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Abstract From distributed sensing to autonomous vehicles, networks are a crucial
component of almost all our automated systems. Indeed, automation requires a
coordinated functionality among different, self-driven, autonomous units. For ex-
amples, robots that must mobilize in unison, vehicles or drones that must safely
share space with each other, and, of course, complex infrastructure networks, such
as the Internet, which requires cooperative dynamics among its millions of in-
terdependent routers. At the heart of such multi-component coordination lies a
complex network, capturing the patterns of interaction between the autonomous
nodes. This network allows the different units to exchange information, influence
each other’s functionality, and, ultimately, achieve globally synchronous behav-
ior. Here, we layout the mathematical foundations for such emergent large-scale
network cooperation. First, analyzing the structural patterns of networks in au-
tomation, then showing how these patters contribute to the system’s resilient and
coordinated functionality. With this toolbox at hand, we discuss common appli-
cations, from cyber-resilience to sensor networks and coordinated robotic motion.
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1 Overview

In its classic form, automation focuses on replacing human labor and, at times, also
cognitive skills, with autonomous units. Robots and machines, for example, take
the place of manual workers in production lines, and computers enhance our abil-
ity to analyze data and conduct elaborate calculations. Yet, modern automation
reaches beyond the autonomous units, and scales our view up to the autonomous
system. Indeed, many of our most crucial technological systems cannot be simply
reduced to their technical components, but rather their true function and value is
rooted in their ability to drive these components towards cooperative large-scale
behavior. For example, the Internet, in technical terms, is a critical infrastructure
comprising routers, cables and computers. Yet, put together, the Internet is not

a big computer or router. It is an evolving system that interacts and responds to
its human environment, shares, produces and processes information — and, in its
essence — exhibits functions the supersede that of its autonomous component.

More broadly, whether it involves drones, autonomous vehicles or sensing units,
modern automation is an emergent phenomenon, in which technological units —
nodes — cooperate to generate higher level functionality. Simple building blocks

come together to preform complex functions. Lacking central design, and without
specific control over each and every unit, these complex multi-component systems
often amaze us with their reliable and resilient functionality. Indeed, we can care-
lessly send an email, and have no doubt that the Internet’s globally distributed
routers will find an efficient path for it to reach its destination. Similarly, we turn
on electrical units and need not think about the automatic redistribution of loads
across all power grid components.

The basis for this seemingly uncoordinated cooperation, lies not at the technol-
ogy of the units themselves, but rather at their patterns of connectivity — namely
the network . Each of these systems has an underlying complex network, allowing
the components to transfer information, distribute loads and propagate signals,
thus enabling a synchronous action among distributed, self-driven, autonomous
nodes.

We therefore, now, transition our view point, from the specific technology of
the components, to the design principals of their interaction networks. What char-
acteristics of the network allow units to reach a functional consensus? What are
the bottlenecks and Achilles’ heels of the network that mark its potential vulner-
abilities. Conversely, what ensures the network’s resilience in the face of failures
and attacks? Hence, in this Chapter we seek the fundamental principles that look
beyond the components, and allow us to mathematically characterize, predict and
ultimately control the behavior of their networks.

2 Network structure and definitions

Seeking the connectivity patters that drive networks and automation, we first
begin by laying the mathematical foundations - indeed, the language, of network
science. We focus on the network characteristics that, as we show below, play a
key role in the emergent behavior of our interconnected autonomous systems.
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2.1 Notation

We gather here the notational conventions used throughout this chapter. Unless
otherwise stated, vectors and matrices have dimension n and n × n, respectively.
The sets R and R+ denote the set of real and real non-negative numbers. The sets
Z and Z+ denote the set of integer and integer non-negative numbers. The set C
denote the set of complex numbers. Given a complex number z ∈ C, we denote by
|z| its modulus, byR(z) its real part, and by I(z) its imaginary part. The imaginary
unit is denoted as ι. Given a vector x or matrix M, we denote by x> and M>

the transpose vector and matrix, respectively. We use ||x|| to denote x’s euclidean
norm. The symbol 1 denotes a vector of all 1 entries, i.e., 1 = (1, . . . , 1)>; I denotes
the identity matrix, and, more generally, diag(x) represents a matrix with vector
x on its diagonal and 0 for all its off-diagonal entries. Given a set S, we denote by
|S| its cardinality.

2.2 Networks as graphs

The most basic mathematical model of a network is given by a graph with n

nodes, denoted by positive integers, comprising the node set V = {1, . . . , n}. These
nodes are connected through a set of directed edges (or links), i.e., the edge set

E ⊆ V ×V, such that (i, j) ∈ E if and only if node i is connected to node j. An edge
that connects node i to itself, (i, i), is called self-loop. The pair of sets G = (V, E)
defines the network.

To track the spread of information between nodes in a network we map its
pathways, linking potentially distant nodes through indirect connections. A path

from i to j is a sequence of edges (i, i1), (i1, i2) . . . , (i`−1, j) ∈ E, where ` is the path
length. In case i = j the path is called cycle. A path (cycle) is said to be simple, if
no node is repeated in the sequence of edges (apart from the first and last nodes
in a cycle). The length of the shortest path/s between i and j, `ij , provides a
measure of distance between them. This, however, is not, formally a metric, as
the distance from i to j may, generally, be different than that from j to i. The
greatest common divisor of the lengths of all the cycles passing through a node i
is denoted as pi and called the period of node i, with the convention that, if no
cycles pass through i, then pi =∞. If pi = 1, we say that node i is aperiodic. Note
that, if i has a self-loop, then it necessarily is aperiodic. If there is a path from i to
j, we say that j is reachable from i. If a node i is reachable from any j ∈ V, we say
that i is a globally reachable node. If i is reachable from j and j is reachable from i,
we say that the two nodes are connected. Connectivity is an equivalence relation,
which determines a set of equivalence classes, called strongly-connected component.
If all the nodes belong to the same strongly-connected component, we say that
the network is strongly-connected. It can be shown that the period of a node and
its global reachability are class properties, that is, all the nodes belonging to the
same class have the same period and, if one node is globally reachable, then all the
nodes share this property. Hence, we will say that a strongly-connected component
is globally reachable and has period p.

For strongly connected graphs, paths provide a measure of node “centrality”
in the network. Specifically, denoting the set Sij containing all the shortest paths

between two nodes i and j, we define the betweenness centrality of a node i as the
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(a) (b) (c)

Fig. 1: Three examples of networks: (a) an undirected network, (b) a directed
network, and (c) a weighted (directed) network. The network in (a) is strongly
connected and aperiodic, that is, p = 1. Aperiodicity can be verified by observing
that through node 7 we have the cyan cycle c1 = (7, 6), (6, 7) and the green cycle
c2 = (7, 5), (5, 8), (8, 7), of length equal to 2 and 3, respectively. Node 6 has a self
loop and degree d6 = 2. In (b) there are four strongly connected components,
highlighted in different colors: {6}, {5, 7, 8}, {1, 2}, and {3, 4}; the latter (the cyan
one) is globally reachable and has period p3 = p4 = 2. Node 1 has out-degree
d+ = 2 and in-degree d− = 1. In (c), we show the network in (b) equipped with a
weight matrix. Note that weight W12 = 1, and that node 1 has weighted out-degree
w+
1 = 3 and weighted in-degree w−1 = 2 (out-going and in-going edges are denoted

in green and cyan, respectively).

(normalized) number of shortest paths traversing through i, namely

γi ∝
∑
j,k∈V

|{s ∈ Sjk : i ∈ s}|
|Sjk|

. (1)

As we shall see in Section 4.2, the betweenness centrality plays a key role in deter-
mining the vulnerability of a network to cascading failures. Betweenness centrality,
we emphasize, is just one of the many centrality measures that can be defined to
rank the importance of nodes in a network. For example, in the next section, we
present the Bonacich centrality [1].

Given a node i ∈ V, we denote by

N+
i := {j ∈ V : (i, j) ∈ E} and N−i := {j ∈ V : (j, i) ∈ E} (2)

the sets of out-neighbors and in-neighbors, respectively, namely, the set of nodes
that i links to, and the nodes linking to i, respectively. The cardinality of N+

i is
i’s out-degree d+i := |N+

i |, and that of N−i is its in-degree d−i := |N−i |.
A network is said to be undirected if for any (i, j) ∈ E, then (j, i) ∈ E. For

undirected networks, much of the notation presented above simplifies. In fact, if i
is reachable from j, then also j is necessarily reachable from i. As a consequence,
for undirected graphs, if there is a globally reachable nodes, then the network is
necessarily strongly connected. Furthermore, the in- and out-neighbors coincide,
and consequently the in-degree is equal to the out-degree. Hence, we can omit the
prefix in/out, and refer to the neighbors and the degree of a node. In an undirected
network distance is symmetric and each edge is also a cycle of length 2. See Figure 1
for some illustrative examples of networks and their properties.
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2.3 Network matrices and their properties

We can use matrices to represent networks. Given a network G = (V, E), we define
a non-negative-valued matrix W ∈ Rn×n+ , such that Wij > 0 ⇐⇒ (i, j) ∈ E.
The resulting matrix W assigns each edge of the graph (i, j) with a weight Wij ,
providing the network’s weighted adjacency matrix . Together, this yields the weighted

network, denoted by the triplet G = (V, E ,W ). For each node i ∈ V, we denote by
w+
i :=

∑
Wij and w−i :=

∑
Wji its weighted out- and in-degrees, respectively. See

Figure 1 for an example.

