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Abstract: Digital systems are nowadays ubiquitous and often comprise an extremely high level of
complexity. Guaranteeing the correct behavior of such systems has become an ever more pressing
need for manufacturers. The correctness of digital systems can be addressed resorting to formal
verification techniques, such as model checking. Currently, it is usually impossible to determine a
priori the best algorithm to use given a verification task and, thus, portfolio approaches have become
the de facto standard in model checking verification suites. This paper describes the most relevant
algorithms and techniques, at the foundations of bit-level SAT-based model checking itself.

Keywords: formal verification; model checking; SAT; Boolean functions

1. Introduction

Ranging from commodity devices to business or safety critical environments, digital
systems have proliferated into most aspects of our daily lives. Moreover, thanks to Moore’s
law and the advent of high-level synthesis, contemporary hardware designs often comprise
an extremely high level of complexity. As a direct consequence, design verification has
become one of the most relevant aspects of the design and production flow. In such
a scenario, guaranteeing the correct behavior of digital systems, with respect to their
specification, is becoming an ever more pressing need for manufacturers [1]. The increasing
complexity of hardware designs, together with the demand for short development cycles
imposed by ever evolving markets, makes the delivery of defect-free systems an extremely
challenging task. This is particularly true when considering sequential designs, in which
the behavior of the system depends not only on the inputs applied at a given time but also
on the state the system finds itself in. Modern systems are characterized by the presence of
several million elements, those being transistors, logic gates, memory elements or other
things. In such a scenario, design verification can represent one of the most time consuming,
yet necessary, activities to be performed, with reports purporting it in the range between
40% and 70% of the entire cycle’s endeavor [2]. Oftentimes, the usual testing techniques
are not enough to prove the correctness of a whole system in a timely fashion, and further
problems arise when taking into account the issue of transferring theoretical results to
industrial practice [3].

Traditionally, hardware designs are verified through simulation. In simulation, a model
of the system is solicited by a set of stimuli while the resulting behavior is checked against
the expected behavior. Simulation is scalable, being applicable to designs of virtually any
size, but is also costly and incomplete. In fact, it is often unfeasible to completely cover
the behaviors of a realistic design through simulation. The incompleteness of simulation
is often aggravated by the increasing complexity of hardware designs, which not only
increases the number of behaviors to check but may also introduce corner cases difficult
to cover. Starting from the late 1980s, formal hardware verification has become an attractive
approach to overcome the coverage limitations of simulation. Formal verification is the use
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of the formal methods of mathematics and logic to prove (or disprove) the correctness of
a design with respect to a given formal specification of its expected behavior. During the
last two decades, research in the field of formal verification has led to the development of
many techniques. Such techniques can be subdivided into three main approaches to formal
verification: theorem proving [4,5], equivalence checking [6] and model checking [7,8].

Model checking is the most widely used formal verification approach for sequential
hardware designs. In model checking, a model of the design and a formalized representation
of its specification are formulated using some mathematically precise and unambiguous
language. Then, an algorithmic procedure automatically checks whether or not the model
meets the formal specification. Such a procedure exhaustively traverses the modeled
behaviors of the system and either confirms that the system behaves correctly or produces a
trace that demonstrates a violating behavior (called a counterexample). The main advantages
of model checking are its fully automated nature and its ability to produce counterexamples.
Usually, the design to be verified is modeled as a transition system, comprising states and
transitions between states, and the specification is formalized by writing temporal logic
properties. Invariant verification is a particular model checking task in which the system
specification is described as an invariant property that must hold true in every reachable
state of the model.

From an algorithmic standpoint, in the beginning, model checking was based on
explicit state enumeration; thus, its practical application was severely hindered by mere
state space representation problems. The introduction of BDD-based representation [9] was
the turning point for model checking applicability to industrial-level scenarios. Despite
the huge impact of such an approach to model checking, BDD-based representations
still suffered from unpredictable memory requirements and, thus, additional paths of
research opened up in order to overcome such limits, such as the introduction of SAT-
based approaches.

Today, model checking can exploit explicit state enumeration or symbolic state enumer-
ation, via BDD- or SAT-based representations. Furthermore, solutions based on automatic
test pattern generations are admissible. Each of these, in turn, has led to a number of
distinct model checking algorithms and techniques.

Up until today, there is not a concrete winner among all the available techniques. The
most reliable approach is obtained from running in parallel several of these algorithms,
exploiting multi-core environments, and halting verification as soon as one of the engines
has found a solution to the verification problem at hand [10,11].

Complementary to the verification phase itself, there is then the additional problem of
certifying checkers’ results, in order to better support their acquisition in complete design
cycles scenarios [12,13].

A recent trend in hardware model checking is to exploit the ability of SMT solvers
to perform word-level reasoning based on bit-vectors. This trend is demonstrated by the
introduction of word-level tracks in recent editions of the Hardware Model Checking
Competition [14]. However, word-level model checking shines for problems with memory
modeled with arrays; bit-level solvers are currently the de facto standard in the industry
and prove to be still superior on many word-level designs after bit-blasting [15].

This paper (part of the contents of this paper are a redacted version of the introductory
chapters of the PhD thesis of two of its authors, Marco Palena [16] and Paolo Pasini [17],
which have not been published before besides diffusion within the Politecnico di Torino
and the respective thesis defense committees) describes the most relevant algorithms and
techniques targeting explicitly bit-level SAT-based hardware model checking, in a formal and
theoretically sound fashion. A description of complementary topics and a broader overview
of the vast field of model checking and satisfiability is provided in [18,19]. A description of
topics concerning model checking, with additional examples and applications, is provided
in [8]. Complementary to previous works, a specific focus on the design and verification of
cyber-physical systems is provided in [20].
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Outline

The rest of the paper is organized as follows:

• In Section 2, we provide some preliminary notions with the purpose of presenting the
adopted notation and terminology and make this work self-contained. In particular,
we first provide some general concepts from the field of logic and computer science
and then we discuss in more depth the necessary concept to contextualize model
checking in detail.

• In Sections 3–7, we present a complete description of the most relevant bit-level
SAT-based hardware model checking algorithms.

• In Section 8, we present a practical evaluation of model checking algorithms over
industrial-level benchmarks.

• In Section 9, we summarize the current work and provide some insights concerning
future developments in the field.

2. Background and Notation

In this section, we introduce some notions needed to understand the rest of the paper.
In particular, we provide some basic concepts and definitions from the fields of logic and
computer science relevant to the topics at hand.

2.1. Mathematical Logic

Model checking aims at verifying whether a finite-state model of a system meets a
given specification. In order to solve such a problem algorithmically, both the model of the
system and its specification need to be expressed in some precise mathematical language.
The fields of mathematical logic and formal language theory provide us the tools we need
to reason about the system states in a symbolical and rigorous manner. Mathematical logic
is the systematic study of reasoning. By reasoning, we intend the abstract capability to
provide arguments supporting the fact that a given statement, called the conclusion, follows
from some other statements, called the premises. The steps through which conclusions are
reached from premises are termed inferences. Mathematical logic relies on formal languages
in order to provide a symbolic representation of abstract concepts, like statements about
the model of the system we are interested to reason about, that can then be manipulated
through formal, mathematical processes. We will rely on common concepts stemming from
logic, and we will specifically introduce and define just the ones that are more relevant
to this work. We refer the interested reader to [21,22] for a comprehensive exposition of
those subjects.

2.2. Formal Languages

A formal language is a mathematical object that describes the syntax of a set of finite
strings of symbols. A formal language is a purely syntactic tool and can be completely
defined without making any reference to an interpretation for its symbols. In the following,
we provide some basic notions from the field of formal language theory (we refer the interested
reader to [23] for an more in depth discussion on the subject).

Definition 1 (Alphabet and Words). An alphabet Σ is any non-empty finite set of symbols. A
word over Σ is any finite or infinite string of symbols in Σ. The set of all finite words over Σ is
denoted by Σ∗ (called the Kleene closure of Σ).

Definition 2 (Formal Languages). Given an alphabet Σ, a formal language L over Σ is any set of
finite words over Σ, i.e., L ⊆ Σ∗.

A formal language L is often described by a set of rules that determine how its
words are formed (rules of formation). Many formalisms can be used to describe the rules
of formation of a formal language, such as formal grammars, regular expressions and
automata [23].



Algorithms 2024, 17, 253 4 of 55

Definition 3 (Well-formed Formulas). Given a formal language L over Σ, a word w ∈ Σ∗ is
said to be a well-formed formula of L, often abbreviated with wff, iff w ∈ L.

Note that a formal language can be identified with the set of its well-formed formulas.
Throughout the rest of this paper, we simply use the term formula to refer to a well-formed
formula of a given formal language.

Formal languages are entirely syntactic in nature but may be given interpretations
that provide meaning to their symbols and sentences. Given a formal language L, from
the semantic standpoint, the symbols of L may be subdivided into logical symbols and
non-logical symbols.

Definition 4 (Logical Symbols). A symbol of a formal language is said to be a logical symbol if it
always has the same meaning, independently from the language interpretation.

Examples of logical symbols in the context of propositional and first-order logic are
logical connectives (¬, ∧, ∨, etc.), quantifiers (∀, ∃, etc.) and the equality predicate (=).

Definition 5 (Non-logical Symbols and Signature). A symbol of a formal language is said to
be a non-logical symbol if it has a meaning only when one is assigned to it by means of a language
interpretation. Given a formal language L, its signature σ is defined as the set of its non-logical symbols.

Note that non-logical symbols may have different meanings under different language
interpretations. Examples of non-logical symbols in the context of propositional and
first-order logic are variables and symbols for constants, function and relation.

A fundamental problem in formal language theory is that of determining the member-
ship of a given word in a formal language.

Definition 6 (Membership Problem). Given a formal language L and a word w ∈ Σ∗, the
membership problem is the problem to determine whether w ∈ L, i.e., whether w is a wff of L.

As we show later in Section 2.6, each problem in the important computational class
of decision problems can be represented as a membership problem for a formal language.
SAT-based model checking algorithms encode state reachability problems, defined on
a model of the system, as instances of a particular decision problem known as Boolean
Satisfiability (SAT).

2.3. Logical Systems

A fundamental concept in mathematical logic is that of logical consequence, describing
the relationship between statements that hold true when one statement, called the conclusion,
logically follows from one or more other statements, called the premises. Historically,
the concept of logical consequence has been studied from two different but interrelated
perspectives: syntactic and semantic.

Proof theory is the branch of logic that studies logical consequence from the syntactic
standpoint. The formalism of formal systems is used to model deductions (a deduction is a
kind of inference that is always valid, i.e., its conclusion is always a logical consequence of
its premises) as syntactical transformations (inference rules) applied to strings of symbols
(formulas). In this context, the concept of logical consequence is related to the ability to
derive a proof, that is, a sequence of syntactic transformations that allow us to derive the
conclusion from the premises.

Model theory is the branch of logic that studies logical consequence from the semantic
standpoint. Semantics is about associating a meaning with the well-formed formulas of
some formal language. Formulas are given a meaning by relating their constituents to
elements of the domain of discourse by means of an interpretation. Given an interpretation of
the symbols of a formal language, each formula can be related to the concept of truth based
on whether or not its meaning holds true in the domain of discourse, i.e., the world we
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are interested to reason about. The set of all possible interpretations of a formal language
define a formal semantic for that language. In this context, the concept of logical consequence
is related to whether or not a conclusion would be evaluated as true under all the possible
interpretations that evaluate the premises as true.

Even if the syntactic and semantic notions of logical consequence have different
definitions, the concepts from the two branches of logic are systematically related. We give
the following definitions.

Definition 7 (Logical System). Given a formal language L, a logical system (or logic) for L is

defined as a pair L
def
= ⟨S ,V⟩, consisting of a formal system S and a formal semantics V for L.

Definition 8 (Soundness and Completeness). Given a formal language L, a logical system
L = ⟨S ,V⟩ for L is sound iff every formula that can be derived from S is valid according to V . A
logical system L is complete iff every formula that is valid according to V can be derived from S .

Therefore, in a sound and complete logical system the concepts of semantic and
syntactic logical consequence coincide. The same is true for the semantic and syntactic
versions of validity, consistency, necessity and impossibility.

2.4. Propositional Logic

Propositional logic (or Boolean logic) is a sound and complete logical system concerned
with the study of propositions. A proposition is an abstract entity bearing a truth value that
is expressed as a statement on a domain of discourse. Boolean logic considers (complex)
propositions to be composed of atomic propositions connected by means of logical operators.
Atomic propositions are propositions whose structure cannot be further decomposed in
terms of logical operators. Later, in Section 2.7, we will use Boolean logic to provide a
symbolical representation of hardware-derived state transition systems at the bit level.

2.4.1. Syntax of Propositional Logic

From the syntactic standpoint, the language of propositional logic consists of a set of
non-logical symbols called propositional variables and a set of logical symbols, comprising
logical connectives (¬, ∧ and ∨) and logical constants (⊤ and ⊥).

Definition 9 (Syntax of Propositional Formulas). Given a set of propositional variables AP, the
syntax of propositional formulas is defined inductively as follows:

• ⊤ and ⊥ are propositional formulas.
• Each a ∈ AP is a propositional formula.
• Given F, a propositional formula, ¬F is a propositional formula.
• Given F1 and F2, propositional formula F1 ∧ F2 is a propositional formula.
• Given F1 and F2, propositional formula F1 ∨ F2 is a propositional formula.

Note that ⊥ and ∨ can be omitted from Definition 9 without losing expressiveness as
they can be easily derived from⊤, ¬ and ∧. Parentheses “(” and “)” can be used to improve
the readability of formulas. We also provide the following definitions about propositional
formulas.

Definition 10 (Atomic Formulas). An atomic formula is a propositional formula consisting of a
propositional variable only.

Definition 11 (Support). Given a propositional formula F, we call support of F, denoted by
Vars(F), the set of propositional variables occurring in F. Accordingly, given a set of propositional
formulas Φ, we call support of Φ, denoted by Vars(Φ), the set of propositional variables occurring
in at least one formula of Φ:
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Vars(Φ) =
⋃

Fi∈Φ
Vars(Fi) (1)

2.4.2. Semantics of Propositional Logic

Intuitively, from the semantic point of view, propositional variables represent atomic
propositions, logical constants represent special propositions that are either always true (⊤)
or always false (⊥) and logical connectives represent standard Boolean functions such as
logical negation (¬), logical conjunction (∧) and logical disjunction (∨).

Each propositional variable is interpreted as an atomic proposition about the domain
of discourse which can either be true or false. Such an interpretation is described by means
of a truth assignment defined as follows.

Definition 12 (Truth Assignments). Given a set of propositional variables A ⊆ AP, a truth
assignment µ : A→ B is a function mapping each propositional variable a ∈ A to a truth value in B.

Note that, from the model-theoretic perspective, truth assignments can be seen as
equivalent representations of structures along with a definition of truth. Since the only
non-logical symbols of propositional logic are propositional variables, a structure for the
propositional language is an interpretation of those variables as atomic propositions on the
domain of discourse. A definition of truth then maps each atomic proposition to a truth
value. The composition of the two is equivalent to a truth assignment.

Definition 13 (Complete or Partial Truth Assignments). Given a propositional formula F, a
complete truth assignment for F is a function µ : Vars(F) → B assigning a truth value to each
variable of F. A partial truth assignment for F is a function µ : A ⊂ Vars(F) → B assigning a
truth value to a subset A of the variables of F.

Each logical connective is given a truth-functional interpretation, mapping it to a spe-
cific Boolean function. Logical connectives are therefore thought as having a certain arity,
according to the Boolean function they represent: logical conjunction and disjunction are
binary connectives whereas negation is a unary connective. Under its truth-functional inter-
pretation, each logical connective of arity n corresponds to a Boolean function f : Bn → B
mapping the truth value of its operands to the truth value of its result. The truth-functional
interpretation of logical connectives is usually described by means of truth tables. Ad-
ditional logical connectives, representing other standard Boolean functions such as im-
plication (→), bi-implication (↔) and exclusive disjunction (⊕), may be included in the
language of propositional logic according to their usual semantics and and syntactic defini-
tion, following.

F1 → F2
def
= ¬F1 ∨ ¬F2 (2)

F1 ↔ F2
def
= (¬F1 ∧ ¬F2) ∨ (F1 ∧ F2) (3)

F1 ⊕ F2
def
= (¬F1 ∧ F2) ∨ (F1 ∧ ¬F2) (4)

As a way of reducing the number of necessary parentheses, the following precedence
order between logical operators is usually applied (from highest precedence to lowest
precedence): ¬, ∧, ∨,→,↔ and ⊕.

Each propositional formula, therefore, unambiguously represents a given Boolean
function, which can be determined combining the function associated with its logical
connectives according to the precedence order.

Definition 14 (Semantics of Propositional Logic). Given a set of propositional variables AP, a
propositional formula F over Vars(F) and a truth assignment µ over A ⊆ AP with Vars(F) ⊆ A,
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we give the following inductive definition of when µ satisfies F (or equivalently, F evaluates to ⊤
under µ), denoted as µ |= F:

• µ |= ⊤ and µ ̸|= ⊥.
• For each a ∈ Vars(F), µ |= a iff µ(a) = ⊤.
• µ |= ¬F iff µ ̸|= F.
• µ |= F1 ∧ F2 iff µ |= F1 and µ |= F2.
• µ |= F1 ∨ F2 iff µ |= F1 or µ |= F2.

The semantics of other logical connectives can easily be inferred from their truth tables.
We provide the following useful definitions:

Definition 15 ((Propositional) Models). Given a propositional formula F, a truth assignment
µ : Vars(F)→ B is a model (or satisfying assignment) of F iff µ |= F.

Definition 16 ((Propositional or Boolean) Satisfiability). A propositional formula F is said to
be satisfiable iff it has at least one model, i.e., there exists µ such that µ |= F. Otherwise, F is said to
be unsatisfiable.

Definition 17 ((Propositional) Consequence). Given a set of propositional formulas Φ and a
propositional formula F such that Vars(F) ⊆ Vars(Φ), F is said to be a consequence of Φ iff every
model of Φ can be restricted to a model for F, denoted as Φ |= F.

Definition 18 ((Propositional) Equivalence). Given two propositional formulas F and G such
that Vars(F) = Vars(G), F is said to be equivalent to G iff every model of F is also a model of G
and vice versa, denoted as F ≡ G.

Definition 19 ((Propositional) Validity). An argument from a set of propositional formulas Φ to
a conclusion F is valid iff Φ |= F.

