustering analysis is performed using the Davies Bouldin
index (DB) as a quality metric, searching the optimal configuration in
the range of 10–20 clusters. When the optimal number of clusters is
identified, each group of normalized daily load profiles is tagged as
frequent or infrequent, for each load condition. To this purpose, for
each cluster, two metrics are calculated: (i) the percentage of buildings
that have at least one daily load profile grouped in the considered
cluster and (ii) the percentage of daily load profiles in the considered
cluster respect to the total number of profiles analyzed. Specifically,
a cluster is considered frequent if the percentage of buildings in the
cluster is higher than 50% and the percentage of load profiles in the
cluster is above the mean value, considering all clusters (i.e., a frequent
cluster is representative of a high number of buildings and includes a
high number of daily load profiles).
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Fig. 9. Outlier detection performed on the energy consumption time series of the building encoded as Hog_office_Eloise. (a) Original time series, with evidence of the detected
outliers and high/low values. (b) Cleaned time series.
Fig. 10. Operational schedule encoding for the building Hog_office_Eloise. (a) Carpet plot of the energy consumption time series. (b) Carpet plot of the operational schedule
obtained by encoding each hour as: ON-hour, OFF-hour, weekend, non-working day, or holiday.
Therefore, to assess the frequency of the load profiles of a new
building in one of its load conditions the following steps are followed:

• normalization on max of the daily load profiles of a load condi-
tion;

• classification of each normalized daily load profile into the clus-
ters identified for the considered PSU category, using the mini-
mum distance from cluster centroid as a driver for classification;

• assessment of the load shape pattern frequency KPI load shape
Frequency Ratio (FR) for the entire load condition.

Specifically, as reported in Eq. (15), 𝐹𝑅 is calculated as the ratio
between the number of daily load profiles classified in frequent clusters
and the total number of daily load profiles in the considered load
11
condition.

𝐹𝑅 =
𝑓
𝑁

⋅ 100 (15)

where 𝑁 is the number of daily load profiles in a load condition and
𝑓 the number of daily load profiles classified in frequent clusters. So,
if a load condition has a high value of FR means that the building has
a frequent behavior (e.g., daily load shape) in that period of time with
respect to all the other buildings with the same PSU category.

5. Results

The methodological process described in Section 3 is tested on 10
Office buildings and 10 Education buildings from the BDGP2 dataset
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Fig. 11. Operational schedule results for two load conditions of the building encoded as Hog_office_Eloise.
Fig. 12. Results of the thermal sensitivity analysis for the building encoded as Robin_office_Antonina. (a) Outdoor air temperature and energy consumption time series. (b) On
the left are represented the daily load profiles for two load conditions, while on the right the scatterplots that put in relation the daily energy consumption with the mean daily
outdoor temperature.
[22]. The statistical language R [71] and Python [72] are employed to
implement the flow of analysis above described.

5.1. Data pre-processing and feature extraction results

The pre-processing step outlined in Section 3.1 is applied to the
buildings tested, and the results for the building encoded as
Hog_office_Eloise are shown in Fig. 9. Specifically, 22 outliers
(i.e., 0.3% out of the total number of data points included in the
12
time-series) were detected and consistently replaced according to the
methodological process previously described.

After the pre-processing step, the feature extraction analysis is per-
formed to automatically label ON/OFF hours in workdays without any
a-priori knowledge of the building operational schedules. The results
for Hog_office_Eloise are shown in Fig. 10.

In particular, Fig. 10(a) shows the heat map associated with the
original electrical power time series while in Fig. 10(b) each hour
is encoded as ON-hour, OFF-hour, weekend, or holiday. Comparing
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Table 1
Results of the thermal sensitivity analysis for the buildings encoded as Robin_office_Antonina and Panther_education_Vincent.
Building_id Load condition Spearman 𝜌 Slope 𝛼 Result

Robin_office_Antonina Winter workdays 0.17 – Non-thermal sensitive
Robin_office_Antonina Summer workdays 0.75 0.011 Thermal sensitive
Panther_education_Vincent Winter workdays −0.15 – Non-thermal sensitive
Panther_education_Vincent Summer workdays 0.04 – Non-thermal sensitive
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the two figures it emerges how the identified operational schedule is
consistent with the actual energy consumption pattern of the analyzed
building.