Often the weights Wij capture transition rates between nodes, and hence the
weight matrix W is assumed to be a stochastic matrix, in which all rows sum
to 1. For such matrices, the Perron-Frobenius theory can be used to study the
spectral properties of W [2]. An immediate observation is that 1 is an eigenvalue
of W, associated with the right-eigenvector 1. All the other eigenvalues of W

are not larger than 1 in modulus. Further results can be established, depending
on the connectivity properties of the network, which can be directly mapped into
properties of the matrix W. For instance, strong connectivity of the network yields
irreducibility of W, which guarantees that the eigenvalue 1 is simple, and it admits
a left-eigenvector π with strictly positive entries. This result can be extended to
networks with a unique globally-reachable strongly-connected component, whereby
the left-eigenvector π has strictly positive entries corresponding to the nodes be-
longing to the component, whereas the other entries are equal to 0 (see, e.g., [3]).
Note that, under these hypotheses we have

lim
t→∞

Wt → 1π>. (3)

Such repeated multiplications of W, t → ∞, capture the convergence of a linear
process driven by W. Therefore, the left-eigenvector π, the Bonacich centrality of
the weighted network, plays a key role in determining the consensus point of linear
averaging dynamics, as we will discuss in Section 3.1.

Next we define the weighted Laplacian matrix as

L = diag(w+)−W, (4)

where w+ is a vector that assembles the out-degrees of all nodes. In simple terms,
the diagonal entries of the Laplacian contain the weighted out-degree of the node,
while the off-diagonal entries are equal to −Wij the sign inverse of the i, j weight.
As opposed to W that contains the entire information on the network structure,
in the Laplacian, the information on the presence and weight of the self-loops is
lost. By design, the rows of L sum to 0. Consequently, the all-1 vector, a right
eigenvector of the Laplacian, now has eigenvalue 0.

For stochastic matrices, as all rows sum to unity, the Laplacian reduces to
L = I−W. Hence, the two matrices share the same eigenvectors ξ1, . . . , ξn, and their
eigenvalues are shifted by 1, namely if µk is an eigenvalue of W then λk = 1− µk
is an eigenvalue of L. Therefore, all the spectral properties described above for
stochastic matrices W apply directly to the study the Laplacian spectrum.
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2.4 Real-world networks

Social, biological and technological networks have been extensively studied over
the past two decades, uncovering several widespread characteristics, universally
observed across these different domains. For example, most real networks exhibit
extremely short paths between all connected nodes, with the average shortest
path length often scaling as ¯̀ ∼ log n, a slow logarithmic growth with the net-
work size [1]. Another universal feature, crossing domains of inquiry, is degree-
heterogeneity. This is captured by P±(d), the probability for a randomly selected
node to have an in-degree d−i = d (out-degree d+i = d). In many real-world net-
works these probabilities are fat-tailed, describing a majority of low degree nodes,
coexisting alongside a small minority of hubs, that can have orders of magnitude
more neighbors than average. According to real-world empirical observations [4],
several real-world degree distributions in technological and biological networks can
be accurately approximated by a power-law of the form P±(d) ∼ d−γ , describing
a collection degree that lacks a typical scale, i.e., scale-free networks [1]. The expo-
nent γ plays a key role in shaping the degree distribution, whereby smaller values
of γ yield more heterogeneous and disperse distributions. In particular, power-
law distributions with exponent γ ∈ [2, 3), which are often observed in real-world
networks, exhibit a constant average degree, whereas its variance grows with the
network size. Other real-world networks, including many social networks exhibit
weaker scale-free properties, which can be captured, for instance, by log-normal
distributions [5]. Finally, another key feature of many real-world networks, es-
pecially in the social and biological domains, is the tendency of nodes to create
clusters, whereby two nodes that are connected have a higher probability of having
other connections “in common.” Such a property, in combination with the slow log-
arithmic growth of the shortest paths, characterizes the so told small-world network

models, which have become popular in network science in the past few decades [6].

3 Main results on dynamics on networks

Up to this point we discussed the characterization of the network’s static structure -
who is connected to whom. However, networks are truly designed to capture dynamic
processes, in which nodes spread information and influence each other’s activity [7,
8]. Hence, we seek to use the network to map who is influenced by whom. We
therefore, discuss below dynamics flowing on the networks.

3.1 Consensus problem

Since the second half of the 20th century, the consensus problem has started at-
tracting the interest of the systems and control community. The reason for such
a growing interest is that the consensus problem, initially proposed by J. French
and M.H. De Groot as a model for social influence [9,10], has found a wide range
of applications, encompassing opinion dynamics [11,12], distributed sensing [13],
and formation control [14]. In its very essence, the problem consists of studying
whether a network of dynamical systems is able to reach a common state among
its nodes in a distributed fashion via pairwise exchanges of information, lacking
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any sort of centralized entity. In the following, we provide a formal definition of
the problem and illustrate some of its main results.

Here our nodes represent units (also called agents) V = {1, . . . , n}, modeling,
for instance, individuals, sensors, or robots. The agents are connected through
a weighted network G = (V, E ,W ), where W is a stochastic matrix. Each agent
i ∈ V is characterized by a state variable xi(t) ∈ R, which, at every time-step, is
updated to the weighted average of the states of its neighboring agents - hence the
consensus dynamics. The consensus problem can be formulated either in a discrete-
time framework (t ∈ Z+), or in continuous time (t ∈ R+). In discrete-time, the
simplest state update rule is formulated via

xi(t+ 1) =
∑
j∈V

Wijxj(t), (5)

or, in a compact matrix form, as

x(t+ 1) = Wx(t), (6)

where x(t) is a n-dimensional vector capturing all the agents’ states. In the contin-
uous version, Eqs. (5) and (6) are formulated using the weighted Laplacian matrix
as

ẋ(t) = −εLx(t), (7)

where ε > 0 is a positive constant that determined the rate of the consensus
dynamics.

One of the main goals of the consensus problem is to study how the topological
properties of the network influence the asymptotic behavior of x(t). In particular,
the key question is to determine under which conditions the states of the agents
converge to a common quantity, reaching a consensus state x∗.

Perron-Frobenius theory [2] provides effective tools to study the consensus
problem in terms of the spectral properties of the weight matrix W, establishing
conditions that can be directly mapped into connectivity patterns of the network.
Specifically, it is shown that a consensus state is reached for any initial condi-
tion x(0) if and only if the graph described by W has a unique globally-reachable
strongly-connected component. In the case of discrete-time consensus, it is also
required that such a strongly-connected component is aperiodic [3]. An extremely
important consequence of this observation, especially for applications seeking to
drive agents towards consensus, is that such convergence is guaranteed if the net-
work is strongly connected and, for discrete-time consensus, if at least one self-loop
is present. This captures rather general conditions to reach consensus.

A second key result obtained through the Perron-Frobenius theory touches on
the characterization of the consensus state. Specifically, given the initial conditions
x(0) and the (unique) left eigenvector of W associated with the unit eigenvalue π,
the consensus point coincides with the weighted average

x∗ = π>x(0) =
∑
i∈V

πixi(0). (8)

More specifically, each agent contributes to the consensus state proportionally
to its Bonacich (eigenvector) centrality. This result has several important con-
sequences. Notably, agents that do not belong to the unique globally-reachable
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aperiodic strongly-connected component do not contribute to the formation of the
consensus state, as their centrality is equal to 0 [3]. A special case of the consensus
problem is when the consensus is driven towards the arithmetical average of the
initial conditions. This is observed if and only if the matrix W is doubly stochastic
(a trivial case occurs when the matrix is symmetric). A simulation of a consensus
dynamics with W doubly-stochastic is illustrated in Figure 2b.

Consensus state x∗ captures, when indeed reached, the long term state of the
system. Next, we seek to estimate the rate of convergence to this consensus. For
a review of the main findings, see, e.g. [15]. Given the linear nature of the con-
sensus dynamics, the convergence rates are closely related to the eigenvalues of
the stochastic matrix W. Intuitively, the speed of convergence of the consensus
dynamics depends on the speed of convergence of the matrix Wt to 1π>, which
is determined by the second largest eigenvalue in modulus, denoted by ρ2 — un-
der the convergence conditions for the discrete-time consensus dynamics, we recall
that ρ2 < 1. For symmetric matrices W, all the eigenvalues are real and posi-
tive, so ρ2 is the second largest eigenvalue, and we can directly write the speed of
convergence of the discrete-time consensus as

||x(t)− 1x∗|| ≤ ρt2||x(0)|| , (9)

following [16]. A similar expression can be obtained for the continuous-time model
Eq. (7). For non-symmetric matrices, the result is slightly more complicated, due
to the potential presence of non-trivial Jordan blocks. More details and an explicit
derivation of the speed of convergence for generic matrices W can be found in [3].

Building on these seminal results, the systems and control community has
extensively studied this problem toward designing algorithms to converge to de-
sired consensus points, and expanding its original formulation to account for a
wide range of extensions. These extensions include, but are not limited to, asyn-
chronous and time-varying update rules [17,18], the presence of antagonistic in-
teractions [19], quantized communications [20], and the investigation of different
operators than other the weighted average, such as maximum and minimum op-
erators [21].

3.2 Synchronization

The consensus problem captures a cooperative phenomenon, in which agents reach
a common state in the absence of centralized control. More broadly, this problem
is part of a general class of challenges, of synchronizing a set of coupled dynamical
systems in a distributed fashion toward a common trajectory. From a histori-
cal perspective, and also due to its applicability to real-world settings [22], the
synchronization challenge is often formulated in continuous time. In this vein,
synchronization focuses on a state vector, associated with each agent, xi ∈ Rd,
rather than a scalar state variable. In the absence of a coupling network, these
state variables evolve according to a generic non-linear function F : Rd → Rd, cap-
turing each individual node’s self-dynamics. The couplings via Wij then introduce
a distributed, potentially non-linear averaging dynamics, regulated by a function
G : Rd → Rd. Overall, the state of agent i is governed by the differential equation

ẋi(t) = F (xi)− ε
∑
j∈V

LijG(xj(t)), (10)
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where ε ≥ 0 is a non-negative parameter that quantifies the strength of the cou-
pling between the agents. Setting the function F null and G equal to the identity,
Eq. (10) reduces to the consensus dynamics in Eq. (7). Figures 2c and 2d illustrate
an example of a set of Rössler oscillators in the absence and in the presence of
coupling, respectively, on the network illustrated in Figure 2a.