Definition 20 ((Propositional) Consistency). A set of propositional formulas Φ is consistent iff
there is a complete truth assignment µ that is a model for every formula of Φ.

Definition 21 (Valid Propositional Formulas). A propositional formula F is said to be a valid
(or a tautology), denoted as |= F, iff every truth assignment over its variables is a model for it.

Definition 22 (Strength of Propositional Formulas). Given two propositional formulas F and
G, if F |= G then F is said to be stronger than G and, conversely, G is said to be weaker than F.
From the semantics of implication (→), it is clear that, if |= F → G, then F |= G and, thus, F is
stronger than G.

We also provide the following remarks about notation for models and truth assignment.

Notation 1 (Formulas as Set of Models). Given a propositional formula F, we denote with
Mods(F) the set of all models of F. Any propositional formula F can be seen as a representation of
its set of models Mods(F).

Any truth assignment can be represented as a formula satisfied by it or the set of
propositional variables it assigns to ⊤.

Notation 2 (Restriction of Models). Given a propositional formula F, a truth assignment µ :
A→ B, with Vars(F) ⊂ A can be restricted to a model of F iff its restriction µ

∣∣
Vars(F) |= F.
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Notation 3 (Truth Assignments as Formulas). A truth assignment µ over a set of propositional
variables A ∈ AP can be represented as the following propositional formula:

Fµ
def
=

∧
ai∈A

li where

{
li = ai, iff µ(ai) = ⊤
li = ¬ai, iff µ(ai) = ⊥

(5)

Notation 4 (Truth Assignments as Sets of Propositional Variables). A truth assignment µ over
a set of propositional variables A ∈ AP can be represented by the following set of propositional variables:

Aµ
def
= {a ∈ A | µ(a) = ⊤} (6)

Vice versa, a set of propositional variables A ∈ AP induces a truth assignment µA equal to
the characteristic function of A, i.e.:

µA(a) =

{
⊤ if a ∈ A
⊥, otherwise

(7)

Following Notation 4, the satisfaction relation for propositional logic (|=) can be
extended to sets of propositional variables: A |= φ if and only if µA |= φ.

2.4.3. Conjunctive Normal Form

We provide the following definitions about propositional formulas.

Definition 23 (Literals, Clauses and Cubes). A literal is either an atomic formula or the negation
of an atomic formula. A clause is a disjunction of literals, whereas a cube is a conjunction of literals.

Definition 24 (Conjunctive Normal Form). A formula F is said to be in Conjunctive Normal
Form (CNF) if is is a conjunction of clauses.

For instance, a, b, c and d being propositional variables, a is an atomic formula, both
¬a and b are literals, (¬a ∨ b ∨ ¬c) is a clause, (¬a ∧ b ∧ ¬c) is a cube and (¬a ∨ b ∨ ¬c) ∧
(¬b ∨ ¬c ∨ d) is a CNF formula. Given a truth assignment µ is easy to see the following:

• A literal a is satisfied by µ iff µ(a) = ⊤.
• A literal ¬a is satisfied by µ iff µ(a) = ⊥.
• A clause C = l0 ∨ · · · ∨ ln is satisfied by µ iff µ |= li for some 0 ≤ i ≤ n.
• A cube Q = l0 ∧ · · · ∧ ln is satisfied by µ iff µ |= li for each 0 ≤ i ≤ n.
• A CNF formula F = C0 ∧ · · · ∧ Cn is satisfied by µ iff µ |= Ci for each 0 ≤ i ≤ n.

2.5. Boolean Functions

In this paper we are interested in verifying the properties of hardware digital systems.
Such systems can be thought to be made from large assemblies of logic gates which, in turn,
are simple electronic implementations of Boolean functions. As described in Section 2.4,
formulas of Propositional Logic can be used to represent Boolean functions and reason
about them. In this section, we introduce some basic notions about Boolean functions.

Definition 25 (Boolean Function). A Boolean function is a function f : Bn → B, where
B = {⊤,⊥} is the Boolean domain and n ∈ N identifies the arity of the function.

Definition 26 (Functions Monotone in a Variable). Given an n-ary Boolean function f :
Bn → B and a value k ∈ N, with 1 ≤ k ≤ n, we say that f is monotone in the variable xk if
f |xk=⊥ → f |xk=⊤. Thus, when f is monotone in xk, changing the value of xk from ⊥ to ⊤ cannot
change the value of f from ⊤ to ⊥. The definition here provided of monotonicity in a given variable
is also known as unateness or positive monotonicity in that variable.



Algorithms 2024, 17, 253 9 of 55

Definition 27 (Monotone Functions). A Boolean function f is monotone if it is monotone in
each of its variables. Thus, changing the value of any of its variables from ⊥ to ⊤ cannot change the
value of f from ⊤ to ⊥.

2.6. Decision Problems

In Section 2.1, we have presented logic as a tool to formalize and reason about a world
of interest, whereas in Section 2.5 we have provided some background knowledge about
commonly used models for representing combinational and sequential hardware circuits.
Our aim is to use the tool of logic, and in particular Propositional Logic, to provide a formal
representation of hardware sequential systems and reason about some of their properties.
In particular, we are interested in asking certain questions about the formalized systems
and having those questions answered by algorithmic procedures. We are, thus, interested
in solving some computational problems arising from those questions, which typically
belong to the class of decision problems.

In this section we provide an overview of decision problems and their properties
and we present Boolean Satisfiability (SAT), a fundamental decision problem in computer
science of particular interest in the context of this paper.

Definition 28 (Decision Problems and Instances). A decision problem P is any arbitrary
question admitting a YES or NO answer over an infinite set of inputs. An instance of a decision
problem P is a particular input for P . We distinguish between YES-instances, instances for which
P gives a YES answer, and NO-instances, instances for which P gives a NO answer.

Traditionally, a decision problem is identified by its set of YES-instances. Instances of
a decision problem are usually encoded as strings over an alphabet Σ. As a consequence, a
decision problem P is often defined as a formal language L(P) over that alphabet and can
be formulated as an instance of the membership problem for L(P).

Theorem 1 (Decision Problems as Membership Problems). Given a decision problem P ,
determining whether the answer to a given instance is YES is equivalent to determining whether an
encoding w ∈ Σ∗ of that instance over an alphabet Σ is in the corresponding language L(P).

In order to solve a decision problem P , we are interested in algorithms that terminate
with a correct answer for every input of P , as formalized by the following definitions.

Definition 29 (Soundness and Completeness of an Algorithm). An algorithm for a given
decision problem P is sound iff when it returns a YES answer the input is a YES-instance of P . An
algorithm for a given decision problem P is complete iff it always terminates and it returns a YES
answer when the input is a YES-instance of P .

Unsound algorithms are rarely of practical interest. Incomplete algorithms may be
effective in solving only YES- or NO-instances of a decision problem. Ideally, however, we
would like to have an algorithm for a decision problem P that is both sound and complete.

Definition 30 (Decision Procedure). A decision procedure is an algorithmic procedure that, given
an instance of a decision problem P , always terminates with a correct YES or NO answer.

Definition 31 (Decidability of a Decision Problem). A decision problem for which there exists a
decision procedure is said to be decidable.

Decidability is an important property to determine whether a given problem may be
tackled algorithmically. Many important problems are undecidable, such as the so-called
Entscheidungsproblem asking for the validity of a first-order formula in the general case
(proved undecidable by Church and Turing).



Algorithms 2024, 17, 253 10 of 55

Sometimes, decision procedures are also asked to produce certificates as a way to
prove that the results of their computation are correct.

Definition 32 (Certificates). A certificate is a string of symbols that can be used to prove the
answer of a decision procedure on a given instance. We distinguish YES-certificates, produced by
the algorithm to certify a YES answer, and NO-certificates, produced by the algorithm to certify a
NO answer.

The typical decision problems we are interested in concern the satisfiability or validity
of formulas in some logical system L . Those two problems are interchangeable, as deciding
the satisfiability of a formula φ can be seen as the negation of the decision problem to
determine whether the formula ¬φ is valid. Focusing on the validity problem, we can
formulate such a problem as the membership problem of a formula φ to the language of
logically valid formulas of L (or the language theorems, supposing L to be sound and
complete).

In what follows, we assume L to be both sound and complete. This is because we are
mainly interested in decision problems over propositional logics, which are both sound
and complete under the usual semantics and proof systems. Considering logical systems
that are both sound and complete, we equate the problem of validity (checking whether a
formula is a tautology in L ) to the problem of derivability (checking whether the formula
is a theorem in L ).

Propositional (or Boolean) Satisfiability (SAT) is the problem to decide whether a given
propositional formula is satisfiable, as defined in Definition 16.

Definition 33 (Boolean Satisfiability Problem). Given a propositional formula φ over the
propositional variables V, SAT is the problem to determine whether ∃µ(V) : µ |= φ. If that is the
case, the formula φ is a YES-instance of the problem and is said to be satisfiable (SAT). The model µ
is a YES-certificate for the problem on φ. Otherwise, the formula φ is a NO-instance of the problem
and is said to be unsatisfiable (UNSAT).

SAT is a fundamental decision problem in computer science, important from both
the theoretical and the practical perspective. From the theoretical standpoint, SAT plays a
central role in computational complexity theory. From the practical standpoint, SAT can be
used as a modeling framework to encode many computationally hard problems.

SAT is known to be a computationally hard problem: it is, in fact, a member of the
NP-complete class of complexity [24]. This briefly means that no algorithm is currently
known that is able to solve all instances of SAT in a polynomial amount of time. Despite
this theoretical limitation, the SAT problem is considered in many cases to be tractable,
thanks to the fact that its instances often present some kind of structure arising from the
application domain they originate from. Currently, state-of-the-art SAT solvers are able to
handle SAT instances up to millions of variables and constraints.

Definition 34 (SAT-Solving Algorithm). A SAT-solving algorithm is a decision procedure to
answer the SAT problem.

A SAT solver is software that runs a SAT-solving algorithm, taking a propositional
formula (usually in CNF) as input and determining whether or not such a formula can be
satisfied by a truth assignment of its variables. SAT-solving algorithms are usually designed
as search procedures over the space of truth assignments, following the highly influential
DPLL [25] algorithm. To give a better understanding of the subject at hand, Algorithm 1
highlights the top-level procedure of DPLL; a brief description follows as well as a partial
example of the assignment’s space exploration.

Figure 1 depicts a search tree enumerating all the truth assignments, one for each
leaf node, over three variables, taking into account CNF = {{¬x, y}, {¬y,¬z}} as a target
formula. Given the visual representation, it is easy to see how looking for a satisfying
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assignment is equal to looking for a path, and hence a leaf node, that satisfies a given CNF.
Furthermore, taking into account the tree topology and the leaf values, it is possible to
identify simplifying steps that reduce the search space, e.g., neither µ3 nor µ4 can lead to
satisfying assignments; thus, it is irrelevant to evaluate the role of variable z given a partial
assignment that reaches such a branch.

x

y y

z z z z

µ1

⊥

µ2

>

µ3

⊥

µ4

⊥

µ5

⊥

µ6

>

µ7

>

µ8

>
Figure 1. Search tree enumerating all possible assignments for three variables x, y and z with respect
to CNF = {{¬x, y}, {¬y,¬z}}. Solid (dashed) edges correspond to true ( f alse) assignments.

In order to evaluate the amount of work that the DPLL algorithm has to perform,
a common notion used is that of the termination tree, which evaluates the actual search
tree considered during exploration. Figure 2 depicts a partial termination tree taking into
account the same example introduced in Figure 1. Within a termination tree, one can find
conflicts (✗) and valid (✓) assignments, as well as a trace for the conditioned CNF at each
level of the search space.

x{¬x, y}, {¬y,¬z}

y{y}, {¬y,¬z}

z{¬z}

{{}}
7

{}

X

x Level 0

y Level 1

z Level 2

Figure 2. Partial termination tree associated with the example of Figure 1 where each node is labeled
with the corresponding CNF. Crosses denote contradiction within a given path whereas check marks
denote admissible assignments.

Most modern state-of-the-art SAT solvers employs a SAT-solving algorithm called
Conflict-Driven Clause Learning (CDCL) [26]. CDCL is based on clause learning and non-
chronological backtracking in order to avoid repeated exploration of regions of the search space
that do not lead to a satisfying assignment. During search, CDCL algorithms maintain a trail
of literals representing the current partial assignment. Under a given partial assignment,
each clause loaded in the solver can be either satisfied, conflicts, units or unresolved. Clauses
are satisfied if at least one of their literals is satisfied. If each literal in a clause is falsified,
then the whole clause is a conflict. If all but one literals of the clause are falsified, then the
clause is a unit. Otherwise the clause is unresolved. If a clause is a unit, its only non-falsified
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literal is implied by the current partial assignment; thus, its variable can be assigned so that
the literal is satisfied.

Algorithm 1 Top-level procedure of the DPLL algorithm.

Input: C a set of clauses.
Output: res ∈ {SAT, UNSAT}.

1: procedure DPLL(C)
2: while ∃ unit clause l ∈ C do
3: C ← UNITPROPAGATE(C, l)
4: while ∃ pure literal l ∈ C do
5: C ← PURELITERALASSIGN(C, l)
6: if C = ∅ then
7: return SAT
8: if empty clause ∈ C then
9: return UNSAT

10: l ← CHOOSELITERAL(C)
11: return DPLL(C ∪ l) or DPLL(C ∪ ¬l)

The search starts by selecting a variable, using some suitable heuristic, and assigning
it a truth value. This process is called decision. After a decision has been made, some of the
clauses loaded in the solver may have become conflicts or unit clauses. The solver looks up
for unit clauses using efficient data structures, called watch lists, in order to perform Boolean
Constraint Propagation (BCP). During BCP, the solver finds and assigns every clause that is a
unit under the current partial assignment. Such a procedure iterates until either no more
unit clauses can be found or the solver has found a conflict. In the first case, the solver
proceeds with the next decision. In the second case, the solver analyzes the sequence of
assignments that have led to the conflict, a process called conflict analysis [26]. The result of
such an analysis is a learned clause catching the causes of the conflict. Such a clause is added
to the current formula in order to avoid future iterations to enter the region of the search
space that led to the conflict (learning). The algorithm, thus, performs non-chronological
backtracking canceling enough of its latest decisions (even all of them) to leave such a
region of space and then resume search on another region. Eventually, either a conflict is
found when no decisions have been made, meaning that the problem at hand is UNSAT, or
every variable has been assigned without incurring a conflict, meaning that the problem at
hand is SAT.

State-of-the-art SAT solvers are sophisticated artifacts of engineering that often include
various techniques and heuristics to enhance their performance. Among such techniques,
there are those to periodically restart search in order to better explore the space [27], simplify-
ing the problem at hand either before starting searching for a solution or during search [28]
and periodically trimming the database of learned clauses.

In many applications, SAT solvers are required to answer a sequence of related calls. In
order to preserve useful information about the problem at hand, maintained in the state of
the solver, many SAT solvers expose an incremental interface. Incremental interfaces enable
the user to load a formula in the solver, solve the corresponding SAT problem, then modify
the formula and solve the related SAT problem without losing inferences or other useful
information about the problem stored in the state. Between incremental calls, the formula can
usually be modified by either specifying variable assumptions or adding or removing clauses.

Many modern SAT solvers can be instructed to provide a refutation proof in the case a
problem is declared to be UNSAT. Such a proof can be thought of as a NO-certificate that
can be used by an independent checker to assess the correctness of the SAT solver’s answer.
Refutation proofs are usually produced as either resolution proofs [29] or clausal proofs [30].
A resolution proof is a series of applications of the resolution rule that derives the empty
clause from the clauses of an unsatisfiable propositional formula.
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Definition 35 (Binary Resolution Rule). Given two clauses C1 and C2, the (binary) resolution
rule is the inference rule:

(C1 ∨ a) ∧ (¬a ∨ C2)

(C1 ∨ C2)
(8)

Modern SAT solvers are capable, without incurring too large an additional cost, to
generate a resolution proof from unsatisfiable runs [31]. Clausal proofs can be seen as
logs of the sequence of clauses learned by the solver in the order in which they were
learned. A resolution proof can be constructed starting from a clausal proof using BCP [32].
Another common feature of modern SAT solvers is the extraction of unsatisfiability cores.
Given an UNSAT problem, an unsatisfiability core is a subset of the clauses of the original
problem that is still unsatisfiable. The set of clauses in a resolution proof can be seen as an
unsatisfiability core.

2.7. Model Checking

Model checking is an automated formal verification technique for determining whether
a design meets a given specification. The behavior of the design is usually modeled using
a transition system. The specification usually consists of a property (or a set of properties)
expressed in a temporal logic.

Transition systems and temporal logics are discussed in detail in Sections 2.8 and 2.9,
respectively. Section 2.10 formalizes the model checking problem as well as a particular sub-
class of that problem, called invariant verification. In Section 2.11, a way to symbolically
represent transition systems is presented, whereas in Section 2.12 the invariant verification
problem is reduced to a reachability problem on such a symbolic representation. These
concepts form the foundation for the discussion in the remaining sections of this paper,
which will each focus on specific model checking algorithms and techniques.

2.8. Transition Systems

Transition systems are often used in computer science as models to describe the behav-
ior of real-world systems. They can be seen as directed graphs, with nodes representing
states and edges representing transitions. A state describes some unique configuration of
information about a given system at a certain moment of its behavior. Transitions specify
how the system can evolve from one state to another.

Definition 36 (Transition System). A transition system (also known in the literature as a Kripke

structure [33]) is a tuple T S def
= ⟨S, S0, R, AP, L⟩, where S is the set of states, S0 ⊆ S is the set of

initial states, R ⊆ S× S is the transition relation, AP is a set of propositional variables representing
atomic propositions and L : S→ 2AP is a labeling function.

For each state s ∈ S, the labeling function L(s) denotes the set of atomic propositions
that hold in s. A transition system can be either finite or infinite, depending on whether
or not it admits an infinite set of states (and consequently transitions). In this paper, we
are interested in the model checking of bit-level hardware sequential circuits. Since the
behavior of such systems can be modeled using finite transition systems, we restrict the
discussion to those models. For this reason, we hereinafter use the term transition system as
a shorthand for finite transition systems without risk of ambiguity.