Furthermore, Fig. 11 shows the extraction of the operational sched-
ule of the building employing the feature extraction process detailed
in Section 3.1 for Winter workdays and Summer workdays load condi-
tions. Each histogram represents the count of hours of the day in each
load condition, filling the bar as OFF-hours (red) and ON-hours (green).
As can be observed, in both load conditions, the building is tagged as
ON in the time interval (07:00–22:00), while is OFF in (23:00–06:00).
Only in summer workdays, almost half of the days are ON also at
(23:00–00:00).

5.2. Peer identification results

The peer identification process, as outlined in Section 3.2, aims to
identify the most suitable set of buildings, in the same PSU category,
that exhibit a high degree of similarity in terms of energy consumption
behavior with a new building to be benchmarked.

The peer identification process starts with the identification of the
four load conditions (Winter workdays, Winter weekends, Summer
workdays, and Summer weekend) using the methodology detailed in
Section 4.2.1 and Fig. 5.

After the load condition segmentation, the thermal sensitivity anal-
ysis is performed on Winter workdays and Summer workdays to la-
bel them (and their corresponding season) as ‘‘Thermal sensitive’’ or
‘‘Non-thermal sensitive’’.

Figs. 12 and 13 show the relation that exists between electrical
energy consumption and outdoor air temperature for two different
buildings in the testing set. In Figs. 12(a) and 13(a) both variables
(i.e., electrical energy consumption and outdoor air temperature) are
represented as time series, while in Figs. 12(b)–(c) and 13(b)–(c) are
reported the daily load profiles referred to winter and summer work-
days together with the scatter plots of the daily electrical energy
consumption against the mean daily outdoor air temperature.

As previously discussed the first step is to assess the thermal sen-
sitivity of the electrical load by calculating the Spearman’s correlation
coefficient 𝜌 between daily energy consumption and mean daily out-
oor temperature in both Winter and Summer workdays. As reported
n Table 1, for Panther_education_Vincent both load conditions are
abeled as ‘‘Non-thermal sensitive’’ (as can be easily observed from
ig. 13(b)–(c)) given that the correlation coefficient 𝜌 does not exceed

the threshold fixed at |0.4|. On the contrary for Robin_office_Antonina,
he Summer workday load condition exhibits a value of 𝜌 higher than
he threshold, meaning that it may be potentially labeled as ‘‘Thermal
ensitive’’. Then a linear regression model is fitted using the normalized
aily energy consumption as the output variable and the mean daily
utdoor air temperature as the input variable. Extrapolating the slope
alue 𝛼, it results to be greater than the fixed threshold of 0.005,
eaning that the load condition (and then the season which includes

t) can be eventually labeled as ‘‘Thermal sensitive’’. Indeed for the
onsidered buildings, all the analyzed seasons are characterized by
lectrical energy consumption that can be considered independent from
he weather conditions with the exception of the summer season of
obin_office_Antonina, during which the electrical load varies accord-

ng to the outdoor air temperature. As a reference, this can be related
o the presence of chiller systems in the building that may have a
ignificant impact on its total electrical demand during summer.
13
The importance of differentiating ‘‘Thermal sensitive’’ from ‘‘Non-
hermal sensitive’’ buildings is demonstrated by the obtained results
rom the analysis of the considered dataset. In fact, by following the
hermal sensitivity analysis, in the Education and Office PSU categories,
t was found that 43% and 51% of buildings respectively have at
east one load condition whose electrical energy consumption can
e considered as significantly affected by variations of outdoor air
emperature.

After this step of analysis, peers are searched considering the same
SU category and thermal sensitivity by using as drivers two different
etrics: the mean daily energy consumption and the load shape factor
, both separately calculated for Winter and Summer workdays, as
lready detailed in Section 4.2.3.