The goal of the synchronization problem consists of determining the conditions
that the non-linear functions F and G and the network — here, represented by
the Laplacian matrix L — have to satisfy in order to guarantee that the vector
state of each node xi(t) converges to a common trajectory x∗(t). Formally, this
maps to studying the stability of the synchronization manifold

S := {x(t) : xi(t) = xj(t) = x∗(t), ∀ i, j ∈ V}. (11)

From Eq. (10) and from the zero-sum property of L, it is straightforward to observe
that the synchronization manifold S is invariant, that is, if x(t∗) ∈ S, for some
t∗ ≥ 0, then the system will stay synchronized for all t ≥ t∗. Hence, the problem
of the synchronization of coupled dynamical systems ultimately boils down to
determining the asymptotic stability conditions for such a manifold.

The seminal work by [23] introduced an effective and elegant technique to study
the local stability of the synchronous state, through the study of modes transverse
to it. The approach, based on a master stability function (MSF), decouples the
synchronization problem in two independent sub-problems, one focusing on the
node’s dynamics, the other on the network topology. First, the dynamical system
in Eq. (10) is linearized about the synchronous state x∗(t) by defining δxi(t) =
xi(t)− x∗(t), and writing the linearized equations

˙δxi = JF (x∗)δxi − εJG(x∗)
∑
j∈V

Lijδxj , (12)

with i ∈ V and where JF ∈ Rd×d and JG ∈ Rd×d are the Jacobian matrices
of F and G, respectively. The system of equations in Eq. (12) can be further
decomposed into n decoupled equations by projecting them along the eigenvectors
of the Laplacian L, obtaining

ξ̇k = [JF (x∗)− ελkJG(x∗)]ξk, (13)

where λ1, . . . , λn are the eigenvalues of L, in ascending order in modulus. Assuming
W to be strongly connected, we have λ1 = 0 and λ2 6= 0. Hence, the first term
k = 1 of Eq. (13) coincides with the perturbation parallel to the synchronization
manifold, and all the other n−1 equations correspond to its transverse directions.
Therefore, the synchronization manifold is stable if all the equations k = 2, . . . , n
in Eq. (13) damp out. We define the MSF λmax(α) that associates each complex
number α ∈ C with the maximum Lyapunov exponent of ξ = [JF (x∗)+αJG(x∗)]ξ.
Hence, if λmax(σλk) < 0, for all k = 2, . . . , n, the synchronization manifold is locally
stable. Interestingly, the MSF allows us to decouple the effects of the dynamics
and the role of the network. The nodal dynamics, captured via JF and JG, fully
determine the critical region of the complex plane in which λmax(α) < 0; the
network topology, in contrast, determines the eigenvalues λk of L. Synchronization
is attained if all the eigenvalues belong to the critical region. Hence, the MSF can
be effectively utilized to design a network structure to synchronize a general set
of dynamical systems in a distributed fashion.
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(a) (b)

(c) (d)

Fig. 2: Consensus dynamics and synchronization. We consider six dynamical sys-
tems connected through the 3-regular network illustrated in (a). All the weights
are Wij = 1/3, as in Eq. (20). In (b), we show the trajectories of a continuous-time
consensus dynamics, which converge to the average of the initial conditions. In (c)
and (d), we illustrate the trajectories of six Rössler oscillators, with equations
ẋi = −yi, ẏi = x1 +0.2yi, żi = 0.2+zi(xi−0.2) (for the sake of readability, we plot
only the first variable xi for each of the dynamical systems, a similar behavior is
observed for the other variables). In (c), the oscillators are not coupled and the
trajectories are not synchronized. In (d), the dynamical systems are coupled with
ε = 0.3 and G(xj(t)) = [xj(t), 0, 0]>, leading the trajectories to the synchronization
manifold.

Generalizations of the MSF approach have been proposed to deal with many
different scenarios, including moving agents [24] time-varying and stochastic cou-
plings [25], and more complex network structures such as multi-layer networks [26,
27] and simplicial complexes [28]. The main limitations for the use of the MSF
are that, in general, the computation of the largest Lyapunov exponent can be
performed only numerically, thus limiting the analytical capability of the method;
and that, using the MSF, only local stability results can be established. Differ-
ent approaches to study the stability of the synchronization manifolds have been
developed in the last two decades by means of Lyapunov methods [29] and con-
traction theory [30]. While these approaches have allowed specific rigorous, global
convergence results, they typically provide sufficient conditions for synchroniza-
tion that, in general, are more conservative than those established via MSF-based
approaches.
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3.3 Perturbative analysis

In case Eq. (10) exhibits a stable fixed-point x∗, the challenge is to understand its
fixed-point dynamics [7,8,31]. This can be observed by following its response to
small perturbations, either structural — removing nodes/links or altering weights,
or dynamic — small activity perturbations x∗ → x+δx(t). Such perturbation insti-
gates a signal S, which then propagates through all network pathways to impact
the state of all other nodes. First, we wish to track the signal’s spatiotemporal
propagation, namely how much time will it take for the signal to travel from
a source node i to a target node j. This can be done by extracting the specific
response time τi of all nodes to the incoming signal, then summing over all sub-
sequent responses along the path from i to j. The resulting propagation patterns
uncover a complex interplay between the weighted network structure Wij and the
non-linear functions F and G, resulting in three dynamic classes [32]: Ultra-fast.
for certain dynamics the highly-connected hubs respond rapidly (τi small), and
hence, as most pathways traverse trough them, they significantly expedite the sig-
nal propagation through the network. Fast. In other dynamics, the degrees play
no role, the system exhibits a typical response time τi for all nodes, and the signal
propagation is limited by the shortest path length of the network. Ultra-slow. In
the last class hubs are bottlenecks (τi large), causing signals to spread extremely
slowly.

The long-term response of the system to the signal S is observed once the
propagation is completed and all nodes have reaches their final, perturbed state
x∗i + δxi(S). This defines the cascade C = {i ∈ V : δxi(S) > Th}, the group of
all nodes, whose response exceeded a pre-defined threshold Th. Often, the cas-
cade sizes |C| are broadly distributed — most perturbations have an insignificant
impact, while a selected few may cause a major disruption [8].

A sufficiently large perturbation can lead to instability, resulting in an abrupt
transition from one fixed-point, the desired state, to another, potentially unde-
sired [33]. This can capture, for instance, a major blackout, or an Internet failure,
which can be caused by infrastructure damage, i.e., structural perturbations, or
by overloads, capturing activity perturbations.

3.4 Control

Consensus and synchronization are emergent phenomena, that is, their onset is
spontaneously achieved over time by the network nodes. Similarly, perturbation
analysis captures the network’s response to naturally occurring disturbances. With
this in mind, the natural next step is to seek controlled interventions to drive the
network towards a desired dynamic behavior, e.g., an equilibrium point, a limit
cycle, an attractor, etc. Typically, we wish to achieve such control with limited
resources, i.e., acting upon a subset of the network nodes, links, or using a limited
amount of energy. Network control can be achieved via off-line strategies, such
as controlling the nodal dynamic or their coupling, or on-line strategies, through
adaptive rewiring of the network structure [34]. Here, to outline the principles
of control, we focus on a representative problem, where one seeks to synchronize
a network system, whose uncontrolled dynamics in Eq. (10) does not naturally
converge to a synchronous solution [35].
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Fig. 3: Schematic of a pinning control scheme. The master node (in black) is
connected to the two pinned nodes (in red), namely 1 and 6.

One of the first and most successful methods proposed to synchronize a network
is pinning control , originally proposed in [36], where one controls the entire network
by driving just a small number of nodes. First we designate a master node, whose
state is fully under our control, namely we can freely determine its dynamics by
designing a suitable control input signal. The master node is then linked to a small
number of pinned nodes 1, . . . ,m, influenced indirectly, via their links to the master
node, by our input signal, as illustrated in Figure 3. These pinned nodes follow

ẋi(t) = F (xi)− ε
∑
j∈V

LijG(xj(t)) + ui(t), (14)

where ui(t) represents the control exerted by the master node on the pinned node
i ∈ {1, . . . ,m}. The remaining n−m nodes continue to evolve according to Eq. (10).

The fundamental question is how many and which nodes should be pinned in order

to control the network? Clearly, a general answer to this problem does not exist.
Indeed, such an answer inevitably depends on the properties of the non-linear
functions F and G, on the weighted network topology Wij , and on the form of the
control inputs ui. Therefore, the first approach to tackle this challenge is under
linear dynamics, mapping Eq. (14) to

ẋ(t) = Wx+ Bu (15)

where is the weighted network matrix, as in the consensus problem Eq. (7), and
B ∈ Rn×m is a rectangular matrix, routing the control inputs u(t) to the m pinned
nodes. The linear Eq. (15) reduce the control problem to a structural one, seeking
the conditions of Wij that guarantee controllability [37].