Example 1. The sequential hardware system described in Figure 3a, representing a 2-bit syn-
chronous counter that counts up to 2, can be modeled as the following transition system:

T S = ⟨S, S0, R, AP, L⟩ (9)

S = {s0, s1, s2, s3} (10)

S0 = {s0} (11)



Algorithms 2024, 17, 253 14 of 55

R = {(s0, s1), (s1, s2), (s1, s0), (s3, s2)} (12)

AP = {a0, a1} (13)

L = {(s0, ∅), (s1, {a0}), (s2, {a1}), (s3, {a0, a1})} (14)

States S = {s0, s1, s2, s3} represent the four possible states of the counter, corresponding to the
combined digital values of the two flip flops; s0 represent the reset state of the system, in which the
output of both flip flops is low, R indicates how the system will transition between states at each clock
cycle and the labeling function L maps each state to a set of atomic propositions in AP = {a0, a1}
each indicating that either Q0 or Q1 is high, respectively. The transition system is visualized in
Figure 3b. We will use this system and its model as a running example in the rest of the section.

Q

D Q

FF0

Q

D Q

FF1

CLK

Q0 Q1

(a)

s0

∅

s1

{a0}
s2

{a1}

s3

{a0, a1}

(b)

Figure 3. (a) A simple sequential hardware design implementing a 2-bit counter from 0 to 2 using
D-type flip flops. (b) The model of the counter as a transition system.

Let T S = ⟨S, S0, R, AP, L⟩ be a transition system; we provide the following useful
definitions.

Definition 37 (Transition). A transition in T S is a pair of states (s1, s2) such that (s1, s2) ∈ R.

Definition 38 (Successor and Predecessor States). Given a pair of states (p, s), p is said to be a
predecessor of s iff (p, s) is a transition in T S . Vice versa, s is said to be a successor of p.

Definition 39 (Paths). A path in T S is any sequence of states π = (s0, s1, . . . ) of arbitrary (even
infinite) length |π| such that (si, si+1) is a transition in T S for each 0 ≤ i < |π|. A path π is
said to be finite if |π| ∈ N; otherwise, it is said to be infinite. We denote by πi = (si, si+1, . . . ) the
suffix of π starting with the (i + 1)-th state of π. We also denote by π[i] the (i + 1)-th state in π.

Definition 40 (Initial Paths). An initial path in T S is any path π = (s0, s1, . . . ) such that
s0 ∈ S0.

Definition 41 (Exact and Bounded Reachability). A state s ∈ S is reachable in exactly k steps
in T S iff a finite initial path π = (s0, . . . , sk+1) of length k + 1 such that sk+1 = s exists. A state
s ∈ S is reachable within k steps (or reachable bounded by k) in T S iff there is i ≤ k such that s is
reachable in exactly i steps in T S .

Definition 42 (Reachability). A state s ∈ S is reachable in T S if it is reachable within an
arbitrary (finite) number of steps in T S .
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Definition 43 (Sets of Exactly Reachable and Sets of Bounded Reachable States). We denote
withRE

i (T S) the set of states reachable in exactly i steps in T S . We denote withRi(T S) the set
of states reachable within i steps in T S , i.e.,

Ri(T S)
def
=

⋃
0≤j<i

RE
j (T S) (15)

Definition 44 (Reachability Diameter). We define the reachability diameter of T S to be the
minimal number d ∈ N of steps required for reaching all reachable states in T S :

d
def
= arg min

i∈N
{i | Ri(T S) = Ri+1(T S)} (16)

Definition 45 (Set of Reachable States). We denote withR(T S) the set of states reachable in T S

R(T S) def
=

⋃
0≤j<d

Rj(T S) (17)

where d is the reachability diameter of T S .

When considering reachability, we use the term timeframe i, to denote what happens
after i transitions from the initial states. It is trivial to prove that, for a finite-state transition
system, there always exists a (finite) reachability diameter.

Example 2. Given the hardware design and its transition system described in Example 1,
π = (s0, s1, s2) is both a path and an initial path, the set of reachable states isR(T S) = {s0, s1, s2}
and the reachability diameter of the system is d = 2.

2.9. Temporal Logics

Temporal logics are extensions of classical logics that are used to represent, and reason
about, statements qualified in terms of time. Both propositional and predicate logic can
be extended to include temporal modalities. In this dissertation, we are only interested in
Propositional Temporal Logics (PTLs), i.e., temporal logics obtained augmenting propositional
logic with temporal operators. This is because they are the logics typically used to express the
requirements for bit-level sequential circuits. Hereinafter, when referring to those logics,
we will omit the prefix “propositional” for conciseness.

Different temporal logics, with different expressiveness, can be defined based on
the temporal operators they use. The two temporal logics used the most in practice are
Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). LTL adopts a linear-time
perspective, in which every moment in time is followed by a single successor moment. A
possible behavior in LTL can, therefore, be seen as an infinite, ordered sequence of moments.
CTL, instead, adopts a branching-time perspective, in which every moment in time may
be followed by many alternative moments representing different courses of execution. A
possible behavior in CTL can, therefore, be seen as an infinite, directed tree of moments.
Neither of these logics is a subset of the other, as many temporal properties can be expressed
only using one of either LTL or CTL.

The model-theoretic semantics usually given to temporal logics is defined in terms of
paths and states of transition systems.

2.9.1. Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli [34] for the specification and
verification of reactive systems. Formulas of LTL are constructed from a set of propositional
variables AP using the usual logical connectives (negation ¬, conjunction ∧ and disjunction ∨)
and some temporal operators X (“next time”), F (“eventually”), G (“always”) and U (“until”).
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LTL formulas are interpreted in terms of paths, i.e., sequences of states of a transition
system. Their semantics is also extended to states and whole transition systems.

Definition 46 (Syntax of LTL Formulas). Given a set of propositional variables AP, the syntax
of LTL formulas is defined inductively as follows.

• Boolean constants ⊤ and ⊥ are LTL formulas.
• Each a ∈ AP is an LTL formula.
• Given ψ, an LTL formula ¬ψ is an LTL formula.
• Given ψ1 and ψ2, LTL formula ψ1 ∧ ψ2 is an LTL formula.
• Given ψ1 and ψ2, LTL formula ψ1 ∨ ψ2 is an LTL formula.
• Given ψ, an LTL formula Xψ is an LTL formula.
• Given ψ, an LTL formula Fψ is an LTL formula.
• Given ψ, an LTL formula Gψ is an LTL formula.
• Given ψ1 and ψ2, LTL formula ψ1Uψ2 is an LTL formula.

Note that ⊥ and ∨ can be omitted from Definition 46 without losing expressiveness as
they can be easily derived from ⊤, ¬ and ∧. Similarly, F and G can also be omitted, as they

can be derived from X and U as Fψ
def
= ⊤Uψ and Gψ

def
= ¬F¬ψ. Furthermore, the syntax

can be extended to other common Boolean operators by means of their usual definitions in
Propositional Logic.

Example 3. Given the hardware design and its transition system described in Example 1, we can
model the specification describing how the system will never reach a state in which the output of
both flip flops is high as the following property in LTL logic:

ψ = ¬F(a0 ∧ a1) (18)

Intuitively, the semantics of the temporal operators of LTL is the following: Xψ holds
at the current moment if ψ holds at the next moment; Fψ holds at the current moment if
there is a future moment at which ψ holds; Gψ holds at the current moment if ψ holds at
the current moment and at every future moment; ψ1Uψ2 holds at the current moment if
there is some future moment at which ψ2 holds and ψ1 holds at each moment until that
future moment. Formally, the semantics of LTL formulas is defined with respect to paths,
states and transition systems, as follows.

Definition 47 (Semantics of LTL Formulas with Respect to Paths). Given a transition system

T S def
= ⟨S, S0, R, AP, L⟩, let π = (s0, s1, . . . ) be an infinite path in T S and let ψ be an LTL

formula over AP. We give the following inductive definition of when π satisfies ψ, denoted as
π |= ψ:

• π |= ⊤ and π ̸|= ⊥.
• For each p ∈ AP, π |= p iff p ∈ L(π[0]).
• π |= ¬ψ1 iff π ̸|= ψ1.
• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.
• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.
• π |= Xψ1 iff π1 |= ψ1.
• π |= Fψ1 iff πi |= ψ1 for some i ≥ 0.
• π |= Gψ1 iff πi |= ψ1 for every i ≥ 0.
• π |= ψ1Uψ2 iff πi |= ψ2 for some i ≥ 0 and πj |= ψ1 for every 0 ≤ j < i.

Other common Boolean operators have semantics that can easily be inferred from the
semantics of ¬, ∧ or ∨.
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Definition 48 (Semantics of LTL Formulas with Respect to States). Given a transition system

T S def
= ⟨S, S0, R, AP, L⟩, let s ∈ S be a state and let ψ be an LTL formula over AP. We say that s

satisfies ψ, denoted as s |= ψ, iff π |= ψ for each infinite path π = (s0, s1, . . . ) with s0 = s.

Definition 49 (Semantics of LTL Formulas with Respect to Transition Systems). Given a

transition system T S def
= ⟨S, S0, R, AP, L⟩, let ψ be an LTL formula over AP. We say that T S

satisfies ψ, denoted as T S |= ψ, iff s0 |= ψ for each s0 ∈ S0.

The interpretation of an LTL formula ψ in terms of a state s requires that all the computa-
tions starting from s satisfy ψ, in order for s to satisfy ψ. In LTL semantics, therefore, there is
an implicit universal quantification over all computations when determining whether a state
satisfies a formula. Thus, LTL can be used to express properties holding for every path from a
state but it cannot express properties holding only for some of such paths.

2.9.2. Computation Tree Logic

Computation Tree Logic (CTL) was introduced by Clarke et al. [35] to overcome the
semantics limitation of LTL. In CTL, two kinds of formulas are distinguished: state formulas
and path formulas. CTL also introduces two new temporal operators, called path quantifiers
to allow the specification of properties for some or all the paths starting from a state.
These quantifiers are A (“for all paths”) and E (“there exists a path”). CTL formulas are
interpreted in terms of trees of paths, i.e., possible alternative paths of a transition system.
Their semantics is also extended to states and whole transition systems.

Definition 50 (Syntax of CTL Formulas). Given a set of propositional variables AP, the syntax
of CTL state formulas is defined inductively as follows.

• Boolean constants ⊤ and ⊥ are CTL state formulas.
• Each a ∈ AP is a CTL state formula.
• Given ψ, a CTL state formula ¬ψ is a CTL state formula.
• Given ψ1 and ψ2, CTL state formula ψ1 ∧ ψ2 is a CTL state formula.
• Given ψ1 and ψ2, CTL state formula ψ1 ∨ ψ2 is a CTL state formula.
• Given φ, a CTL path formula Aφ is a CTL state formula.
• Given φ, a CTL path formula Eφ is a CTL state formula.

The syntax of CTL path formulas is defined inductively as follows:

• Given ψ, a CTL state formula Xψ is a CTL path formula.
• Given ψ, a CTL state formula Fψ is a CTL path formula.
• Given ψ, a CTL state formula Gψ is a CTL path formula.
• Given ψ1 and ψ2, CTL state formula ψ1Uψ2 is a CTL path formula.

Note that Definition 50 can be restricted to exclude ⊤, ∨, F and G, without losing
expressiveness in the same way as Definition 46. Syntax can also be expanded to other
common Boolean operators as usual.

Example 4. Given the hardware design and its transition system described in Example 1, we can
model the specification describing how the system will never reach a state in which the output of
both flip flops is high as the following property in CTL logic:

ψ = ¬EF(a0 ∧ a1) (19)

Intuitively, state formulas describe properties of states, whereas path formulas describe
properties of (infinite) paths. Path formulas can be transformed into state formulas by
prefixing them with a path quantifier. Note that path quantifiers must immediately precede
temporal operators in order for the resulting state formula to be well formed. Intuitively,
the semantics of path quantifiers is the following: Aφ holds at the current state if φ holds
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for all paths starting at the current state; Eφ holds at the current state if φ holds for some
paths starting at the current state. Formally, the semantics of CTL formulas is defined with
respect to paths, states and transition systems, by means of two satisfaction relations: one
for state formulas and the other for path formulas.

Definition 51 (Semantics of CTL Path Formulas with Respect to Paths). Given a transition

system T S def
= ⟨S, S0, R, AP, L⟩, let π = (s0, s1, . . . ) be an infinite path in T S and let φ be a CTL

path formula over AP. We give the following inductive definition of when π satisfies φ, denoted as
π |= φ:

• π |= Xψ iff π[1] |= ψ.
• π |= Fψ iff π[i] |= ψ for some i ≥ 0.
• π |= Gψ iff π[i] |= ψ for every i ≥ 0.
• π |= ψ1Uψ2 iff π[i] |= ψ2 for some i ≥ 0 and π[j] |= ψ1 for every 0 ≤ j < i.

Definition 52 (Semantics of CTL State Formulas with Respect to States). Given a transition

system T S def
= ⟨S, S0, R, AP, L⟩, let s ∈ S be a state and let ψ be a CTL state formula over AP. We

give the following inductive definition of when s satisfies ψ, denoted as s |= ψ:

• s |= ⊤ and s ̸|= ⊥.
• For each p ∈ AP, s |= p iff p ∈ L(s).
• s |= ¬ψ1 iff s ̸|= ψ1.
• s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2.
• s |= ψ1 ∨ ψ2 iff s |= ψ1 or s |= ψ2.
• s |= Eφ1 iff π |= ψ for some infinite initial path π starting in s.
• s |= Aφ1 iff π |= ψ for each infinite initial path π starting in s.

Definition 53 (Semantics of CTL State Formulas with Respect to Transition Systems). Given

a transition system T S def
= ⟨S, S0, R, AP, L⟩, let s ∈ S be a state and let ψ be a CTL state formula

over AP. We say that T S satisfies ψ, denoted as T S |= ψ, iff s0 |= ψ for each s0 ∈ S0.

2.9.3. Temporal Properties

Definition 54 (Temporal Properties). Given a transition system T S , a temporal property is any
property ψ, expressed in a temporal logic, that specifies the admissible (or desired) behaviors of T S .

Temporal properties typically fall under one of two main categories: safety properties
and liveness properties, defined informally as follows.

Definition 55 (Safety Properties). Given a transition system T S , a safety property asserts that
some (undesired) conditions never happen for T S (“nothing bad ever happens”).

Definition 56 (Liveness Properties). Given a transition system T S, a liveness property asserts
that some (desired) conditions will eventually happen for T S (“something good eventually happens”).

Typical examples of safety properties include deadlock freedom and mutual exclusion,
whereas a typical example of a liveness property is starvation freedom. Both safety and
liveness properties can be expressed using LTL and CTL. The main difference between the
two categories of properties is that safety properties can be violated by finite computations
of a system, whereas liveness properties can only be violated by infinite computations of a
system. In practical applications, safety properties are prevalent. The temporal properties
defined in Examples 3 and 4 are safety properties.

We distinguish a kind of safety properties of particular interest, called invariant proper-
ties, defined as follows:
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Definition 57 (Invariant Properties). Given a transition system T S , an invariant property
asserts that the condition described by a given propositional formula φ over AP, called an invariant
condition, always happen for T S (“some invariant condition φ always happens”).

Invariant properties can be described in LTL as formulas Gφ with the invariant
condition φ a formula over AP. Similarly, invariant properties in CTL take the form AGφ
with the invariant condition φ a formula over AP.

Example 5. The corresponding invariant properties of the safety properties defined in Examples 3 and 4
are as follows:

ψ = G(¬a0 ∨ ¬a1) (20)

ψ = AG(¬a0 ∨ ¬a1) (21)

in LTL and CTL, respectively.

Properties management [36,37] goes beyond the scope of this paper, but it is still a
topic as relevant as the proper choice of the actual model checking algorithm to be used
given a specific scenario.

2.10. Model Checking Problem

Let T S = ⟨S, S0, R, AP, L⟩ be a transition system; the model checking problem can be
formalized as follows:

Definition 58 (Model Checking Problem). Given a transition system T S and a temporal
property ψ over AP, the decision problem to check whether T S |= ψ is called a model checking
problem. In the case T S ̸|= ψ, the model checking procedure is required to provide a counterexample.

Definition 59 (Counterexample). Given a transition system T S and a temporal property ψ
over AP such that T S ̸|= ψ, a counterexample to ψ for T S is any initial path π of T S such that
π ̸|= ψ.

Model checking is therefore a decision problem, as defined in Section 2.6, that admits
a YES-answer (ψ holds for T S) or a NO-answer (ψ does not hold for T S).

Definition 60 (Model Checking Algorithm). A model checking algorithm, or model checker, is
any decision procedure able to solve a model checking problem.

When a model checking algorithm terminates with a NO-answer, it must also emit a
NO-certificate in the form of a counterexample. Model checking algorithms must systemat-
ically traverse all behaviors of the system in order to either confirm that the property holds
or provide a counterexample. A model checking algorithm may have either or both of the
following qualities.

Definition 61 (Completeness and Soundness (of a Model Checking Algorithm)). A model
checking algorithm is said to be complete iff, given a transition system T S and a property ψ, it is
able to either provide a counterexample of ψ for T S or detect the absence of counterexamples of any
length. A model checking algorithm is said to be sound iff, given a transition system T S and a
property ψ, it provides a counterexample of ψ for T S only when T S ̸|= ψ and it proves the absence
of counterexamples of any length only when T S |= ψ.

Different classes of model checking problems can be distinguished, depending on the
category of temporal properties being checked. In this paper, we are interested only in the
model checking of invariant properties, also called invariant verification problems, which we
show can be solved via reachability analysis on the transition system under verification.
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Definition 62 (Invariant Verification Problem). Given a transition system T S and an invariant
property ψ over AP, the invariant verification problem of ψ for T S is the model checking problem
to decide T S |= ψ or to provide a counterexample.

Definition 63 (Invariant). Given a transition system T S and an invariant property ψ over AP,
if T S |= ψ, then the invariant condition φ of ψ is a propositional formula over AP and is said to be
an invariant of T S .

The invariant verification problem can be reduced to a reachability problem over T S ,
as follows.

Theorem 2 (Reduction of Invariant Verification to Reachability). Given a transition system
T S and an invariant property ψ over AP, let φ over AP be the invariant condition of ψ; then,
the invariant verification problem can be reduced to the problem to check whether a state s ∈ S
such that s ̸|= φ is reachable in T S . If that is the case, T S ̸|= ψ and any initial path to s is a
counterexample for the invariant verification problem. Otherwise, T S |= ψ. Such a problem is
called the reachability problem of ¬φ in T S .

Therefore, the invariant verification problem can be simply solved by means of a
procedure that traverses the reachable state space of T S and checks whether or not φ holds
for every traversed state. Since the state space is finite, the procedure eventually terminates
either providing a counterexample or confirming φ as an invariant of T S . In practice, such
a state space is usually too large to be explicitly traversed. State-of-the-art model checking
methods rely on a symbolic representation of the system instead.

