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Contemporary Mathematics

Some remarks on varieties whose twisted normal bundle is
an instanton

Vincenzo Antonelli and Gianfranco Casnati

Abstract. Let X ⊆ PN be a smooth variety with normal bundle NX . In

this note we prove that if NX ⊗OPN (−t) is an instanton with quantum num-
ber k in the sense of [2], then dim(X) = N − 2, t = 1 and, when n ≥ 4,

also ⌊dim(X)/2⌋ ≤ deg(X). Moreover, we also discuss some methods for con-

structing smooth varieties such that NX⊗OPN (−1) is an instanton with k ̸= 0,
illustrating them with explicit examples and counterexamples.

1. Introduction

In this paper a variety X is a closed, integral subscheme of some projective
space over a field k.

The following definition mimics the one in [16] extending it to each variety
besides PN : for a more detailed discussion motivating it, see [2] (and [12] for the
particular case k = 0).

Definition 1.1. LetX ⊆ PN be a variety of dimension n ≥ 2 and let OX(h) :=
OX ⊗OPN (1).

A rank r sheaf E on X is called h–instanton with quantum number k if

h0(E(−h)) = hn(E(−nh)) = 0, h1(E(−h)) = hn−1(E(−nh)) = k,

hi(E(−(i+ 1)h)) = hj(E(−jh)) = 0

for 1 ≤ i ≤ n− 2 and 2 ≤ j ≤ n− 1.
An h–instanton sheaf E with quantum number 0 is called h–Ulrich.

We only notice that the vanishings in the last displayed row of the above defi-
nition contribute to it only if n ≥ 3. When n = 2 they are empty conditions. When
n ≥ 3 then hi(E(−th)) = 0 for 2 ≤ t ≤ n− 1 and 0 ≤ i ≤ n.

On the one hand, rank two instanton bundles on P3 were first introduced due to
their connection with the solutions of the Yang–Mills equations (see [5]) through the
Atiyah–Penrose–Ward transformation and therefore with the physics of particles.

On the other hand, the existence of an instanton sheaf with fixed quantum
number k on X is not obvious. E.g. the study of the algebraic counterpart of Ulrich
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2 VINCENZO ANTONELLI AND GIANFRANCO CASNATI

sheaves, i.e. maximally generated maximal Cohen–Macaulay modules, started in
the 80’s of the past century and the problem of their existence on each variety is
a wide open question which have been object of deep study since [12] appeared in
2003 (see [6] for more details about this case both from the algebraic viewpoint and
the geometric one).

The existence of instanton and Ulrich sheaves is often also related to interesting
geometric deep properties of the underlying variety X. E.g. if X ⊆ Pn+1 is a
hypersurface, then the existence of a locally Cohen–Macaulay h–instanton sheaf is
equivalent to the existence of a representation of a power of the form defining X
as the determinant of a suitable morphism of vector bundles of the same rank on
Pn+1 which are Steiner in the sense of [11] (see Definition 1.4).

Notice that every variety X ⊆ PN comes equipped with certain distinctive
vector bundles such as the cotangent bundle, i.e. the sheaf of differentials Ω1

X , the
tangent bundle, i.e. its dual TX , the conormal bundle, i.e. CX := IX/I2

X where IX
is the ideal sheaf of X, and the normal bundle, i.e. its dual NX . Thus it is quite
reasonable to ask if one of them is an instanton bundle with respect to OX(h).

In [8] the second author, improving and generalizing a recent result in [7],
shows that one can answer affirmatively to the above question only for TX when
either X is a twisted cubic curve in P3, or a Veronese surface in P5 and in these
cases TX is actually Ulrich.

Let us now focus on the normal bundle NX of X ⊆ PN . The fact that NX is
never an h–instanton bundle trivially follows by combining the exact sequences

0 −→ TX −→ TPN ⊗OX −→ NX −→ 0,(1.1)

0 −→ OPN (−1) −→ O⊕N+1
PN −→ TPN (−1) −→ 0.

Indeed by composition we obtain a surjective morphism

O⊕N+1
X ↠ TPN ⊗OX(−h) ↠ NX(−h),

hence h0(NX(−h)) ̸= 0. For this reason it is natural to raise the same question for
the tensor products of NX with suitable rank one coherent sheaves L on X.

The first result in this direction can be found in [19, Theorem 3.6] where the
authors show that if X ⊆ PN is the degeneracy locus of a matrix M of linear forms
and the characteristic of k is zero, then there is a rank one sheaf L on X which is
invertible outside the singular locus of X and such that NX ⊗ L is Ulrich. In the
particular case of codimension 2 varieties, then L ∼= OX(−h).

