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Generative models for color normalization in digital pathology and 
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A B S T R A C T   

Color medical images introduce an additional confounding factor compared to conventional grayscale medical 
images: color variability. This variability can lead to inconsistent evaluation by clinicians and the misinterpre-
tation or suboptimal learning process of automatic quantitative algorithms. To mitigate the potential negative 
consequences of color variability, several color normalization strategies have been developed, proving to be 
effective in standardizing image appearance. In this paper, we present a novel paradigm for color normalization 
using generative adversarial networks (GANs). Our method focuses on standardizing images in the field of digital 
pathology (stain normalization) and dermatology (color constancy), where high color variability is consistently 
observed. Specifically, we formulate the color normalization task as an image-to-image translation problem, 
ensuring a pixel-to-pixel correspondence between the original and normalized images. Our approach out-
performs existing state-of-the-art methods in both the digital pathology and dermatology fields. Extensive 
validation using public datasets demonstrate the effectiveness of our color normalization results on entirely 
external test sets. Our framework exhibits strong generalization capability on unseen data, making it suitable for 
inclusion in the pipeline of automatic quantitative algorithms to reduce color variability and improve segmen-
tation and/or classification performance. Lastly, we provide the source code of our models to encourage open 
science.   

1. Introduction 

Color in medical imaging applications is typically handled with little 
standardization (Barata, Celebi, et al., 2014). The final appearance of 
color images heavily relies on the process of capture, processing, stor-
age, and display, which can vary among imaging device manufacturers 
(Barata, Celebi, et al., 2014). In this context, color normalization aims to 
generate color image data with identical or similar perceptual response 
when evaluated by human operators. While human observers may 
tolerate color variability more than image analysis algorithms, data 
standardization is increasingly important in the era of artificial intelli-
gence and big data (Janssen et al., 2020). 

Grayscale images in the field of medicine are usually highly stan-
dardized, ensuring consistent interpretation and analysis. However, the 
same level of standardization does not apply to color images. Derma-
tology and histology, for example, share a low scale and a low conver-
sion factor, resulting in associated variabilities. Consequently, color 
figures in these domains often exhibit significant variations that can 

affect the accuracy and reliability of image analysis algorithms. There-
fore, there is a need to address the standardization of color images in 
medical applications to ensure consistent and reliable interpretation. 

Several color normalization (or color constancy/color standardiza-
tion) algorithms have been proposed in literature for two main color 
medical imaging modalities: digital pathology and dermatology. These 
algorithms aim to produce images that appear as if they were acquired 
under a standardized energy source, and have demonstrated improved 
robustness of automatic algorithms, particularly when dealing with 
multi-center datasets or datasets acquired using different devices (Bar-
ata, Marques, et al., 2014; Swiderska-Chadaj et al., 2020). 

Digital pathology is an important clinical field where histology slides 
of stained biological tissue are digitized to produce high-resolution 
images (Janowczyk & Madabhushi, 2016). However, the manual prep-
aration of the sample involves numerous non-standardized procedures, 
resulting in significant variation in the appearance of digital images. 
This variability poses a major challenge in designing robust systems for 
automated analysis of histological images (Salvi, Acharya, et al., 2020). 
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In this field, color constancy algorithms are typically called “stain 
normalization” methods, as their objective is to normalize the color of 
the stain while maintaining good image contrast and preserving 
important morphological and functional information. Traditional stain 
normalization methods have the potential drawback of distorting tissue 
structures and texture in the original image (Kumar et al., 2017). 
Moreover, most classic techniques for stain normalization rely on a 
single user-selected reference image to determine the target stain 
(Kumar et al., 2017). 

In dermatology, color images are acquired using a clinical derma-
toscope enabling high-resolution and epiluminescent viewing and image 
acquisition of skin lesions. The color within these images depends on 
both image illumination and the diverse skin tones, which can vary 
among patients. State-of-the-art (SOA) color constancy algorithms in 
dermatology include Gray World (GW) (Buchsbaum, 1980), Shades of 
Gray (SoG) (Finlayson & Trezzi, 2004) and max-RGB (MRGB) (Land, 
1977). These heuristic approaches first estimate the light source in the 
RGB color space and then apply a color transformation using the von 
Kries diagonal model (von Kries, 1970). A limitation of these traditional 
color constancy algorithms is their reliance on prior assumptions to es-
timate the color of the light source (Sidorov, 2019), which are often not 
met in real-life scenarios. 

Generative adversarial networks (GANs) (Goodfellow et al., 2014) 
are the latest emerging framework for generating synthetic images and 
time-series data. Stain normalization of histopathological images using 
GANs has recently gained momentum, where the model is trained with 
image pairs: the input source image and the target image (Zhu et al., 
2017; Zanjani et al., 2018; Sandfort et al., 2019). GAN-based approaches 
for color normalization, which are now considered the gold standard in 
digital pathology (Salehi & Chalechale, 2020), can be grouped into three 
categories: Pix2Pix GANs (Salehi & Chalechale, 2020), Stain Style 
Transfer Networks (Cho et al., 2017; Yuan & Suh, 2018; Liang et al., 
2020), and Cycle GANs (Zhou et al., 2019a; Lo et al., 2021; Mahapatra 
et al., 2020). Pix2Pix GANs exploit a pixel-to-pixel correspondence be-
tween the original and synthetic image, producing stable results. How-
ever, it is limited by the fact that the target and source images are 
typically acquired with two different scanners, and the user must select 
one of the two images as the target image. So far, Pix2Pix GANs for color 
normalization have been applied to grayscale images, which may result 
in information loss compared to RGB images (Salehi & Chalechale, 
2020). Stain Style Transfer Networks and Cycle GANs work on unpaired 
data and employ target and source images from two completely different 
datasets. With style transfer networks, a target image is defined, and its 
“style” is transferred to the source images as the network learns to 
associate spatial features in each image with their corresponding color 
characteristics. Hence, only the style is transferred between the target 
and source, without specific control over the final output, leading to a 
loss of pixel-to-pixel correspondence and high dependence on the sta-
tistics of the target image (Lo et al., 2021). Cycle GANs use a target group 
instead of a target image, making this approach more versatile and 
overcoming some of the limitations of Style-Transfer networks. How-
ever, challenges remain in controlling the final output of the model: 
since the pixel-to-pixel correspondence is lost, there is a higher risk of 
creating artefacts or even creating artificial objects in the output images 
that are not present in the input images. Another issue with GAN-based 
approaches is that the parameter optimization problem and the effect of 
the employed loss function and architecture are often overlooked. 
Modeling complex systems and optimization problems are a hot topic 
that cover various research areas (Bojan-Dragos et al., 2021; Borlea 
et al., 2022; Pozna et al., 2012; Precup et al., 2021; Singh & Shukla, 
2022; Tan et al., 2014), and the influence of these aspects on obtained 
results with GAN-based techniques merits further investigation. 

GAN-based normalization methods are currently considered the 
preferred technique in digital pathology. Most of the proposed ap-
proaches in the literature rely on the careful selection of representative 
template images and may struggle in regions that do not match the 

templates well. On the other hand, the only study in literature that 
utilizes GANs for color normalization in dermatology is our previous 
work (Salvi et al., 2022), which employed a Pix2Pix model to perform 
color constancy. 