Specifically the load shape factor F, is useful to distinguish buildings
hat may use a similar amount of energy but with a different daily shape
attern. As a reference, Fig. 14 shows the normalized daily load profiles
f two buildings referred to the Winter workdays load condition. For
oth buildings is highlighted the average load profile (i.e., solid red
ine) and the average F. It can be observed, that the building with a
igher load shape factor 𝐹 = 1, 34 (i.e., Fox Education Melvin) mainly
onsumes energy during night hours, and given that it is labeled as
n education building, it is maybe used as a dormitory. On the other
and, the building with a lower 𝐹 = 0, 55 (i.e., Cockatoo Education

Arlen) is characterized by a more conventional daily energy pattern
due to daytime activities. It is then clear how important is to consider
such differences in the energy benchmarking process, given that each
building has its own features that could make some comparisons not so
consistent if not well reflected in the group of peers.

The identification of peers, for the two buildings analyzed, is then
shown in Figs. 15 and 16. Each blue point in the plot corresponds
to a building in a specific PSU category, characterized by the same
thermal sensitivity, and represented by its own values of mean daily
energy consumption and shape factor F evaluated in a load condition.
The orange dots are the buildings to be benchmarked while the green
points are their 30-nearest peers, identified by computing a weighted
Euclidean distance as specified in Section 4.2. In this way, the following
evaluation of KPIs can be considered robust and consistent with build-
ing PSU category, load condition, thermal sensitivity, magnitude and
shape of energy consumption patterns.

5.3. Key performance indicators results

In this section are presented and discussed the results related to
the evaluation of different KPIs defined as in Section 4.3. In par-
ticular, after the identification of peers, it is possible to extract ref-
erence distributions of KPIs that are representative of a group of
buildings that share similarities with the one that is the subject of
the benchmarking process. Eventually, by means of statistical analysis
(i.e., percentile value) it is possible to assess for each KPI, a final
performance score for the building of interest. In the following, the
results pertaining some test buildings are discussed for each proposed
KPI.

5.3.1. Energy use intensity
Fig. 17 shows the results pertaining to the benchmarking of EUI

for the test building labeled as Bull_education_Roseann. It is possible
to observe that the EUI distributions of peers (i.e., green areas) and
the distributions of the whole PSU category (i.e., Education buildings)
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Fig. 13. Results of the thermal sensitivity analysis for the building encoded as Panther_education_Vincent. (a) Outdoor air temperature and energy consumption time series. (b)
On the left are represented the daily load profiles for two load conditions, while on the right the scatterplots that put in relation the daily energy consumption with the mean
daily outdoor temperature.
Fig. 14. Normalized daily load profiles referred to the load condition Winter Workdays for two buildings which have different F. In red is highlighted the average profile.
show significant differences in both summer and winter workday load
conditions. As a reference, Bull_education_Roseann is characterized by
an EUI equal to 111 [kWh∕m2] during summer, which is included
between the median and third quartile values considering the peers
distribution. It means that the considered building has an EUI value
higher than 50% of its peers but it is not too critical. However, if the
distribution of the whole PSU category is considered, the benchmarked
building performs worse than about the 75% of the entire group,
determining a final score on this KPI of about 25 out of 100. The
opportunity to rank the building against its peers allowed then to better
take into account all the distinctive features that characterize its energy
14
consumption and assess its potential uniqueness in the reference set
of buildings. In the previously reported case, it is possible to say that
despite Bull_education_Roseann has a high EUI value, it is consistent
with the group of its peers.