If we restrict to smooth varieties and to sheaves L ∼= OX(−th), there are even
more precise results. Indeed, on the one hand, at least when k = C, in [20] the
author proves that if NX(−th) is Ulrich then either X is a linear subspace of PN , or
N = n+2, t = 1 and n = dim(X) ≤ 3. On the other hand, for each non–degenerate
complete intersection X ⊆ Pn+2 the bundle NX(−h) is never h–Ulrich.

In the present short note we partially extend the quoted result from [20] to
instanton bundles proving the following result in Section 2.

Theorem 1.2. Let X ⊆ PN be a smooth variety of dimension n < N and let
OX(h) := OX ⊗OPN (1).

Then NX(−th) is an h–instanton bundle if and only if t = 1 and one of the
following assertions holds.

(1) X is a linear subspace in PN : in this case NX(−h) ∼= O⊕N−n
Pn .
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(2) N = n+2 and hj(NX(−(j+2)h)) = 0 for 0 ≤ j ≤ n− 2: in this case the
quantum number of NX(−h) is h1(NX(−2h)).

Moreover, if the latter case occurs and n ≥ 4, then

(1.2)
⌊n
2

⌋
≤ deg(X).

In view of the above result, in Section 3 we deal with the well known Serre
correspondence between varieties of codimension 2 and vector bundles (see [23, 4]).
More precisely, we recall that for each smooth variety X ⊆ Pn+2 of dimension n
there exists at least one rank r vector bundle F on Pn+2 and an injective morphism
φ : O⊕r−1

Pn+2 → F∨(1) such that the locus Dr−1(φ) of points where rk(φ) ≤ r − 1 is
exactly X (see Lemma 3.1).

In Section 4 we prove the following result extending [20, Proposition 2.2] to
instanton bundles.

Theorem 1.3. Let F be a rank r Steiner bundle with c1(F) = f on Pn+2,
n ≥ 2. Assume that φ : O⊕r−1

Pn+2 → F∨(1) is an injective morphism such that X =
Dr−1(φ) is smooth of dimension n and set OX(h) := OX ⊗OPn+2(1).

Then NX(−h) is h–instanton with quantum number (r − 1)f .

Trivially each linear determinantal smooth variety of codimension 2 gives exam-
ples of the above theorems. Nevertheless, we can even find non–trivial examples, i.e.
varieties X ⊆ Pn+2 such that NX is an h–instanton with strictly positive quantum
number. Several examples are exploited in Section 5.

1.1. Notation and first results. Throughout the whole paper we will work
over an algebraically closed field k of arbitrary characteristic. The projective space
of dimension N over k will be denoted by PN : OPN (1) will denote the hyperplane
line bundle.

A projective scheme X is a closed subscheme of some projective space over k:
X is a variety if it is also integral. If X is a projective scheme its structure sheaf is
denoted by OX , its canonical sheaf by ωX , its sheaf of p–differentials by Ωp

X , and
we set TX := (Ω1

X)∨.
Let X be smooth. We denote by KX each Cartier divisor such that ωX

∼=
OX(KX). As in [14], Ar(X) denotes the group of cycles on X of codimension r
modulo rational equivalence, hence A1(X) coincides with the usual Picard group
of X. The Chern classes of a coherent sheaf A on X are elements in A(X): in
particular, when A is locally free c1(A) is identified with det(A). When X = PN ,
then Ar(PN ) is generated by the class of a linear variety of codimension r, hence
we make the standard identification Ar(PN ) = Z.

We recall the following definition: see [11].

Definition 1.4. Let N ≥ 2.
A rank r bundle F on PN is called Steiner if it fits into an exact sequence of

the form

(1.3) 0 −→ OPN (−1)⊕f −→ O⊕r+f
PN −→ F −→ 0

for some f ≥ 0.

Steiner bundles can be characterized cohomologically as follows.
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Lemma 1.5. Let N ≥ 2.
A rank r bundle F on PN is Steiner if and only if hi(F(t)) = 0 when either

0 ≤ i ≤ N − 2 and t ≤ −i− 1 or 1 ≤ i ≤ N and t ≥ −i.

Proof. In [3, Corollary 4.3] the authors show that the notion of Steiner bun-
dle can be be characterized cohomologically using either [3, Definition 1.1] or [3,
Proposition 4.1 (2)]. The latter is exactly the statement above. □

We will also need the following lemma.

Lemma 1.6. Let X be a smooth projective variety of dimension n ≥ 2 endowed
with an ample and globally generated line bundle OX(h).

A rank two bundle E on X with c1(E) = (n + 1)h + KX is an h–instanton if
and only if hi(E(−(i+ 1)h)) = 0 when 0 ≤ i ≤ n− 2.

Proof. Taking into account that in this paper we only consider as instanton
what is called instanton with defect δ = 0 in [2], the statement above is exactly [2,
Proposition 6.7]. □

For further notation and all the other results used in the paper we tacitly refer
to [15], unless otherwise stated.