While generative models have achieved promising results in the field 
of color normalization, controlling the final output of GANs trained on 
unpaired data poses several challenges. These challenges arise due to the 
loss of pixel-to-pixel correspondence between the original image and the 
target image. The current main challenges are:  

- Lack of direct control: In generative models, the mapping between the 
target group and the original images is learned implicitly through the 
adversarial training process. As a result, there is no direct control 
over the specific mapping between individual pixels or regions in the 
target and original images. This lack of direct control makes it 
difficult to enforce specific constraints or requirements on the final 
output.  

- Risk of artifacts: Since generative models typically operate without 
direct pixel-level correspondence, there is a higher risk of intro-
ducing artifacts or inconsistencies in the generated images. These 
artifacts can manifest as unrealistic color shifts, texture distortions, 
or the creation of artificial structures that do not exist in the input 
images. Controlling and minimizing these artifacts becomes a chal-
lenge, especially when dealing with complex color normalization 
tasks. 

- Dependency on target image statistics: GANs heavily rely on the sta-
tistics and characteristics of the target image group. The network 
learns to match the distribution of the target images in terms of color 
and style. This reliance on the target image statistics means that the 
generated output is highly influenced by the specific properties of the 
target group. If the target group is not representative or lacks di-
versity, the generated images may exhibit biased or limited 
variations.  

- Generalization to unseen variations: Generative models may struggle to 
generalize well to unseen variations or cases that deviate signifi-
cantly from the training data. If the training dataset does not 
adequately cover the range of possible color variations or if there are 
uncommon patterns, the GAN may produce suboptimal results or fail 
to capture the full spectrum of color normalization required in 
challenging scenarios. 

In this work, we present a new paradigm for color normalization in 
digital pathology and dermatology using GANs. Our model employs a 
heuristic algorithm to normalize the input images, which serves as the 
target domain during the training process. This integration of structural 
information ensures a pixel-to-pixel correspondence between the orig-
inal and the target images. Our research presents several key 
contributions:  

- We introduce a new learning paradigm for color normalization in 
digital pathology and dermatology using GANs, addressing the lim-
itations of existing color normalization methods. 

- Our color-to-color translation and Pix2Pix-based paradigm success-
fully achieves a high level of visual similarity to the reference image. 
Unlike previous GANs designed for color normalization, our 
approach generates stable results even for images with various arti-
facts such as blur, non-uniform illumination, and tissue folds. 

- The utilization of an ad-hoc image, obtained through specific heu-
ristic algorithms, as the target domain for the GAN is crucial to 
ensure the method’s generalizability across external datasets. We 
have demonstrated this through both quantitative and qualitative 
analysis using previously unseen data. 

- We conduct a comprehensive investigation of different GAN archi-
tectures, considering parameters and loss functions, to assess the 
quality of the generated images. Additionally, we compute various 
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metrics tailored to digital pathology and dermatology applications to 
identify the optimal GAN configuration for each domain.  

- To promote open science and facilitate direct comparisons with other 
research groups, we provide free access to the code of our GANs and 
the dataset used for testing our method. This enables researchers to 
download and utilize these resources for their own studies. 

2. Materials and methods 

2.1. GSN-GAN: Generalized stain normalization GAN for digital 
pathology 

2.1.1. Dataset 
220 WSIs were collected from our previous works on prostate (Salvi 

et al., 2023), breast (Salvi et al., 2019) and liver (Salvi, Molinaro, et al., 
2020) tissues. Histological tissues were obtained by needle biopsy, fixed 
in formalin, serially sectioned at 5 μm, and stained with conventional 
H&E staining. All biopsies were anonymized by a pathology staff 
member not involved in the study before any further analysis. Digital 
images were scanned with a 200x magnification (conversion factor: 
0.467 μm/pixel) using a Hamamatsu NanoZoomer S210 Digital slide 
scanner. The WSIs used for training and validation were divided into 
tiles of equal size (2048×2028 pixels), and we underline that the images 
used for validation derived from the same organs as the images used for 
training but come from entirely different WSIs. Hence, the same WSI was 
only present either in the training set (200 WSIs) or validation set (20 
WSIs). Starting from the extracted tiles, 2200 images (training: 2000 
images, validation: 200 images) were selected for the actual develop-
ment of the GAN model. The breakup of the dataset between the three 
tissues (i.e., prostate, breast, liver) is shown in Table 1 and more detail 
on how the tiles were specifically selected can be found in Section 2.1.3. 

2.1.2. Heuristic algorithm for stain normalization 
Our previously developed stain normalization algorithm, named 

SCAN (Stain Color Adaptive Normalization), was used to normalize the 
extracted tiles (Salvi, Michielli, et al., 2020). The SCAN algorithm 
initially separates the histological stains by employing color deconvo-
lution, which separates the stains based on their absorption character-
istics. Following this preliminary stain separation, the algorithm focuses 
on detecting cellular structures within the histological image. Subse-
quently, a refined stain separation is performed by considering only the 
cellular structures, resulting in more accurate separation of the stains 
and reducing interference from the background. In the final phase of the 
algorithm, the image is normalized. The stain color appearance is 
standardized with respect to a reference image that exhibits an optimal 
and reproducible staining distribution. 

The optimization problem in this context revolves around finding the 
optimal stain separation and normalization strategy that minimizes the 
variability of the output images’ stains. Although SCAN is a versatile and 
multi-tissue normalization algorithm, it still presents some limitations. 
Specifically, this heuristic algorithm is not always reliable, and occa-
sional artefacts may arise if one of the two stains is insufficiently present 

in the image or if the stain separation is not correctly obtained. Addi-
tionally, the processing and normalization of images using SCAN may 
take a few seconds. Some cases where SCAN produces a suboptimal 
result are displayed in Fig. 1. 

2.1.3. GSN-GAN for optimal stain normalization 
To overcome the current limitations of the heuristic SCAN algorithm, 

a GAN was trained with a specific strategy: the proposed GSN-GAN was 
trained only on pairs of images where the SCAN algorithm provided 
optimal results according to an expert pathologist. In particular, the 
expert pathologist selected a total of 500 tiles (each 2048×2048 pixels) 
in which the SCAN normalization was optimal in terms of color co-
herency and quality of the normalized image. The expert selected only 
the images in which the normalization process reproduces the target 
stain colors and does not introduce image artifacts that could affect the 
clinical pathway (Zheng et al., 2019). During this selection process, it 
was ensured that at least two tiles for every initial WSI were included, 
hence maintaining a heterogenous dataset. 

For the training process, the SCAN-normalized image represents the 
target domain for the GSN-GAN. In this way, a Pix2Pix correspondence 
between domain A (original image) and domain B (normalized image) 
was maintained. The quality of the result can be guaranteed thanks to 
the careful selection of optimized images by the expert pathologist. It is 
important to underline that this is the first work in digital pathology that 
uses images that are enhanced by a heuristic algorithm as a target 
domain for GAN training. 

The selected 2048×2048 tiles were subsequently divided into four 
1024×1024 sub-images to fit the GAN input size. This process made it 
possible to obtain 1024×1024 tiles where only background and/or ar-
tefacts were present, giving the GAN the opportunity to be trained well 
even when presented with these problematic images. The entire work-
flow of the process is illustrated in Fig. 2 and more details of the GAN 
architecture are given hereafter. 

The GSN-GAN is a Pix2Pix GAN that employs a U-net architecture as 
the generator and a three-layer fully convolutional PatchGAN (C. Li & 
Wand, 2016) as the discriminator network. The generator (G) learns a 
mapping from observed image x and random noise vector z to y; G(x,z) 
→ y, and the discriminator (D) has the task of learning to classify an 
image as a real image from the training image (close to 1) or a fake 
image produced by the generator (close to 0): D(x) → [0.1]. In this 
context, the generator network takes the input source image and aims to 
transform it into a normalized image with consistent color characteris-
tics. The discriminator network, on the other hand, is responsible for 
distinguishing between the generated normalized images and the real 
target images. 