5.3.2. Operational schedules
The second group of KPIs analyzed, pertain with the building

operational schedules. Specifically, as outlined in Section 4.3, dur-
ing the preliminary analysis of the energy consumption time series,
ON/OFF hours are automatically evaluated for winter and summer
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Fig. 15. Identification of peers for the building encoded as Robin_office_Antonina.
Fig. 16. Identification of peers for the building encoded as Panther_education_Vincent.
Fig. 17. Benchmarking results for the EUI of the building encoded as Bull_education_Roseann (orange line) in both summer and winter season. In green is shown the EUI distribution

of the peers identified for Bull_education_Roseann, while in blue is shown the EUI distribution of the entire education PSU category.
workdays. Then for both the summer and winter season, the OFF-
impact and weekend impact indicators are calculated. Fig. 18 shows the
ON/OFF/weekend-hours encoding for a winter, (Fig. 18(a)) and a sum-
mer week, (Fig. 18(b)), for the building encoded as Fox_office_Sheila.
It can be observed that in the summer week analyzed, the energy
used during ON-hours is more than that used during the winter week,
15
due to the higher peak of the energy consumption. Also the summer
weekend analyzed has an energy consumption higher than the winter
weekend. However, in relative terms, the ratio between the energy used
during OFF-hours and that used during ON-hours is higher in the winter
week, contributing to achieving an higher value for the OFF-impact
KPI.
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Fig. 18. Operational schedule extraction from the energy consumption time series of the building encoded as Fox_office_Sheila in a summer and winter week. (a) ON and OFF
hour encoding for the week 2017/10/30–2017/11/05. (b) ON and OFF hour encoding for the week 2017/08/14–2017/08/20.
In particular, the benchmarking results for Hog_office_Sheila are
shown in Fig. 19. It can be observed that the building performs poorly
considering both KPIs and for both seasons compared to its peers.

5.3.3. Volatility of energy consumption
The load volatility LV gives a compact information about the vari-

ability of the daily energy consumption patterns in the same load
condition. If a load condition is characterized by high volatility means
that, on average, each load profile, included in it, is far away from
the set of its closest neighbors. This information is then useful to
understand how much repetitive and frequent are the daily energy
patterns of a building in terms of both shape and magnitude during
specific periods of the year. This feature has been discussed in the
literature as an important driver for the definition of load prediction
and anomaly detection processes in buildings [62,69]. As a reference,
Fig. 20 shows the results associated with the calculation of the LV
for the test building labeled as Bear_education_Paola. Specifically, in
Fig. 20(a) are displayed the daily load profiles for the load condition
winter workdays. At first glance, the daily profiles seem to be widely
spread, however, such potential high variability needs to be better in-
vestigated considering that the load condition was labeled as ‘‘Thermal
sensitive’’. In this case, high volatility exists if compared to the one of
a ‘‘not-thermal sensitive’’ building, but it is of interest to understand
16
if, when a certain outdoor air temperature pattern occurs, the corre-
sponding electrical load profiles are or not close to each other. For this
purpose, in Fig. 20(b) is displayed the distance matrix reporting the
euclidean distances between the daily load profiles included in the load
condition and their closest neighbors (i.e., which number is fixed to the
10% of the load profiles). In the analyzed case, the closest neighbors are
identified according to the outdoor air temperature daily profiles (due
to thermal sensitivity) while the distances are a-posteriori computed
on the electrical load values. Then, for each day is obtained the load
volatility 𝐿𝑉𝑖 reported on the bar plot, and by averaging all the 𝐿𝑉𝑖 the
𝐿𝑉 is assessed for the whole load condition (red dashed line). For the
load condition Winter workdays of the building Bear_education_Paola,
𝐿𝑉 is equal to 3.82%. It means that on average the daily load profiles
of this building are far from their closest neighbors for an amount of
energy of about 4% of their daily energy consumption. Considering
the 𝐿𝑉 distribution of the peers and whole PSU category Fig. 20(c),
it is possible to observe that the building Bear_education_Paola is char-
acterized by low volatility in its energy consumption during the load
condition, and more specifically that the volatility is fully consistent
with the weather conditions (i.e., low sparsity of daily load profiles
during similar boundary conditions).