2. The proof of Theorem 1.2

In this first section we prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. If X ⊆ PN is a linear subspace, then NX(−h) ∼=
O⊕N−n

Pn which is trivially an h–instanton.
If N = n+ 2, then (1.1) yields

(2.1) c1(NX(−h)) = (n+ 1)h+KX .

In particular, thanks to Lemma 1.6, NX(−h) is an h–instanton bundle if and only
if hj(NX(−(j + 2)h)) = 0 for 0 ≤ j ≤ n − 2. Moreover, if these vanishings occur,
then the quantum number of NX(−h) is h1(NX(−2h)).

The proof of the converse implication can be obtained in the same way as in
[20, Theorem 1].

Indeed one of the two ingredients of the proof therein is that equality

c1(E)hn−1 =
rk(E)
2

((n+ 1)hn +KXhn−1)

holds for each h–Ulrich bundle E on a smooth variety. In [2, Theorem 1.6] the au-
thors prove that the same equality also holds for each h–instanton bundle regardless
of the field k when OX(h) is very ample.

The other ingredient is that the line bundle OX((n + 1)h + KX) is globally
generated, hence (n+1)hn +KXhn−1 ≥ 0 by the Nakai–Moishezon criterion. This
result holds regardless of the characteristic of k as well, thanks to [22].

Thus the converse implication can be proved repeating verbatim the aforemen-
tioned proof in [20].

In order to prove (1.2), assume that NX(−h) is an h–instanton bundle and X is
not a linear subspace in Pn+2. Assume ⌊n/2⌋ > deg(X): thanks to [2, Proposition
6.3] we deduce that NX(−h) is aCM, whence it is actually Ulrich. It follows from
[20, Theorem 1] that n ≤ 3, i.e. deg(X) ≤ 1 thanks to the above inequality, a
contradiction. Thus the proof is complete. □
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Remark 2.1. We are unable to show that n ≤ 3 as in [20, Theorem 1], because
the proof therein heavily depends on the fact that Ulrich bundles are aCM. We are
only able prove the weaker bound (1.2). In particular, we do not know if there
are non–degenerate varieties X with n = dim(X) ≥ 4 such that NX(−h) is an
h–instanton bundle.

Nevertheless, at least if k ∼= C, we can look at the problem from a different
perspective, suggesting the existence of a stronger bound n ≤ 3.

Indeed if n ≥ 4, then X would satisfy ωX
∼= OX(e) for some integer, thanks to

[14, Theorem 2.2], hence there would be an exact sequence

0 −→ OPn+2 −→ E −→ IX(c1(E)) −→ 0

where E is a rank two vector bundle on Pn+2 (for details see [14, Proposition 6.2]
or the next Section 3). The above sequence is locally a Koszul complex, hence its
restriction to X yields OX ⊗ E ∼= NX .

Assume E ∼= OPn+2(a1)⊕OPn+2(a2). If NX(−h) is an h–instanton bundle, then

h0(OX((ai−2)h)) = 0, hn(OX((ai−n−1)h)) = h0(OX((n+1−ai+e)h)) = 0,

thanks to Definition 1.1, hence n+ 2 + e ≤ ai ≤ 1. Since

OX((n+ 1)h+KX) ∼= OX((n+ 1 + e)h)

is globally generated by [22], we infer that ai = 1 and e = −n − 1, i.e. X ∼= Pn

embedded linearly in Pn+2 by [17, Theorem 1], contradicting the non–degeneracy
of X. We deduce that E is necessarily indecomposable if NX(−h) is an h–instanton
bundle, contradicting the Hartshorne conjecture when n ≥ 4.

Remark 2.2. If NX(−h) is an instanton, then X has codimension 2, hence
its quantum number can be computed using the Riemann–Roch theorem (see [15,
Theorem A.4.1]), because

k = h1(NX(−2h)) = −χ(NX(−2h)),

taking into account that c2(NX) = dh2 (see [15, A.3.C7]) and computing c2(TX)
from (1.1).

E.g. if X ⊆ P5 is a threefold of degree d, then

c2(TX) = (15− d)h2 + 6hKX +K2
X .

Thus the Riemann–Roch theorem yields

(2.2) k =
1

6
(7d− 71)d− 4h2KX − 1

3
hK2

X .

A similar argument for a surface X ⊆ P4 of degree d returns the equality

(2.3) k =
1

2
(2d− 13)d− 5

2
hKX − 2χ(OX).

3. Codimension two subvarieties

Taking into account Theorem 1.2, it is then interesting to deal with the normal
bundle of codimension two smooth subvarieties X ⊆ Pn+2. Since every h–instanton
bundle on a curve is automatically h–Ulrich we restrict to n ≥ 2.