Under a single pinned node m = 1 the controllability of the network is deter-
mined by the presence of a subgraph of G that is a cactus, that is, such that it spans
all the nodes of the network and in which every edge belongs to at most one simple
cycle [37]. Other results based on structural controllability are summarized in [38].
For the general case with m ≥ 1, standard control-theoretic tools may be lever-
aged, specifically Kalman’s controllability rank condition, showing that Eq. (15)
is controllable if the matrix C := [B,WB,W2B, . . .Wn−1B] has full rank, i.e.,
Rank(C) = n. The challenge is to verify Kalman’s condition, which becomes un-
feasible for large-scale real-world network. To address this, it is shown that the this
condition can be mapped to the more scalable graph-theoretic concept of maximal
matching [39], where one seeks the largest set of edges with different start and
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end nodes. Linking the size of the maximal matching to the number of nodes that
should be pinned to control the network, this criterion helps predict Eq. (15))’s
controllability. Controllability is found to be primarily driven by the network’s de-
gree distribution P±(d), independent of the weights Wij , and, counter-intuitively,
often driven by the low-degree nodes, especially for directed networks.

Next, if indeed the network is controllable, we wish to design the control inputs
ui(t) to drive it to the desired dynamic state. For a detailed discussion, we refer
to the review papers [40,41]. A common approach employs a feedback strategy,
setting [36]

ui(t) = kiG(x∗(t)− xi(t)), (16)

where x∗(t) is the desired dynamic state and ki ≥ 0 are the control gains. For ex-
ample, such feedback control can steer the system to the stationary state x∗(t) = x̄,
achieving consensus toward a desired equilibrium via control rather than to spon-
taneous emergence as in Eq. (7). In undirected scale-free networks this strategy
shows that controlling the hubs is most effective for reaching synchronization, as
it requires a smaller number of nodes to be pinned [36].

The specific structure of the feedback control scheme in Eq. (16) has enabled
the scientific community to establish several important results on network synchro-
nizability, even though a complete theory is still lacking. In fact, the expression for
ui(t) in Eq. (16) allows us to write Eq. (14) in a form similar to Eq. (10), with an
additional term that accounts for the master node. The master stability function
approach used to study synchronization for the uncontrolled problem can then
been extended to tackle this scenario. Specifically, in [42], the authors propose to
add an (n+ 1)-th equation for the master node, that is, simply ẋn+1 = F (xn+1).
Consequently, all the n+1 equations can be written in the form of Eq. (10), where
the Laplacian matrix L is substituted by an augmented Laplacian matrix M, in
which a row and a column corresponding to the master node are added. All the re-
maining entries in this added row are equal to zero, while the column contains the
control gains. Furthermore, the corresponding control gains are subtracted from
the diagonal of the augmented Laplacian. The MSF-approach can then be applied
to the augmented system on n+ 1 equations to determine the stability, depending
on k1, . . . , km.

One of the main limitations of the approaches described so far is that they
rely on the assumption that all the dynamical systems are identical, which en-
sures stability of the synchronous trajectory. Unfortunately, in many real-world
applications, we face the problem of synchronizing networks of heterogeneous dy-
namical systems, often in the presence of noise and disturbances. To overcome
these problem, in [43,44], the authors proposed to use a coupling term that in-
cludes a distributed integral action. Building on this intuition, in [45], a distributed
proportional-integral-derivative (PID) control protocol was proposed to reach con-
sensus in a network or linear heterogeneous systems in the presence of disturbances.

In its simplest formulation, we can assume that each node of the network is
a unidimensional dynamical system with linear dynamics. Hence, the proposed
model can be formulated as follow:

ẋi(t) = aixi(t) + bi + ui(t) , (17)

for all i ∈ V, where ai ∈ R is a constant that determines the uncoupled dynamic
of the system, bi ∈ R is a constant disturbances (e.g. an input/output in the
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dynamical system i, and ui(t) is the control action applied to node i at time t. In
the standard coupling discussed presented so far, the control action coincides with
the continuous-time consensus dynamics, that is,

ui(t) = −ε
∑
j∈V

Lijxj(t) . (18)

However, the control action in Eq. (18) is not able to guarantee convergence to
consensus in many scenarios, when the parameters ai and bi are heterogeneous.
In [45], a controller in the following form has been proposed:

ui(t) = −
∑
j∈V

Lij

(
αxj(t) + β

∫ t

0

xj(s)ds+ γẋj

)
, (19)

where α, β, γ ∈ R+ are constant parameters that weight the three terms in the
controller. Note that, besides utilizing the information from the state of the neigh-
boring nodes xj(t), the proposed controller uses also their integral and derivatives.
The analysis of Eq. (19) has allowed the authors of [45] to explicitly derive con-
ditions for the parameters α, β, and γ to control the system toward a consensus.
These conditions, besides depending on the disturbances bi, depend on the network
structure through the second largest eigenvalue in modulus of W.

Recently, several works have started to address the control problem also from
an energy point of view, namely, toward the development of a minimum energy
theory for the control of network systems. Several results have been established
for linear systems in the form of Eq. (15). In [46], the authors establish upper and
lower bounds on the control cost — defined in terms of the smallest eigenvalue
of the Gramian matrix— as scaling laws of the time required to reach synchro-
nization. Further development in this directions have been proposed in [47], where
rigorous bounds on the smallest eigenvalue of the Gramian matrix are derived as
functions of the eigenvalues of the matrix W and on the number of pinned nodes
m, establishing non-trivial trade-off between the number of pinned nodes and the
control cost. Recently, an interesting discussion on minimum energy control is pre-
sented in [48]. In this work, using an approach based on standard control-theoretic
tools, the authors express the control energy as a function of the real part of the
eigenvalues of W. Therein, an interesting heuristic has been proposed for generic
(directed) networks, according to which the cost for controlling a network is re-
duced if the pinned nodes are chosen as those with large (weighted) out-degree
(w+
i ) but small in-degree (w−i ).

4 Applications

Many of our modern technological applications rely on networks. Such systems,
e.g., the Internet or the power grid, behave almost as natural phenomena, often
lacking a blue-print or central control, hence functioning based on the emergent
cooperation between their components. Therefore, the network principles of con-
sensus, synchronization and control play a key role in an array of modern day
applications, from distributed sensing to cyber-resilience and coordinated robotic
motion.
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4.1 Distributed sensing

Sensor networks are a key application of the theoretical findings discussed in the
Section 3. Since the 1990s, the use of wired of wireless networks of sensors able to
exchange data has become widespread in technological and industrial systems [49].
The Internet of Things has pushed this technology further, providing the market
with a plethora of inexpensive devices able to perform sensing, computation, and
communication at a negligible cost [49]. One of the most common applications
of sensor networks is distributed estimation, that is, the joint estimation of the
value of a quantity of interest, with the advantage of reducing the measurement
uncertainty, without requiring a centralized processor to gather all the sensors’
measurements and centrally perform the desired estimation. There are several
advantages to synchronize distributed estimations, from high robustness against
noise, errors, and malicious attacks, to lower costs by relinquishing the need for a
central processor. Most important, a network of redundant sensors performs under
distributed operations avoids the risk of a single point leading to systemic failure.

Formally, in the distributed sensing problem, each of the n sensors is repre-
sented by a node, and the communication patterns between sensors by links, lead-
ing to the sensor network G = (V, E). Each sensor i ∈ V performs a measurement
of a common quantity of interest x, whose result we denote by x̂i. The distributed
sensing problem consists of designing an algorithm to estimate the actual value
of the quantity in a distributed fashion, using local exchanges of information only
between the linked sensors, namely sensor can only share information with its out-
neighborhood N+

i . The goal of such estimation is to converge, asymptotically or in
finite time, to a common estimate x∗ of the quantity x, reducing the uncertainty
associated with each local measurement x̂i.

Assuming that the sensors are all identical and unbiased, that is, the expected
value of their measurements coincides with x and they all have the same variance
σ2, the best estimate of the quantity of interest can be obtained by computing
the arithmetic average of the sensors’ measurements, whose variance, following
the central limit theorem, approaches σ2/n [50]. Recalling the consensus problem
formalized and discusses in Section 3.1, the arithmetic average of a set of measure-
ments can be computed in a distributed fashion, by initializing the state of each
sensor to the measured value, i.e., setting xi(0) = x̂i, and then updating the state
of the sensors according the algorithm in Eq. (5), with a suitable weight matrix
W adapted to the sensor network, in order to ensure convergence to the average.
Assumption that the network of sensors is strongly connected and that each sensor
can access its own state (all the nodes have a self-loop), we know from Section 3.1
that the state of each node converges to a common quantity, precisely equal to
the weighted average of the initial conditions, with weights determined by each
sensors’ Bonacich centrality, xi(t)→ x∗ = π>x̂. Hence, to estimate the arithmetic
average of the initial measurements, one has to design the matrix W such that its
Bonacich centrality is uniform among all nodes. This can be satisfied by designing
W to be doubly stochastic, having both its rows and columns sum to 1.

Hence, the problem of designing an algorithm for distributed sensing ultimately
boils down to designing a doubly stochastic matrix W adapted to the graph rep-
resenting the sensor network. Several methods have been proposed to successfully
address this problem, depending on the properties of the network. The simplest
method it to select symmetric weights W = W>, in which case stochasticity di-
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rectly implies double-stochasticity. If the network is undirected and regular, namely
that all nodes have the same degree di = d for all i ∈ V, this amounts to setting
W with uniform weights as

Wij =
1

d
, (20)

for all (i, j) ∈ E. In this case, at each time-step, each sensor will average its own
state with those of all its neighbors. For non-regular networks, where degrees
are potentially heterogeneous, the practical solution is to use Metropolis weights
setting

Wij =
1

max{di, dj}
, (21)

for all (i, j) ∈ E such that j 6= i, and

Wii = 1−
∑

j∈V\{i}

Wij . (22)

Finally, if, in addition, the network is directed, double-stochasticity requires using
Birkhoff’s theorem for doubly-stochastic matrices [51]. Specifically, selecting a set
of simple cycles C = {c1, . . . , cm} that span all the edges of the network, we let
Vh to be the nodes through which cycle ch passes and we define the permutation
matrix W(h) associated with the cycle ch as

W
(h)
ij =

{
1 if (i, j) ∈ ch, or i = i and i /∈ Vh,
0 otherwise.