The training algorithm of the GAN involves an adversarial learning 
process, where the generator and discriminator networks play a 
competitive game. The generator aims to generate normalized images 
that can fool the discriminator into classifying them as real target im-
ages, while the discriminator aims to correctly distinguish between the 
real and generated images. This adversarial training is complemented by 
a pixel-wise loss which ensures that the pixel-level correspondence be-
tween the original and normalized images is preserved. Both the 
generator and the discriminator are trained with backpropagation and 
have their own loss functions. The objective function of a traditional 
GAN.is defined as follow: 

LGAN(G,D) = Ex,y[log(D(x, y) ) ] +Ex,z[log(1 − D(x,G(x, z)) ) ] (1)  

where G tries to maximize this objective function while D tries to 
maximize it, and E(•) expresses the expectation. However, traditional 
GANs present a certain number of disadvantages, such as the Mode 
Collapse problem and Vanishing Gradient (Gulrajani et al., 2017). To 
address these specific issues, we tested two different objective functions: 

Table 1 
Data sets used to develop the GAN for digital pathology. A total of 220 WSIs of 
prostate, breast and liver are used to train and test GSN-GAN (Generalized Stain 
Normalization GAN). Tiles with a dimension of 2048×2048 pixels were 
extracted from each WSI, and 2200 of them were selected for the development of 
GSN-GAN.   

Training Validation 

Tissue WSI Tiles Selected WSI Tiles Selected 

Prostate 75 10,578 700 7 987 80 
Breast 70 9482 700 7 955 60 
Liver 65 8861 600 6 836 60 
Total 200 28,921 2000 20 2778 200  
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1. LS-GAN (Least Squares GAN): this is a type of GAN that adopts the 
least squares loss function for the discriminator (Mao et al., 2017). 
Minimizing the objective function of the LS-GAN minimizes the 
Pearson divergence. The objective function can be defined as: 

min
D

VLSGAN(D) =
1
2

Ex,y
[
D(x) − b2 ]+

1
2
Ex,z
[(

D(x,G(z) ) − a)2 ]

min
G

VLSGAN(G) =
1
2
Ex,z
[(

D(x,G(x, z) ) − c)2 ] (2)  

where a and b are the labels for fake and real data, respectively, 
and c denotes the value that G aims for D to believe as fake data.  

2. WGAN-GP (Wasserstein GAN + Gradient Penalty) is a generative 
adversarial network that uses the Wasserstein loss formulation plus a 
gradient norm penalty to achieve Lipschitz continuity (Gulrajani 
et al., 2017). Instead of clipping weights like WGAN (Arjovsky et al., 
2017), this network adds a penalty term to the gradient norm of the 
critical function. The loss used is: 

Fig. 1. Examples where the SCAN algorithm (Salvi, Michielli, et al., 2020) provides optimal and suboptimal or erroneous results. As can be seen, the presence of 
artifacts makes the normalization result suboptimal while the absence of a stain produces an error in the algorithm since stain separation cannot be performed. 

Fig. 2. Overview of our novel GAN-based stain normalization algorithm. From the digitized slides, only those tiles whose normalization is optimal (based on a 
pathologist’s opinion) are selected for GAN development. Finally, the input images are provided as a condition to the Generator (G), whose output, along with a true 
sample is passed to the Discriminator (D). The original histological image is used as the source domain while the result of our heuristic stain normalization algorithm 
is employed as the target domain. 
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L = Ex̃ Pg[f (x̃)] − Ex Pr [f (x) ] + λEx̂ Px̂

[(
‖∇x̂f (x̂)‖2 − 1

)2
]

(3)  

where Px̂ represents the distribution obtained by sampling in a uniform 
way along a straight line between the generated and real distributions Pg 
and Pr. λ is the penalty coefficient used to weight the gradient penalty 
term. As suggested by a previous work (Gulrajani et al., 2017), we set λ 
= 10 for all the experiments. 

The GSN-GAN requires pairs of images in the training phase that 
consist of an original image and the corresponding transformed image, 
which in this case is obtained using the SCAN stain normalization al-
gorithm. In this way, the GSN-GAN formulates the stain normalization 
task as an image-to-image translation problem while maintaining a 
pixel-to-pixel matching. The GSN-GAN is trained iteratively, with each 
iteration involving a forward pass through the networks, computation of 
the loss functions, and backpropagation of gradients to update the 
network parameters. The training process continues until convergence, 
where the generator network learns to produce high-quality normalized 
images that are visually similar to the target images. Our model is 
trained for 150 epochs using instance normalization. The learning rate is 
initially set at 0.0001 and reduced by a factor of 0.5 each time 50 epochs 
pass. To optimize the overall GSN-GAN architecture, we tested different 
configurations, varying the number of trainable parameters of the 
generator and discriminator networks, the number of filters, and the loss 
function. The experimental results are reported in Section 3.2. 

2.2. GCC-GAN: Generalized color constancy GAN for dermatology 

2.2.1. Dataset 
The dermatological images come from a set of open access datasets 

(Rotemberg et al., 2021) provided by isic-archive.com. To create a tool 
with better generalization ability, we selected dermoscopic images with 
different characteristics in terms of illumination, resolution, field of 
view (FOV) and aspect ratio. Seven different skin lesions were consid-
ered: Actinic keratoses, Basal cell carcinoma, Dermatofibroma, 
Keratosis-like lesions, Melanoma, Melanocytic nevi, and Vascular 
lesions. 

Starting from an initial heterogenous pool of 30,708 images, an 
experienced dermatologist selected 1400 images, 200 images for each 
lesion type, on which a semi-automatic color constancy algorithm ach-
ieved the best possible color-constancy transformation (Section 2.2.2). 

The resulting dataset (1400 images) was then randomly split into a 
training subset (1050 images) and validation subset (350 images), while 
still respecting the balance between classes. The validation set was used 
for testing both the performance and the generalization ability of the 
proposed GAN. The breakup of the dataset between the different skin 
lesions is shown in Table 2. 

2.2.2. Heuristic algorithm for color constancy 
We define the reference images as a set of normalized images char-

acterized by neutral illuminant and perfect exposure balance. Currently, 
there is no gold standard in literature with which to compare different 

color constancy methods in dermatology (Barata, Celebi, et al., 2014). 
General Gray World (Barata, Celebi, et al., 2014), a widely used state- 

of-the-art algorithm, is applied semi-automatically to obtain the refer-
ence image for color constancy. This heuristic method uses image sta-
tistics to estimate the illuminant color and then transform the image: 

(∫ (
Iσ

i (x, y)
)pdx

∫
dxdy

)

(

1
p

)

= kei (4)  

where Ii is the ith layer of the input image I(x, y) smoothed with a 
Gaussian low-pass filter with standard deviation σ; ei is the illuminant of 
ith layer of the image; k is a normalization constant; and p is the degree of 
the Minkowski norm (Wang et al., 2004). The parameter p determines 
the sensitivity of the norm to outliers, which are pixel values that deviate 
significantly from their neighboring pixels. When p is set to 1, the al-
gorithm essentially computes a color average, making it robust against 
minor color variations. However, as the value of p increases, the algo-
rithm becomes more sensitive to the brightest colors present in the 
image. While this can be beneficial for images dominated by specific 
colors, it may result in excessive corrections for images with well- 
balanced color distributions. Hence, the final outcome can range from 
a balanced color correction for lower p values to potentially exaggerated 
corrections for higher p values. 