2.11. Symbolic Representation of Transition Systems

The model checking formulation provided in the previous subsection relies on an
explicit representation of states and transitions. Such an explicit representation is not
adequate to handle large state spaces. In symbolic model checking, the (explicit) transition
system is converted into a more concise, implicit representation based on propositional
formulas, called symbolic representation. Using a symbolic representation, model checking
algorithms can traverse the state space of the system more efficiently, by manipulating sets
of states and transitions directly, instead of being forced to operate on one state or transition
at a time. In addition, since the symbolic representation relies on propositional formulas,
symbolic model checking algorithms can leverage well-developed automatic techniques
for manipulating such formulas such as BDDs or SAT solvers.

In this Subsection we show how to encode a transition system into its symbolic repre-
sentation and how to formulate the invariant verification problem on such a representation.
Given a transition system T S = ⟨S, S0, R, AP, L⟩, to obtain a symbolic representation of
T S , we must define how to encode each of its constituents into propositional formulas.

2.11.1. Symbolic Representation of States

In order to symbolically represent the set of states S of a transition system T S , we
introduce a set of propositional variables V, called state variables, with |V| = ⌈log2|S|⌉.
Given a transition system T S = ⟨S, S0, R, AP, L⟩ and a set of state variables V, we give the
following definitions.

Definition 64 (Encoding Function). An encoding function ϕ : S→ B|V| over V is an injective
function mapping states to complete truth assignments over V.

Definition 65 (Encoding of States). A state s ∈ S is encoded as a complete truth assignment
µs = ϕ(s) over V according to an encoding function ϕ. The complete truth assignment µs is called
encoding of s over V.
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Note that ϕ is bijective if and only if |S| = 2|V|. Otherwise, some pseudo-state
representations are introduced in the symbolic representation of S by encoding. Such
pseudo-states can be disregarded and treated as unreachable states of T S .

Propositional formulas over V are used to represent sets of states. Any propositional
formula FQ over V represents the set of states Q ⊆ S such that, for each state q ∈ Q, its
corresponding encoding µq over V satisfies FQ, i.e., µq |= FQ. Given an encoding function ϕ
over V, and letting q ∈ S be a state of T S , many logically equivalent propositional formulas
over V can be used to represent q. We define one example of such a formula as follows.

Definition 66 (Characteristic Formula for States). The characteristic formula of q is the proposi-
tional formula ξq over V such that

ξq
def
=

∧
vi∈V

li where

{
li = vi, iff µq(vi) = ⊤
li = ¬vi, iff µq(vi) = ⊥

(22)

where µq = ϕ(q).

Note that ξq is a cube and it is satisfied only by the complete truth assignment µq
encoding q.

Let Q ⊆ S be a set of states; many logically equivalent propositional formulas over V
can be used to represent Q. We define one example of such a formula as follows.

Definition 67 (Characteristic Formula for Set of States). The characteristic formula of Q is the
propositional formula ξQ over V such that

ξQ
def
=

∨
q∈Q

ξq (23)

Note that ξQ is satisfied only by the complete truth assignments µq encoding states
q ∈ Q.

With abuse of notation, hereinafter, we make no distinction among the following concepts:

• A state s ∈ S, any propositional formula Fs that is logically equivalent to its character-
istic formula ξs and the only model for such formula µs.

• A set of states Q ⊆ S, any propositional formula FQ that is logically equivalent to
its characteristic formula ξQ and the set of models for such formula Mods(FQ) =
{µq | q ∈ Q}.
Initial states S0 ⊆ S of T S can be represented symbolically by a propositional formula

I such that the encodings µs0 over V of each initial state s0 ∈ S0 satisfy I .

Example 6. Given the hardware design and its transition system described in Example 1, the states
S = {s0, s1, s2, s3} will be encoded using |V| = ⌈log2 |S|⌉ = 2 state variables V = {v0, v1} by
the encoding function defined as follows:

ϕ = {(s0, (0, 0)), (s1, (0, 1)), (s2, (1, 0)), (s3, (1, 1))} (24)

Individual states will be represented symbolically by their characteristic formulas (cubes):

ξs0 = ¬v0 ∧ ¬v1 ξs1 = v0 ∧ ¬v1 ξs2 = ¬v0 ∧ v1 ξs3 = v0 ∧ v1 (25)

The set of initial states will be encoded as the following formula:

I = ξs0 = ¬v0 ∧ ¬v1 (26)
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2.11.2. Symbolic Representation of Transitions

In order to symbolically represent transitions (a binary relation on states), we consider
two sets of state variables: one to represent the starting state, called present state, and
another to represent the final state, called next state, of a transition. The set V is used to
encode present states while its primed counterpart V′ = {v′ | v ∈ V} is used to encode next
states. The same primed notation is used to denote the set of next states S′ = {s′ | s ∈ S}
and any propositional formula F′ = F[V ← V′] in which the present state variables have
been renamed as the next state variables. Furthermore, we use the superscript notation Vi

to denote the set of state variables encoding states at timeframe i. The same superscript
notation is used accordingly to denote the sets of states Si after i transitions and any
propositional formula Fi = F[V ← Vi] referring to timeframe i. We also use the notation
πi,j as a shorthand for a truth assignment over Vi ∪ · · · ∪V j.

Definition 68 (Next State Encoding Function). Given a transition system T S , a set of present
state variables V and a set of next state variables V′, let ϕ be an encoding function over S; we define
the next state encoding function ϕ′ as ϕ′ = ϕ[V ← V′].

We give the following definitions.

Definition 69 (Encoding of Transitions). A transition (s, s′) ∈ R is encoded as a complete truth
assignment µs,s′ = ϕ(s) ∪ ϕ′(s′) over V ∪ V′. The complete truth assignment µs,s′ is called an
encoding of (s, s′) over V ∪V′.

Propositional formulas over V ∪ V′ are used to represent sets of transitions. Any
propositional formula FZ over V ∪V′ represents the set of transitions Z ⊆ R such that, for
each (z, z′) ∈ Z, its corresponding encoding µz,z′ over V ∪V′ satisfies FZ, i.e., µz,z′ |= FZ.
Given the encoding function ϕ and a next state encoding function ϕ′, and letting (z, z′) ∈ R
be a transition of T S , many logically equivalent propositional formulas over V ∪V′ can be
used to represent (z, z′). We define one example of such a formula as follows.

Definition 70 (Characteristic Formula for Transitions). The characteristic formula of (z, z′) is
the propositional formula ξz,z′ over V ∪V′ such that

ξz,z′
def
=

∧
vi∈V∪V′

li where

{
li = vi, iff µz,z′(vi) = ⊤
li = ¬vi, iff µz,z′(vi) = ⊥

(27)

where µz,z′ = ϕ(z) ∪ ϕ′(z′).

Note that ξz,z′ is satisfied only by the complete truth assignment µz,z′ encoding (z, z′).
Let Z ⊆ R be a set of transitions of T S . Many logically equivalent propositional

formulas over V ∪V′ can be used to represent Z. We define one example of such a formula
as follows.

Definition 71 (Characteristic Formula for Sets of Transitions). The characteristic formula of Z
is the propositional formula ξZ over V ∪V′ such that

ξZ
def
=

∨
(z,z′)∈P

ξz,z′ (28)

Note that ξZ over V ∪V′ is satisfied only by the complete truth assignments µz,z′ over
V ∪V′ encoding transitions (z, z′) ∈ Z.

With abuse of notation, hereinafter, we make no distinction among the following concepts:

• A transition (s, s′) ∈ R, any propositional formula Fs,s′ that is logically equivalent to
its characteristic formula ξs,s′ and the only model for such formula µs,s′ .
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• A set of transitions Z ⊆ R, any propositional formula FZ that is logically equivalent
to its characteristic formula ξZ and the set of models for such formula Mods(FZ) =
{µz,z′ |(z, z′) ∈ Z}.
The transition relation R is, thus, encoded as a propositional formula T over V ∪V′

such that the encoding µs,s′ over V ∪V′ of each transition (s, s′) ∈ R satisfies T.

Example 7. Given the hardware design and its transition system described in Example 1, the
transition relation R will be encoded as the propositional formula T over V ∪V′:

T =(¬v0 ∧ ¬v1 ∧ v′0 ∧ ¬v′1)∨
(v0 ∧ ¬v1 ∧ ¬v′0 ∧ v′1) ∨
(¬v0 ∧ v1 ∧ ¬v′0 ∧ ¬v′1)∨
(v0 ∧ v1 ∧ ¬v′0 ∧ v′1)

(29)

2.11.3. Symbolic Representation of the Labeling Function

In order to symbolically represent the labeling function L and the set of propositional
variables AP, first, we need to define the reverse labeling function L−1, mapping each
propositional variable a ∈ AP to the set of states in which a holds.

Definition 72 (Reverse Labeling). The reverse labeling function of a transition system T S is the
function L−1 : AP→ 2S such that, for each a ∈ AP,

L−1(a) = {s ∈ S | a ∈ L(s)} (30)

Each propositional variable a ∈ AP is mapped to a set of states by L−1(a) ⊆ S. For
each propositional variable a, the set of states L−1(a) can be represented as its characteristic
formula ξL−1(a) over V. The labeling function L is therefore symbolically represented as a
set of characteristic formulas ξL−1(a) over V, one for each a ∈ AP. A propositional variable
a ∈ AP is then symbolically represented by a propositional formula encoding the set of
states L−1(a) for which a holds.

Definition 73 (Characteristic Formula of Atomic Propositions). The characteristic formula of
an atomic proposition represented by the propositional variable a ∈ AP is the propositional formula
ξa = ξL−1(a).

Note that ξa is satisfied only by those states s ∈ L−1(a).

Example 8. Given the hardware design and its transition system described in Example 1, the
atomic propositions {a0, a1} will be encoded as follows by the reverse labeling function L−1:

L−1 = {(a0, {s1, s3}), (a1, {s2, s3})} (31)

a0 = ξs1 ∨ ξs3 = (v0 ∧ ¬v1) ∨ (v0 ∧ v1) = v0 (32)

a1 = ξs2 ∨ ξs3 = (¬v0 ∧ v1) ∨ (v0 ∧ v1) = v1 (33)

2.11.4. Symbolic Representation of Transition Systems

Given a transition system T S def
= ⟨S, S0, R, AP, L⟩, we define a symbolic representation

of the whole system as follows.

Definition 74 (Symbolic Transition System). A symbolic transition system encoding T S is the
tupleM = ⟨V, I , T⟩, where

• V is a set of propositional state variables, with |V| = ⌈log2|S|⌉, encoding the states S of T S .
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• I is a propositional formula over V representing the initial states S0 of T S .
• T is a propositional formula over V ∪V′ representing the transition relation R of T S .

All definitions provided in Section 2.8 about reachability on transition systems natu-
rally extends to their symbolic counterparts.

Example 9. Given the hardware design and its transition system described in Example 1, the
overall encoding of the transition system T S will be the tupleM = ⟨V, I , T⟩ defined as follows:

V = {v0, v1} (34)

I = ¬v0 ∧ ¬v1 (35)

T = (¬v0 ∧ ¬v1 ∧ v′0 ∧ ¬v′1) ∨
(v0 ∧ ¬v1 ∧ ¬v′0 ∧ v′1) ∨
(¬v0 ∧ v1 ∧ ¬v′0 ∧ ¬v′1) ∨
(v0 ∧ v1 ∧ ¬v′0 ∧ v′1)

(36)

2.11.5. Symbolic Representation of Invariant Properties

Given a transition system T S = ⟨S, S0, R, AP, L⟩ and an invariant property ψ with in-
variant condition φ over AP, we define a symbolic representation of the invariant condition
as follows.

Definition 75 (Symbolic Invariant Property). A symbolic invariant property encoding φ is the
propositional formula P over V such that

P
def
= φ[a1 ← ξa1 , . . . , an ← ξan ] (37)

for each ai ∈ Vars(φ), i.e., the formula obtained by substituting each propositional variable a of φ
with its characteristic formula ξa over V.

Example 10. Given the hardware design and its transition system described in Example 1, the
invariant property ψ defined in Example 5 will have an invariant condition φ encoded as follows:

φ = ¬a0 ∨ ¬a1 (38)

P = ¬ξa0 ∨ ¬ξa1 = ¬v0 ∨ ¬v1 (39)

2.12. Symbolic Invariant Verification

As shown in Section 2.10, the invariant verification problem can be reduced to a
problem of reachability in a transition system. Reachability in a transition system (or
equally invariant verification) can, in turn, be reduced to reachability in a corresponding
symbolic transition system, as follows.

Theorem 3 (Symbolic Invariant Verification). Given a transition system T S = ⟨S, S0, R, AP, L⟩
and an invariant property ψ with invariant condition φ over AP, the reachability problem of ¬φ in
T S can be reduced to the reachability problem of ¬P inM whereM = ⟨V, I , T⟩ is a symbolic
transition system encoding T S and P a symbolic invariant property encoding φ.

In this paper, we are interested in algorithms for symbolic invariant verification. There-
fore, with abuse of notation, we hereinafter use the terms “transition system”, “reachability”,
“invariant property” and “invariant verification” to denote their symbolic counterparts.
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Notation 5 (Target and Bad States). Given a transition systemM = ⟨V, I , T⟩ and an invariant
property P, with the notion of target we identify set of states corresponding to ¬P. States (or sets of
states) which are part of the target, or may reach the target, are called bad states.

Given a transition systemM = ⟨V, I , T⟩ and an invariant property P, we provide the
following useful definitions for invariant verification algorithms.

Definition 76 (Path Formula). A path formula of length k = j− i, starting from timeframe i and
reaching timeframe j, is the propositional formula Π(i, j) over Vi ∪ · · · ∪V j:

Π(i, j) =
j−1∧
h=i

T(Vh, Vh+1) (40)

Definition 77 (Initial Path Formula). An initial path formula of length k is the following
propositional formula:

Π0(k) = I(V0) ∧Π(0, k) (41)

Intuitively, a path formula Π(i, j) encodes all paths of length k = j − i starting at
timeframe i inM. An initial path formula Π0(k) encodes all paths of length k starting from
the initial states inM. An initial path formula Π0(k) can thus be used to represent the set
of states that can be reached from the initial states in exactly k steps, inM.

Definition 78 (Bad Cone). A bad cone of length k = j− i from timeframe i to timeframe j is the
propositional formula Cone(i, j) over Vi ∪ · · · ∪V j:

Cone(i, j) = Π(i, j) ∧
j∨

h=i

¬P(Vh) (42)

A bad cone Cone(i, j) encodes all paths starting at timeframe i that can reach the target
in at most k = j− i steps and, thus, it represents the set of bad states that are backward
reachable in at most k steps from the target.

Using initial path formulas the reachability problem of ¬P inM can be reduced to
Boolean satisfiability as follows.

Theorem 4 (Reduction of Reachability to Satisfiability). Given a transition system M def
=

⟨V, I , T⟩ and a property P over V, the reachability of ¬P can be reduced to the problem of finding a
bound k ≥ 0 such that the propositional formula

Π0(k) ∧ ¬P(Vk) (43)

is satisfiable.

Definition 79 (Induction). Given a transition systemM = ⟨V, I , T⟩, let F and G be proposi-
tional formulas over V and let initiation, consecution and relative consecution be the conditions
defined as follows:

I → F (Initiation)

F ∧ T → F′ (Consecution)

G ∧ F ∧ T → F′ (Relative Consecution)

A formula F is said to be inductive if it satisfies consecution. A formula F is said to be an inductive
invariant if it satisfies both initiation and consecution. A formula F is said to be inductive relative
to another formula G if it satisfies relative consecution. A formula F is said to be an inductive
invariant relative to another formula G if it satisfies both initiation and relative consecution.
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Definition 80 (Safety). Given a transition systemM = ⟨V, I , T⟩ and an invariant property P
over V, a propositional formula F over V is said to be safe with respect to F iff F is stronger than P,
i.e., F → P.

Lemma 1 (Inductive Invariants as Overapproximations of Reachable States). Given a transi-
tion systemM = ⟨V, I , T⟩, an inductive invariant F ofM is an overapproximation of the set of
reachable states ofM, i.e.,R(M)→ F.

Intuitively, an inductive invariant expresses a quality of reachable states. Note that
R(M) can be seen as the strongest inductive invariant ofM.

Definition 81 (Inductive Strengthening). Given a transition system M = ⟨V, I , T⟩ and a
property P over V, an inductive invariant F ofM is called an inductive strengthening of P iff it is
safe with respect to P.

Lemma 2 (Invariant Verification as Search of an Inductive Strengthening). Given a transition
systemM = ⟨V, I , T⟩ and a property P over V, if an inductive strengthening F of P can be found
inM, then P holds for every reachable state ofM andM is said to be safe.

Many state-of-the-art model checking algorithms are based on a search for an inductive
strengthening.

Definition 82 (Traces). Given a transition systemM = ⟨V, I , T⟩, a trace of length k with respect
toM is a sequence Fk = (F0, . . . , Fk) in which each Fi is a propositional formula over V, called a
frame, such that the following conditions hold:

F0 = I (Base)

Fi ∧ T → F′i+1 for 0 ≤ i < k (Image Approximation)

A trace Fk may also satisfy one or both of the following additional conditions, with P a property
over V:

Fi → Fi+1 for 0 ≤ i < k (Monotonicity)

Fi → P for 0 ≤ i < k (Safety)

A trace Fk that satisfies the monotonicity condition is said to be monotonic. A trace
Fk that satisfies the safety condition with respect to the transition system P is said to be
safe. In order to provide a more clear understanding of the various traces natures, Figure 4
provides a graphical representation as an overview.

The following lemmas hold for traces.

Lemma 3 (Overapproximation of Sets of Exactly Reachable States). Given a transition system
M and a trace Fk = (F0, . . . , Fk) with respect toM, each timeframe Fi of Fk, with 0 ≤ i < k, is
an over-approximation of the set of states reachable in exactly i steps inM, i.e.,RE

i (M)→ Fi.

Lemma 4 (Overapproximation of Sets of Reachable States). Given a transition systemM and
a monotonic trace Fk = (F0, . . . , Fk) with respect toM, each timeframe Fi of Fk, with 0 ≤ i < k,
is an overapproximation of the set of states reachable in within i steps inM, i.e.,Ri(M)→ Fi.