(23)

Note that each matrix W(h) is doubly stochastic, but in general, they are not
adapted to the network, since only a subset of the edges of the network are asso-
ciated with non-zero entries of a permutation matrix (precisely, those associated
with the corresponding cycle). Then, we construct the doubly stochastic matrix
adapted to the network as

W =
1

m+ 1

(
I +

m∑
h=1

W(h)

)
. (24)

With the appropriate construction it is now verified that the consensus dy-
namics will solve the distributed sensing problem, leading us to investigate the
system’s performance. First, we ask how fast does the algorithm converge and,
consequently, how to optimally interconnect a set of sensors to guarantee rapid
convergence. This problem ultimately boils down to estimating the speed of con-
vergence of the consensus algorithm and, hence, to the computation of the second
largest eigenvalue of W. In addition to speed we wish to evaluate accuracy, asking
how noise and errors in each sensor’s measurement propagate to the distributed
estimate x∗. This, we show below problem, is also strictly related to the spectral
properties of the weight matrix W.

The problem of understanding how to interconnect a set of nodes to have fast
convergence to consensus is a problem of paramount importance in the design
of networks of sensors and, more in general, of networked systems. The rate of
convergence of the state of the nodes to the desired estimate can be bounded using
Eq. (9), that is, as a function of the second largest eigenvalue of W in modulus
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ρ2. Another important metric that measures the convergence performance of the
distributed sensing algorithm is

J(t) :=
1

n

∑
t≥0

||x(t)− 1x∗||2 , (25)

which can be associated to the cost of a linear-quadratic regulator problem. Also
this metric can be related to the spectrum of matrix W. Specifically, in [52], the
authors show that for a set of homogeneous unbiased sensors with variance σ2 in
the measurements, it holds

J(t) =
σ2

n

n∑
i=1

1

1− |µi|2
. (26)

Clearly, considering both metrics, the optimal solution would be to utilize a fully-
connected (complete) network, where convergence is reached in one step, since
each sensor can access the information of all the others and compute the average
(in fact, for complete graphs it holds µ2 = · · · = µn = 0). However, complete
network structures may be unfeasible in large-scale systems because they require
too many connections, while often sensors may be able to process only a limited
number of inputs. The problem of identifying families of graphs with bounded
degree that yield fast consensus has been extensively studied in the literature.
In [52], the family of de Bruijn graphs has been identified as a good candidate to
this goal, ensuring not only much faster convergence rate than other topologies
with bounded degree such as lattices [53], but also finite-time convergence. Other
important network for which fat convergence results have been established include
several realistic models of complex networks, including small-world networks [54,
55].

So far, we have focus our discussion on the performance of a distributed sensing
algorithm in terms of its speed of convergence to consensus. Another important
performance metric of this family of algorithms, consists of understanding how
the error and the noise in the initial sensor’s measurements propagate to the
distributed estimation. If the sensors are all equal and unbiased, we can assume
that each measurement x̂i = x+ ηi, where ηi ∼ N (0, σ2) is a Gaussian distributed
random variable with mean equal to 0 and variance σ2i . If W is symmetric (e.g.
using W constructed according to Eq. (20) or Eq. (21)), then we can compute the
error at the tth iteration of the algorithm as

1

n
E[||x(t)− 1x||2] =

1

n
E[||Wtx(0)− 1x||2] =

1

n
E[||Wtη||2] =

σ2

n

n∑
i=1

|µi|2t. (27)

Note that the estimation error converges to the asymptotic value of σ2

n , which
coincides with the error of a centralized estimator. The speed of convergence is
again associated with the other eigenvalues W, and in particular, with the second
largest in modulus, which is the slowest one to converge to 0.

In a scenario of unbiased heterogeneous sensors, the arithmetic average of the
sensors’ measurements may not be the best estimate of the desired quantity. In
fact, assuming that the measurement of sensor i ∈ V is a Gaussian random variable
with mean equal to x and variance equal to σ2i , that is, x̂i ∼ N (x, σ2) the arithmetic
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average of the measurements x∗ would lead to an estimate of the desired quantity
such that

x∗ ∼ N

(
x,

1

n2

∑
i∈V

σ2i

)
, (28)

being a the average of independent Gaussian random variables [50]. instead, the
minimum-variance estimator xbest is obtained through a weighted average, where
the weight given to the measurement of sensor i is proportional to the inverse of its
variance [50]. In fact, the estimator obtained with these weights has the following
distribution

xbest ∼ N

(
x,

1∑
i∈V

1
σ2
i

,

)
(29)

whose variance is always less than or equal to the one of the arithmetic mean, with
equality holding only if all the variances are equal (in that case, the two averages
coincide). Such an estimator can be easily implemented in a distributed fashion,
without the need of re-designing the weight matrix W. In fact, the minimum-
variance estimation can be computed by running two consensus dynamics in par-
allel, with a doubly-stochastic matrix W. Specifically, each sensor i ∈ V has a
two-dimensional state, initialized as

yi(0) =
x̂i
σ2i

and zi(0) =
1

σ2i
, (30)

where x̂i is the measurement of sensor i. Being W doubly-stochastic, the consensus
point of the two states will be equal to

y∗ =

∑
i∈V

x̂i

σ2
i

n
and z∗ =

∑
i∈V

1
σ2
i

n
, (31)

which implies that each sensor can calculate the minimum-variance estimator by
simply computing the ratio xi(t) = yi(t)/zi(t), which converges to xbest. A com-
parison between a distributed sensing algorithm based on the computation of the
average of the measurements and the one proposed in Eq. (31) is illustrated in
Figure 4.

The problem of understanding how noisy measurements affect the distributed
estimation process becomes crucial when one adopts the distributed estimation
process to reconstruct a the state of a dynamical system from a set of repeated
measurements obtained from a network of sensors. Such a problem has been ex-
tensively studied in the literature, and a two stage strategy to tackle it has been
originally proposed and demonstrated in [56,57]. This strategy entails the use of
a Kalman filter, which does not require any information from the other sensors,
and then p updates, performed according to a consensus dynamic, as illustrated
in the schematic in Figure 5. In the simplest implementation, denoted by yi(t) the
measurement of sensor i at time t, the estimate xi(t) is updated as{

zi(t) = (1− `)xi(t) + `yi(t) ,
xi(t+ 1) =

∑
j∈V(W p)ijzj(t) ,

(32)

where in the first step, a Kalman filter is applied, where ` ∈ (0, 1) is the (common)
Kalman gain, producing a (local) estimate zi(t); then, the sensors average their
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Fig. 4: Comparison between two different methods to perform distributed sensing.
In both simulations, 100 sensors make a noisy measurement of a quantity, which
is equal to 0. The first 20 sensors have variance σ2i = 0.01, the other 80 sensors
have variance σ2i = 1. Sensors are connected through a random regular graph with
degree 6, generated with a configuration model [1], and W is defined according
to Eq. (20). In (a), we use a standard consensus dynamics; in (b), we use the
algorithm proposed in Eq. (31). We observe that the latter sensibly reduces the
error in the distributed estimation.

Fig. 5: Schematic of a distributed Kalman filter. The scheme on the right-had-side
refers to node 1 (highlighted in red).

estimates according to p consecutive steps of a consensus dynamics, using the local
estimates of the neighboring sensors zj , producing thus a distributed estimate xi(t).
Subsequent studies have allowed the systems and control community to derive
rigorous estimations on the error of this estimation process, relating it to the
eigenvalues of W, the number of consensus steps m, and the Kalman gain `, and
formalizing optimization problems to optimally design the estimation process [53,
58]. Several extensions of this problem has been proposed, for instance, to address
heterogeneity among the sensors [59], or to applications such that distributed
manipulation strategies to infer mechanical parameters in unknown payloads [60].
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4.2 Infrastructure models and cyberphysical systems

The opportunity of mathematically modeling a set of possibly heterogeneous dy-
namical systems, evolving and interacting over a topology of any complexity, make
networks an intuitive modeling paradigm for cyberphysical systems (CPS) and in-
frastructure models. CPSs are complex interconnected systems of different nature
(mechanical, electrical, chemical, etc.), governed by software components, where
the behavior of hardware and software is usually deeply intertwined. They usually
operate over multiple spatial and temporal scales and require transdisciplinary
knowledge to be studied and managed. Typical examples of CPSs are industrial
control systems, robotics systems, autonomous vehicles, avionics systems, medical
monitoring, tele-surgery, the internet of things, to name a few [61,62]. Infrastruc-
ture models, on the other hand, are complex connections of units of the same
nature, interconnected or interacting over a spatially-extended network. Typical
examples are power grids (see Figure 6), water grids, transportation networks,
computer networks, and telecommunication networks [63–68]. It is evident that
single infrastructure systems are heavily interdependent: for example, a shortage
in the power grid for a prolonged time interval would cut the mobile communi-
cation network off. These critical interdependencies have led scholars to gather
together single infrastructure models in more complex, interconnected ones, lead-
ing to the concept of critical infrastructure models. Modeling tools for such systems
are interdependent paradigms, such as systems-of-systems, networks-of-networks,
or multilayer networks [69].

The most important problem in all these systems concerns the effect of isolated
failures on the global functioning of the system, that is, how the performance of
the system degrades in spite of isolated or multiple failures [70–74]. In critical
infrastructures, moreover, a problem of interest is to study how failures propagate
both over and across the single infrastructures [61,62]. The study of this problem
is key toward understanding the mechanisms that trigger cascading failures, for
instance, causing massive blackouts in power grids [63], which in turn may damage
the functionality of the telecommunication networks [61]. Hence, the results of
these can be applied to detect the vulnerability of CPSs and infrastructure systems,
preventing the emergence of these disastrous cascading phenomena.