The ideal of such an X has a particular resolution as the following well known
result shows (see [23]: see also [4]). In order to state it, we notice that

L(X) := { ℓ ∈ Z | OX((n+ 3− ℓ)h+KX) is globally generated }
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is always non–empty: indeed, OX((n+ 1)h+KX) is globally generated thanks to
[22], hence L(X) certainly contains at least all the integers not greater than 2.

Lemma 3.1. Let X ⊆ Pn+2 be a locally complete intersection of dimension
n ≥ 2 and let OX(h) := OX ⊗OPn+2(1).

For each ℓ ∈ L(X) there is an integer rℓ ≥ 2 and a rank rℓ bundle Fℓ on Pn+2

with c1(Fℓ) = rℓ − ℓ which fits into an exact sequence of the form

0 −→ OPn+2(−ℓ)⊕rℓ−1 φ−→F∨
ℓ (1− ℓ) −→ IX −→ 0.

Such a sequence is uniquely determined by the choice of ℓ.

Proof. Notice that c1(NX) = (n + 3)h +KX thanks to (1.1). By definition
the line bundle OX((n + 3 − ℓ)h + KX) is globally generated. Assume there are
rℓ − 1 global sections generating OX((n + 3 − ℓ)h +KX). Thus [4, Theorem 1.1]
yields the existence of a rank rℓ vector bundle F on Pn+2 such that c1(F∨(1)) = ℓ,
fitting into a unique sequence as in the statement because hi(OPn+2(−ℓ)) = 0 for
1 ≤ i ≤ 2. In particular c1(F) = rℓ − ℓ. □

Remark 3.2. Trivially one can take rℓ := h0(OX((n+ 3− ℓ)h+KX)) + 1.

The above result implies that every locally complete intersection X ⊆ Pn+2 of
codimension 2 satisfies the equality X = Dr−2(φ) for a suitable morphism φ from
a trivial bundle of rank r − 1 to another rank r bundle F∨(1). In general X is
singular along the locus Dr−3(φ) whose expected dimension is n − 4. Thus X is
likely singular when n ≥ 4.

Conversely, let F be a rank r bundle on Pn+2, n ≥ 2, with c1(F) = f and
assume that φ : O⊕r−1

Pn+2 → F∨(1) is injective and such that X := Dr−2(φ) ⊆ Pn+2

has pure dimension n. If X is smooth, then it is certainly irreducible, because
n ≥ 2. In this case there is an exact sequence

(3.1) 0 −→ OPn+2(f − r)⊕r−1 φ−→F∨(f − r + 1) −→ IX −→ 0.

The following result is well known and part of folklore.

Proposition 3.3. Let P be a smooth projective variety. Assume that the char-
acteristic of k is 0.

If A and B are bundles of respective ranks a and b on P such that HomOP
(A,B)

is globally generated and φ : A → B is general, then Dr(φ) is either empty or has
codimension (a− r + 1)(b− r + 1) which is smooth outside Dr−1(φ).

Proof. E.g. see [21, Theorem 2.6]. □

In particular, on the one hand X is likely to be singular when n ≥ 4. On the
other hand, when n ≤ 3, the variety X is smooth of pure dimension n if the sheaf

F∨(1)⊕r−1 ∼= HomPn+2(OPn+2(−1)⊕r−1,F∨)

is globally generated, φ is general and the characteristic of k is 0. In this case
r − f = c1(F∨(1)) ≥ 0 necessarily.

Proposition 3.4. Let F be a rank r bundle on Pn+2 with n ≥ 2 and consider
a morphism φ : O⊕r−1

Pn+2 → F∨(1) such that X := Dr−2(φ) ⊆ Pn+2 is smooth of pure
dimension n.
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If c1(F) = f , then

h0(ωX) = (r − 1)h0(OPn+2(r − f − n− 3))

− h0(F(r − f − n− 4)) + h1(F(r − f − n− 4))

and the following assertions hold.

(1) If r ≤ f + n+ 2, and h1(F(r − f − n− 4)) = 0, then h0(ωX) = 0.
(2) If r ≥ f + n+ 3, then ωX is globally generated.
(3) If r ≥ f + n+ 4, then ωX is very ample.

Proof. By applying the functor HomPn+2(−, ωPn+2) to the exact sequence
obtained by glueing together (3.1) and

(3.2) 0 −→ IX −→ OPn+2 −→ OX −→ 0

we obtain the exact sequences

(3.3)
0 −→ OPn+2(−n− 3) −→ F(r − f − n− 4) −→ A −→ 0,

0 −→ A −→ OPn+2(r − f − n− 3)⊕r−1 −→ ωX −→ 0.