The σ parameter in the Gaussian filter determines the scale of local 
variations considered by the algorithm. A smaller σ value retains more 
fine details of the image, rendering the algorithm sensitive to small-scale 
color variations. This can be useful for images with fine color details but 
may lead to overcorrection in the presence of noise. Conversely, a larger 
σ value smooths out these details, making the algorithm more robust 
against noise but potentially causing color nuances to be overlooked. 
Therefore, the final image can vary from a detailed but potentially noisy 
correction for smaller σ values to a smoother but potentially less accu-
rate correction for larger σ values. Performing manual tuning of these 
parameters on each dermatological image is crucial because it allows for 
customized adjustments that cater to the specific characteristics and 
nuances present in individual images, ultimately leading to more ac-
curate and visually appealing results. 

Finally, the heuristic algorithm adjusts the exposure (i.e., global in-
tensity) of the transformed image through gamma correction: 

IOUT = cIγ
IN (5)  

where IIN is the optimized image obtained in the previous step, c is a 
constant set to 1, and γ is the parameter that regulates the correction. 
When γ value is greater than 1, the resulting image will appear darker, 
enhancing the visibility of darker regions but potentially obscuring de-
tails in shadows. Conversely, when γ value is less than 1, the image will 
appear brighter, which can bring out details in darker areas but may 
result in washed-out highlights. As a result, the final appearance of the 
image can vary from a darker and more contrasted image for higher γ 
values to a brighter and less contrasted image for lower γ values. 
Adjusting γ parameter is particularly crucial in dermatological images, 
where the visibility of subtle features can significantly impact the ac-
curacy of diagnoses. 

This heuristic algorithm is applied to each image via a custom 
graphical user interface (GUI). Using this GUI (Fig. S1), an experienced 
dermatologist can manually adjust the σ, p, and γ parameters to achieve 
the optimal transformation for each single image. A detailed description 
of the GUI is provided in the Supplementary Material. 

This semi-automatic normalization approach provides the flexibility 
of manual parameter adjustment, allowing to bypass the limitations of 
fully automatic SOA color constancy algorithms. Such methods rely on 
statistical assumptions that may not always apply to a large and het-
erogeneous set of images with diverse lighting, shadows, reflections, and 
other variances. By empowering the dermatologist to fine-tune the 

Table 2 
Dataset used to develop the GCC-GAN. AKIEC: Actinic keratoses, BCC: basal cell 
carcinoma, DF: dermatofibroma, KL: keratosis-like lesions (benign and sebor-
rheic), MEL: melanoma, NV: melanocytic nevi, VASC: vascular lesions.  

Lesion Images Selected for train Selected for validation 

AKIEC 1066 150 50 
BCC 3356 150 50 
DF 246 150 50 
KL 2333 150 50 
MEL 5375 150 50 
NV 18,079 150 50 
VASC 253 150 50 
Total 30,708 1050 350  
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parameters, the algorithm can better account for the unique character-
istics of each image and create optimal reference images. The reference 
images were then paired with their original unprocessed version, 
generating the data collection used to train and validate the GCC-GAN 
model. This paired dataset allows the GAN to learn the type of color 
adjustments needed to normalize an image’s color profile while still 
preserving its identifying visual characteristics. Manually fine-tuning 
the parameters for each image helps ensure that the paired images 
provide optimal examples for the GAN to learn from. 

2.2.3. GCC-GAN for optimal color constancy 
To develop an effective method for normalizing images to match a 

reference set, a Pix2Pix GAN was trained to transform dermoscopy im-
ages captured under different illumination presets (domain A) into 
standardized images with a standard neutral illumination profile 
(domain B). During the training process, the model takes as input the 
original image and its corresponding normalized counterpart generated 
by the algorithm described in the previous section. The goal of GCC-GAN 
is to serve as a generalized, fast and fully automatic color constancy 
solution with pixel-level matching between original and normalized 
images. By learning from paired examples of original and normalized 
images, the GAN learns to replicate the color adjustments needed to 
standardize new images. Through this pixel-to-pixel training approach, 
GCC-GAN aims to normalize images in a way that preserves identifying 
visual characteristics while achieving a standardized color profile 
matching the reference set. 

To handle different aspect ratios and resolutions, all images under-
went an automatic preprocessing stage: 

Aspect ratio check: if the aspect ratio is not equal to 1, zero padding is 
applied to obtain an aspect ratio equal to 1. 

Evaluation of dark pixels: some dermoscopic images are character-
ized by a black circular mask of varying size due to the acquisition 
instrument. If the area covered by dark pixels is less than 20 % of the 
image, a zero padding of 50 pixels is applied to the outer edge of the 
image. This step was introduced after observing artifacts produced 
by an intermediate GCC-GAN model on images that had no dark 
pixels on the outer edges. 
Resampling to 1024×1024 to fit the input size of our GCC-GAN. 

The training algorithm for color constancy in dermatology follows a 
similar adversarial learning process as described for the digital pathol-
ogy. The generator network aims to generate normalized images that 
exhibit color constancy, while the discriminator network distinguishes 
between the real target images and the generated normalized images. 
The training is guided by adversarial loss and pixel-wise loss, ensuring 
that the generator produces normalized images that preserve the 
essential color information while reducing the variability caused by 
different skin tones and illumination conditions. Through the training 
process, the GCC-GAN optimizes the generator and discriminator net-
works to find a balance between generating visually appealing 
normalized images and fooling the discriminator network. This opti-
mization problem is iteratively solved using the Adam optimization al-
gorithm, which updates the network parameters based on the gradients 
computed during the backpropagation process. To optimize the overall 
architecture of our model, we tested different configurations by varying 
the depth of the generator and discriminator networks, the number of 
filters, and the objective function. The experimental results are reported 
in Section 3.3. The overall procedure followed for processing derma-
tology images (data preparation, pre-processing, and GAN training) is 
illustrated in Fig. 3. 

Fig. 3. Overview of our novel GAN-based color constancy algorithm. From an initial heterogenous pool of 30,708 images, only those images on which the General 
Gray World (Barata, Celebi, et al., 2014) provides optimal results based on a dermatologist’s opinion are selected for GAN development. The input images are 
provided as a condition to the Generator (G), whose output, along with a true sample is passed to the Discriminator (D). The original dermatological image is used as 
the source domain while the result of the heuristic color constancy algorithm (considered as the reference image) is employed as the target domain. 
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2.3. Performance metrics 

Various tests were conducted changing the model hyperparameters 
to determine the optimal GAN architecture for both the digital pathol-
ogy and dermatology applications. In the research community, there is 
not a widespread agreement on how to evaluate paired image-to-image 
translation frameworks. Specific validation metrics were hence 
computed for each of the two applications:  

- Digital pathology: the normalization process should not introduce 
artifacts and must retain the information present in the original 
image. To assess this, three metrics commonly employed in stain 
normalization were computed between the original image and the 
normalized image: SSIM (Structural Similarity Index), FSIM (Feature 
similarity), and PSNR (Peak signal-to-noise ratio) (Salehi & Cha-
lechale, 2020);  

- Dermatology: preserving data integrity in dermoscopic images during 
color transformation is imperative. Hence, three metrics were 
computed to compare the GAN-normalized image with the heuristic 
reference image: PCC (Pearson correlation coefficient), PSNR, and 
RMSE (Root mean square error). 

