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Abstract—Compressed sensing, further to its ability of re-
ducing resources spent in signal acquisition, may be seen as an
implicit private-key encryption scheme. The level of achievable
secrecy has been analyzed in the most classical settings, when the
sensing matrix is made of independent and identically distributed
entries. Yet, it is known that substantially improved acquisition
can be achieved by tuning the statistics of such a matrix. The
effect of such an optimization on the robustness with respect to
classical cryptographic attacks is analyzed here.

I. INTRODUCTION

The encryption scheme we consider is based on Com-
pressed Sensing (CS) [1], [2], a method in which a signal
represented by a vector x ∈ Rn is acquired by applying a
linear mapping A (the m × n encoding matrix with m < n)
to generate the measurements vector y = 1√

n
Ax. To recover

x given y, CS leverages its sparsity, i.e., the fact that x = Ds
for some orthonormal matrix D and vector s with at most
k < m < n non-zero entries, as well as the ability of
random matrices A to capture such information despite the
dimensionality reduction.

Recovery needs the knowledge of A and this naturally
leads to see the encoding process as a private-key encryption
stage for which x is the plaintext, y is the ciphertext and
A is the shared secret. This is the core idea in [3]–[6].
Practical implementations may take advantage of embedding
basic secrecy into the same stage that performs parsimonious
acquisition by identifying the key with the seed of a pseudo-
random generator producing A both at the encoder and at the
decoder.

When the entries of A are i.i.d. antipodal random variables,
robustness to classical attacks is investigated in [7], [8].
Ciphertext-only attacks (COAs) are shown to be ineffective
since, when n is large, they may only reveal the average
energy of x. Hence, CS-based encryption enjoys asymptotic
circular secrecy, i.e., it is asymptotically Shannon-secure [7]
when the energy of the ciphertext is not an issue. Known-
plaintext attacks (KPAs) are also considered, in which the
attacker knows both x and y and aims at retrieving A so
to identify the key and be able to seed the pseudo-random
generator to anticipate future encoding matrices. In this case,
robustness comes from the fact that each plaintext-ciphertext
is compatible with an enormous number of antipodal matrices
among which the true one sits like an indistinguishable straw
in a haystack.

Yet, it has been recently shown [9], [10] that when the
signals to acquire do not distribute their energy uniformly (i.e.,
when they are not white) sensing performance can be improved

Fig. 1. A cryptographic look at a CS system optimized with a rakeness-based
design.

by generating each row a> of A independently of the others,
but with entries whose correlation A = E[aa>] is adapted to
the second-order statistic of x. The design of such optimized
rows hinges on the concept of rakeness, i.e., on the ability of
measurements in y to capture the energy of x and may greatly
enhance the design of CS stages [11].

The resulting system becomes as sketched in Figure 1 in
which the encoder and the decoder receive the rows aj of
A from two identical Pseudo Random Number Generators
(PRNGs) whose seed is the private key and such that A is
publicly known according to Kerckhoff’s principle. Hence,
differently from classical i.i.d. CS, rakeness-based CS alters
the energy of y, whose statistics can be expected to carry
information other than the energy of x. Moreover, it uses non-
i.i.d. sensing matrices whose statistic is known to attackers
and can be exploited, thus suggesting that it may be a weaker
encryption scheme.

We here address these issues proving that, even if it is op-
timized following a rakeness-based design flow, CS-embedded
encryption still enjoys asymptotical circular secrecy and thus
is robust with respect to COAs. Moreover, an approximate but
effective theory is developed allowing to quantify the success
chance of KPAs that is still low enough to claim practical
security.

II. SYSTEM MODEL AND ASSUMPTIONS

Since the rows of A are independent, we concentrate on
one of them a> = (a0, . . . , an−1) ∈ {−1,+1}n and on
the corresponding scalar measurement y = 1√

n
a>x where

x = (x0, . . . , xn−1)> with E[x2j ] = Wx. We assume that a and
x are slices of zero-mean and independent mixing stochastic
processes with power spectra Sa(f) and Sx(f) on which we
put the regularity constraint of being square summable. The
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eigenvalues of the correlation matrix A are λj ≥ 0, the
eigenvalues of X = W−1x E[xx>] are µj ≥ 0, and the two
matrices are assumed to share the same set of orthonormal
eigenvectors qj so that λjqj = Aaj ad µjqj = X qj .