Lemma 5 (Safety up to Trace Bound). Given a transition systemM, a property P over V and a
safe and monotonic trace Fk = (F0, . . . , Fk) with respect to P andM, then there does not exist any
counterexample to P of length at most k− 1 inM.
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Lemma 6 (Inductive Invariants/Strengthening in Traces). Given a transition systemM and a

trace Fk = (F0, . . . , Fk) with respect toM, let us define F0,i
def
=

i∨
j=0

Fj for each 0 ≤ i < k. If there is

F0,i so that Fi+1 → F0,i then F0,i is an inductive invariant ofM. If Fk is also safe with respect to a
property P, then F0,i is also an inductive strengthening for P.

Lemma 7 (Inductive Invariants/Strengthening in Monotonic Traces). Given a transition
systemM and a monotonic trace Fk = (F0, . . . , Fk) with respect toM, if Fi+1 → Fi for some
0 ≤ i < k then Fi = Fi+1 is an inductive invariant of M. If Fk is also safe with respect to a
property P, then Fi = Fi+1 is also an inductive strengthening for P.

These properties makes traces a very useful data structure to aid the search of an
inductive strengthening inM.

I F1
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. . .Fk−1 Fk−1
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(a) Trace.
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Figure 4. Different types of traces with respect to a givenM def
= ⟨V, I , T⟩.

3. Bounded Model Checking

Given a transition system M = ⟨V, I , T⟩ and an invariant property P, bounded
model checking (BMC) [38] is an iterative approach whose purpose is to check whether a
counterexample to P of length at most k inM exists or to prove its absence. In order to
carry this out, BMC simply performs a SAT check on a formula defined as follows.

Definition 83 (BMC Formula). A BMC formula of length k for P in M is the propositional
formula BMC(k) over V0 ∪ · · · ∪Vk:

BMC(k)
def
= Π0(k) ∧

k∨
i=0

¬P(Vi) = I ∧ Cone(0, k) (44)

Intuitively, a BMC formula of length k encodes all initial paths inM of length at most
k capable of reaching a bad state in ¬P. If the BMC formula is SAT, then there exists a
counterexample to P of length at most k inM. Conversely, no such counterexample exists.

BMC tools iteratively solve BMC formulas of increasing bound, until either a coun-
terexample is found or some maximum bound is reached. Due to the way it operates,
BMC is effective in finding counterexamples but it is not able to detect whether P holds
inM. In order to surpass such a limitation, specific techniques are required to support
unbounded model checking. The ability to check reachability fix-points and/or to find
inductive invariants is thus the main difference, and additional complication, between
BMC and UMC techniques, which will be introduced in the following sections.
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Algorithm 2 reports the BMC procedure up to a certain bound kmax. First, the algorithm
checks whether the property P is satisfied by the initial states (lines 2–3). If an initial
state fails to satisfy P, the procedure terminates by returning FAIL along with a trivial
counterexample. Otherwise, the procedure starts iterating over increasing values of k up
to kmax, checking whether there is at least a path satisfying the BMC formula up to bound
k (Definition 83) at each iteration (lines 6–8). If a satisfying path π0,k is found, the procedure
returns FAIL along with the path as a counterexample. If the procedure does not find any
counterexample of length up to kmax, it returns a SUCCESS, indicating that P holds up to
the given bound.

Algorithm 2 Top-level procedure of the BMC algorithm.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V; kmax maximum bound.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL}; cex a (possibly empty) initial path repre-

senting a counterexample.
1: procedure BOUNDEDMODELCHECKING(M, P, kmax)
2: if ∃s0 |= I(V) ∧ ¬P(V) then
3: return ⟨FAIL, (s0)⟩
4: k← 1
5: while k ≤ kmax do

6: BMC(k)← Π0(k) ∧
k∨

i=0
¬P(Vi)

7: if ∃π0,k |= BMC(k) then
8: return ⟨FAIL, π0,k⟩
9: k← k + 1

10: return ⟨SUCCESS,−⟩

As explained above, the search for a counterexample of a given length is inherently
incomplete, thus the need for additional techniques in order to overcome such a limita-
tion. Nevertheless, BMC find application in several scenarios, due to its relative ease of
application, both in hardware and in software model checking. The minimum requirement
is being capable of encoding the transition relation of the instance at hand in a suitable
way, e.g., a circuital representation. Furthermore, given a proper encoding, it is possible
to combine both hardware and software problems in one, thus making BMC applicable
to hybrid scenarios in which HW/SW co-design and co-verification take place. Such sce-
narios include, but are not limited to, RTL implementations to be checked against golden
models, the model checking of properties arising from hardware–software interactions and
sequential equivalence checking in between high-level synthesis and hardware description
languages.

Example of Bounded Model Checking

LetM = ⟨V, I , T⟩ be a transition system described by the following:

V = {v0, v1} (45)

I = ¬v0 ∧ ¬v1 (46)

T = (¬v0 ∧ ¬v1 ∧ v1
0 ∧ ¬v1

1) ∨
(v0 ∧ ¬v1 ∧ ¬v1

0 ∧ v1
1) ∨

(¬v0 ∧ v1 ∧ v1
0 ∧ v1

1) ∨
(v0 ∧ v1 ∧ ¬v1

0 ∧ ¬v1
1)

(47)
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and P be an invariant property over V:

P = ¬v0 ∨ ¬v1 (48)

Figure 5 illustrates the transition systems here described, for reference. The initial
state, 00, is marked with the leftmost ingoing edge. The only bad state, 11, is highlighted
with a line hatched filling.

00 01 10 11

Figure 5. Visualization of states in a transition systemM. States are labeled with their corresponding
truth-value assignments to state variables V.

An algorithm based on bounded model checking is capable of identifying a coun-
terexample to the target property in four steps, by applying iteratively the BMC formula
described in Definition 83.

In the first step, the algorithm would pose the following query:

(¬v0 ∧ ¬v1) ∧ (v0 ∧ v1) (49)

which is UNSAT.
In the second step, the algorithm would pose the following query, in which, for the

sake of compactness, we represent with T(Vi, Vi+1) the aforementioned transition relation,
at a given timeframe:

(¬v0 ∧ ¬v1) ∧
T(V0, V1) ∧
(v1

0 ∧ v1
1)

(50)

which is still UNSAT.
In the last step, the algorithm would pose the following query:

(¬v0 ∧ ¬v1) ∧
T(V0, V1) ∧
T(V1, V2) ∧
T(V2, V3) ∧
(v3

0 ∧ v3
1)

(51)

which is SAT, hence identifying the counterexample to the property, which does not hold in
state 11.

4. Temporal Induction

BMC, introduced in Section 3, is characterized by being an incomplete method: it
is capable of finding counterexamples but it is unsuitable to prove correctness. In order
to support proofs for unbounded depths, BMC has to be complemented with additional
techniques. As an intuition, if exploration is capable of reaching a deep enough bound,
such as to have explored all the behavior of the model at hand, such a bound could be
considered a so-called completeness threshold. Such a threshold can be used as an upper
bound for the length of the counterexamples that have to be considered before stating
whether a proof holds.
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In the context of model checking, SAT-based techniques are particularly suitable for
performing checks of inductions, i.e., whether the transition system of the model under
verification satisfies a given inductive invariant. The underlying question we are posing
is whether a given property holds in the initial states and in all the states reachable from
states in which the property is satisfied. The main limitation of such reasoning is due to the
fact that, if the second condition fails, nothing can be said about the property at hand.

On these premises, temporal induction [39], also known as strong induction or
k−induction, represents a widely used technique in unbounded model checking. Such
a technique is a generalization of the notion of inductive invariants, which provide a
strengthening factor to the base intuition presented above.

Given a transition system M = ⟨V, I , T⟩ and an invariant formula φ over V, that
formula is said to be k−invariant if it is true in the first k steps ofM.

Definition 84 (k-invariant formula).

Π0(k)→
k∧

i=0

φ(Vi) (52)

A k-invariant formula is a k-inductive invariant if it is (k− 1)-invariant and is inductive
after k steps ofM. With respect to simple induction, k−induction strengthen the hypothesis
in the induction step. We have that the property is assumed to hold in the first k− 1 steps,
starting from 0, and is established in step k.

Whenever we have a k-invariant formula φ such that φ→ P, we say that φ is a safe
k−inductive invariant with respect toM.

Algorithm 3 reports the top-level procedure for a generic k-induction model checking
scheme. First, the algorithm checks whether the property P is satisfied by the initial states
(lines 3–4). If an initial state fails to satisfy P, the procedure terminates by returning FAIL

along with a trivial counterexample (lines 5–6). Otherwise, the procedure starts iterating
over increasing values of k, checking whether there is at least a path satisfying the induction
step formula up to bound k (line 7), and taking into account only non-looping paths (line
8). If a satisfying path is found, the procedure returns SUCCESS (lines 9–10), otherwise the
bound k is increased and the procedure iterates further.

Algorithm 3 Top-level procedure of the k-induction algorithm.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL}; cex a (possibly empty) initial path repre-

senting a counterexample.
1: procedure TEMPORALINDUCTIONMODELCHECKING(M, P)
2: k← 0
3: while true do

4: BASE(k)← Π0(k) ∧
k∧

i=0
P(Vi)

5: if ∃π0,k |= BASE(k) then
6: return ⟨FAIL, π0,k⟩
7: STEP(k)← Π(0, k) ∧

k∧
i=0

P(Vi) ∧ ¬P(Vk+1)

8: UNIQUE(k)← ∧
0≤i<j≤k

si ̸= sj

9: if ̸ ∃π0,k |= STEP(k) ∨ UNIQUE(k) then
10: return ⟨SUCCESS,−⟩
11: k← k + 1

Theorem 5. Given a transition systemM, there exists a safe inductive invariant with respect to
M iff there exists a safe k−inductive invariant with respect toM.
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Theorem 5 states that k-induction is as complete as 1-induction.

5. Interpolation-Based Model Checking

Craig’s interpolation theorem is a fundamental result in mathematical logic taking into
account the relationship between model theory and proof theory. Interpolation, despite
its heavy theoretical foundation, has found many practical applications in different areas
of computer science. Originally, the formulation of the theorem introduced by Craig [40]
was given in the context of first-order logic. Variants of the theorem hold for other logical
systems as well, including propositional logic, which is the context we will focus on
hereinafter, as it is the one typically encountered in the context of model checking.

Theorem 6 (Propositional Craig’s Interpolation Theorem). Given two propositional formulas
A and B, if A ∧ B is unsatisfiable then there is a propositional formula I, called interpolant between
A and B, such that

• A→ I is valid;
• I ∧ B is unsatisfiable;
• Vars(I) ⊆ Vars(A) ∩Vars(B).

Intuitively, I is an abstraction of A from the standpoint of B. The interpolant summa-
rizes and translates in the common language between the two formulas the reasons why A
and B are inconsistent. For ease of notation, we denote with I = ITP(A, B) the procedure
that derives a Craig’s interpolant starting from a pair of inconsistent formulas A and B.

Interpolants can be derived from refutation proofs of unsatisfiable SAT-solving runs.
Given an unsatisfiable formula A ∧ B, most modern SAT solvers are capable of generating
a refutation proof, as described in Section 2.6, either in resolution-based or clausal form.
Given a resolution proof, an interpolant I = ITP(A, B) can be derived in the form of an
AND/OR combinational circuit in polynomial time and space with respect to the size of the
proof. Different algorithms for generating interpolants from resolution proofs have been
proposed, such as the ones by Huang [41], Krajícek [42], Pudlák [43] and McMillan [44].
We refer to those algorithms as interpolation systems. Interpolants can also be derived as
CNF formulas, instead of circuits, from either resolution proofs [45] or clausal proofs [46].
Although interpolants may be quite large in size, different approaches exist to compact
them, also taking into account the relation between the size and strength of the interpolants
themselves [47].

In the context of model checking, if A represents a set of reachable states and B
represents a set of bad states, then the interpolant I = ITP(A, B) can be deemed as a safe
overapproximation of A with respect to B. In turn, such overapproximations can be used
to detect a reachability fix-point.

5.1. McMillan’s Interpolation Algorithm

McMillan [44] introduced the first complete algorithm for symbolic model checking
based on Craig’s interpolation. In the literature, such an algorithm is called standard interpo-
lation or just ITP for short. The algorithm computes Craig’s interpolants to overapproximate
reachable states of the system. The interpolants, as mentioned in the previous section, are
computed from refutation proofs of unsatisfiable BMC runs.

The algorithm comprises two nested loops. The outer loop is presented in procedure
ITPMODELCHECKING (Algorithm 4) whereas the inner loop is presented in procedure
APPROXFORWARDTRAVERSAL (Algorithm 5). At each outer loop iteration, APPROXFOR-
WARDTRAVERSAL is invoked to perform an overapproximated forward traversal of the
reachable states while preserving safety with respect to a backward unrolling from the
target (bad cone). APPROXFORWARDTRAVERSAL can be seen as computing a safe monotonic
trace. Note that such a trace is not explicitly maintained. Only its final frame is kept at each
iteration and used as base for computing the next one.
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We describe Algorithm 5 first. The procedure APPROXFORWARDTRAVERSAL operates a
forward traversal in which interpolation is used as an overapproximated image operator. At
each iteration, the procedure checks a BMC formula of fixed length k, composed of two parts:

• A def
= R(V0) ∧ T(V0, V1)

• B def
= Cone(1, k) = Π(1, k) ∧∨k

i=1 ¬P(Vi)

where R is a set of overapproximated forward reachable states. In such a scenario, A represents
the image of the set of states at the current traversal step, whereas B represents the set of
backward reachable bad states, reachable in at most k− 1 transitions from the target.

Algorithm 4 Top-level procedure of McMillan’s interpolation algorithm. This iterates
overapproximated forward traversals of reachable states while keeping safety with respect
to a bad cone of increasing depth from the target.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL}; cex a (possibly empty) initial path repre-

senting a counterexample.
1: procedure ITPMODELCHECKING(M, P)
2: if ∃s0 |= I(V) ∧ ¬P(V) then
3: return ⟨FAIL, (s0)⟩
4: k← 1
5: while true do
6: ⟨res, cex⟩ ← APPROXFORWARDTRAVERSAL(M, P, k)
7: if res is UNREACH then
8: return ⟨SUCCESS,−⟩
9: else if res is REACH then

10: return ⟨FAIL, cex⟩
11: k← k + 1

Algorithm 5 Inner procedure of McMillan’s interpolation algorithm. This operates an
overapproximated forward traversal of the reachable state space while keeping safety with
respect to a bad cone of fixed depth from the target.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V; k bound of a backward
unrolling from the target.

Output: ⟨res, cex⟩ with res ∈ {REACH, UNREACH, UNDEF}; cex a (possibly empty) initial
path representing a counterexample.

1: procedure APPROXFORWARDTRAVERSAL(M, P, k)
2: R← I
3: if ∃π0,k |= R(V0) ∧ T(V0, V1) ∧ Cone(1, k) then
4: return ⟨REACH, π0,k⟩
5: while ⊤ do
6: A← R(V0) ∧ T(V0, V1)
7: B← Cone(1, k)
8: if ∃π0,k |= A ∧ B then
9: return ⟨UNDEF,−⟩

10: else
11: I ← ITP(A, B)
12: if ̸ ∃s |= I ∧ ¬R then
13: return ⟨UNREACH,−⟩
14: R← R ∨ I

At the first iteration, R is the set of initial states I (line 2) and therefore is not over-
approximated. In that case, the formula A ∧ B is exactly a BMC formula of length k. If
such a formula is satisfiable, the algorithm has found a counterexample π0,k of length at
most k (lines 3–4). Then, both the nested and the top-level procedures terminate, returning
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the counterexample found. Otherwise, the algorithm starts traversing the reachable state
space, computing overapproximated images by means of interpolation (lines 5–14). After
composing A and B (lines 6–7), the algorithm checks whether A ∧ B is satisfiable (line
8). If that is the case, a (possibly spurious) counterexample π0,k is found, i.e., a path of
length at most k from the overapproximated set R to a bad state in Cone(1, k). Since R is an
overapproximation of the reachable states, the algorithm cannot determine whether π0,k

is a real counterexample or a spurious counterexample. Therefore, the procedure aborts the
current forward traversal and returns the control to the top-level procedure. Otherwise,
A ∧ B is UNSAT and an interpolant I can be derived from its refutation proof (line 11). Such
an interpolant represents a safe overapproximation of the states reachable from R in one
transition with respect to the bad cone Cone(1, k), as illustrated in Figure 6. Therefore, no
counterexample can be reached from I in k− 1 or less transitions, i.e., I is safe with respect
to P.

R A
def
= R ∧ T I

T
B

def
= Cone(1, k)

¬P
Figure 6. Interpolation as an overapproximated image operator. Interpolant I is an overapproximation
of the image of R that does not intersect Cone(1, k).

Since the interpolant is an overapproximation of the image of R, it is treated as a
candidate inductive invariant. The algorithm checks whether consecution I → R is valid
(i.e., ¬R ∧ I is unsatisfiable). In that case, R is an inductive invariant forM and, since R
is safe with respect to P, it is also an inductive strengthening for P. Conversely, a new
set of overapproximated forward reachable states is computed as R ∨ I and the algorithm
iterates once again. The result of the nested procedure, i.e., the sequence of R composed at
each iteration, can be seen as a safe monotonic trace. Monotonicity stems from having R
initialized with I (line 2) and from the fact that each consecutive R is a disjunction of the
previous one and of an overapproximation of the states reachable from the previous (line
14). Safety with respect to P stems from the fact that I was proved to be safe (Algorithm 4,
lines 2–4) and taking into the account that each interpolant I used to construct R does not
intersect Cone(1, k). From Lemma 7 follows the detection of an inductive strengthening for
P from that trace. The sequence of interpolants, instead, can be seen as a non-monotonic
safe trace.