In terms of the topological properties of a network, the vulnerability of a net-
work system is strictly related to the network resilience, that is, the ability of
the network to maintains its connectivity when nodes and/or edges are removed.
Such a problem has been extensively studied in statistical physics by means of
percolation theory [75–77]. In these works, the robustness of different network
topologies has been analytically studied, establishing important results that relate
the vulnerability of a network to the degree distribution of the nodes and the cor-
relation between the degrees. In [75], the authors use percolation theory to study
resilience of different types of random networks, depending on their degree distri-
bution P (d). Specifically, they assume that a fraction p of the nodes is removed
randomly, and they study whether there is a critical threshold for p such that, be-
low the threshold, the network has a giant strongly-connected component, while
above the threshold such a giant component vanishes. Interestingly, the authors
find that such a threshold depends on the ratio between the second moment of the
degree distribution and its average. Specifically, the threshold tends to 1 as such a
ratio grows. Hence, networks with power-law degree distribution P (d) ∝ d−α, with
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α ≤ 3 are extremely resilient, as the threshold p → 1 for this types of networks,
which are good proxies of several real-world networks, including social networks
and internet [1].

However, this “static” concept of network resilience per se is often not sufficient
to accurately determine the presence of vulnerabilities in a network of dynamical
systems, since it is not able to capture the complex interplay between the structural
properties of the network and the dynamical aspects of the processes unfolding on
the network [33]. In fact, in real-world infrastructures and cyberphysical systems,
the global performance of the network may be only mildly affected by the lost of
connectivity of marginal nodes, whereas serious damages to the system and its
performance can occur even if the network remains connected (e.g. due to over-
loads). This requires us to use the tools of our perturbative analysis of Section 3.3,
seeking to predict the onset and propagation of dynamic cascades in the network.

The theory of dynamic vulnerability has started being developed from the
concept of cascading failure, that is, understanding when the failure of a node in a
network of dynamical systems can trigger a large-scale cascade of failures, causing
the collapse of the entire network or of a substantial part of it. In [70], the authors
propose a simple but effective model for studying cascading failures caused by
overloads in complex networks, such as power grids or cyberphysical systems. In
their model, it is assumed that each pair of nodes of a strongly connected network
exchanges one unit of quantity (e.g. information or energy) through the shortest
path between them. According to this model, the load of a node bi(t) is equal
to the number of shortest paths passing through it, and thus proportional to the
betweenness centrality γi. The authors assume that the capacity of each node is
proportional to its initial load, that is,

Ci = (1 + α)bi(0) ∝ γi, (33)

for some α ≥ 0, and that nodes whose load is greater than their capacity (bi(t) >
Ci) fail and are thus removed from the network. Clearly, each removal will change
the network structure, and this may change the loads on the nodes, potentially
triggering a cascade of failures. In their work, the authors have shown that the
effect of the failure (removal) of a node depends on its betweenness centrality.
Specifically, the failure of a node i with small γi has a small impact on the network,
while the failure of a node i with large γi would likely trigger a cascade, especially
when the betweenness centrality of the nodes is highly heterogeneous. Interestingly,
the authors show that for scale-free networks the failure of the node with higher
betweenness centrality may cause the failure of more than 60% of the nodes in a
network with 5, 000 nodes. In [71], it has been shown that the immediate removal
of some nodes and edges after the initial failure, but before the propagation of
the cascade (specifically, nodes with low centrality and edges on which the initial
failure would strongly increase the load) can drastically reduce the size of the
cascade.

In [72], a similar model for cascading failures has been proposed for weighted
networks, where the weight of each edge Wij represents the efficiency of the com-
munication along that edge. In this model, overloaded nodes are not removed,
but the communication through edges insisting on them is degraded and thus the
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corresponding efficiency is reduced, according to the following formula:

Wij(t+ 1) =

{
Wij if bi(t) ≤ Ci ,
Wij

Ci
bi(t)

if bi(t) > Ci .
(34)

The authors utilize this model to study the effect of failures on the network perfor-
mance, evaluated as the average link efficiency, while different performance mea-
sures have been discussed in [78,73]. Even for this model, the effect of the failure
of a node is related to the (weighted) betweenness centrality of the nodes that fail.
Building on these seminal works, a huge body of literature has been developed to-
ward including more real-world features in the modeling frameworks. Specifically,
accurate models of power grids have been proposed [74], which have allowed the
researchers to accurately identify critical properties of the network structure [64],
sets of vulnerable nodes [65], and vulnerable edges [66], by leveraging network-
theoretic tools. Besides power grids, these models for cascading failures have been
tailored to study the vulnerability of other complex systems, including water sup-
ply networks [67] and production networks [68].

These models, while assuming a dynamic exchange of energy between all nodes,
are in there essence, still structural, mapping the loads on the nodes to the network
structure via γi or updating the weights according to Eq. (34). To truly capture
the role of the dynamics we must include the non-linear mechanisms F,G driving
the system, a là Eq. (10). First, one maps the system’s resilience function, that
captures its potential fixed-points x∗ — desirable vs. undesirable. For random
networks with arbitrary degree sequence d± = (d±1 , . . . , d

±
n )>, it is shown that the

control parameter, governing the transitions between these states is determined
by Wij via [33]

β =
1>Wd−

1>W1
. (35)

Hence, the network’s dynamic response to any form of perturbation — changing
weights, removing/adding nodes or links — can be reduced to the perturbation’s
subsequent impact on the macroscopic parameter β. This parameter, in turn, fully
determines the perturbation outcome, specifically whether the system will transi-
tion to the undesired x∗.

These vulnerability results have shown the richness and complexity of the emer-
gent behavior of infrastructure networks, and have allowed to shed light on the
phenomenon of cascading failures on a network. However, in the real world, power
grids, water supply systems, production networks, transportation and communi-
cation networks, and many other infrastructure networks are not isolated, but
they are often mutually dependent and interdependent, whereby the failure of one
of these layers may cause severe consequences on the other layers. Such complex
systems of interconnected complex systems determines the so told critical infras-

tructure of a country, whose modeling and vulnerability analysis is key for many
applications in our complex, hyper-connected world. In [61], the authors have pro-
posed an approach based on the functional interconnection of different networks,
to study how failures in one network affect the others. In the proposed approach,
the interdependency between different systems is captured by a matrix function
called interdependence matrix. In the example proposed in that paper, the authors
investigate the interconnection of the Italian electric grid and the telecommunica-
tion network.
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Fig. 6: Northern European power grid, composed by 236 nodes and 320 edges
(reprinted from [64]).

In [62], a simple but effective model to study cascade of failures in interde-
pendent networks has been proposed and analyzed. In the simplest scenario, two
networks G1 = (V1, E1) and G2 = (V2, E2) are considered. Each network Gi is char-
acterized by its degree distribution Pi(d), which associate to each number d, the
probability that a node of Gi has degree d. The interdependence between the two
networks is modeled as follows. Each node i ∈ V1 is associated with a node ī ∈ V2
through a functional dependence, whereby the functionality of node i depends on
the one of ī. This represent, for instance, the fact that ī supplies some critical re-
sources to node i. Similar, each node i ∈ V2 is associated with a node in V1 through
a functional dependence. Then, when a node fails, as a consequence all the nodes
that have a functional dependence on it fail too, possibly triggering a cascade.
The model can be easily generalized to multiple dependencies and networks. The
authors utilize an analytical approach based on branching processes to study a
system where some random nodes fail on one of the two networks, and consider
different network structures, and they reach some non-trivial findings. Interest-
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ingly, network structures with broad degree distribution, which exhibit a high
resilience when the network is isolated, display instead high vulnerability when
interconnected. Recent developments of the theory of interconnected networks are
extensively discussed in the review paper [69].

4.3 Motion coordination

Motion coordination is a very important phenomenon in many biological systems,
being key to the emergence of collective behaviors such as fish schooling and birds
flocking. Remarkably, even though the single members of a fish school or of a bird
flock are not aware of the entire state of the system, they are able to achieve
global coordination by means of local interactions with other members [79]. The
observation and study of these biological system have inspired the design of dis-
tributed protocols to reproduce these coordination behaviors in group of robots.
Motion coordination for groups of robots finds a wide range of applications, span-
ning from the coordination of drones, to platooning of autonomous vehicles, and
coverage problems in surveillance [38,80,81]. As we shall see, network science is
an important tool for the analysis and the design of these systems, where global
coordination emerges as an effect of local interactions.

In its simplest formulation, the problem of motion coordination can be sum-
marized as follows. We consider a group of n robots, each one characterized by
a position xi(t) ∈ Rd and a velocity vi(t) ∈ Rd, where d is the dimension of the
space in which the robots are moving. For the sake of simplicity, we introduce the
scenario d = 1, in which the robots are moving in a uni-dimensional space. Simi-
lar to biological systems, robots coordinate their motion in a distributed fashion,
that is, the system of robots is connected by the presence of a network structure
G = (V, E) that determines how robots can communicate, and the control action
implemented on robot i ∈ V is a function of the information exchanged with its
neighbors, without the intervention of a central unit. Control actions can apply a
force to the robot, and thus they determine the acceleration of the robot. Hence,
in its simplest form, the dynamics of robot i ∈ V is described by the following
system of equations: {

ẋi(t) = vi(t) ,
v̇i(t) = ui(t) ,

(36)

where ui(t) is the control exerted on node i and is a function of xj(t) and vj(t),
for j ∈ N+

i . Even though the model in Eq. (36) is quite simplistic, many robot
dynamics can be simplified to this form by applying suitable non-linear feedback
linearization techniques, based on the inverse dynamics of the system [82].