For both applications under consideration, we compared our results 
with the SOA algorithms in terms of quantitative metrics and segmen-
tations tasks. A primary challenge with artificial intelligence methods is 
their adaptability to covariant distribution shifts, or their capability to 
yield satisfactory results on samples beyond the training domain. To 
address this, we applied the trained models to entirely external datasets, 
thereby evaluating the generalization capability of our models. The 
GAN-based results on completely external datasets were then also 
compared with other SOA methods. 

3. Results 

3.1. Optimization of the GAN architecture 

GANs have an extraordinary potential in many research fields. 
However, a significant drawback in the literature is the lack of hyper-
parameter tuning in most GAN studies to identify the optimal configu-
ration. Here, we address this gap by presenting a comprehensive 
comparison of the GAN’s performance using (a) two different losses, 
namely LSGAN and WGAN-GP, and (b) different depths of the generator 
and discriminator (i.e., 100 k, 500 k, 750 k, 1 M, 6 M, 12 M trainable 
parameters). This analysis encompasses a total of 12 different configu-
rations. LSGAN and WGAN-GP were chosen for this comparison as they 
represent the most used target functions for generative models in med-
ical imaging. For each configuration, the GAN was trained and quanti-
tative metrics were evaluated on the train and validation sets (Table 3). 

In the case of Pix2Pix GANs, the model aims to replicate the optimal 
results obtained with the heuristic algorithm. For this reason, the root 
mean square error (RMSE) between the generated image (fake B) and 
the image derived from the heuristic algorithm (real B) was computed. 

The optimal configuration was chosen as the one that provided the 
lowest RMSE values on the training and validation sets. Hence, the 
LRGAN6M architecture (6 M parameters for both the generator and 
discriminator with LSGAN as objective function) was chosen for digital 
pathology, while the LSGAN12M architecture (12 M parameters for both 
the generator and discriminator with LSGAN as objective function) 
yielded the lowest RMSE values for the dermatology application. 
Notably, across both applications, the LSGAN loss function consistently 
resulted in lower RMSE values compared to the WGAN-GP loss function. 
Additionally, configurations with an equal number of trainable param-
eters for the generator and discriminator tended to deliver better per-
formance results than other configurations. The detailed procedure for 
selecting the best epoch for the optimal configuration is reported in the 
Supplementary Material (Figs. S2-S3). The training is performed on a 
NVIDIA RTX 3090 24 GB using Pytorch framework. We have made the 
implementation of the GSN-GAN and GCC-GAN publicly available at 
https://doi.org/10.17632/32bvfw6xhj.2. 

3.2. Digital pathology 

In this section, we report the results obtained using the GSN-GAN for 
digital pathology applications. Quantitative results are shown and 
compared with SOA methods. Moreover, we tested the robustness and 
generalizability of the trained model on two completely external data-
sets with images acquired with different scanners and magnification. 
Finally, the stain normalization achieved with the GSN-GAN and SOA 
methods is applied as a preprocessing step within a segmentation 
framework, and the results are compared. 

3.2.1. Quantitative metrics 
Here we compared the quantitative metrics obtained on the training 

and validation set using the proposed GSN-GAN and other SOA methods. 
We report both the average values and the percentiles (10th) to high-
light the presence or absence of outliers of the various methods. 

To evaluate the quality of normalization, a quantitative comparison 
is carried out by evaluating the SSIM, the PSNR and the FSIM. These 
metrics play a vital role in stain normalization as they enable objective 
measurements of the quality and effectiveness of the normalization 
methods. To provide a comprehensive comparison, we included two 
well-known heuristic approaches from the literature, Reinhard (Rein-
hard et al., 2001) and SPCN (Kumar et al., 2017), as comparative 
methods. Additionally, we compared the GSN-GAN with the SCAN al-
gorithm it was trained on (Salvi, Michielli, et al., 2020), as well as a 
cycle-GAN method from the state-of-the-art (Zhou et al., 2019a). All 

Table 3 
RMSE values between synthetic (fake B) and target (real B) images as a function of the number of trainable parameters and the objective function of the GAN. NetG: 
Generator network, NetD: Discriminator network, Lsgan: Least Squares GAN, Wgan-gp: Wasserstein GAN gradient penalty.  

Name GAN hyperparameters Digital Pathology Dermatology 

# of params of netD # of params of netG GAN objective function Train Val Train Val 

LSGAN100k ~ 100 k ~ 1 M lsgan  6.19  6.76  3.21 8.03 
LSGAN500K ~ 500 k ~ 6 M lsgan  5.63  6.23  2.85 7.74 
LSGAN750k ~ 750 k ~ 12 M lsgan  5.12  5.94  2.67 7,38 
LSGAN1M ~ 1 M ~ 1 M lsgan  4.94  5.44  3.01 7.80 
LSGAN6M ~ 6 M ~ 6 M lsgan  4.29  4.88  2.72 7.52 
LSGAN12M ~ 12 M ~ 12 M lsgan  5.19  5.93  2.53 6.95 
WGAN100k ~ 100 k ~ 1 M wgan-gp  16.16  15.66  4.05 8.12 
WGAN500k ~ 500 k ~ 6 M wgan-gp  9.54  8.48  3.80 7.51 
WGAN750k ~ 750 k ~ 12 M wgan-gp  8.85  7.91  13.01 12.42 
WGAN1M ~ 1 M ~ 1 M wgan-gp  33.43  33.58  10.82 9.57 
WGAN6M ~ 6 M ~ 6 M wgan-gp  17.63  18.17  10.03 10.81 
WGAN12M ~ 12 M ~ 12 M wgan-gp  13.46  13.61  10.81 10.87  
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methods were evaluated using the default parameters specified in the 
respective source articles. The comparison between our model and the 
state-of-the-art methods Click or tap here to enter text.Click or tap here 
to enter text.Click or tap here to enter text. Click or tap here to enter text. 
is reported in Table 4. The quantitative comparison shows that GSN- 
GAN is the best performing method for stain normalization. To 
demonstrate the effectiveness of our generative model in stain normal-
ization, a pairwise t-test was conducted between the performance of 
GSN-GAN and the compared techniques. All statistical tests were carried 
out with a significance level (p-value) of 0.05. The results of the paired t- 
test indicated a significant difference in both train and validation sets 
(Table 4). 

The proposed GSN-GAN obtains the best performance for all three 
metrics and has the lowest computational time, being up to 20 times 
faster than the SOA methods. When compared to the algorithm that was 
used for training the GAN (i.e., SCAN), the proposed GSN-GAN obtains 
similar performance both in the training and in the validation. This is to 
be expected as the GSN-GAN aims to mimic the behavior of the heuristic 
algorithm. Still, the proposed method is much faster when compared to 
SCAN (inference time: 0.09 s vs 1.60 s) and is also able to overcome 
some limitations of the heuristic algorithm. The visual performances of 
the compared methods are reported in Fig. 4, where the results that 
contain typical artifacts are surrounded by an orange box. GSN-GAN 
reported less image color artifacts than existing approaches due to its 
robustness (pixel-to-pixel matching between original and normalized 
image) and appropriateness (trained only on optimal normalized 
images). 

As we can see from Fig. 4, when the source image is high quality, all 
of the methods perform reasonably well (source 1); on the other hand, 
when the image presents large white areas or there is a small amount of 
stain present in the image, the SPCN (Kumar et al., 2017) and Reinhard 
(Reinhard et al., 2001) methods are suboptimal and the Cycle-GAN 
method (Zhou et al., 2019a) produces artefacts (source 2–3). When 
specific artefacts are present in the source image, such as blurred re-
gions, the proposed GSN-GAN is the only method able to produce a 
coherent and robust stain normalization. As can be seen from Fig. 4, 
GSN-GAN is able to retain the contextual information of the source 
image while applying the color distribution of the target image. 