Taking into account Algorithm 4, in the beginning, the initial states I are checked
to be safe (line 2–3). If said check fails, there exists a trivial counterexample consisting
of just a single initial state. The procedure can then halt and return the counterexample
found. Conversely, the bad cone bound k is initialized to 1 (line 4) and the procedure starts
iterating forward overapproximated traversals of reachable states, while keeping safety
with respect to a bad cone of increasing depth k from the target (lines 5–11). Increasing
the value of k lets the algorithm find real counterexamples and generate more precise
overapproximations on subsequent iterations. Since the bad cone from the target unwinds,
a few states in the overapproximated images computed at previous iterations might be
reached by the unrolling and are therefore excluded from newer images. During each outer
loop iteration, the inner procedure starts a forward traversal from scratch from the initial
states. As k increases, the algorithm is guaranteed to find a bound k in which the computed
interpolants are precise enough to find an inductive strengthening if P holds for the system,
or to find a real counterexample otherwise [44].
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5.2. Example of Interpolation-Based Model Checking

LetM = ⟨V, I , T⟩ be a transition system described by the following:

V = {v0, v1, v2} (53)

I = ¬v0 ∧ ¬v1 ∧ ¬v2 (54)

T = (¬v0 ∧ ¬v1 ∧ ¬v2 ∧ v′0 ∧ ¬v′1 ∧ ¬v′2) ∨
(v0 ∧ ¬v1 ∧ ¬v2 ∧ ¬v′0 ∧ ¬v′1 ∧ v′2) ∨
(¬v0 ∧ ¬v1 ∧ v2 ∧ v′0 ∧ ¬v′1 ∧ v′2) ∨
(v0 ∧ ¬v1 ∧ v2 ∧ ¬v′0 ∧ ¬v′1 ∧ ¬v′2) ∨
(¬v0 ∧ v1 ∧ ¬v2 ∧ v′0 ∧ v′1 ∧ ¬v′2) ∨
(v0 ∧ v1 ∧ ¬v2 ∧ v′0 ∧ v′1 ∧ v′2) ∨
(v0 ∧ v1 ∧ v2 ∧ v′0 ∧ v′1 ∧ v′2) ∨
(¬v0 ∧ v1 ∧ v2 ∧ v′0 ∧ v′1 ∧ v′2)

(55)

and P be an invariant property over V:

P = ¬v0 ∨ ¬v1 ∨ ¬v2 (56)

Figure 7 illustrates different steps of the procedure reported in Algorithms 4 and 5 over
M. The ITPMODELCHECKING procedure starts by checking whether or not the initial
states I are safe. In the case of the system at hand, the single initial state 000 satisfies P;
therefore, the procedure will continue by invoking APPROXFORWARDTRAVERSAL with
k = 1. During the first iteration of the traversal procedure, R is set to the initial states I , A
represents the image of I and B corresponds to the negation of the property ¬P. Suppose
that the interpolant I extracted at line 11 of Algorithm 5 is the one described in Figure 7a. I
overapproximates the image of R, comprising both states that are actually reachable from I ,
like 001, and states that are not reachable from I , like 010 and 011. Figure 7b describes the
situation after the current set of reachable states R has been updated by disjointing it with
the interpolant I. During the second iteration of the traversal procedure, an intersection
between the image of the current set of reachable states A and the bad states B will be found
(state 111, as indicated by both the solid and the dash–dotted line enclosing it in Figure 7b).
The traversal procedure will then halt reporting an UNDEF result: this is the case in which a
spurious counterexample to the property has been found, due to the interpolant I being too
loose an overapproximation of the states actually reachable from I , thus including a state
(011) that is backward reachable from a bad state but not forward reachable from the initial
states. The ITPMODELCHECKING procedure will then resume by increasing k and invoking
the traversal procedure once again with an enlarged cone of bad states. Figure 7c describes
the situation during the first step of the new traversal, in which R and A are left unchanged
whereas B is enlarged to include the pre-image of ¬P (states 011 and 110). Suppose that a
new interpolant I is extracted that includes only states 000, 001, 100 and 101; then, after
updating the current set of reachable states R and performing a second traversal step, a
fix-point will be reached as illustrated in Figure 7d. The overall model checking procedure
will end with a SUCCESS result.



Algorithms 2024, 17, 253 35 of 55

000 001 010 011

100 101 110 111

I

(a)

000 001 010 011

100 101 110 111

(b)

000 001 010 011

100 101 110 111

I

(c)

000 001 010 011

100 101 110 111

I

(d)

Figure 7. Different steps of McMillan’s interpolation-based model checking procedure visualized as
groupings of states in a transition systemM. States are labeled with their corresponding truth-value
assignments to state variables V. States enclosed by solid lines represent the set B of bad states or
states that are backward reachable from a bad state. States enclosed by dotted lines represent the
current set R of states that are reachable from the initial states. States enclosed by dash–dotted lines
represent the set A of states in the image of R. States enclosed by dashed lines represent the interpolant
I that overapproximates A. In (a) the initial scenario is depicted, where I overapproximates the
image of R including both reachable and unreachable states (from I). (b) depicts the situation
after the current set of reachable states R has been updated by disjointing it with the interpolant I
and the subsequent traversal lead to a spurious counterexample. (c) depicts a new traversal after
overapproximation refinement. (d) depicts the convergence fix-point for the algorithm.

6. IC3

IC3 [48] is a SAT-based algorithm for symbolic invariant verification. Given a transition
systemM = ⟨V, I , T⟩ and an invariant property P over V to be checked, the target of IC3
is finding an inductive strengthening of P forM.

In order to carry this out, IC3 maintains two main data structures: a trace and a
proof-obligation queue.

The trace Fk = (F0, . . . , Fk) is both monotonic and safe with respect to the property P.
Each frame Fi, with 0 ≤ i < k, is a safe overapproximation of the set of states reachable in
at most i steps inM (see Lemmas 4 and 5). The purpose of the algorithm is to iteratively
refine such an Fk in order to satisfy the condition Fi+1 → Fi for some 0 ≤ i < k, thus finding
an inductive strengthening of ψ according to Lemma 6.

IC3 also maintains a second data structure called a proof-obligation queue, which is
used to collect sets of states in Fk that may reach a violation of the property in an arbitrary
number of steps. Those sets of states are processed by the algorithm according to a given
priority and for each of them IC3 either finds a backward path to the initial states or learns
a new inductive lemma that can be used to refine Fk in order to exclude such states from
the overapproximation. In case a path to the initial states is found, the algorithm has found
a counterexample to P. In the latter case, the algorithm continues its search of an inductive
strengthening of P over a tighter approximation of the reachable state sets.

IC3 needs to solve SAT calls at different stages during its run. Such SAT queries are
peculiar [49], in the sense that they are very frequent but involve only a single instance
of the transition relation T. Performing many local reachability checks, IC3 achieves better
control over the precision of the computed overapproximations.
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Given Fk, each frame Fi is represented by a set of clauses, denoted by clauses (Fi), to
enable efficient syntactic checks for frame equality. The base condition of the trace is fulfilled
by initializing the first frame with I . Monotonicity is maintained syntactically by enforcing
the condition clauses(Fi+1) ⊆ clauses(Fi). On the other hand, image approximation and
safety are guaranteed explicitly by the algorithm operations.

The main procedure of IC3, described in Algorithm 6, is composed of an initialization
phase followed by two nested iterations. During initialization, the algorithm sets up
the trace and ensures that the initial states are safe (lines 2–5). If that is not the case, a
counterexample of length zero, comprising only the initial state s violating the property,
is found and the procedure outputs a failure. During each outer iteration (lines 6–17), the
algorithm tries to prove that P is satisfied up to k steps inM, for increasing values of k.
Inner iterations of the algorithm refine the trace Fk computed so far by adding new relative
inductive clauses to some of its frames (lines 7–11). The algorithm iterates until either an
inductive strengthening of the property is generated (line 16) or a counterexample to the
property is found (line 11).

Algorithm 6 Top-level procedure of the IC3 algorithm: IC3 (M, P).

Input: M = ⟨V, I , T⟩ a transition system; P a property over V.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL} and cex a (possibly empty) initial path

representing a counterexample.
1: procedure IC3(M, P)
2: k← 0
3: F0 ← I
4: if ∃s |= F0 ∧ ¬P then
5: return ⟨FAIL, (s)⟩
6: repeat
7: while ∃s |= Fk ∧ ¬P do
8: q← EXTEND(s)
9: ⟨res, cex⟩ ← BLOCKCUBE(q, Q, Fk)

10: if res= FAIL then
11: return ⟨FAIL, cex⟩
12: Fk+1 ← ∅
13: k← k + 1
14: PROPAGATE(Fk)
15: if Fi = Fi+1 for some 0 ≤ i < k then
16: return ⟨SUCCESS,−⟩
17: until forever

At a given outer iteration k, the algorithm has already computed a monotonic and safe
trace. From Lemma 5, it follows that P is satisfied up to k− 1 steps inM. IC3 then tries to
prove that P is satisfied up to k steps as well, by enumerating states of Fk that violate P and
trying to block them in Fk.

Definition 85 (Cube Blocking). Blocking a state (or, more generally, a cube) q in a frame Fk means
to prove q unreachable within k steps inM and, consequently, to refine Fk so that q is excluded
from its overapproximation.

To enumerate each state of Fk that violates P (line 7), the algorithm looks for states s in
Fk ∧ ¬P. Such states are called bad states and can be found as satisfying assignments for the
following SAT query:

SAT ?(Fk ∧ ¬P) (57)

If a bad state s can be found (i.e., Query (57) is SAT), the algorithm tries to block it in Fk.
To increase performance of the algorithm, as suggested in [50], the bad state s found is first
extended to a bad cube q by removing, if possible, some of its literals. Figure 8a visualizes
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this step. The EXTEND(s) procedure (line 8), not reported here, performs this operation
via either ternary simulations [50] or other SAT-based procedures [51]. The resulting cube
q is stronger than s and it still violates P; it is thus called a bad cube. The algorithm then
tries to block the bad cube q in frame k rather than s. It is shown in [50] that extending bad
states into bad cubes before blocking them dramatically improves IC3 performance. The
bad cube q is blocked in Fk calling the BLOCKCUBE(q, Q, Fk) procedure (line 9), described
in Algorithm 7.

When no further bad states can be found, the conditions in Definition 82 hold for
k + 1 and IC3 can safely move to the next outer iteration, i.e., trying to prove that P is
satisfied up to k + 1 steps. Before moving to the next iteration, a new empty frame Fk+1
is created (line 12). Initially, clauses(Fk+1) = ∅, so that Fk+1 = ⊤. Note that ⊤ is a valid
overapproximation to the set of states reachable within k + 1 steps inM.

After creating a new frame, a phase called clause propagation takes place (line 14).
During such a phase, IC3 tries to refine every frame Fi, with 0 < i ≤ k, by checking
whether some of its clauses can be pushed forward to the following frame. Possibly, clause
propagation refines the outermost frame Fk so that an inductive invariant is reached. The
propagation phase can lead to two adjacent frames becoming equivalent (see Figure 8g).
If that happens, the algorithm has found an inductive strengthening of P forM (equal to
those frames). Therefore, following Lemma 6, property P holds for every reachable state of
M and IC3 returns a successful result (line 16). Procedure PROPAGATE(Fk), described and
discussed later, handles the clause propagation phase.

The purpose of procedure BLOCKCUBE(q, Q, Fk) is to refine the trace Fk in order to
block a bad cube q in Fk. To preserve image approximation, prior to blocking a cube in a
certain frame, IC3 has to recursively block predecessors of that cube in the preceding frames.
To keep track of the states (or cubes) that must be blocked in certain frames, IC3 uses the
formalism of proof obligations.

Definition 86 (Proof Obligation). Given a cube q and a frame Fj, a proof obligation is a couple
(q, j) formalizing the fact that q must be blocked in Fj.

Given a proof obligation (q, j), the cube q can either represent a set of bad states or a
set of states that can reach a bad state in some number of transitions. The index j indicates
the position in the trace where q must be proved unreachable, or else the property fails.

Definition 87 (Discharging Proof Obligations). A proof obligation (q, j) is said to be discharged
when s becomes blocked in Fj.
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Figure 8. Visual representation of different steps in the IC3 procedure. In (a), a bad cube s that violates
P is found in Fk and extended to q. (b) shows the beginning of the cube blocking procedure for q,
in which a clause ¬q is checked for induction relative to Fk−1. (c) shows the case in which relative
induction of ¬q does not hold and thus a predecessor cube s is found to be a CTI and extended into
cube p that needs to be blocked in Fk−1. (d) shows the cube blocking procedure for p, in which a
clause ¬p is checked for induction relative to Fk−2. In (e), ¬p is found to be inductive relative to
Fk−2; thus, ¬p undergoes inductive generalization and the result is used to refine the trace. In (f),
after refining the trace, ¬q becomes inductive relative to Fk−1; the proof obligation of q can thus
be discharged by generalizing ¬q and refining the trace once more. In (g), a fix-point is found by
detecting Fk = Fk+1 after propagation.
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Algorithm 7 Cube blocking procedure IC3: BLOCKCUBE(q, Q, Fk).

Input: q a bad cube in Fk; Q the proof-obligation queue; Fk the trace.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL} and cex a (possibly empty) initial path

representing a counterexample.
1: procedure BLOCKCUBE(q, Q, Fk)
2: Add proof obligation (q, k) to Q
3: while Q is not empty do
4: Extract proof obligation (q, j) with minimum j from Q
5: if j > k or q ̸|= Fj then continue;
6: if j = 0 then return ⟨FAIL, RECONSTRUCTCEX(q)⟩
7: if ∃s, s′ |= Fj−1 ∧ ¬q ∧ T ∧ q′ then
8: p← EXTEND(s)
9: Add proof obligations (p, j− 1) and (q, j) to Q

10: else
11: c← GENERALIZE(j, s, Fk)
12: Fi ← Fi ∪ c for 0 < i ≤ j
13: Add proof obligation (j + 1, c) to Q
14: return ⟨SUCCESS,−⟩

In order to discharge a proof obligation, new ones may have to be recursively dis-
charged. This can be carried out through a recursive implementation of the cube blocking
procedure. However, in practice, handling proof obligations using a priority queue Q
proved to be more efficient [50] and it is thus the commonly used approach in most state-of-
the-art IC3 implementations. While blocking a cube, proof obligations (q, j) are extracted
from Q and discharged for increasing values of j, ensuring that every predecessor of a bad
cube q will be blocked in Fj (j < k) before q will be blocked in Fk. In the BLOCKCUBE(q, Q,
Fk) procedure, described in Algorithm 7, the queue of proof obligations is initialized with
(q, k), encoding the fact that q must be blocked in Fk (line 2). Then, proof obligations are
iteratively extracted from the queue and discharged (lines 3–14).

Prior to discharging a proof obligation (q, j), IC3 checks whether that proof obligation
still needs to be discharged. It is in fact possible for an enqueued proof obligation to become
discharged as a result of some previous proof-obligation discharging. To perform this check,
the algorithm tests whether q is still included in Fj (line 5). This can be performed by posing
the following SAT query:

SAT?(Fj ∧ q) (58)

If q is in Fj (i.e., Query (58) is SAT), the proof obligation (q, j) still needs to be discharged.
Otherwise, q has already been blocked in Fj and the procedure can move on to the next
iteration.

If the proof obligation (q, j) still needs to be discharged, then IC3 checks whether Fj is
the initial frame (line 6). If so, the states represented by q are initial states that can reach a
violation of property P. Thus, a counterexample to P can be constructed by following the
chain of proof obligations that led to (q, 0). This is performed by means of the procedure
RECONSTRUCTCEX(q), not described here. In that case, the procedure terminates with a
failure and returns the counterexample found.

To discharge a proof obligation (q, j), i.e., to block a cube q in Fj, IC3 tries to derive a
clause c such that c ⊆ ¬q and c is inductive relative to Fj−1. Figure 8b visualizes this step.
The initiation condition of induction (I → ¬q) holds by construction, whereas the algorithm
must check whether or not the relative consecution condition (Fj−1 ∧ ¬q ∧ T → ¬q′) holds.
This can be performed by proving that the following SAT query is unsatisfiable (line 7):

SAT?(Fj−1 ∧ ¬q ∧ T ∧ q′) (59)

If relative consecution holds (i.e., Query (59) is UNSAT), then the clause ¬q is inductive
relative to Fj−1 and can be used to refine Fj, ruling out q (lines 10–13). To pursue a
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stronger refinement of Fj, the inductive clause found undergoes a process called inductive
generalization (line 11) prior to being added to the frame. Inductive generalization is
carried out by the GENERALIZE(j, q, Fk) procedure, described in Algorithm 8, which tries
to minimize the number of literals in a clause c = ¬q while maintaining its inductiveness
relative to Fj−1, in order to preserve monotonicity.

The resulting clause is added not only to Fj, but also to every frame Fi, 0 < i <
j (line 12). Doing so discharges the proof obligation (q, j) ruling out q from every Fi with
0 < i ≤ j. Since the sets Fi with i > j are larger than Fj, q may still be present in one of them
and (q, j + 1) may become a new proof obligation. To address this issue, Algorithm 7 adds
(q, j + 1) to the proof-obligations queue (line 13). Figure 8e,f visualize this step.

Otherwise, if the relative consecution does not hold (see Figure 8c), there is a prede-
cessor s of q in Fj−1 ∧ ¬q. Such predecessors are called counterexamples to the inductiveness
(CTIs). To preserve image approximation, before blocking a cube q in a frame Fj, every
CTI of q must be blocked in Fj−1 (Figure 8d). Therefore, the CTI s is first extended into
a cube p (line 8), and then both proof obligations (p, j − 1) and (q, j) are added to the
queue (line 9).

The GENERALIZE(j, q, Fk) procedure (Algorithm 8) performs inductive generalization,
which is a fundamental step of the algorithm. During inductive generalization, given a
clause ¬q relative inductive to Fj−1, IC3 tries to compute a clause c subset of ¬q such that
c is still inductive relative to Fj−1. Acting this way, and using c to refine the frames, the
algorithm can block not only the original bad cube q but potentially also other states, which
in turn may lead to faster convergence. Inductive generalization works by dropping literals
from the input clause while maintaining relative inductiveness with respect to Fj−1. The
procedure computes a minimal inductive sub-clause, i.e., a sub-clause that is inductive
relative to Fj−1 and no further literals can be dropped without forgoing inductiveness [52].
In the general case, though, finding a minimal inductive sub-clause is often inefficient [48]
and, thus, most implementations of IC3 rely on an approximate version of such a procedure.
Approximate inductive generalization is significantly less expensive, yet still able to drop a
reasonable number of literals.

Algorithm 8 Iterative inductive generalization procedure: GENERALIZE (j, s, Fk)

Input: j a frame index; q a cube such that Fj−1 ∧ ¬q ∧ T → ¬q′; Fk the trace.
Output: c a clause such that c ⊆ ¬q and Fj−1 ∧ c ∧ T → c′.