5.3.4. Anomalies in energy consumption
Following the same procedure implemented for assessing load

volatility in a load condition, it is also possible to identify a number
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Fig. 19. Benchmarking results for the OFF-impact KPI (a) and the Weekend-impact KPI of the building encoded as Fox_office_Sheila.
Fig. 20. Load volatility assessment for the building Bear_education_Paola in winter workdays load condition. (a) Daily load profiles referred to the winter workday load condition.
(b) Calculation of the load volatility from the distance matrix. (c) Benchmark results for the load volatility KPI considering the distribution of both peers and entire education PSU
category.
of potential anomalous load profiles that are characterized by a high
Euclidean distance from their closest neighbors. Specifically, before
averaging all the 𝐿𝑉𝑖 to calculate the total volatility of the load
condition, three statistical methods (i.e., inter-quartile method, Z-score
method, and MAD) are implemented to detect upper outliers on the
distance vector ⃖⃗𝑑. As a reference, Fig. 21(a) shows in red the daily
load profiles detected as anomalous (i.e., with a value of 𝑑 that is
17

𝑖

out of range) for the building labeled as Fox_education_Shirley in the
load condition Winter workdays that is tagged as Thermal sensitive.
These profiles exhibit significant dissimilarity in relation to other daily
load profiles associated with the most similar conditions in terms of
outdoor air temperature patterns. In particular for the day 2017-12-
28 Fig. 21(b) shows in red its daily outdoor air temperature profile
and in blue its closest neighbors. On the other hand in Fig. 21(c) are
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Fig. 21. Identification of anomalies in the winter workday load condition for the building encoded as Fox_education_Shirley. (a) Representation of load profiles in the load condition
with evidence of those encoded as anomalous (solid red lines). (b) Representation of the outdoor air temperature profile for the day 2017-12-28 (solid red line) and its neighbor
profiles (solid blue lines). (c) Representation of load profiles corresponding to the identified outdoor air temperature profiles.
Fig. 22. Distribution of the AEC among all the load conditions for the buildings included in the Education and Office PSU category. For each distribution, with a dashed red line
is highlighted the 75𝑡ℎ percentile.
reported the corresponding electrical load profiles, which show a great
variability despite they are subjected to the same boundary conditions
(i.e., similar outdoor air temperature profiles).

Once the potential anomalies are detected, for each load condition,
the two KPIs AR and AEC are evaluated. While the first KPI reports
the percentage of anomalous daily load profiles in the load condition,
the second one assesses the corresponding amount of energy consumed
during an anomalous day out the total energy consumption of the load
condition as a percentage.

Fig. 22 presents the results obtained for the AEC considering all the
buildings in both PSU categories i.e., Office and Education buildings.
The results are reported in terms of frequency distributions, separately
for each thermal and non-thermal load condition. It is possible to
observe that, in most of the cases, there is a high frequency of buildings
characterized by a value of AEC close to 0%. It means that no anoma-
lous daily load profile is detected under that load condition. Conversely,
a number of buildings are characterized by a higher value of the AEC
close to 8%–10%, meaning that the energy consumption related to the
detected anomalous daily load profiles is significant with respect to the
18
total electricity consumption of the load condition. In Table 2 the 75𝑡ℎ

percentile of each distribution included in Fig. 22 is reported and it
can be observed that in each load condition, this value falls within the
range from 4% to 7%.

5.3.5. Load shape pattern frequency
The last KPI included in the energy benchmarking process aims at

understanding how frequent are the shapes of the daily load profiles in
a load condition with respect to the entire PSU category.

The results of the clustering analysis and of the frequency of load
profile shape analysis are reported in Fig. 23 for the Office buildings.

For what concerns the number of clusters identified through the DB
index, the optimal solution is, respectively, 13 for the Office category
(Fig. 23(a)) and 10 for the Education one. After the identification
of clusters, they are labeled as frequent or infrequent. Specifically,
for each cluster is assessed the percentage of included daily load
profiles out the total number of profiles in the PSU category, and
the corresponding percentage of buildings that have at least one load
profile grouped within the cluster itself, as shown in Fig. 23(b). In
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Table 2
75𝑡ℎ percentile of the Anomalous Energy Consumption KPI extracted from each load condition and for both education and office buildings.