Finally, the overall distribution of the dataset (pre- vs. post- 

normalization) was examined in the LAB color space to assess the ef-
fect of the stain normalization process. In the Supplementary Materials, 
Fig. S4 shows the effectiveness of the stain normalization for both 
training and validation sets. 

3.2.2. Testing GSN-GAN on external datasets 
To evaluate the generalization ability of the trained GAN, two open- 

source external datasets were chosen that contain histopathological 
images of organs that the GAN never saw during the training or vali-
dation process. The first dataset, named ACDC-lungHP (Z. Li et al., 
2020), consists of 150 WSIs of lung tissue in which histological slides 
were stained with H&E and scanned by a digital slide scanner (3DHIS-
TECH Pannoramic 250) at objective magnifications of 20x. One thou-
sand 1024 × 1024 tiles were randomly extracted to test the GSN-GAN. 
The second dataset is part of the MoNuSeg Challenge (Kumar et al., 
2019) which contains 30H&E-stained tissue images captured at 40x 
magnification from the TCGA archive. The images in this challenge 
come from 7 different organs: breast, liver, kidney, prostate, bladder, 
colon, and stomach. In Fig. 5 the visual performance of the GSN-GAN 
and other SOA methods is shown. 

On the ACDC-lungHP dataset, the GSN-GAN performs a robust and 
consistent normalization relative to the source image content. In 
particular, our method does not produce artifacts on the dark portions of 
the image (Fig. 5A – first row) and correctly preserves the appearance of 
red blood cells (Fig. 5A – second row). Our GAN also shows excellent 
performance on the MoNuSeg dataset, preserving the relative contrast 
present within the original image (Fig. 5B – first row and second rows). 
On these external datasets, GSN-GAN produces high-quality images with 
respect to SOA methods. Finally, it can be noted that GSN-GAN provides 
robust results even on images containing tissue (lung, stomach, etc.) and 
magnification levels (40x) not used during the training process. This 
result demonstrates the exceptional generalization capability of GSN- 
GAN. 

Fig. 6 compares GSN-GAN to SOA methods for all four datasets 
analyzed in this study (i.e., training set, validation set, ACDC-lungHP 
and MoNuSeg). Our technique achieves the highest SSIM for all sub-
sets. Moreover, unlike other SOA techniques, our method shows stable 
performance even on external datasets without any considerable drop in 
performance. 

3.2.3. Impact of stain normalization on cell nuclei segmentation 
Given the diverse appearances of nuclei across multiple organs and 

patients, as well as the variation in staining protocols adopted by 
different hospitals, stain normalization becomes crucial in standardizing 
data and reducing staining variability. In fact, numerous studies in the 
literature have demonstrated the beneficial impact of using stain 
normalization as a preprocessing step to enhance the performance of 
deep learning models (Zhou et al., 2019a; Swiderska-Chadaj et al., 
2020). Consistent with previous research, we addressed the impact of 
stain normalization on the nuclei segmentation task (Pontalba et al., 
2019) using the publicly available MoNuSeg dataset (Kumar et al., 
2019). The quantitative results obtained using a standard U-Net archi-
tecture, where images normalized with different stain normalization 
methods were used as input, are reported in Table 5. To assess accuracy 
in boundary delineation, we employed popular metrics for instance 
segmentation such as the Hausdorff distance 95th percentile (HD95). 
Additionally, we utilized the Aggregate Jaccard Index (AJI) to quantify 
both pixel-level and object-level performance (Kumar et al., 2019). The 
proposed GSN-GAN demonstrated excellent overall segmentation re-
sults, achieving the highest values for recall, dice coefficient, HD95 and 
AJI parameters. Considering the dice parameter, the proposed GSN-GAN 
outperforms the compared methods up to 3.3 % (0.805 GSN-GAN vs. 
0.772 Heuristic algorithm). A visual comparison is also provided in 
Fig. 7, demonstrating that the high-quality image generated by GSN- 
GAN enable the segmentation network to better delineate the contours 
of individual cells. 

Table 4 
Quantitative metrics used to compare the GSN-GAN stain normalization with 
current state-of-the-art methods. The table shows the average values of the 
metrics and in brackets their 10th percentile (higher values are better).  

Method Subset Comp. 
Time (s) 

SSIM PSNR FSIM 

Reinhard et al. ( 
Reinhard et al., 
2001) 

Train  1.21 88.9 
(69.7) 

20.7 
(14.8) 

93.4 
(81.8) 

Val  1.14 88.4 
(58.8) 

20.7 
(15.1) 

92.8 
(77.8) 

SPCN (Kumar et al., 
2017) 

Train  1.80 80.7 
(53.7) 

22.7 
(15.2) 

89.8 
(72.1) 

Val  1.82 81.5 
(54.4) 

22.8 
(14.8) 

89.9 
(70.6) 

Cycle-consistent GAN 
(Zhou et al., 2019a) 

Train  0.17 92.1 
(85.7) 

25.8 
(19.3) 

93.9 
(88.3) 

Val  0.15 93.7 
(89.7) 

26.3 
(19.2) 

95.1 
(91.4) 

SCAN algorithm ( 
Salvi, Michielli, 
et al., 2020) 

Train  1.63 95.4 
(91.1) 

25.8 
(21.7) 

98.3 
(96.1) 

Val  1.59 97.1 
(94.0) 

25.6 
(21.3) 

98.8 
(97.3) 

GSN-GAN (proposed) Train  0.09 96.6 
(95.10)* 

26.2 
(21.9)* 

98.6 
(96.8)* 

Val  0.08 96.8 
(95.20)* 

25.6 
(21.7) 

98.9 
(97.4)* 

(*) Asterisk denotes statistically significant difference (p < 0.05) compared to 
state-of-the-art methods. 
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3.3. Dermatology 

In this section, we describe the results obtained from the proposed 
GCC-GAN, specifically: (i) quantitative metrics in comparison with the 
state-of-the-art, (ii) the robustness and generalizability of our method on 
two external datasets, and (iii) the impact of GCC-GAN as a pre- 
processing step in a segmentation network. 

3.3.1. Quantitative metrics 
Here we compared the quantitative metrics obtained on the training 

and validation set using the proposed GCC-GAN and other SOA methods. 
We report both the average values and the percentiles (10th) to high-
light the presence or absence of outliers of the various methods. 

To evaluate the quality of normalization, a quantitative comparison 
is carried out by evaluating the PCC, the PSNR and the RMSE between 
the normalized image and the reference image. 

These metrics are extensively employed in the domain of color 
constancy due to their ability to quantitatively measure the effectiveness 
of the normalization procedure. The comparison involves three heuristic 
algorithms in the field of dermatology (Buchsbaum, 1980; Finlayson & 
Trezzi, 2004; Land, 1977) and a generative model specifically designed 
for color constancy (Salvi et al., 2022). The quantitative comparison 
showed that our GAN is the best method for color constancy (Table 6). 
To further validate the efficacy of our generative model in color con-
stancy, we carried out a pairwise t-test between the performance of GCC- 
GAN with the compared techniques. All statistical analyses were con-
ducted at a significance level (p-value) of 0.05. The outcomes of the 
paired t-test revealed a noteworthy distinction in both the training and 
validation sets (Table 6). 

