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Abstract—With the need for ever faster codes, a limiting 

factor that must be dealt with is the accurate yet efficient 
evaluation of interaction integrals between the more 
problematic near-field elements. Several recent works have 

together shown that all evaluations of source potential integrals 
and their derivatives for the most common bases and elements 
can be reduced to the evaluation of boundary line integrals; 

these can be evaluated by Gauss-Legendre quadrature, though 
integrand-smoothing transforms are often needed to accelerate 
their computation. In this paper, we modify the reported 

approach to eliminate cancellation errors in the line integral 
integrand, reinterpret the integral as a vertex function, and 
study the scalar potential integral form under the sinh 

transform and static subtraction acceleration methods.  

Index Terms—integral equations, moment methods, 

numerical analysis, singular integrals. 

I.  INTRODUCTION 

There is a strong need in Computational 

Electromagnetics (CEM) for accurately computing potential 

integrals and their derivatives for constant and linear source 

densities on triangular and tetrahedral domains, as well on 

other planar polygonal and polyhedral elements. In recent 

years, however, especially with the development of fast 

algorithms for moment methods, the problem has received 

renewed attention since interactions between elements in the 

near field cannot be easily aggregated, and are more difficult 

to accurately compute than for well-separated elements. In 

[1], a number of key results [2], [3] from the literature are 

gathered into a unified framework for dealing with the 

numerical evaluation of potential integrals and their 

derivatives, reducing them in each case to the evaluation of 

non-singular boundary edge integrals. The approach is 

applied to sources on triangular and tetrahedral elements for 

standard RWG and SWG bases, respectively, and the 

effectiveness of the so-called sinh [4] and double-sinh (sinh-

sinh) [5] transforms in smoothing the integrals is 

demonstrated, permitting their accurate evaluation over a 

wide range of element shapes using only Gauss-Legendre 

(GL) quadrature. In this paper, we examine several important 

extensions to the approach of [1].  

II. FORMULATION EXTENSIONS 

A. Dimensionality Reduction (DR) details 

We show that all the steps for the dimensionality 

reduction (DR) of surface or volumetric integrals to line 

integrals can be succinctly expressed as straightforward 

applications of appropriate Gauss theorems involving the 

grad, div, or curl operators in either surface or volumetric 

form. Similar approaches for static potentials have led to 

closed form results [6], but in the dynamic case, edge 

integrals remain that must be handled numerically. Several 

important caveats in deriving the appropriate forms for 

potential integrals and their derivatives for (projected) 

observation points both interior and exterior to source 

domains are identified.  

B. Evaluation of Radial integrals  

For the 3-D free space Green’s function and linear bases, 

all intermediate integrals at each reduction step require 

evaluation of a radial or polar integral; these can always be 

performed in closed form (even for more general polynomial 

bases) and expressed in terms of elementary functions. The 

final 1-D line integrals themselves can be evaluated in closed 

form only for the static case.  

C. Vertex potential interpretation of edge integrals 

The simple partition of the resulting line integrals into 

two integrals,  
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expresses it as a difference between two functions of the 

form ( , , )I u dl where ,u ,l and d are rectangular coordinates 

whose origin is at the projected observation point r0 in a 

(triangular) face or in a source triangle; u and l locate a 

vertex position relative to r0 measured perpendicular and 

parallel to the associated edge, respectively. The distance 

from a triangular face or source to the observation point 



is .d As in the static case [7], the vertex function ( , , )I u dl is 

associated with a single vertex and the (extended) edge 

containing it; vertex functions are very useful for studying 

the (mis-)behavior of potential quantities near an isolated 
edge or vertex. The vertex function for scalar potentials and 

RWG bases on planar triangles, for example, is 
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  (1) 

where 
2 2 2 2 2 2, .P u R P d= + = +l  GL quadrature may 

sometimes be applied directly to evaluate to (1) without 

acceleration, but as argued in [1], the sinh (S) [4] and sinh-

sinh (S2) [5] transforms are often effective in accelerating 

the convergence of the GL schemes used in evaluating these 

integrals.  

D. Vertex functions in sinc function format, static limits 

In [1], only the exponential term involving the upper 

limit R would be retained in the vertex function integrand 

from the bracketed expression in (1) above, since at the 

lower limit the term is constant, and the factor 2/u P can be 

integrated in closed form. But that form does not properly 

handle the (quasi-)static limit, 0,k → whereas the sinc 

function form of the second equality of (1) circumvents all 

such difficulties. As 0,k →  integral (1) approaches [6], [7] 
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  (2) 

a result suggesting a simple acceleration scheme similar to  

singularity subtraction: static subtraction (SS).  

III. NUMERICAL RESULTS  

In Fig. 1, and for a wide range of the parameter u, we plot 

the number of significant digits achieved in computing    
RWG

,IΦ  i.e. 
RWG REF REF

1010log |( ) / |I I IΦ− − , where REFI  

is a reference value. REFI is obtained using the GL scheme 

with a very high number of points and independently verified 

using an iterative subdivision method. A challenging case 

from [1], 0.01[m],d = 1.0[m],=l  and k =  10.3[m ],− is 

chosen and GL sampling schemes of 1, 3, 5, and 7 points are 

used. The results for two accelerating methods, sinh (S) 

applied alone, and sinh applied together with the static 

subtraction scheme (SSS), are shown. Very usable results are 

achieved with but a few sample points; convergence to full 

machine precision is exponential.  

 

Fig. 1. Number of significant digits of the numerically evaluated scalar 

potential vertex function using the sinh transform acceleration (S) alone, 
and both sinh and static subtraction accelerations (SSS) for 1, 3, 5 and 7 

point GL quadrature. 

IV. CONCLUSIONS 

We present a number of extensions to the Dimensionality 

Reduction (DR) framework presented in [1]. We also show 

numerical results using the sinc function representation with 

the sinh transform and static subtraction approaches to 

accelerate the integral computations. It is found that 

convergence is exponential, implying the combination yields  

high accuracy with but a few sample points. 
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