In [80], the authors consider the rendezvous problem, where a group of robots
governed by Eq. (36) must coordinate in a decentralized fashion toward reaching
a consensus in which xi(t) = xj(t) and vi(t) = vj(t), for all i, j ∈ V. Note that
the second task (that is, convergence of the velocities) can be easily achieved by
defining a control ui(t) according to a standard consensus dynamics, that is, in
the form ui(t) = −

∑
j∈V Lijvi(t), for some matrix W adapted to the graph G.

However, the convergence of the velocities does not in general implies that all the
positions converge. Hence, to address this problem, the authors have proposed a
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second-order linear consensus protocol, in which

ui(t) = −
∑
j∈V

Lij(αxi(t) + βvi(t)) , (37)

where W is a weight matrix adapted to G. In plain words, the control action applied
to robot i is a linear combination of a weighted average of the position and of the
velocity of the neighbor robots. The case α = 0 reduces to the consensus algorithm
on the velocities, whose limitations were previously discussed. In [80], the authors
establish some conditions for the dynamics in Eq. (36) to coordinate the network
under the second-order linear consensus protocol in Eq. (37). Specifically, they
show that the presence of a globally reachable node in G is a necessary condition to
reach reach coordination. A sufficient condition is also proved, for the special case
α = 1. Further studies establish a necessary and sufficient condition for reaching
coordination [83]. Specifically, besides the presence of a globally reachable node,
the authors found that Eq. (37) succeeds in controlling the system if

β2

α
> max
i=2,...,n

I(λi)

|λi|2R(λi)
, (38)

where λ2, . . . λn are the non-zero eigenvalues of L, and R(x) and I(x) denote the
real and imaginary part of a complex number x ∈ C, respectively. Note that also
the convergence of the second-order consensus dynamics is related to the spectral
properties of the network.

Rendezvous is a very important and ambitious coordination task, which is not
always required. Simpler coordination tasks are of great interest for the robotics
and control community. Flocking, for instance, requires that robots reach a coor-
dination state in which they have the same velocities, but can maintain different
positions (often with some requirements on the distances) [84]; formation control

problems, on the other hand, require the robots to displace according to some
specific shape and follow a (possibly predefined) trajectory as a rigid body [14]. In
the previous discussion, we have observed that the coordination of the velocities,
which is a common goal of these problems, can be directly reduced to a consensus
problem in one-dimensional space. However, such a task may become non-trivial
on a plane or on the 3-dimensional space, in particular when some additional
constraints on the robots’ positions are posed.

Here, we illustrate a simple formulation of such types of problems in a two-
dimensional plane [85]. Particles with coupled oscillator dynamics constitute a
valuable and successful framework to model and study collective motion on the
plane. In its simplest formulation, we assume that a set of particles can move
on a circle. In this setting, each node (representing a member of the group) is
characterized by an oscillator, which models the position of the node as a point
on the complex plane. Specifically, given the Cartesian coordinates (xi(t), yi(t)) of
the position of node i at time t, such a position is encoded as the complex number
zi(t) = xi(t) + ιyi(t) = eιθi(t), where θi(t) is the phase of node i at time t, as
illustrated in Figure 7. The state of each node is thus characterized by its phase
θi(t), which evolves on the one-dimensional torus (that is, the quotient space R with
the equivalence relation 0 = 2π). Similar to the uni-dimensional model described
above, the control action can apply a force to the robot, affecting its (angular)
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Fig. 7: Example of six coupled oscillators moving on the unit cycle. In the figure,
we highlight the phase of node 1, denoted by θ1.

velocity. Hence, the state of node i evolves according to the following system of
equations: {

żi(t) = eιθi(t) ,

θ̇i(t) = ui(t) ,
(39)

where ui(t) is a control action that depends on rj(t) and xj(t), with j ∈ N+
i . The

classical approach [85] consists of writing the control action as the sum of three
contribution: a constant term ωi, termed natural oscillation, a term that depends
only on the phase of the other nodes uori (t), called orientation control and a term
that depends also on the others’ position uspi (t), termed spacing control, as

ui(t) = ωi + uori (t) + uspi (t) . (40)

When the goal of the controller is to coordinate the phases of the nodes, one can
set the spacing control uspi (t) = 0, and focus on the system

θ̇i(t) = ui(t) = ωi + uori (θ(t)) , (41)

which evolves on an n-dimensional torus.
Several analyses of the system in Eq. (39) have been pursued, for different

shapes of the control action uori (θi(t)) [85]. Of particular interest is the Kuramoto
model, in which it is assumed that nodes can interact through a weighted network
G = (V, E ,W ), and it is set

uori (θ(t)) = K
∑
j∈V

Wij sin
(
θj(t)− θi(t)

)
. (42)

for some constant K > 0 that represent the coupling strength. Most of the studies
of the model have been proposed for complete networks with uniform weights, that
is, Wij = 1/N for all i, j ∈ V. See, e.g. this recent review for more details [86].
These results shed light on the critical role played by the coupling strength K on
the emergence of synchronization, with the observation of interesting phenomena
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such as explosive synchronization and the emergence of Chimera states. However,
several interesting results have been established for scenarios in which the com-
munication between nodes is constrained by the presence of network structures,
relating the emergence of synchronization to the coupling strength K and to net-
work properties such as its connectivity and its degree distribution. For more
details see, for instance, [87].

So far, we have assumed that the network of interactions is not affected by the
motion of the robots. However, in many real-world applications, the interactions
between robots depend on the position of the robots, whereby robots often have
a limited range of interaction. In these scenarios, it has been shown in [38] that
the application of a standard linear consensus dynamics as a control action may
cause the lost of the necessary connectivity properties, hindering thus convergence.
Hence, in many applications, one of the main problem is that the network G is not
fixed, but is evolves together with the dynamical process, and more sophisticated
non-linear control actions have to be designed to guarantee that the network has
always some connectivity properties (e.g. the presence of a globally reachable
node) that guarantees convergence [38]. Several extensions of the standard theory
of consensus and synchronization dynamics have been proposed to deal with time-
varying networks [3].

5 Ongoing research and future challenges

Network science, an emerging field, is continuously evolving, helping us uncover
both the universal, as well as the system-specific connectivity patterns of real-world
complex systems. While we currently have a rather strong grip on the structure
of many relevant networks, we continue to seek progress on several challenges.
For example, networks that host different types of nodes, or ones whose links vary
with time. Another important challenge is to systematically translate our advances
on network structure into predictions on their actual observed dynamic behavior.
Together, we wish to exploit the powerful toolbox of network science towards
practical modern day applications, ultimately, aiming to understand, predict and

control out most crucial complex technological systems.

5.1 Networks with adversarial and malicious nodes

A common feature of all the processes described in this chapter is the presence
of cooperative dynamics between the nodes. In the consensus dynamics described
in Section 3.1, nodes cooperate to reach a common state, and such a modeling
framework is utilized to design distributed sensing algorithms (Section 4.1). In the
synchronization problem (in Section 3.2), the presence of a cooperative coupling
between a group of dynamical systems lead to the emergence of collective network
behaviors, as also discussed in the applications illustrated in Section 4.3. However,
many real-world applications witness the presence of not only cooperative interac-
tions, but also of antagonistic interactions. These antagonistic interactions model,
for instance, malicious attacks to distributed sensing systems, or the presence of
non-cooperative robots in multi-agent systems. Signed networks have emerged as a
powerful tool to represent and study the presence of cooperative and antagonistic
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interactions. In a signed network, the edge set E is partitioned into two complemen-
tary subsets: the positive edge set E+, which models cooperative interactions, and
the negative edge set E−, which models antagonistic interactions. The use of signed
networks has started becoming popular in the 1940s, within the social psychology
literature, with the definition of the important concept of structural balance [88]. A
signed network is structurally balanced if and only if its nodes can be partitioned
into two sets, with all positive edges connecting the nodes within each set and
negative edges connecting the nodes between the two sets.

In the last decade, the study of dynamical processes on signed networks has
started growing in popularity, in particular for its several insightful applications to
biological and social systems [89]. The consensus dynamics on signed graphs has
been originally proposed and analyzed in a seminal paper by C. Altafini [19]. In this
paper, the consensus on signed networks is defined in a continuous-time framework
by means of the signed Laplacian matrix of a graph. Specifically, given a stochastic
weight matrix W ∈ Rn×n+ (which represent the strength of the interactions between

nodes), and the positive and negative edge sets E+ and E− (which represents
the type of such interactions — either cooperative or antagonistic), the signed
Laplacian matrix L̄ is defined as

L̄ij =


−Wij if i 6= j and (i, j) ∈ E+ ,
Wij if i 6= j and (i, j) ∈ E− ,∑
j 6=iWij if i = j ,

0 if i 6= j and (i, j) /∈ E .

(43)

The consensus dynamics is then defined as

ẋ(t) = −L̄x(t) . (44)

Note that, different from the standard Laplacian matrix, the terms corresponding
to negative edges appear in the Laplacian with a positive sign. Hence, nodes in-
stead of averaging their state with the ones of their neighbors, they move away
from those with whom they are connected through a negative edge. The theoret-
ical analysis of the consensus on signed networks, initially performed in [19] for
undirected networks via a Lyapunov argument, and then extended to more gen-
eral cases, including directed networks [90], has highlighted the importance of the
graph-theoretic concept of structural balance. In fact, for strongly connected net-
works, it has been shown that, if the signed network is structurally balanced, then
the state of the nodes converge to a bipartite consensus (see Figures 8a and 8b), in
which the state of all nodes converge to the same quantity in absolute value, but
with different sign. Otherwise, if the network is not structurally balanced, the state
of all the nodes converge to the consensus point x∗ = 0 (see Figures 8c and 8d).
Extensions of these results, accounting for time- varying network topologies and
for more complex dynamics including synchronization of dynamical systems and
stochastic dynamics have been proposed and analyzed, see, e.g. the review pa-
per [89]. These results have allowed to understand the mechanisms of many impor-
tant phenomena that emerge whenever cooperating and antagonistic interactions
present in a system, including polarization phenomena in social systems.
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(a) (b)

(c) (d)

Fig. 8: Consensus dynamics on signed networks. In the networks in (a) and (c), pos-
itive edges are denoted in blue, negative edges are denoted in red. The network in
(a) is structurally balanced (the two sets are V1 = {1, 3, 4, 6} and V2 = {2, 5, 7, 8}).
Hence, the corresponding trajectories of the consensus dynamics in (b) converge
to a polarized equilibrium. The network in (c) is not structurally balanced and the
corresponding trajectories in (d) converge to the consensus point x∗ = 0.