The proposed GCC-GAN achieves the best performance for PSNR and 
RMSE, and ranks second in PCC, with a gap of only 0.1 respect to MRGB. 
Comparing the proposed method with the others in terms of RMSE, a 

wide gap can be observed, showing how our GCC-GAN achieves a color- 
constancy transformation that is very close to the reference image while 
maintaining reliability and robustness, as evinced by the percentile 
values. 

The visual performance of the compared methods is illustrated in 
Fig. 8, which clearly demonstrates how GCC-GAN achieves results that 
closely resemble the reference image. The use of a training pool of 
heterogeneous images and a custom semi-automated algorithm allows 
to overcome the limitations commonly encountered with statistical al-
gorithms (Buchsbaum, 1980). As can be seen from Fig. 8, GCC-GAN is 
able to harmonize the appearances of healthy skin tissues, while pre-
serving the colors and characteristics of the lesion. Moreover, our 
method demonstrates superior control over image contrast, as depicted 
in a more refined manner compared to the other methods, and effec-
tively adjusts image exposure (Fig. 8 – first and third row). 

To further demonstrate the effectiveness of our approach, a com-
parison was conducted in the CIELAB color-space, both before and after 
applying GCC-GAN for color constancy. In the Supplementary Material, 
Fig. S5 compares our dataset before and after applying the GCC-GAN for 
color constancy. 

3.3.2. Testing GCC-GAN on external datasets 
To evaluate its generalization ability, the GCC-GAN is also applied to 

two external datasets with different characteristics, in terms of resolu-
tion and illuminant, when compared to the images used for the training 
and validation phase. The two test datasets are:  

i) PH2(Mendonça et al., 2013), an external dermoscopic database, 
including 200 images acquired using a 20x magnification, with a 
resolution of 768×560 pixels; 

Fig. 4. Visual performance between the published papers (SPCN – Kumar et al., 2017; Cycle-consistent GAN - Zhou et al., 2019a) for stain normalization and the 
proposed method. Sub-images from the validation set are shown in columns while color normalization results are illustrated in rows. First row represents the 
normalized image for source image 1. The second and third row represents normalized image for source image 2 and source image 3, respectively. Results that have 
apparent artifacts are framed with orange boxes. 
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ii) NovaraDermo (Veronese et al., 2021), a proprietary dataset, 
including 59 images acquired using a 10x magnification, with a 
resolution of 1259 × 1259 pixels. 

The generalization ability is also evaluated by visually comparing the 
results of GCC-GAN with the main methods used in the SOA, as shown in 
Fig. 9(a)-(b). Our method turns out to be robust and stable even on 

Fig. 5. Visual performance between the published papers for stain normalization and the proposed method on external datasets. A) Comparison between the Cycle- 
consistent GAN, the GSN-GAN, and the heuristic algorithm used to train our GAN (SCAN) on an external dataset (ACDC-lungHP). B) Visual comparison between our 
GAN and SOA methods on a second external dataset (MoNuSeg). It can be noted how the GSN-GAN provides robust results also on images containing tissue and 
acquired at magnification levels that were not used during the training process. 

Fig. 6. Quantitative comparison between the GSN-GAN and the state-of-the-art methods during stain normalization. The structural similarity index SSIM is 
computed for all four datasets used in this work (training set, validation set, ACDC-lungHP and MoNuSeg). 
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images characterized by different magnification and acquired under 
very different conditions than the training dataset. Fig. 9(a)-(b) shows 
that, even on external datasets, GCC-GAN manages to handle the color 
and exposure components without creating artifacts, resulting in high- 
contrast images with a more balanced illuminant. 

3.3.3. Impact of color constancy on skin lesion segmentation 
Recent studies have demonstrated that color normalization is a 

useful pre-processing step to improve the performance of CAD systems 
for skin lesion segmentation (Barata, Celebi, et al., 2014; Chabala & 
Jouny, 2020). To assess the impact of the color constancy provided by 
GCC-GAN within a deep learning framework, we employed a U-Net ar-
chitecture and used the open-source HAM1000 dataset (Tschandl et al., 
2018) for this segmentation task. Table 7 reports the results obtained 
using a standard U-Net employed to segment skin lesions when 

Table 5 
Segmentation performance of U-Net during cell nuclei segmentation as a func-
tion of the applied pre-processing (MoNuSeg challenge – test set).  

Normalization Method Precision Recall Dice HD95 
(pixels) 

AJI 

No normalization  0.869  0.731  0.786  6.8  0.542 
Reinhard et al. (Reinhard 

et al., 2001)  
0.868  0.736  0.791  6.5  0.556 

SPCN (Kumar et al., 2017)  0.883  0.712  0.783  6.6  0.553 
Heuristic SCANAlgorithm  

(Salvi, Michielli, et al., 
2020)  

0.861  0.701  0.772  6.9  0.528 

Cycle-consistent GAN( 
Zhou et al., 2019b)  

0.841  0.770  0.796  7.4  0.532 

GSN-GAN (proposed)  0.853  0.773  0.805  6.0  0.591  

Fig. 7. Visual performance of the segmentation network trained with different stain normalization methods. The first row illustrates the manual annotation for four 
different sub-images. The compared methods are shown from the second row onwards. Orange arrows indicate segmentation errors. 
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providing as input the images obtained with the various color constancy 
algorithms. The proposed GCC-GAN scores best in three of the four 
metrics, outperforming the other methods in terms of Hausdorff Dis-
tance, recall and dice score. Considering the dice parameter, the pro-
posed GCC-GAN outperforms the compared methods up to 2.9 % (0.941 
GCC-GAN vs. 0.912 Gray World) and achieves a 10.5 % increase when 
compared to the segmentation obtained on images with no color 
normalization applied (Fig. 10). As can be seen from the same figure, the 
high-quality image produced by GCC-GAN allows the segmentation 

network to better delineate the contour of the skin lesion. 

4. Discussion 

Color normalization plays a crucial role in reducing unwanted vari-
ability in different clinical scenarios, including the analysis of derma-
tological and histopathological images. Numerous studies have 
demonstrated the significant utility of color normalization in improving 
image quality for both medical experts and artificial intelligence 
methods (Barata, Celebi, et al., 2014; Salvi, Acharya, et al., 2020). 
Currently, deep learning techniques, particularly GANs, are considered 
the SOA methods for color normalization tasks. However, traditional 
GAN-based approaches have several limitations:  

- Unpaired data: in dermatology and digital pathology, it is often 
impossible to obtain images that contain the exact same portion of 
tissue in both the source domain (original image) and the target 
domain (normalized image). Hence, models trained on unpaired data 
suffer from a loss of pixel-to-pixel correspondence, leading to a 
degradation of structural information in the source image and the 
generation of suboptimal images (Fig. 4);  

- Lack of architecture optimization: GAN architectures are rarely 
optimized in terms of objective function, generator/discriminator 
architecture, and number of trainable parameters; 

- Limited generalization capabilities: when applied to external data-
sets, GAN-based models often experience a drop in performance 
(Fig. 5). Moreover, if the distribution of the test set significantly 
differs from that of the training set, suboptimal or incorrect results 
are commonly obtained. 