By applying the main theorem in [13, chapter 5], we
know that limn→∞ 1

n

∑n−1
j=0 λj = limn→∞ 1

n

∑n−1
j=0 µj = 1,

and that, since Sa(f) is assumed to be square-summable, we
may define the finite quantity σ2 = limn→∞ 1

n

∑n−1
j=0 λ

2
j =∫ 1/2

−1/2
S2
a(f)df . As an additional assumption on the relationship

between a and x, we assume that there is a finite quantity ξ2

such that limn→∞ 1
n

∑n−1
j=0 λjµj = ξ2.

The two parameters σ2 and ξ2 are those ultimately affecting
robustness against COAs and KPAs.

III. ASYMPTOTIC CIRCULAR SECRECY

Robustness against COAs depends on the statistics of
y√
Wx

= 1√
n

a> x√
Wx

, where the power normalization
highlights a scalar product between two unit-power vectors.

Exploiting the assumption that the processes generating the
vectors a and x are mixing we may apply the Lindeberg-Feller
central limit theorem [14, Theorem 27.4] to recognize that
y√
Wx

is asymptotically distributed as a zero-mean Gaussian.

To compute the variance, note that since the scalar product
is invariant with respect to orthonormal transformation we may
compute measurements as y

Wx
= 1√

n
ā>x̄ where ā = Q>a,

x̄ = Q> x√
Wx

and Q is the matrix aligning the eigenvectors qj
as columns. The components of ā and x̄ are uncorrelated and
āj has variance λj while x̄j has variance µj . Overall y√

Wx
=

1√
n

∑n−1
j=0 āj x̄j has variance 1

n

∑n−1
j=0 λjµj whose limit is ξ2.

Overall

y
n→∞∼ N

(
0, ξ2Wx

)
(1)

Hence, the encryption we analyze is asymptotically cir-
cularly secret as defined in [7], since ξ2Wx is the only
information that an attacker may infer from the observation
of the ciphertexts y.

The results in [5], [7] are a special case of (1). In fact, when
A is made of i.i.d. antipodal entries, A is the identity matrix,
λj = 1 for all j, and, independently of X , the information
that leaks is Wx. Yet, asymptotic circular security holds also
adopting a rakeness-based design flow [9], [10] that computes
an optimized A exploiting the same eigenvectors of X and
modulating its eigenvalues.

IV. DISTANCE BETWEEN ROWS OF A AND KPAS

As discussed in [8], once that x and y are known, solving
the measurement equation y = 1√

n
a>x for a ∈ {−1,+1}n is

usually not a difficult task. Yet, the solution is not unique and,
among the extremely huge amount of solutions, the chance of
hitting one that is at least close to the true one is negligible.

Yet, if A is not the identity, the attacker may exploit
such an information. The most elementary way of doing so
is to use the same generator employed at the encoder to
produce the true a, to generate candidate â’s and match them

with the measurements equation. With this, rows that have
been most likely used in the encoding are generated and
tried first, hopefully increasing the chance of finding a good
approximation of the true a.

To assess the threat of such a KPA, we must know the
probability that two sensing vectors a′ and a′′ (representing the
one used by the encoder and the one guessed by the attacker)
obeying the same A , have a certain (small) Hamming distance
∆(a′, a′′), i.e., differ in ∆(a′, a′′) entries. We approximate
such a probability for large n and analyze the distribution of
1
n∆(a′, a′′) = 1

4‖ a
′
√
n
− a′′√

n
‖2 when ( a′√

n
)>x = ( a

′′
√
n

)>x = y.

The idea is to discard the antipodality constraint and focus
on the unit-norm vectors u′ = a′/

√
n and u′′ = a′′/

√
n modeling

them as perturbations of Gaussian vectors with zero mean and
correlation A. By now, we neglect the linear constraint due to
the measurement equation, to reintroduce it at a later stage.

More formally, we consider zero-mean Gaussian vectors
g′ and g′′ with correlation A and set v′ = g′√

n
and v′′ = g′′√

n
.

Clearly E[‖v′‖2] = E[‖v′′‖2] = 1 but we may prove that
v′ and v′′ become very close to unit-norm as n → ∞. To
see why, consider the vectors γ′ = Qg′ and γ′′ = Qg′′ that
are Gaussian but made of uncorrelated and thus independent
components with variances λj . Since Q does not alter Eu-
clidean, if v is either v′ or v′′ we have ‖v‖2 = 1

n‖γ‖2 =
1
n

∑n−1
j=0

(
γ2j − λj

)
+ 1

n

∑n−1
j=0 λj . The first term is a sum of

independent random variables with zero mean and variance

1

n2

n−1∑

j=0

E
[(
γ2j − λj

)2]
=

1

n2

n−1∑

j=0

E[γ4j ]−λ2j =
2

n2

n−1∑

j=0

λ2j =
2σ2

n

Since 1
n

∑n−1
j=0 λj = 1 we have ‖v′‖, ‖v′′‖2 n→∞∼ N

(
1, 2σ

2

n

)
.