1: procedure GENERALIZE(j, q, Fk)
2: c← ¬q
3: for all literals l in c do
4: t← c \ l
5: if ̸ ∃s, s′ |= Fj−1 ∧ t ∧ T ∧ ¬t′ then
6: if ̸ ∃s |= I ∧ ¬t then
7: c← t
8: return c

In the GENERALIZE (j, q, Fk) procedure, a clause c initialized with ¬q (line 2) represents
the current inductive sub-clause. For each literal of c, the candidate clause t is obtained
by discarding that literal from c (line 4). Dropping literals from a relative inductive clause
can violate both initiation and relative consecution conditions of induction. The candidate
clause t must thus be checked for inductiveness relative to Fj−1. IC3 checks whether
the relative consecution condition (Fj−1 ∧ t ∧ T → t′) keeps holding for t by posing the
following SAT query:

SAT?(Fj−1 ∧ t ∧ T ∧ ¬t′) (60)

If the relative consecution condition holds (i.e, Query (60) is UNSAT), the algorithm
needs to prove the initiation condition of induction (I → t). This check (line 6) can be
performed either syntactically or semantically. If I can be described as a cube, it is enough
to check whether at least one of the literals of I appears in t with opposite polarity. In such
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a case, ¬t does not intersect I and the initiation condition holds. Otherwise, the initiation
of induction must be checked explicitly by posing the following SAT query:

SAT?(I ∧ ¬t) (61)

If Query (61) is UNSAT, the initiation condition holds for t. If both the relative
consecution and the initiation conditions still hold for the candidate clause t, the current
inductive sub-clause c can be updated with t (line 7).

The PROPAGATE (Fk) procedure (Algorithm 9) manages the propagation phase. For
every clause c of each frame Fj, with 0 ≤ j < k − 1, it checks whether c can be pushed
forward to Fj+1. This is performed by checking whether c is inductive relative to Fj (line 4).
The procedure must check whether relative consecution Fj ∧ c∧ T → c′ holds, by answering
the following SAT query:

SAT?(Fj ∧ c ∧ T ∧ ¬c′) (62)

If relative consecution holds (i.e., Query (62) is UNSAT), then c is relative inductive
to Fj and can be pushed forward to Fi+1. Otherwise, c cannot be pushed forward and the
algorithm moves to the next iteration.

Algorithm 9 Clause propagation procedure: PROPAGATE (Fk).

Input: Fk: the current trace.
1: procedure PROPAGATE(Fk)
2: for j = 0 to k− 1 do
3: for all c ∈ Fj do
4: if ∃s, s′ |= Fj ∧ c ∧ T ∧ ¬c′ then
5: Fj ← Fj \ {c}
6: Fj+1 ← Fj+1 ∪ {c}

Property Directed Reachability

Property Directed Reachability (PDR) is a variant implementation of IC3 proposed by
Een et al. in [50]. PDR differs from the original IC3 implementation by Bradley [48] as follows:

• The trace is represented as sets of blocked cubes rather than learned clauses. Fur-
thermore, to avoid duplication, PDR only stores a cube in the last frame where it
holds. PDR also adds a special frame F∞ which will hold cubes that have been proved
unreachable from the initial states by any number of transitions.

• PDR uses a slightly modified trace semantics with respect to IC3, by not requiring the
last frame of the trace to entail the property. Een et al. show that this behavior can be
emulated by PDR by preprocessing the input system using a one-step target enlarge-
ment of P. This results in a small performance gain, simplifies the implementation and
has the extra benefit that F∞ is a proper invariant, which can be used to strengthen
other proof engines, or exploited for synthesis. Furthermore, in principle, the same
target-enlargement idea can be generalized and applied for any number k ≥ 1 of steps.

• PDR proposes the use of ternary simulation as a method to shrink proof obligations
before blocking them (implemented as the EXTEND procedure in Algorithm 7). In [50],
ternary simulation is shown to have a big impact on performance.

7. IGR

IGR [53], Interpolation with Guided Refinement, is a model checking algorithm than can
be seen as a variant of standard interpolation. It incorporates, within an interpolation
scheme, explicit trace computation and refinement, images and cones simplification under
observability don’t care and guided cone unwinding/rewinding.

The main purpose is to improve the standard interpolation in order to support the
incremental computation of reachable states sets and dynamic tuning of the backward
unrolling from the target. Incremental data structures are used to enable the reuse of previ-
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ously computed overapproximations and make interpolant-based algorithms better suited
for the verification of multiple properties or for integration with abstraction/refinement
approaches. Furthermore, maintaining overapproximated reachable state information in
an incremental data structure allows the algorithm to dynamically adjust the bound of the
BMC formulas checked during each traversal step, for better controlling the precision of
the computed image overapproximations.

In order to better describe the proposed variation, it is necessary to introduce first the
foundations on which it is built upon, in order to better characterize then the overall algorithm.

7.1. Incremental State Sets in Interpolation

In order to enable the reuse of previously computed interpolants, in IGR, a trace of
overapproximations to reachable states is maintained and incrementally refined. Since inter-
polants are safe image overapproximations with respect to the property under verification,
the trace maintained is safe as well.

At each i-th iteration of standard ITP’s inner loop, from the refutation proof of a
BMC formula, an overapproximation of the states reachable in i steps in the system is
computed by extracting an interpolant. Such an interpolant is then discarded at the end of
the iteration. Furthermore, when a spurious counterexample is found, the current forward
traversal is interrupted, the backward cone from the target is unwound by one step and
the forward traversal of reachable states restarts once again from the initial states. One of
the focus point in IGR is to keep track of the overapproximations computed during each
run of APPROXFORWARDTRAVERSAL, in order to enable their reuse in further iterations
of the outer loop. It is thus necessary to extend the standard interpolation algorithm to
keep track of a trace of reachable states. As the bound k of the cone increases, stronger
overapproximations are computed at each traversed time frame and used to refine the
trace.

A trace Fk = (F0, . . . , Fk) is used in order to keep track of previously computed
overapproximations. From Lemma 3, it follows that each timeframe Fi of Fk, with 0 ≤ i < k,
is an overapproximation of the set of states that are reachable in exactly i steps. The trace is
constructed so that it is safe with respect to P.

The proposed ITP variant, informally called INCRITPMODELCHECKING, is sketched
in Algorithms 10 and 11. The differences between the variant and standard interpolation
are the following:

• The trace is initialized with F0 = I before starting the first forward traversal
(Algorithm 10, line 5).

• Each time the forward traversal reaches the end of the current trace, a new frame Fi+1
is instantiated equal to ⊤ and added to the trace (Algorithm 11, lines 8–10).

• Every time a new interpolant, overapproximating states reachable in i + 1 steps, is
computed, the corresponding frame Fi+1 in the trace is refined (Algorithm 11, lines 17).

Refinement is a strengthening step carried out by conjoining the previous set with a
new term.
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Algorithm 10 Top-level procedure of the proposed ITP variant that keeps track of the
computed interpolants using a trace.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL}; cex a (possibly empty) initial path repre-

senting a counterexample.
1: procedure INCRITPMODELCHECKING(M, P)
2: if ∃s0 : s0 |= I(V) ∧ ¬P(V) then
3: return ⟨FAIL, (s0)⟩
4: Fk[0]← I
5: k← 1
6: while true do
7: ⟨res, cex⟩ ← INCRAPPROXFORWARDTRAVERSAL(M, P, Fk, k)
8: if res is UNREACH then
9: return ⟨SUCCESS,−⟩

10: else if res is REACH then
11: return ⟨FAIL, cex⟩
12: k← k + 1

Algorithm 11 Inner procedure that keeps track of the computed interpolants using a trace.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V; Fk a trace; k bound of a
backward unrolling from the target.

Output: ⟨res, cex⟩ with res ∈ {REACH, UNREACH, UNDEF}; cex a (possibly empty) initial
path representing a counterexample.

1: procedure INCRAPPROXFORWARDTRAVERSAL(M, P, Fk, k)
2: R← F0
3: if ∃π0,k |= F0(V0) ∧ T(V0, V1) ∧ Cone(1, k) then
4: return ⟨REACH, π0,k⟩
5: i← 0
6: while ⊤ do
7: if i = |Fk| then
8: Fk[i + 1]← ⊤
9: A← Fi(V0) ∧ T(V0, V1)

10: B← Cone(1, k)
11: if ∃π0,k |= A ∧ B then
12: return ⟨UNDEF,−⟩
13: else
14: I ← ITP(A, B)
15: Fi+1 ← Fi+1 ∧ I
16: if ̸ ∃s |= Fi+1 ∧ ¬R then
17: return ⟨UNREACH,−⟩
18: R← R ∨ Fi+1
19: i← i + 1

7.2. Frames and Cone Simplification

In order to keep cones and overapproximations of reachable states contained in size,
the algorithms exploit an optimization that aims at simplifying the representation of frames
and/or bad cones through ad hoc redundancy removal, exploiting the general notion of
redundancy removal under observability don’t cares. In order to understand the approach, let
us denote simplification under a care set as the function SIMPLIFY(F, C), where F is a formula
over V to be simplified and C is another formula over V to be used as a care set for the
simplification of F. The care set is defined with respect to a reference formula G over V ∪W
in which F appears as a subformula, as follows.
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Definition 88 (Care Set and Don’t Care Set). Given a propositional formula F over V and
another formula G over V ∪W such that F is a subformula of G, we define the care set CG

F of F with
respect to G as the set of assignments over V under which the value of F affects the value of G. A
care set for F with respect to G can be represented by the formula:

CG
F = G⊕ G[F ← ¬F] (63)

The complement of CG
F is called the don’t care set of F with respect to G. It represents the set of

assignments over V under which the value of F does not affect the value of G.

Simplification of a formula F under care set CG
F with respect to a reference formula

G can entail the application of any number of equivalence-preserving or strengthening
transformations over F, as long as the following constraint is preserved:

G ≡ G[F ← SIMPLIFY(F, CG
F )] (64)

Computation of care sets and don’t care sets can be costly [54]. Considering a conjunc-
tion F = A ∧ B as a reference formula, the following lemma describes two straightforward
ways to obtain care sets for either one of the conjoined formulas. We focus on B, since the
same dual reasoning applies to A.

Lemma 8 (Care Sets for Conjunctive Reference Formulas). Given A and B, two propositional
formulas over V, and given F = A ∧ B, then A is a care set for B with respect to F. Given C, a
propositional formula over V, such that A→ C, then C is a care set for B with respect to F.

Figure 9a,b illustrate the simplification of a formula B with respect to a reference
formula F = A ∧ B under care sets as defined by Lemma 8, in terms of sets of assignments.
Given two propositional formulas A = a and B = (a ∨ b), the knowledge that any as-
signment satisfying their conjunction F = A ∧ B must be a satisfying assignment of either
one can be used to simplify the other. Using A as a care set for B, since F = a ∧ (a ∨ b)
is satisfied only by assignments satisfying A (i.e., assignments µ such that µ(a) = ⊤) it
is possible to simplify B through the injection of a constant ⊤ prior to conjoining it to A,
obtaining⊤∨ b ≡ b. The resulting formula after simplification A∧ SIMPLIFY(B, A) = a∧ b
is syntactically more compact than the equivalent A ∧ B = a ∧ (a ∨ b).

A
B

F

Simplify(B,A)

(a)

A
B

C F

Simplify(B,C)

(b)

Figure 9. Examples of simplification under a care set. (a) Simplification of B using A as care set.
The SIMPLIFY procedure simplifies B without affecting its conjunction F with A. (b) Simplification
of B using C as care set, with A → C. The SIMPLIFY procedure simplifies B without affecting its
conjunction F with A.

Despite the fact that many redundancy removal techniques could be used to perform
simplification under a care set, e.g., latch correspondence, signal correspondence and
equivalence to constants, most of them are too expensive to be performed at each forward
traversal iteration within an ITP scheme. For the sake of having a fast operator, simplify is
limited to the removal of equivalences between state variables, i.e., latch correspondences.
Given a target formula B and a care set A, the SIMPLIFY operator identifies pairs of state
variables (v1, v2) such that A→ (v1 ↔ v2) and then B is simplified as B[v1 ← v2].
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Simplification under a care set can be used on frames during refinement steps
(Algorithm 11, line 17), or to simplify the bad cone Cone(1, k) prior to checking its in-
tersection with the image of Fi (Algorithm 11, line 13). During forward overapproximated
traversal, when checking whether the image of the current set of reachable states Fi ∧ T
intersects with the bad cone Cone(1, k), it is possible to simplify Cone(1, k) using any
overapproximation of the states reachable in the next k transitions that is already in the
trace. Each frame Fj in Fk, with i < j < i + k, can be used as a care set to simplify
Cone(1, k). With TRACESIMPLIFY(Cone(1, k), Fk, i, k) we identify the function applying
SIMPLIFY(Cone(1, k), Fj) for each i < j < i + k, i.e., the function applying latch correspon-
dences substitution at each intermediate transition relation boundaries in Cone(1, k). In
this way, reachability information computed during previous iterations of the algorithm
are used to simplify the formula before injecting it into the SAT solver.

7.3. Cone Unwinding and Rewinding

In standard interpolation, when finding a spurious counterexample, the current for-
ward traversal is restarted from the initial states after the bad cone has been expanded by
one step. IGR, instead, dynamically unwinds or rewinds the cone during forward traversal,
in order to guarantee the refinement of some previously computed overapproximation of
reachable states. The depth of the cone is therefore guided by the frames in the trace so that
it can lead to a strengthening refinement for some of them.

Supposing that, at a given point during the execution of INCRITPMODELCHECKING,
the algorithm has computed a trace Fk, two approaches can be pursued with the goal of
potentially expanding and/or refining Fk:

Cone Unwinding. When the forward traversal hits the cone, it starts a new traversal at an
intermediate step in order to guarantee the refinement of the trace.

Cone Rewinding. When the forward traversal hits the cone, it continues the traversal with
iteratively smaller cones in order to refine and expand the trace.

Overall, guided cone unwinding/rewinding allows IGR to dynamically tune the
unrolling from the target and therefore to have better control over the precision of the
computed overapproximations (interpolants). In this respect, standard interpolation is
too rigid, as overapproximations are always strengthened expanding the cone by one and
restarting the traversal from scratch.

7.3.1. Cone Unwinding

At a given iteration i of the forward traversal, given k the bound of the cone, if the formula

Fi(V0) ∧ T(V0, V1) ∧ Cone(1, k) (65)

is SAT, then a possibly spurious counterexample is found. In such a scenario, standard
interpolation would unwind the bad cone by one step and then start a new traversal from
the initial states. When step i is then reached once again in the traversal, the overapproxi-
mation Fi could have been strengthened enough to exclude the previously found spurious
counterexample. If that is not the case, the algorithm restarts the traversal again, increment-
ing k until either the spurious counterexample is excluded from the overapproximation
or the counterexample is confirmed to be a concrete one. With cone unwinding, the cone
is unwound of the minimum depth necessary to strengthen a frame Fj, with 0 < j ≤ i, in
order to eliminate the spurious counterexample directly.

Upon encountering a spurious counterexample, the BMC-like problem described in
Equation (65) is SAT. Therefore, the algorithm starts an iterative process checking BMC
problems of fixed bound in which the cone is unwound by one step and the algorithm
moves to the previous frame. Starting from frame Fi and cone Cone(1, k), at each j-th
iteration it considers the BMC-like problem:

Fi−j(V0) ∧ T(V0, V1) ∧ Cone(1, k + j) (66)
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with 0 < j ≤ i. At each iteration it swaps an overapproximated image in Fi−j with an exact
image in Cone(1, k + j). If the BMC-like problem in Equation (66) is SAT at a given j, then
Fi−j is not strong enough to refute the counterexample and the process iterates. Eventually,
either it finds UNSAT thus refuting the spurious counterexample, or it reaches the initial
states thus confirming the counterexample as a concrete one. In fact, for j = i we have
exactly BMC(i + k). Assuming that it can find a j, with 0 < j < i, such that Equation (66)
is UNSAT, then it can restart the forward traversal from Fi−j with Cone(1, k + j). This is
guaranteed to generate an interpolant and therefore refine the current trace.

7.3.2. Cone Rewinding

When, at a given step i, the forward traversal hits the cone of depth k, rather than
starting a new traversal with an unwound cone, the algorithm can optionally continue the
current traversal with a sequence of iterations, called refinement sequence. During refinement,
each iteration uses a cone of decreasing depth for which the safety of the current reachable
state overapproximation is guaranteed.

Assume that, at a given step i, Fi(V0) ∧ T(V0, V1) ∧ Cone(1, k) is SAT. Since Fi was
proved to be safe with respect to Cone(1, k) at iteration i − 1, there does not exist any
counterexample of length at most k starting from i, and hence it is guaranteed that

Fi+j(V0) ∧ T(V0, V1) ∧ Cone(1, k− j− 1) (67)

is UNSAT for each 0 ≤ j < k− 1. A new interpolant Ij can be generated from each of such
calls to be used to refine Fi+j+1. Alternatively, one could compute an interpolation sequence
directly from the BMC call (67) and use it to refine the trace.

To summarize, once a cone of depth k is hit at step i of the forward traversal, the algo-
rithm can compute a sequence of k interpolants, each representing an overapproximation
of states reachable in i + j + 1 transitions, with 0 ≤ j < k− 1, that can be used to refine, or
generate, the frames (Fi+1, . . . , Fi+k) of the trace. The main purpose of such a refinement
sequence is to let future traversals operate over more precise overapproximations of the
reachable states.

On such premises, the overall IGR algorithm can now be presented.
The top-level procedure of IGR is reported in Algorithm 12. The algorithm first checks

the safety of the initial states (lines 2–3) and initializes the trace Fk (line 4). Indexes ihit and
khit are also initialized (line 5–6) and they are used to keep track of the traversal step and
cone depth at which a cone was hit during the previous traversal, if any. Past initialization,
the outer loop starts iterating overapproximated forward traversals (lines 7–13). Procedure
UNWIND is invoked first to seek the best frame at which to start the next traversal (line 8),
to perform cone unwinding (as described in Section 7.3.1) starting from the step ihit and
cone depth khit, until either a concrete counterexample or a frame that could be refined
by computing a new interpolant is found. In the first case, UNWIND returns a REACH

result and a counterexample. The algorithm, thus, terminates with FAIL producing the
counterexample as output (lines 9–10). In the second case, UNWIND returns an UNDEF

result, a step i and a cone depth k to be used for the next traversal. Note that, during the
first iteration, ihit and khit are initialized to zero and one, respectively; therefore, UNWIND

simply checks whether the initial states can reach the target in one transition. If no concrete
counterexample is found, the algorithm starts a new forward overapproximated traversal
by calling the IGRAPPROXFORWARDTRAVERSAL routine (line 11). Upon termination of
such a procedure, if the result is UNREACH then an inductive invariant has been found
during traversal and thus the algorithm terminates with SUCCESS (lines 12–13). Conversely,
the cone was hit and the traversal procedure returns an UNDEF result together with the
step ihit and cone depth khit at which that occurred. In such a scenario, it means that a
spurious counterexample was found during traversal and the algorithm then iterates to
perform a new traversal.