Thus ωX is globally generated if r ≥ f +n+3 and very ample when r ≥ f +n+4.
Finally, we have hi(A) = hi(F(r − f − n − 4)) for 0 ≤ i ≤ 2 because n ≥ 2,

hence the assertion about h0(ωX). In particular, if h1(F(r − f − n− 4)) = 0, then

0 ≤ h0(ωX) ≤ (r − 1)h0(OPn+2(r − f − n− 3))− h0(F(r − f − n− 4)) :

the first summand on the right vanishes if r ≤ f + n + 2, hence h0(ωX) = 0
necessarily. □

Remark 3.5. The cohomology of (3.1) yields

Hi
∗(F) ∼= Hn+2−i

∗ (F∨(−n− 3)) ∼= Hn+2−i
∗ (IX(r − f − n− 4)),

by the Serre duality. Thus X is aCM if and only if the latter direct sum is zero in
the range 2 ≤ i ≤ n+ 1, i.e. if and only if Hi

∗(F) = 0 in the same range.

Example 3.6. Assume that the characteristic of k is 0 and 2 ≤ n ≤ 3.
Let G be any Steiner bundle on Pn+2 of rank r and c1(G) = g. In what follows

we consider F := G∨(1 − t) where t ≥ 0. The bundle F satisfies Hi
∗(F) = 0 for

2 ≤ i ≤ n + 1 and F∨(1) ∼= G(t) is globally generated because G is Steiner (see
(1.3)), hence we can construct smooth varieties X ⊆ PN whose sheaf of ideals fits
into the exact sequence

0 −→ OPn+2(−rt− g)⊕r−1 −→ G(t− rt− g) −→ IX −→ 0.

Thanks to Remark 3.5 all such varieties are aCM.
Indeed we can actually recover a determinantal resolution of IX simply by

taking the mapping cone of the above sequence with (1.3). In this case we obtain

0 −→ OPn+2(−rt− g)⊕r−1 ⊕OPn+2(t− rt− g − 1)⊕g

−→ OPn+2(t− rt− g)⊕g+r −→ IX −→ 0.

There are many varieties of codimension 2 which are not aCM. E.g. in [9]
the author classifies the arithmetically Buchsbaum ones in Pn+2 which are not of
general type, listing certain locally free resolutions of their sheaves of ideals. Some
of them are not in the shape described in Lemma 3.1. In the following example we
show how to recover a locally free resolution with that shape.
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Example 3.7. Assume that the characteristic of k is 0 and consider the arith-
metically Buchsbaum K3 surfaces X ⊆ P4 of degree d = 8 whose sheaf of ideals
fits into the exact sequence

0 −→ OP4(−4)⊕2 ⊕OP4(−5) −→ Ω1
P4(−2) −→ IX −→ 0.(3.4)

In order to compute an integer ℓ and the corresponding sheaf Fℓ defined in Lemma
3.1 we apply the functor HomP4(−, ωP4) to the sequence above glued with (3.2).
Thus we obtain the exact sequence

0 −→ OP4(−5) −→ TP4(−3) −→ OP4(−1)⊕2 ⊕OP4 −→ ωX −→ 0.

In particular we can take ℓ = 4 in Lemma 3.1 and, consequently, rℓ = 7. Thus
there is a vector bundle F4 of rank 8 fitting into an exact sequence of the form

(3.5) 0 −→ OP4(−4)⊕7 −→ F∨
4 (−3) −→ IX −→ 0.

The cohomologies of (3.4) and (3.5) yield that hq(F∨
4 (p+1)) in the range−4 ≤ p ≤ 0

is as follows

0 0 0 0 0 q = 4

1 0 0 0 0 q = 3

0 0 0 0 0 q = 2

0 0 1 0 0 q = 1

0 0 0 0 15 q = 0

p = −4 p = −3 p = −2 p = −1 p = 0

Table 1: Values of hq(F∨
4 (p+ 1)) in the range −4 ≤ p ≤ 0

Thanks to [1, Beilinson’s theorem (strong form)], we know that F∨
4 (1) fits into an

exact sequence of the following form

0 −→ OP4(−1)⊕ Ω2
P4(2) −→ O⊕15

P4 −→ F∨
4 (1) −→ 0.

4. The proof of Theorem 1.3.

In this section we prove Theorem 1.3 stated in the introduction. Let X ⊆ Pn+2

be a smooth variety of dimension n and set OX(h) := OX ⊗ OPN (1). Thanks to
(2.1) and Lemma 1.6, in order to show that NX(−h) is an h–instanton bundle it
suffices to check that Hj(NX(−(j + 2)h)) = 0 for all 0 ≤ j ≤ n− 2.

In order to compute such vanishings we will use the isomorphism

(4.1) Hj(NX(th)) ∼= Extj+1
(
IX , IX(t)

)
for 0 ≤ j ≤ n and t ∈ Z (see [18, Remark 2.2.6]).