Hence v′ and v′′ can be seen as unit-norm vectors u′ and u′′
superimposed with a zero-mean Gaussian-length perturbation
with variance 2σ2

n (see Figure 2-a).

The squared length of the difference between v′ and v′′

can be characterized by resorting to the above γ′ = Qg′ and
γ′′ = Qg′′. In fact Q preserves Euclidean distance and ‖v′ −
v′′‖2 = 1

n‖γ′ − γ′′‖2 that can be recast into

‖v′ − v′′‖2 =
1√
n

1√
n

n−1∑

j=0

[(
γ′j − γ′′j

)2 − 2λj

]
+

2

n

n−1∑

j=0

λj

Since γ′j and γ′′j are independent and Gaussian with variance
λj , the random variables in the above square brackets are
independent, have zero mean and variance 8λ2j .

Since 2
n

∑n−1
j=0 λj = 2 and limn→∞ 1

n

∑n−1
j=0 8λ2j = 8σ2,

we have ‖v′ − v′′‖2 n→∞∼ N
(

2, 8σ
2

n

)
. Yet, recall that v′ and

v′′ can be seen as unit vectors u′ and u′′ plus two perturbations
n→∞∼ N

(
0, 2σ

2

n

)
. These perturbations make the variance of

‖v′ − v′′‖2 larger than that of ‖u′ − u′′‖2 that, is therefore
asymptotically distributed as N

(
2, 4σ

2

n

)
. If the same vectors

are rescaled so that their length is r instead of 1, the asymptotic
distribution becomes N

(
2r, 4σ

2r2

n

)
.

To exploit this result in our setting, observe that if an
antipodal a and its unit-length counterpart u = a√

n
are



3

This is the author’s version of the article that has been presented at IEEE ISCAS2016
The editorial version of the paper is available at http://dx.doi.org/10.1109/ISCAS.2016.7527215

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2016 IEEE. Personal use is permitted.

a) b)

Fig. 2. a) Gaussian normalized vectors v′ and v′′ as perturbed unit-norm
vectors u′ and u′′. b) The effect of the normalized measurement constraint
on the distribution of ā′ and ā′′.

constrained to satisfy 1√
n
a>x = u>x = y for some x and y,

then u belongs to the intersection of the unit-sphere and an hy-
perplane whose distance from the center of the sphere is y2

‖x‖2
(Figure 2-b)). Such an intersection is an (n− 1)-dimensional
sphere with radius r =

√
1− y2

‖x‖2 . We approximate such a
radius with the value it assumes when the random variables
involved in its computation are given their average values.

First, since y
n→∞∼ N

(
0, ξ2Wx

)
then y2 becomes a

χ2 random variable with average ξ2Wx. Second, since the
process generating x is mixing and thus ergodic, ‖x‖

2

n →Wx

and thus ‖x‖2 ' nWx. All together this gives the approx-

imate value r '
√

1− ξ2

n that can be substituted in the

above asymptotic distribution to say that ‖u′ − u′′‖2 n→∞∼
N
(

2
√

1− ξ2

n , 4
(

1− ξ2

n

)
σ2

n

)
and thus finally

1

n
∆(a′, a′′)

n→∞∼ N




√
1− ξ2

n

2
,

1− ξ2

n

4

σ2

n


 (2)

A. Numerical experiments

To test the above theory and assess how much its asymp-
totic nature fits finite-n configurations, we consider an input
signal coming from a stationary process with an exponential
correlation matrix Xj,k = r|j−k| corresponding to the power
spectrum Sx(f) = (1− r2)/

(
1 + r2 − 2r cos(2πf)

)
that may

exhibit high-pass (−1 < r < 0), white (r = 0), or low-
pass (0 < r < 1) profiles. Starting from X , the design flow
proposed in [9], [10] is used to compute A. From that matrix
and from [15] we get the correlation of an easy-to-generate
zero-mean jointly Gaussian vector that can be clipped to obtain
a.

To explore the design space, the signal dimensionality
is taken as n = 64, 96, 128, 192, 256, 384, 512 and different
spectra are considered for r = 0,±0.2,±0.5,±0.7,±0.9. Note
that, since the coefficients of the characteristic polynomial of
X depend only on even powers of r, we expect negative and
positive values of such a parameter to lead to the same result.