On these premises, we can summarize the overall scheme of IGRMODELCHECKING as
follows:
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• Iteratively choose a starting frame Fi and a cone Cone(1, k) to be unwound with
guidance throughout the overapproximated trace Fk.

• Initiate a forward traversal from Fi with Cone(1, k) aiming at refining Fk and filtering
out the latest spurious counterexample found within Fihit .

The two sub-tasks are performed by UNWIND and IGRAPPROXFORWARDTRAVERSAL,
respectively.

Algorithm 12 Top-level procedure of IGR.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V.
Output: ⟨res, cex⟩ with res ∈ {SUCCESS, FAIL}; cex a (possibly empty) initial path repre-

senting a counterexample.
1: procedure IGRMODELCHECKING(M, P)
2: if ∃s0 : s0 |= I(V) ∧ ¬P(V) then
3: return ⟨FAIL, (s0)⟩
4: Fk[0]← I
5: ihit ← 0
6: khit ← 1
7: while true do
8: ⟨res, cex, i, k⟩ ← UNWIND(M, P, Fk, ihit, khit)
9: if res is REACH then

10: return ⟨FAIL, cex⟩
11: ⟨res, ihit, khit⟩ ← IGRAPPROXFORWARDTRAVERSAL(M, P, Fk, i, k)
12: if res is UNREACH then
13: return ⟨SUCCESS,−⟩

Procedure IGRAPPROXFORWARDTRAVERSAL, described in Algorithm 13, performs an
overapproximated forward traversal of reachable states. The procedure starts from a given
frame in the trace while preserving safety with respect to a cone of a given depth. It first
computes the current overapproximated set of reachable states at step i by disjoining the
first i frames (line 2). During each iteration of the traversal loop (lines 6–29), the algorithm
then proceeds in two different ways taking into account whether or not cone rewinding (see
Section 7.3.2) has been triggered. If it has not been triggered, the algorithm performs a
traversal step using a cone of bound k. Conversely, the procedure decreases the bound of
the cone at each iteration to perform rewinding (lines 9–10). The procedure then performs
cone simplification (line 12), as described in Section 7.2, and checks whether the current
set of overapproximated reachable states R hits the cone (line 13), during each traversal
step. In case of a hit, the algorithm saves the current step and cone bound in ihit and
khit, respectively, and triggers a refinement sequence (lines 14–16). Conversely, a new
overapproximated image is computed through interpolation (lines 18) and the current
frame Fi is refined and simplified (line 19) as described in Section 7.2. The algorithm then
checks whether the overapproximation is an inductive invariant, returning UNREACH

if that is the case (lines 20–21). If no inductive invariant has been found, the new set of
overapproximated forward reachable states to be used for the next iteration is computed as
R∨ Fi+1 (line 22). Each time the forward traversal reaches the end of the current trace, a new
frame Fi+1 is instantiated equal to ⊤ and added to the trace (lines 7–8). At the end of each
iteration, if a given depth threshold D has been reached, the algorithm forces rewinding
(line 24–27). When rewinding is triggered, either after finding a spurious counterexample or
by force, the algorithm continues the traversal decreasing the cone bound at each iteration.
When the cone has been completely rewound, the algorithm terminates returning UNDEF

alongside the step and cone bound at which either a spurious counterexample was found
(lines 15–16) or rewinding has been forced (lines 26–27).

The aforementioned D threshold heuristically controls activation of cone rewinding.
Whenever D = 0, rewinding is always active, so the approach obtains a minimal refinement
while mimicking the effect of interpolation sequences [55]. High values of D keep the k
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value constant until a hit, mimicking a scheme which would result far closer to standard
interpolation. Empirically, it occurs that small values tend to be usually better at small
sequential depths, as they can enact more, relatively inexpensive, refinement steps.

Algorithm 13 Inner procedure that keeps track of the computed interpolants using a trace.

Input: M = ⟨V, I , T⟩ a transition system; P a property over V; Fk a trace; i start step of
the traversal; k bound of a backward unrolling from the target.

Output: ⟨res, ihit, khit⟩ with res ∈ {UNREACH, UNDEF}; ihit the step (if any) at which the
cone is hit during traversal; khit the depth of the cone hit.

1: procedure IGRAPPROXFORWARDTRAVERSAL(M, P, Fk, k)
2: R← ∨i

j=0 Fj
3: rewind← ⊥
4: ihit ← i
5: khit ← k
6: while ⊤ do
7: if i = |Fk| then
8: Fk[i + 1]← ⊤
9: if rewind ∧ k > 0 then

10: k← k− 1
11: A← Fi(V0) ∧ T(V0, V1)
12: B← TRACESIMPLIFY(Cone(1, k), Fk, i + 1, k)
13: if ∃π0,k |= A ∧ B then
14: rewind← ⊤
15: ihit ← i
16: khit ← k
17: else
18: I ← ITP(A, B)
19: Fi+1 ← SIMPLIFY(Fi+1, I) ∧ I
20: if ̸ ∃s |= Fi+1 ∧ ¬R then
21: return ⟨UNREACH,−,−⟩
22: R← R ∨ Fi+1
23: i← i + 1
24: if ¬rewind ∧ i > D then
25: rewind← ⊤
26: ihit ← i
27: khit ← k
28: else if rewind ∧ k = 0 then
29: return ⟨UNDEF, ihit, khit⟩

At each iteration, the UNWIND procedure described in Algorithm 14 computes i and k,
starting from ihit and khit, relative to the previous spurious counterexample. Following the
strategy described in Section 7.3.1, the cone bound k is extended while i is decremented
(lines 5–6), until either the algorithm encounters an UNSAT BMC check or the initial states
are reached (line 4). In the former case, UNWIND managed to find a frame at which
starting a traversal is expected to lead to a Fk refinement and to filtering out the last
spurious counterexample found. The procedure then returns an UNDEF result alongside
the corresponding values for i and k (line 9). In the latter case, the procedure has detected
an actual counterexample as a side effect. The procedure then returns a REACH result
alongside the counterexample (line 8).
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Algorithm 14 Unwinding procedure of IGR.

Input: M def
= ⟨V, I , T⟩ a transition system; P a property over V; ihit the step at which the

cone was hit during traversal; khit the depth of the cone hit.
Output: ⟨res, cex, i, k⟩ with res ∈ {UNDEF, REACH}; cex a (possibly empty) initial path

representing a counterexample; i step at which resume forward traversal from; k cone
depth to use in the resumed traversal.

1: procedure UNWIND(M, P, ihit, khit)
2: i← ihit
3: k← khit
4: while i ≥ 0∧ ∃π0,k |= Fi(V0) ∧ T(V0, V1) ∧ Cone(1, k) do
5: i← i− 1
6: k← k + 1
7: if i < 0 then
8: return ⟨REACH, π0,k,−,−⟩
9: return ⟨UNDEF,−, i, k⟩

8. Comparative Analysis and Experimental Evaluation

In order to compare and evaluate the various model checking algorithms, we here
present the data gathered taking into account our own implementation of said techniques
on top of the PdTRAV tool [56], a state-of-the-art model checking academic tool.

The benchmark set considered was derived from past HWMCC suites [14,57], starting
from the 2014 edition until the most recent one. The set includes hardware- as well as
software-derived verification problems, mostly stemming from industrial-level verification
instances (such as IBM and intel benchmarks).

Experiments were run on an Intel Core i7-1370, with 16 CPUs running at 3.4 GHz
hosting a Ubuntu 22.04 LTS Linux distribution. All the experiment were run taking into
account a time limit of 3600 s and a memory limit of 32 GB.

Experimental results are reported in Tables 1 and 2, which share the same structure.
Both tables highlights solves, split between SAT and UNSAT instances (Result), for each
main engine (Engine) of our verification suite. For each group of results, we provide the
average number of memory elements (avgl), input variables (avgi) and gates (avgg) of the
benchmarks belonging to each set, to provide some insight into the size of the instances
at hand. As summary statistics, we also provide average solving time, both in term of
CPU time (avgt) and wall-clock time (avgr), and memory requirements (avgm) for each
group. Table 2 provides a subset of the results of Table 1, filtering out easier instances, i.e.,
instances that require 60 seconds or less to be solved.

Table 1. Results on the full benchmark set of the number of instances solved by different engines.

Engine Result Solutions avgi avgl avgg avgt [s] avgr [s] avgm [MB]

BDD SAT 12 16.25 307.33 9458.17 1014.53 175.71 1518.29
UNS 91 83.81 222.68 2723.90 1959.57 353.31 1921.69

BMC SAT 185 5811.45 16,011.02 201,773.13 1409.58 330.53 3314.58

COM SAT 1 122.00 381.00 2526.00 0.59 0.69 58.60
UNS 121 6500.72 24,608.60 215,393.50 28.80 29.16 462.13

IGR UNS 32 1367.50 1463.75 42,964.44 3359.04 657.87 4796.34
ITP UNS 86 2728.55 6079.29 74,085.99 3294.79 670.03 3923.90

LMS UNS 19 47.26 584.32 3687.63 731.97 124.60 1464.49

PDR SAT 43 579.37 1188.88 18,866.86 496.82 95.26 1482.05
UNS 233 558.95 3599.55 36,061.80 462.56 97.19 1792.21

RED UNS 2 203.00 271.00 4840.00 1.54 2.64 113.35
SIM SAT 36 1011.22 4596.92 45,924.17 224.19 78.73 1742.41
SYN UNS 91 596.62 819.20 14,008.29 10.36 7.69 395.29
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Table 2. Results on the filtered benchmark set of the number of instances solved by different engines,
discarding easy-to-solve instances.

Engine Result Solutions avgi avgl avgg avgt [s] avgr [s] avgm [MB]

BDD SAT 10 18.30 334.50 10,029.30 1217.21 210.41 1698.32
UNS 46 77.20 315.65 2711.20 3869.45 695.41 2972.38

BMC SAT 157 6580.46 17,892.90 229,695.41 1657.67 387.19 3698.95
COM UNS 17 651.53 8537.94 71,562.18 151.05 148.73 258.09
IGR UNS 32 1367.50 1463.75 42,964.44 3359.04 657.87 4796.34
ITP UNS 81 2850.21 6407.47 78,112.98 3495.62 710.60 4096.33

LMS UNS 14 48.29 674.14 4114.29 986.12 166.85 1645.11

PDR SAT 14 1216.57 1452.29 37,274.07 1493.70 274.34 2255.86
UNS 98 1060.56 6139.47 63,953.65 1075.83 220.33 2591.29

SIM SAT 24 853.25 5563.62 52,609.83 323.82 112.88 2034.62
SYN UNS 5 4104.20 2679.60 76,255.80 150.76 103.28 840.24

In the tables one can find both SAT-based model checking techniques, which are the
focus of this paper, such as IC3 in its PDR variant, BMC, induction-based approaches
exploiting lemmas (LMS), interpolation and IGR, as well as some solutions obtained
through auxiliary techniques, such as BDD-based reachability, logic synthesis, simulation
and combinatorial techniques to circuit manipulation and checking, which go past the scope
of the current work. It is worth remembering that the portfolio-based approach awards
the solution for a specific instance to the first engine capable of solving the corresponding
verification task, for the sake of efficiency. In such a scenario, after (at least) one engine
manages to solve a problem, all the concurrent running task are brought to a halt, in order
to spare resources.

As mentioned before, there is not currently a definitive winning strategy when it come
to bit-level hardware model checking, so portfolio approaches are the de facto standard in
the field. Since its introduction, IC3/PDR has proven itself time and time again as one of the
most proficient strategies in the state of the art, as also shown by the results here provided.
Nevertheless, its contribution need to be complemented with interpolation-based strategies
in order to provide better coverage. This is far more evident when we shift the focus
to harder-to-solve instances, in which the subset of benchmarks solved by interpolation-
based strategies stays basically the same, whereas the number significantly decreases
for IC3. IC3 proves itself a high-performing engine, with a significant edge on easier
and mid-tier instances. Interpolation-based techniques, in turn, complement it providing
orthogonal approaches. The same consideration holds for BMC-based approaches, that
focus on falsification with the aim of finding an actual counterexample to the property
under verification. Their targets stay basically unchanged, with a scope on instances
with deeper unrollings of the corresponding transition relation, which other engines may
struggle to tackle.

When taking into account BDD-based approaches, which are not directly the focus of
this paper, one can take into account both similarities and differences with their SAT-based
counterparts. On the one hand, they both try to address problems encoded in Boolean
form but where SAT checkers just need to focus on finding a single satisfying assignment
for the formula under verification, BDD-based ones need to encode a function describing
all the satisfying assignments. Once such an encoding is available, BDDs are capable of
performing tasks which are not supported by SAT-based solutions, such as focusing on
optimality given a cost function, provide counting, or supporting variable quantification, at
the cost of being able to build such a data structure, though. In general SAT checkers relying
on some variant of the DPLL algorithm outperform BDD-based solutions; nevertheless,
there are niche scenarios in which BDDs are still the winning strategies, such as specific
instances of equivalence and parity checking.

Complementary to all of the techniques referenced above, we have logic synthesis,
simulation and combinatorial-based approaches which tackle verification problems from a
more circuital and structural point of view. They tend to be applicable to smaller instances
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or instances with very specific patterns and a large number of equivalent elements, which
can be collapsed in a few equivalence classes and/or abstracted away from the actual
model under verification.

Practical Considerations Concerning Model Checking Algorithms

The algorithms we have described, falling into the SAT-based and symbolic model
checking category, are usually quite resilient to the state space explosion problem, which can
be problematic when dealing with large designs, comprising millions, or more, variables
and constraints. In such a scenario, though, the trade-off has to be taken into account, which
lies in the inherent time complexity, as SAT-based problems are known to be NP-complete.

One the one hand, we have that worst-case complexity indeed falls into exponential
time; on the other hand, we have that, exploiting the proper modeling of systems, rep-
resentation of data and simplification steps, SAT-based model checking algorithms are
applicable to real-world scenarios.

One of the major issues with tuning resources for running verification instances is that
it is almost impossible, in the general case, to foresee what would be the appropriate amount
of time and memory to dedicate to a given task. The experimental evaluation proposed
above follows the same setup of model checking competitions to provide comparable
results with a well-defined baseline, but at the same time such a setup is nothing more than
an executive choice on the matter.

It is not uncommon for industrial-level instances and more complex benchmarks to
have to account for timeouts in the order of days, or more, in order to hopefully obtain
usable results. Let us also point out once more how there is absolutely no guarantee that
any of the engines may actually be able to solve a given instance, regardless of the time
spent on the problem. On these premises, there are situations in which the aim is to go as
deep as possible in the model exploration, trying to verify as much of the behavior as possible,
without any claim of completeness, such as in pure BMC-based runs, where engines are
left to run until resource depletion, either in terms of time or memory.

Because of this, orthogonal to the research and development of new techniques, a vast
amount of research is targeted at improving the existing base of knowledge in order to
make current techniques better performing and more applicable. Such an effort may be
directed, among other things, at improving formalism and encoding styles and rules for
the models [58], improving SAT-solver management strategies [49] or introducing different
strategies for task management or exploiting partial results in a collaborative fashion among
engines in order to increase their chance of success [36,37].

A far more in-depth analysis of practical solutions and techniques to improve the
applicability and scalability of SAT-based verification is presented in [59].

9. Conclusions

This paper provides an in-depth overview of the most common SAT-based algorithms
usually applied in bit-level hardware model checking scenarios. In the last two decades,
SAT-based model checking brought about a leap in the performance and scalability of
symbolic model checking algorithms. SAT-based model checking tools have managed
to almost supplant BDD-based ones in both industry and academia. Model checking
algorithms based on SAT solving, however, still suffer from non-negligible scalability
issues when confronted with the complexity of many industrial-scale designs. Improving
the performance and scalability of such algorithms is a very challenging, yet very active,
research path.

This paper strives to provide both a thorough overview of the background required
to understand the topics at hand, and a complete description of the aforementioned algo-
rithms and their intricacies. Based on the current state of the art, a selection of the most
relevant methods has been identified and described, taking into account both bounded and
unbounded model checking, with a focus on safety properties. For the sake of generality,
this work provides a description of each algorithm from a theoretical standpoint, trying
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to avoid details which would turn out to be too implementation oriented in favour of the
soundness and comprehensiveness of their description and discussion.

As mentioned in the introductory section, as of today, there is no a single winning
strategy applicable to the broad range of verification problems one may face. It has thus
become almost mandatory to tackle verification tasks using a portfolio of techniques,
running in a concurrent/collaborative fashion, in order to maximize the chance of success.
Furthermore, additional factors, such as model pre-processing and simplification, property
management, engine orchestration, etc., play a role as important as the actual model
checking algorithm of choice in determining the success of the verification procedure.
This is the main reason why the current research path in this field usually reaches across
several different directions, targeting different aspects of the verification chain, rather than
focusing on a single specific step. Nevertheless, it is absolutely crucial to develop a firm
and sound understanding of the available techniques in order to properly orchestrate
verification efforts.

For the future, the current path of research is aimed at supporting hierarchical verifica-
tion for top-down design, embedding support for verification in the whole design chain,
starting from specification languages. Currently, there is a need for being able to write a
verifiable high-level design, that can then be refined and implemented, while guaranteeing
that it is still consistent with its abstraction. The main aim is for properties that have been
verified at a given step of the design chain to hold at any other successive level of refine-
ment. Such a desideratum leads to hybrid and top-down/bottom-up design methodologies,
with emphasis on verification as grounding for correctness, as well as introducing the need
for some sort of certificate, to guarantee the correctness of each step, transformation and
refinement involved in the process. Alongside hierarchical verification, the integration of
model checking within design becomes even more pressing, where model checkers repre-
sent auxiliary tools within the design chain, to support and validate correctness. Despite
its potential usefulness, the adoption of model checking in industrial scenarios is still an
ongoing process, where funding and methodology changes are the main limiting factors, in
conjunction with the absence of a definitively best approach at tackling verification prob-
lems. Because of this, we can foresee that for the coming years portfolio-based approaches,
exploiting divide-and-conquer strategies among different verification engines, will still be
the most consistent way to address such tasks.
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Abbreviations
The following abbreviations are used in this manuscript:

BMC Bounded Model Checking
CNF Conjunctive Normal Form
CTI Counterexample To Induction
HW Hardware
HWMCC Hardware Model Checking Competition
ITP Interpolant
IC3 Incremental Construction of Inductive Clauses for Indubitable Correctness
IGR Interpolation with Guided Refinement
MC Model Checking
PDR Property Directed Reachability
RTL Register Transfer Level
UMC Unbounded Model Checking
WFF Well-Formed Formula
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