Proof of Theorem 1.3. By applying the contravariant functor Hom(−, IX(−j − 2))
to (3.1) we obtain

(4.2)
Hj(IX(r − f − j − 2))⊕r−1 −→ Hj(N (−(j + 2)h))

−→ Hj+1(F ⊗ IX(r − f − j − 3)) −→ Hj+1(IX(r − f − j − 2))⊕r−1.

Thus

hj(N (−(j + 2)h)) ≤ (r − 1)hj(IX(r − f − j − 2))

+ hj+1(F ⊗ IX(r − f − j − 3)).
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First we compute hj(IX(r − f − j − 2)). Tensoring (3.1) by OPn+2(r − f − j − 2)
we obtain

hj(IX(r − f − j − 2)) ≤ hj(F∨(−j − 1)) + (r − 1)hj+1(OPn+2(−j − 2)).

The right–hand side of the above inequality vanishes in the range 0 ≤ j ≤ n, because
trivially hj+1(OPn+2(−j − 2)) = 0 and the first summand vanishes by Lemma 1.5.
In particular we also deduce that

hj(IX(r − f − j − 2− t)) = 0

for 0 ≤ j ≤ n and t ≥ 0, thanks to [2, Proposition 2.1]. Thus, tensoring (1.3) by
IX(r − f − j − 3), the above equality implies

hj+1(F ⊗ IX(r − f − j − 3)) ≤ (r + f)hj+1(IX(r − f − j − 3))

+ fhj+2(IX(r − f − j − 4)) = 0

for 0 ≤ j ≤ n−2. Thus the proof that NX(−h) is an instanton bundle is complete.
It remains to compute k := h1(NX(−2h)) = hn−1(NX(−(n + 1)h)). Arguing

as above, (1.3) tensored by OPn+2(r− f − n− 1) yields hn(IX(r− f − n− 1)) = 0,
hence (4.2) for j = n− 1 returns

hn−1(NX(−(n+ 1)h)) = hn(F ⊗ IX(r − f − n− 2)).

By combining the cohomologies of (1.3) and (3.1) tensored by IX(r − f − n − 2)
and IX(r − f − n− 3) respectively, the same argument used above yields

hn(F ⊗ IX(r − f − n− 2)) = fhn+1(IX(r − f − n− 3))

= f(r − 1)hn+2(OPn+2(−n− 3)) = f(r − 1).

The statement is then completely proved. □

In what follows we will construct examples of smooth varieties X ⊆ PN of
dimension n such that NX(−h) is an instanton.

In view of Theorems 1.2, 1.3 and Proposition 3.3 the first possible approach
is to construct them starting from a Steiner bundle F such that F∨(1) is globally
generated. We do not know the classification of such interesting bundles on PN .
Nevertheless, we are able to classify below Steiner bundles F such that F∨(1) is
regular, i.e. such that hi(F(−i)) = 0 for 1 ≤ i ≤ N . Recall that regular sheaves
are globally generated.

Lemma 4.1. Let F be a Steiner bundle on PN . Then F∨(1) is regular if and

only if F ∼= ΩN−1
PN (N)⊕a ⊕Ob

PN for some non–negative integers a and b.

Proof. Let F be a Steiner bundle such that F∨(1) is regular. We set

b = hN−1(F(−N − 1)), c = hN−1(F(−N)), a = hN−1(F(−N)).

Thanks to Lemma 1.5 and [1, Beilinson’s theorem (weak form)] applied to the
vector bundle F(−1) we obtain a spectral sequence whose Ep,q

1 sheaves are as in
Table 2.
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O⊕b
PN (−1) 0 0 q = N

O⊕c
PN (−1) ΩN−1

PN (N − 1)⊕a 0 q = N − 1

0 0 0 0 ≤ q ≤ N − 2

p = −N p = −N + 1 −N + 2 ≤ p ≤ 0

Table 2: Values of Ep,q
1 in the range −N ≤ p ≤ 0

The only possibly non–zero differential in this first page is

d−N,N−1
1 : O⊕c

PN (−1) −→ ΩN−1
PN (N − 1)⊕a.

Let us continue by considering the second page Epq
2 of the spectral sequence in

Table 3.

O⊕b
PN (−1) 0 0 q = N

ker(d−N,N−1
1 ) coker(d−N,N−1

1 ) 0 q = N − 1

0 0 0 0 ≤ q ≤ N − 2

p = −N p = −N + 1 −N + 2 ≤ p ≤ 0

Table 3: Values of Epq
2 = Epq

∞ in the range −N ≤ p ≤ 0

Notice that the spectral sequence degenerates after the second page, thus Epq
2 =

Epq
∞ and in particular ker(d−N,N−1

1 ) = 0. Again[1, Beilinson’s theorem (weak form)]
implies that

N⊕
p=0

E−p,p
∞

∼= coker(φ)⊕O⊕b
PN (−1)

is the graded sheaf associated to the filtration 0 ⊆ G(−1) ⊆ F(−1), where G(−1) :=

coker(d−N,N−1
1 ). Thus we obtain the short exact sequences

0 −→ G(−1) −→ F(−1) −→ O⊕b
PN (−1) −→ 0,

0 −→ O⊕c
PN (−1) −→ ΩN−1

PN (N − 1)⊕a −→ G(−1) −→ 0.