For each configuration we compute 105 measurements,
each trial characterized by a different random instances of
x, a and thus y. The empirical distribution of y is matched
against the theoretical prediction (1) in Figure 3 for some n
and r. Beyond the good visual agreement, since the secrecy of
CS encryption depends on the statistical indistinguishability of

Fig. 3. Match between empirical and theoretical distribution of normalized
measurements for different values of n and r.

Fig. 4. P-values of the Kolomogorov-Smirnov test for normality on the
empirical distribution of measurements for different values of n and r. Dots
above the red line correspond to empirical distribution that would commonly
be accepted as Gaussian.

those profiles from Gaussian ones, we perform a Kolmogorov-
Smirnov test on each set of measurements yielding the cor-
responding p-value, i.e., the probability that the empirical
distribution of an equal number of samples drawn from a
true Gaussian distribution deviates more than the observed one
from the ideal profile. The results of such tests are reported in
Figure 4 against the values of n and along with the 5% sig-
nificance level that is commonly used to distinguish Gaussian
data from non-Gaussian one. Note that, coherently with the
asymptotic nature of (1) as n increases, all measurements sets
agree with the Gaussian distribution.

To validate (2), for each of the above configurations we
simulate many KPAs. In each trial a newly generated signal x
is quantized in 14-bits words so that each entry is an integer in
{−L, . . . , L} \ {0} with L = 8192, and an antipodal sensing
vector a is generated clipping a properly designed Gaussian
vector. The corresponding measurement is y = a>x.

The same generator used for a is exploited to produce a
sequence of candidate antipodal vectors â. When a candidate
satisfies â>x = y the hamming distance ∆(a, â) is collected.

The empirical distribution of ∆(a, â)/n is matched against
the theoretical prediction (2) in Figure 5 for some n and r.

A more quantitative view is given by Figures 6 and 7
in which we report the empirical value against the theo-
retical value for the average and the standard deviation of
∆(a, â)/n. In Figure 6 this is done for r = ±0.7 sweeping
n = 64, . . . , 512 while in Figure 7 we set n = 256 and
sweep r = 0,±0.2, . . . ,±0.9. Notwithstanding the simplifying
assumptions, theory and simulations agree and, as expected,
negative and positive values of r yield substantially the same
behavior, confirming the role of the eigenvalues of X .

As an example of how this can be used to assess ro-
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Fig. 5. Match between empirical and theoretical distribution of normalized
hamming distances for different values of n and r.

Fig. 6. Match between empirical and theoretical mean and standard-deviations
of ∆(a, â)/n for r = 0.7 (blue circles), r = −0.7 (red asterisks) and
different values of n.

bustness against KPAs, assume that the rakeness-based CS
is optimized to acquire n = 256-dimensional chunks of a
low-pass process characterized by r = 0.7. Since in this case
∆(a, â)/n is distributed as N (0.497, 0.0019), the probability
to generate a candidate satisfying the measurement equation
and with less than 16 differences from the true sensing vector
is pKPA = 1

2erfc
(

0.4970− 16
256√

2×0.0019

)
'2.13× 10−23.

Under repeated threat of KPA, such a probability can be
translated into an estimate of the maximum time that may
elapse between two subsequent key changes (a countermeasure
that makes all previous KPAs uneffective). In fact, the proba-
bility of T repeated failures is (1−pKPA)T and to ensure that
this is not less than a prescribed security level ζ we should have
T ≤ log(ζ)/ log(1− pKPA). For ζ = 0.9999 we obtain a key

Fig. 7. Match between empirical and theoretical mean and standard-deviations
of ∆(a, â)/n for n = 256 and different positive (blue circles) and negative
(red asterisks) values of r.

lifetime not larger than T = 4.70× 1018 attack opportunities.

Though this is still surely acceptable note that, as it can
be intuitively accepted, since rakeness-based CS provides the
attacker with additional side information (A) it is somehow
less secure. In fact, classical i.i.d. CS can be modeled setting
A to the identity matrix so that σ2 = ξ2 = 1. In this case the-
ory predicts that ∆(a, â)/n distributes as N (0.499, 0.00973),
yielding pKPA = 8.23 × 10−45. To maintain the previous
security level the maximum time between key changes is
bounded the much larger T = 1.22×1040 attack opportunities.

V. CONCLUSION

The adoption of a rakeness-based design for CS optimizes
acquistion performance but affects the secrecy of the implicit
encryption. Such an effect can be quantified adopting the
theory developed in this paper to find that a non negligible
level of security is still achievable.
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