In this paper, we propose a novel paradigm for color normalization 
that addresses the limitations of current GAN-based approaches. Our 
method involves color style translation and a pixel-by-pixel technique, 
which are designed to overcome the challenges mentioned above. 
Notably, our model is trained on paired data and exhibits highly 
generalizable capabilities. The key idea is to employ as the target 

Table 6 
Quantitative metrics used to compare the GCC-GAN normalization with current 
state-of-the-art methods. GW: Gray World, SoG: Shades of Gray, MRGB: Max- 
RGB. The table shows the average values of the metrics and in brackets their 
percentile (10th percentile for PCC and PSNR, 90th percentile for RMSE).  

Method Subset Comp. 
Time (s) 

PCC PSNR RMSE 

GW (Buchsbaum, 
1980) 

Train  0.09 99.5 
(99.1) 

27.5 
(20.5) 

13.8 
(24.2) 

Val  0.08 99.8 
(99.7) 

30.0 
(24.0) 

10.2 
(16.9) 

SoG (Finlayson & 
Trezzi, 2004) 

Train  0.04 99.6 
(99.1) 

28.5 
(20.4) 

11.9 
(23.1) 

Val  0.05 99.7 
(99.6) 

31.8 
(24.3) 

8.1 
(14.2) 

MRGB (Land, 1977) Train  0.02 99.5 
(99.1) 

26.3 
(19.9) 

15.5 
(25.9) 

Val  0.02 99.9 
(99.8) 

29.2 
(22.8) 

11.2 
(18.2) 

DermoCC-GAN (Salvi 
et al., 2022) 

Train  0.08 99.2 
(98.2) 

17.6 
(13.6) 

36.7 
(53.2) 

Val  0.08 99.2 
(98.1) 

17.8 
(13.5) 

35.8 
(53.8) 

GCC-GAN (proposed) Train  0.07 99.8 
(99.8) 

38.6 
(35.0)* 

2.5 
(4.3)* 

Val  0.07 99.8 
(99.8) 

32.1 
(24.6)* 

6.9 
(10.4)* 

(*) Asterisk denotes statistically significant difference (p < 0.05) compared to 
state-of-the-art methods. 

Fig. 8. Visual performance between the widely used color constancy in the literature, DermoCC-GAN, reference image and the proposed method. Three derma-
tological images of the validation set are used as an example. The original images are shown in the first colomn while compared methods are presented from the 
second colomn. Reference image is obtained with the semi-automatic color constancy algorithm described in Section 2.2. 
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domain an image that has been normalized with a heuristic algorithm. In 
this way, a paired pixel-to-pixel correspondence is maintained between 
the source domain (original image) and target domain (normalized 
image). To ensure robustness and generalizability, our dataset includes 
images with various artifacts, such as unfocused areas, allowing the 
model to be trained on challenging images. 

The proposed GSN-GAN outperforms all SOA methods both quali-
tatively and quantitatively for different tissues and magnifications. We 
demonstrate the effectiveness of our stain normalization algorithm and 
show quantitatively improved nuclei segmentation performance on an 
evaluation dataset (Table 5). Importantly, the GSN-GAN avoids intro-
ducing artifacts in the normalized image and exhibits high generaliz-
ability, producing optimal results even on images containing tissue not 

present in the training set (e.g., lung histopathological tissue) or ac-
quired at different magnification levels (e.g., 40x). 

The novel GCC-GAN is specifically designed for color constancy in 
dermatological images. Our quantitative evaluation demonstrates that 
our GAN can effectively generalize on unseen data collected from other 
patients and centers (Fig. 9(a)-(b)). The color standardization provided 
by GCC-GAN is independent of the starting illumination preset, allowing 
it to distinguish between the informative content of the skin lesion, 
which needs to be preserved, and the illumination component, which 
needs to be normalized. 

The optimization of parameters and architecture in the proposed 
GANs significantly impacts performance outcomes. In fact, by simply 
changing the architecture compared to the baseline, performance results 
can be improved by up to 60 % (Table 3). It is surprising to note that the 
aspect of GAN architecture and parameter optimization is often over-
looked in many studies, highlighting the need for future research to 
focus on this area when utilizing GANs. The pixel-to-pixel matching 
between source and target domains enables GANs to preserve the con-
tent of the source image, serving as an enabling technology in our 
approach. 

While the presented paradigm holds great promise, it does have some 
limitations. Firstly, the fixed input size of the GAN can be a drawback: 
smaller images need to be resampled, and larger images must be divided 
into patches or undersampled. However, it is important to underline that 
this limitation is inherent to all GAN-based approaches. The GSN-GAN, 
trained on images with a 20x magnification level and tested on 40x 
images, yields satisfactory results. However, it may produce suboptimal 

Fig. 9. Visual performance between the published papers for color constancy and the proposed method on external datasets. (a) Comparison between the gray-world 
algorithm, DermoCC-GAN, and GCC-GAN on an external dataset (PH2). (b) Visual comparison between our GAN and SOA methods on an external dataset (Novara). It 
can be noted how the GCC-GAN provides robust results also on images characterized by different magnification and acquired under very different conditions than the 
training dataset. 

Table 7 
Segmentation performance of U-Net during skin lesion segmentation as a func-
tion of the applied pre-processing (HAM10000 – test set).  

Normalization Method Precision Recall Dice HD95 
(pixels) 

No normalization  0.808  0.927  0.836  98.1 
GW (Buchsbaum, 1980)  0.933  0.911  0.912  38.8 
SoG (Finlayson & Trezzi, 2004)  0.951  0.903  0.918  34.6 
MRGB (Land, 1977)  0.966  0.915  0.933  33.2 
DermoCC-GAN (Salvi et al., 

2022)  
0.967  0.8835  0.917  31.7 

GCC-GAN (our)  0.951  0.944  0.941  25.7  
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results if tested on smaller magnification levels, such as 5x or 10x. For 
dermatological images, if the source image exceeds 1024 × 1024 pixels, 
undersampling is necessary, which poses the risk of losing important 
information due to slight resolution decrease. 

We identify two points that may be promising future avenues of 
research. First of all, custom loss functions, such as the SSIMLOSS (Zhao 
et al., 2016), could be defined to support traditional loss functions of the 
LS-GAN, providing increased control over the training phase and expe-
diting model convergence. Secondly, this approach based on a paired 
dataset (i.e., using a heuristic algorithm to train a GAN) could be 
extended to other applications, including but not limited to noise 
removal, artifact correction and contrast enhancement. Computation-
ally expensive heuristic algorithms or those requiring fine-tuning of 
numerous parameters can be learned by the GAN-based approach pre-
sented here, enabling parameter-free and real-time reproduction. 

5. Conclusion 

This study presents a novel paradigm for color normalization of 

histological and dermatological images based on generative models. Our 
approach achieves optimal results by employing a heuristic algorithm to 
train the GAN specifically for the color normalization task. Extensive 
experiments are conducted to evaluate different GAN architectures in 
terms of parameters and loss function, aiming to quantify the quality of 
the generated images. Different metrics are calculated for both digital 
pathology and dermatology to identify the most suitable GAN configu-
ration for each application. 

Our models not only deliver superior qualitative and quantitative 
results but also offer enhanced practical usability compared to existing 
methods. Experimentation on publicly available dataset demonstrates 
that the proposed framework outperforms previous color normalization 
solutions by generating color-consistent images, preserving information, 
and obtaining high training efficiency. These results highlight the po-
tential of the proposed paradigm as a crucial tool in the pipeline of 
automatic quantitative algorithms. Its implementation can effectively 
reduce color variability and enhance final segmentation performance. 

Fig. 10. Visual performance of the segmentation network trained with different color constancy methods. The first row illustrates the manual annotation for four 
different skin lesions. The compared methods are shown from the second row onwards. 
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