Notice that G is Steiner thanks to [3, Example 4.5], hence

Ext1
(
O⊕b

PN (−1),G(−1)
) ∼= H1(G)⊕b = 0

by Lemma 1.5. It follows that the first sequence above splits, whence F ∼= O⊕b
PN ⊕G.

If F∨(1) is regular then

c = hN−1(G(−N − 1)) = hN−1(F(−N − 1)) = h1(F∨) = 0,

hence

F ∼= ΩN−1
PN (N)⊕a ⊕O⊕b

PN .

Conversely, if F ∼= ΩN−1
PN (N)⊕a ⊕ Ob

PN , then it is easy to check that F is Steiner
and F∨(1) is regular. □

The above lemma motivates the following example.
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Example 4.2. Let 2 ≤ n ≤ 3 and assume that the characteristic of k is 0. If
we set

Fn;a,b := Ωn+1
PN (n+ 2)⊕a ⊕O⊕b

Pn+2

thanks to Lemma 4.1 and Proposition 3.3 we can construct a family of smooth
varieties Xn;a,b ⊆ Pn+2 whose sheaf of ideals fits into the exact sequence

0 −→ OPn+2(−a− an− b)⊕an+2a+b−1 −→ F∨
n;a,b(1− a− an− b) −→ IXn;a,b

−→ 0.

For each a ≥ 1 the bundle NXn;a,b
(−h) is h–instanton with quantum number

h1(NXn;a,b
(−2h)) = (an+ 2a+ b− 1)a,

thanks to Theorem 1.3.
Thanks to Proposition 3.4 we now that ωXn;a,b

is ample and globally generated
when a ≥ 2. It follows that Xn;a,b is of general type for a ≥ 2.

The surface X2;1,0 is the isomorphic projection in P4 of the Veronese surface
of P5. It is well known that X2;1,0 supports h–Ulrich bundles of minimal rank two
(see [12, Proposition 5.9]): notice that TX2;1,0 is one of them (see [8]).

The threefold X3;1,0 is the Palatini scroll (see [9]), which supports h–Ulrich
bundles of ranks both one and two (see [13, Theorem 0.1 (2)]). Its general hyper-
plane section is X2;1,1: trivially it still supports Ulrich bundles of ranks one and
two.

The threefoldX3;1,1 is such that the linear system |h+KX3;1,1 | gives a birational
morphism φ onto a cubic threefold X ⊆ P4. Moreover, φ fails to be injective along
a curve C ⊆ X which has degree 14 and genus 15. We do not know if such threefold
X3;1,1 actually supports h–Ulrich bundles.

5. Further examples

Theorem 1.3 gives a sufficient condition for NX(−h) to be an instanton. We
show in the following examples that such a condition is actually not necessary.

Example 5.1. Let us consider the smooth threefold whose ideal sheaf fits into

(5.1) 0 −→ OP5(−4)⊕9 −→ Ω3
P5 −→ IX −→ 0.

In particular X is a K3 scroll of degree 9 over the surface B = {Gr(P1,P5) ∩ P8}.
Thanks to Lemma 1.6, in order to show that NX(−h) is an instanton bundle it is
enough to check that Hj(NX(−(j + 2)h)) ∼= 0 for j = 0, 1. Arguing in the same
way as in the proof of Theorem 1.3 one obtains the exact sequence

Hj(IX(2− j))⊕9 −→ Hj(NX(−(j + 2)h))

−→ Hj+1(Ω3∨
P5 ⊗ IX(−j − 2)) −→ Hj+1(IX(2− j))⊕9.

Let us start by computing the cohomology of IX(2−j). Twisting (5.1) by OP5(2−j)
we get Hi(IX(2 − j)) ∼= 0 for all i and for j = 0, 1 since both OP5(−j − 2)⊕9 and
Ω3

P5(2 − j) are acyclic in that range. Now we compute Hj+1(Ω3∨
P5 ⊗ IX(−j − 2)).