Winter workdays Winter weekends Summer workdays Summer weekends

AEC 75𝑡ℎ percentile - Education buildings

Non-thermal sensitive 5.4% 6.9% 5.6% 6.5%
Thermal sensitive 5.2% 6.1% 4.5% 4.8%

AEC 75𝑡ℎ percentile - Office buildings

Non-thermal sensitive 5.7% 6.8% 5.0% 6.8%
Thermal sensitive 4.7% 7.0% 4.0% 5.5%
Fig. 23. Clustering results for office PSU category. (a) The solid black lines are the centroids obtained from the cluster analysis, while the blue areas are the one-standard deviation
intervals around the centroids. (b) Frequency analysis results in each load condition to label clusters as frequent (green bubbles) or infrequent (red bubbles).
this way, it was possible to label as frequent only the clusters that
have both percentage values above the mean, for each load condi-
tion.

When a new out-of-sample building is benchmarked, all the daily
load profiles of a load condition are compared against to the identified
cluster centroids, and each of them is classified in the cluster of its
closest centroid. As a result, for the analyzed building it is possible to
calculate the FR indicator, intended as the ratio between the number of
daily load profiles classified in frequent clusters and the total number
of daily load profiles in the considered load condition. In Fig. 24
19
are reported the load shape pattern frequency results for the build-
ing encoded as Wolf_office_Elisabeth considering the load condition
pertaining to winter workdays. Specifically, all the daily load profiles
are displaced in their closest clusters and colored in green or red
respectively for frequent and infrequent shapes. As a reference, for the
analyzed building, the FR is 82.8% meaning that the majority of the
load profiles included in the analyzed load condition are characterized
by a shape that frequently occurs in the reference PSU category, such
as Shape 3 and Shape 7. On the other hand, since on working days the
flat pattern or the morning-peak pattern is infrequent (i.e., Shapes 11
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Fig. 24. Classification of the normalized daily load profiles of the building encoded as Wolf_office_Elisabeth for the winter workdays load condition. The solid green and red thick
lines represent the centroid of frequent and infrequent clusters respectively, while the thin lines represent the normalized load profiles of the analyzed building.
Fig. 25. Radar plot of the performance scores associated to each KPI for the building encoded as Bear_education_Derek. With blue lines are represented the performance scores
obtained using the proposed benchmarking process based on a dynamic identification of peers while through the orange lines the performance scores obtained using the entire
education PSU category as the reference baseline.
and 12), the shapes of the load profiles that fall into these clusters are
considered as infrequent.

5.3.6. Performance score results
As previously discussed in Section 3, the last step of the bench-

marking process is to transform the values of each calculated KPI
into a performance score. To this purpose, the percentiles are used
to report the obtained results in a normalized range between 0 and
100. Where the score of 100 is associated with the building that
performs the best, for a specific KPI, considering the performance of
its identified peers. This representation is advantageous to inform the
final user about the final results in a simple and straightforward way.
20
A possible visualization of the output of the proposed benchmarking
process is reported in Fig. 25, where through radar plots it is possible
to easily detect the most critical aspects related to the energy con-
sumption patterns of a building. In Fig. 25, for the building encoded
as Bear_education_Derek, the performance scores obtained with the
proposed benchmarking process are reported and compared against
those obtained using, as a reference set of buildings, the entire PSU
category. The performance scores are also reported according to the
reference period used for the evaluation of each KPI (i.e., the entire
season or a load condition). In general, the building performs better
than half of its peers (blue line in the radar plot) in terms of Load
Volatility (LV), Anomaly Energy Consumption (AEC) – with exception
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Table 3
Summary of KPI values, 1𝑠𝑡 and 3𝑟𝑑 quartiles and performance scores for the building encoded as Bear_education_Derek.
KPI KPI unit Value 1𝑠𝑡 quartile 3𝑟𝑑 quartile Performance score

Winter season

EUI kWh∕(m2 DD) 0.12 0.04 0.12 27
OFF-impact [%] −39.17 −44.23 14.47 60
Weekend impact [%] −38.40 −46.86 −25.25 53

Summer season

EUI kWh∕(m2 DD) 1.29 0.05 0.9 20
OFF-impact [%] −39.77 −25.74 2.88 87
Weekend impact [%] −38.12 −38.08 −26.47 73

Winter workdays

AEC [%] 6.02 2.24 4.98 7
LV [%] 1.23 2.3 4.22 100
FR [%] 0 1.87 14.64 0

Summer workdays

AEC [%] 1.52 0.8 4.5 60
LV [%] 1.06 1.84 3.66 97
FR [%] 0 0 6.15 0

Winter weekends

AEC [%] 3.61 0.27 4.67 53
LV [%] 1.35 2.11 4.67 100
FR [%] 0 0.49 30 0

Summer weekends

AEC [%] 3.93 0 4.29 37
LV [%] 0.03 1.7 3.77 97
FR [%] 0 0.47 30.63 0
for workdays – and OFF-impact. It is worth to note that, despite some
performance scores assume very high values, the daily load profiles are
characterized by infrequent shapes (i.e., Performance scores associated
to FR values are equal to zero). Additionally, if the entire education PSU
category is considered, as the reference baseline for benchmarking the
same building, the performance scores for each KPI would be visibly
different (i.e., orange line in the radar plot), with a mean absolute
variation of about 27%. The same analysis was also performed for the
entire test set of buildings leading to an average variation of about 14%.
For the sake of completeness, for the building Bear_education_Derek, in
Table 3 are reported the following information: calculated values for
each KPI, 1𝑠𝑡 and 3𝑟𝑑 quartile values of KPI distributions considering its
et of peers, performance scores for each KPI value.

. Discussions

This work introduces a holistic approach towards energy bench-
arking in buildings. The main contribution is related to the high