In order to do so, recall that Ω3∨
P5

∼= Ω2
P5(6) and let us consider the Euler sequences

(5.2) 0 −→ Ωp
P5(p) −→ O⊕(6p)

P5 −→ Ωp−1
P5 (p) −→ 0

for p = 1, 2. If we tensor (5.2) by IX(4− p− j) we obtain

Hj+1(Ωp
P5 ⊗ IX(4− j)) ∼= Hj(Ωp−1

P5 ⊗ IX(4− j)) ∼= 0
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for 1 ≤ p ≤ 2 and 0 ≤ j ≤ 1 since IX(4−p−j) is acyclic in this range, thus NX(−h)
is an instanton bundle. Its quantum number is k = 6 and can be computed by (2.2).

It is possible to repeat the same argument to deal with other varieties. E.g.
taking into account [10, Theorem] and Lemma 4.1, it is quite natural to inspect the
case of codimension two arithmetically Buchsbaum threefolds and surfaces. Such
varieties have been classified in [9], when not of general type.

We summarise what we obtain in the tables 4 and 5, the quantum numbers
being computed by (2.2) and (2.3). Notice that cases (a), (e), (2) and (3) can be
directly obtained using Theorem 1.3.

Resolution of IX NX(−h) instanton Charge

(a) 0 → OP5 (−4)⊕4 → Ω1
P5 (−2) → IX → 0 yes 4

(b) 0 → OP5 (−4)⊕9 → Ω3
P5 → IX → 0 yes 6

(c) 0 → OP5 (−5)⊕8 ⊕OP5 (−6) → Ω3
P5 (−1) → IX → 0 yes 7

(d) 0 → OP5 (−5)⊕10 → Ω3
P5 (−1)⊕OP5 (−4) → IX → 0 yes 5

(e) 0 → OP5 (−5)⊕5 → Ω1
P5 (−3)⊕OP5 (−4) → IX → 0 yes 5

(f) 0 → OP5 (−5)⊕3 ⊕OP5 (−6) → Ω1
P5 (−3) → IX → 0 ?? ??

Table 4: Arithmetically Buchsbaum threefolds of non-general type

Resolution of IX NX(−h) instanton Charge

(1) 0 → OP4 (−3)⊕5 → Ω2
P4 → IX → 0 yes 5

(2) 0 → OP4 (−3)⊕3 → Ω1
P4 (−1) → IX → 0 yes 3

(3) 0 → OP4 (−4)⊕4 → Ω1
P4 (−2)⊕OP4 (−3) → IX → 0 yes 4

(4) 0 → OP4 (−4)⊕6 → Ω2
P4 (−1)⊕OP4 (−3) → IX → 0 ?? ??

(5) 0 → OP4 (−4)⊕4 ⊕OP4 (−5) → Ω2
P4 (−1) → IX → 0 yes 6

(6) 0 → OP4 (−4)⊕2 ⊕OP4 (−5) → Ω1
P4 (−2) → IX → 0 yes 3

Table 5: Arithmetically Buchsbaum surfaces of non-general type
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In view of the cases (f) and (4) in the table 4 and 5 above, it might be perhaps
natural to ask the following question

Question 5.2. Let X be a codimension two smooth, arithmetically Buchsbaum
variety not of general type. Is NX(−h) an instanton bundle?

In the following examples we show that the Question 5.2 has no general answer
for varieties of general type.

Example 5.3. Consider any non–degenerate complete intersection X ⊆ Pn+2

of two hypersurfaces the bundleNX(−h). It is easy to check that h0(NX(−2h)) ̸= 0,
hence NX(−h) cannot be an h–instanton.

Example 5.4. Let the characteristic of k be 0. Thanks to Proposition 3.3 we
can consider the smooth surface in P4 whose ideal sheaf admits the resolution

(5.3) 0 −→ OP4(−5)⊕2 ⊕OP4(−7) −→ Ω1
P4(−3) −→ IX −→ 0.

If we apply the functor HomP4(−, ωP4) to the sequence above glued with (3.2) as in
Example 3.7, we deduce that X is of general type. Let us verify that NX(−h) is not
an instanton, by showing that h0(NX(−2h)) > 0. Let us apply the contravariant
functor Hom(−, IX(−2)) to (5.3) obtaining the exact sequence

H0(Ω3
P4(6)⊗ IX) −→H0(IX(3))⊕2 ⊕H0(IX(5)) −→ H0(NX(−2h))

−→ H1(Ω3
P4(6)⊗ IX) −→ H1(IX(3))⊕2 ⊕H1(IX(5)).

We start by computing h0(Ω3
P4(6)⊗ IX). If we tensor (5.2) by IX(3) we get

h0(Ω3
P4(6)⊗ IX) ≤ 10h0(IX(3)).

Thus, taking the cohomology of (5.3) twisted by OP4(3) we obtain h0(IX(3)) = 0,
hence h0(Ω3

P4(6) ⊗ IX) = 0. Tensoring sequence (5.3) by OP4(5) one can directly
obtain h0(IX(5)) = 8, thus h0(NX(−2h)) > 8 and NX(−h) is not an instanton
bundle.
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