lexibility of the entire approach, overcoming the concept of static
omparisons between a building and a reference building stock that
nly shares the same PSU category. The proposed methodology allows
o properly select the best set of peers to conduct a robust energy
enchmarking of a building, taking into account a number of distinctive
eatures from its energy consumption time-series (i.e., thermal sensi-
ivity, shape and magnitude of energy consumption, load conditions,
nd PSU category). Moreover, novel KPIs, such as Load Volatility (LV)
nd Anomaly Rate (AR) are introduced, while others, such as EUI,
ave been redefined, allowing them to be more contextualized and
nformative considering the existence of different boundary conditions.
s a key result, the proposed approach leads to an increased accuracy
f the energy benchmarking process mainly due to the implemented
eer identification process. This demonstrates how impactful is this
tep of analysis for the definition of a robust benchmarking system
nd how important is to consider features extracted from time-series
o cope with the concept of pattern similarity in energy consumption.
ased on what was observed in this study, some aspects also emerged as
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crucial points to further expand the capabilities of the proposed bench-
marking process. The first barrier towards the fully generalizability of
the methodology is related to the number of buildings and their PSU
categories. Currently, the analysis has been performed on a portion
of the open dataset BDGP2 [22], which is one of the few attempts
worldwide to make available to the scientific community a large set
of building-monitored data. However, the project has some limitations
concerning the diversity of data types, lack of user contributions, and
missing data [73]. In this context, the collection of extensive datasets
will greatly accelerate research in the field of energy and buildings,
spanning various domains including building energy management, en-
ergy performance assessment, grid management, and socioeconomic
analysis. Together with the volume, variety and geographic represen-
tativeness of the available open datasets, another barrier is associated
with the lack of a unified semantic data representation of building-
related data. The use of a formal taxonomy for monitored data and
metadata, a unique representation of the relations that exist among
energy system features and components, may enable a more com-
prehensive understanding of the building configuration and support
the definition of data-driven processes such as energy benchmarking.
Specifically, the use of semantic data representations can be partic-
ularly useful in supervising the peer identification process that may
leverage the concept of building similarity considering both monitored
energy consumption data and building/system metadata (e.g., energy
system configuration). In this sense, also the thermal sensitivity analysis
may be preliminary driven by the knowledge of the energy services
provided to the building and the kind of systems (e.g., presence of
heat pumps for space heating) that are installed for that purpose.
The knowledge of metadata and contextual information has then a
twofold advantage: on one hand it allows to supervise some analyses
(e.g., peer identification, thermal sensitivity analysis), while on the
other hand to refine the results of the entire benchmarking process.
As a reference, the availability of a detailed occupancy schedule and
of the real holiday calendar allows a more precise evaluation of load
conditions (e.g., workdays) and KPIs such as OFF-impact, weekend
impact, Load Volatility (LV) and Anomaly Rate (AR). In fact, in this
study those pieces of information were indirectly retrieved by means of
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a statistical analysis of the energy consumption time series, without the
knowledge of any ground truth. Another aspect that is worth to mention
is related to the opportunity to exploit the proposed benchmarking
process as a preliminary step of analysis before focusing on specific
energy management-related tasks. For example, the evaluation of the
AR KPI can be considered as a useful support to estimate the potential
impact of an anomaly detection and diagnosis tool to be deployed in
the building under investigation, highlighting the load conditions that
are of higher interest. Similarly, the assessment of Load Volatility (LV)
may be advantageous to preliminary understand some key features of
the building under analysis. Firstly, if a building is characterized by a
low load volatility, it means that its energy consumption is stable over
time or its variation can be well explained by observing the variation of
boundary conditions (e.g., outdoor air temperature). In this condition,
it has been demonstrated in the literature, that the building energy
consumption can be easily predicted over time with high accuracy, de
facto enabling the definition of predictive strategies for the optimal
management of building energy systems. On the other hand, high
values of load volatility are associated with buildings that do not follow
a specific pattern in their energy consumption. This aspect may be
associated with a high level of inefficiency but in some cases may reveal
the high capability of a building to alter its loads more significantly
for example in response to a Demand Response (DR) event such as a
dynamic pricing plan [74]. In this sense, the knowledge of this KPI can
drive the enrollment process of energy customers into demand response
programs considering the potential flexibility resource that they would
supply to the grid. In this perspective, a comprehensive building dataset
which includes information related to the participation of a building in
a DR program together with the occurrence and duration ofDR events,
would enable the opportunity to evaluate additional flexibility KPIs to
assess and track over time the effectiveness of a building in reacting to
grid signals [33–35].

7. Conclusions

This paper introduces a novel data-driven external energy bench-
marking methodology that extends beyond traditional assessments of
Energy Use Intensity (EUI) and comparisons within PSU categories.
Instead of merely clustering buildings based on PSU categories, this
methodology delves into the details of monitored consumption data
to extract valuable insights in the form of KPIs. The methodology is
applied to the open-source BDGP2 dataset for Education and Office
building categories. In terms of future work, for the sake of gener-
alization and scalability it is necessary to apply this methodology to
other categories respect to those analyzed in this paper. Furthermore,
additional variables and semantic data representations of the buildings
may enable a general refinement and extension of the benchmarking
results considering the opportunity to calculate new families of KPIs
and to supervise analysis pertaining to the load condition identification,
peers identification and thermal sensitivity assessment. In this perspec-
tive, another point to be further explored refers to the deployment
strategy of the proposed energy benchmarking system. In its current
form, the process has been conceived as an offline pipeline of analysis
of energy consumption data monitored during a specific year in the
past (i.e., 2017). However, the dataset needs to be regularly updated
(e.g., yearly) in order to be representative of the energy performance
of the building stock over time. Similarly, the benchmarking process
can be run, for a specific building, year by year to understand how the
KPIs and their associated performance scores evolved and internally
compare them with past values. The first steps towards this imple-
mentation can be summarized as follows: (i) make the tool publicly
available (e.g., by sharing code through an open GitHub project), (ii)
make the tool easily integrable with open datasets (e.g., BDGP2 and
its future evolutions) (iii) and allow the final user to upload data of
a new building and to benchmark it against the available reference
stock.
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