5.2 Dynamics on time-varying and adaptive networks

In this chapter, we have focused our discussion on group of interacting dynamical
systems whose pattern of interaction does not change in time, and thus it can be
represented by a time-invariant network. However, such an assumption may be
simplistic in many real-world scenarios. In motion coordination, we have already
mentioned that agents may have a limited range of interactions, and thus the posi-
tion of the agents may influence the network structure [38]. In sensor networks and
to perform distributed estimations, we have assumed that all the sensors perform
their tasks (namely, exchanging information and averaging the measurements)
in a synchronized fashion, that is, according to a centralized clock. However, in
many applications the sensors may perform their tasks asynchronously and in the
presence of disturbances and communication errors, yielding thus a time-varying
pattern of information exchange [91–94]. Furthermore, the use of adaptive net-
works may be a strategy to enhance the control of networks of dynamical systems
and improve the performance [95,96]. These three real-world problems are just
three examples of the several motivations that have called for an extension of the
theory of interacting dynamical systems to dynamical network structures [97,98].
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For all these reasons, the last 15 years have witnessed a growing interest in
the study of dynamics evolving on time-varying networks of interactions. A time-
varying network can be described by a time-invariant node set V = {1, . . . , n},
a time-varying set of edges E(t) ⊆ V × V, and (possibly) a time-varying weight
matrix W(t) ∈ Rn×n+ , such that Wij(t) > 0 ⇐⇒ (i, j) ∈ E(t), where the network
can evolve in discrete time t ∈ Z+ or in continuous time t ∈ R+. Such a growing
body of literature has started developing from bunch of seminal papers written
between at the beginning of the 2000s by different groups of researchers from the
systems and control community [91–94]. In these papers, the consensus dynamics
on time-varying networks is formalized in both the discrete- and continuous-time
frameworks, and necessary and sufficient conditions on the network structure for
convergence of the states of all nodes to a consensus state are derived. These results
typically require that the network obtained by combining all the edge sets over
a sufficiently long time time-horizon have some connectivity properties, such as
being strongly connected for undirected graphs [91] or having a globally reachable
node [93]. Further conditions may be required to reached desired consensus states,
such as the average of the initial conditions [92]. These seminal works have laid the
foundation of several lines of research, including the analysis of the performance
and of the convergence times of consensus dynamics on time-varying networks,
scenarios with communication noise or disturbances, and the extension of these
results to more complex dynamical systems such as synchronization and motion
coordination problems. Further details can be found in several surveys and books,
for instance, see [98,3].

Among these several extensions, of particular interest is the scenario in which
the network of interaction evolves according to a stochastic process. In fact, the
stochasticity in the network formation process may hinder the direct application
of the convergence results established in the seminal papers on consensus on time-
varying networks [91–94] and their more recent extensions to other dynamics.
Hence, dynamics on stochastically switching networks have called for the devel-
opment of a different set of tools for their analysis, grounded in the theory of
stochastic dynamical systems. The main difficulty of the analysis of such problems
is that the network and the nodal dynamics co-evolve, and thus the analytical
approaches should be tailored to the specific properties of both dynamics and to
the corresponding time-scales, hindering the possibility of developing a general
theory for these dynamics. In particular, several interesting results have been es-
tablished in scenarios in which the network formation dynamics is much faster
than the nodal dynamics, that often goes under the name of blinking networks.
In these scenarios, under some conditions, the stochastic network dynamics be-
haves like a deterministic system determined by the expectation of the stochastic
variables. For these scenarios, the results for deterministic consensus and synchro-
nization problems have been adapted and extended [99,100]. In a regime in which
the dynamics of the networks and the nodal dynamics co-evolve at comparable
time scales, the aforementioned averaging techniques cannot be applied. Rigor-
ous convergence results for the consensus problem has initially been established
for simple time-varying random network structure, where each edges are present
or absent with a fixed probability, independently of the others [101]. Extensions
have then been developed to incorporate non-trivial correlations between edges,
for network of homogeneous nodes [102]. In the last few years, activity-driven net-
works have been proposed as a valuable framework to perform rigorous analyses of
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dynamics on time-varying networks with heterogeneous nodes [103–105]. In [106],
the consensus dynamics on activity-driven networks is studied by means of a per-
turbation technique, establishing closed-form results on the speed of convergence
that highlight that heterogeneity hinders distributed coordination.

In all these works, it is assumed that the dynamics of the network is not di-
rectly influenced by the nodal dynamics. However, in many realistic scenarios, the
state of the nodes influence the network formation process. Besides the already
mentioned problems related to motion coordination, in which the network connec-
tivity is passively affected by the position of the agents in the space [38,24,107],
an interesting scenario is that of adaptive topologies [108,95], in which the state
of the nodes actively affects the network formation process, whereby nodes adapt
their contact in order to facilitate the coordination with others. In particular,
we mention the edge-snapping model, proposed in [95], in which nodes implement
local decentralized rules to activate and deactivate edges by means of a second-
order dynamical process. In [95], the effectiveness of such an adaptive topology in
synchronizing networks of dynamical systems has been proved utilizing a MSF-
based approach. Based on this seminal paper, adaptive topologies have then been
proposed to enhance pinning control schemes to facilitate the synchronization pro-
cess [96].

5.3 Controllability of brain networks

The recent discoveries in neuroscience have allowed the scientific community to in-
crease our understanding on the structure and the functioning of the brain [109].
The brain is a highly-complex system, formed by a large number of neurons, span-
ning from the 302 neurons of the C. Elegans — a nematode often used as a model
organism by researchers— to the tens of billions for human beings. Each neuron
has a non-trivial internal dynamics, while they also interact with other neurons.
Such a structure has led an increasing number of researchers to investigate the
brain functioning from the perspective of networks of coupled dynamical systems,
starting from a seminal paper by D. S. Bassett and E. Bullmore [110]. In these
works, network are used to represent the patterns of interactions within brains,
where the nodes may be used to represent either single neurons or brain units that
perform a specific function [109].

Among the growing body of literature on brain networks, we would like to
mention the work by S. Gu et al. [111]. In this paper, the authors investigate
the controllability of structural brain networks, utilizing an approach based on the
computation of the smallest eigenvalue of the controllability Gramian, as proposed
in [47] (see Section 3.4 for more details). Specifically, the authors study the con-
trollability of a network of coupled linear dynamical systems, connected according
to the structure of the brain, where each node represent an area of the brain, and
its state represents the magnitude of the neurophysiological activity of the cor-
responding area. The results of this study provides some interesting insights into
the functioning of the brain; distinct areas of the brain (with different connectivity
characteristics) have been identified as critical to control the network, depending
on the state that the network has to reach.

While linear dynamics may be used to study the functioning of the brain at
a coarse level of brain areas, the neuronal activity is highly non-linear, calling for
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the use of networks of coupled non-linear dynamical systems. Network of coupled
oscillators — as the Kuramoto oscillators presented in Section 4.3— have emerged
as a suitable modeling framework to study brain networks at the level of the
single neurons or small groups of neurons. Of particular interest is the analysis
of partial (or clustered) synchronization [112]. In fact, in a healthy functioning
brain, we typically observe the emergence of cluster synchronization, where the
neurons belonging to the same area of the brain have a synchronized activity, but
such an activity is not synchronized with the one of neurons in other areas, while
global synchronization is often observed in pathological brains of epileptic patients.
Recent results on the stability of clustered synchronization for coupled non-linear
dynamical systems [113] and Kuramoto oscillators [114] have help shedding light on
this important phenomenon, establishing quantitative conditions on the network
structure and on the coupling between the dynamical systems that guarantees
the stability of cluster synchronized states, specifically highlighting the role of
symmetries on the emergent behavior of cluster synchronization and, potentially,
on its controllability [115,116]. These control-theoretic results might be used to
help design stimulation techniques to prevent the emergence of epileptic seizures.

6 Further reading

– A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex

Networks. Cambridge University Press, Cambridge, UK, 2008.
– M. E. J. Newman. Networks: an introduction. Oxford University Press, Oxford,

UK, 2010.
– A.-L. Barabási. Network Science. Cambridge University Press, Cambridge, UK,

2016.
– V. Latora, V. Nicosia, and G. Russo. Complex Networks: Principles, Methods

and Applications. Cambridge, UK, 2017.
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66. B. Schäfer, D. Witthaut, M. Timme, and V. Latora. Dynamically induced cascading
failures in power grids. Nature Communications, 9(1), 2018.

67. H. Zhong and S. Y. Nof. The dynamic lines of collaboration model: Collaborative disrup-
tion response in cyber–physical systems. Computers & Industrial Engineering, 87:370–
382, 2015.

68. D. R. Baqaee. Cascading failures in production networks. Econometrica, 86(5):1819–
1838, 2018.

69. L. D. Valdez, L. Shekhtman, C. E. La Rocca, X. Zhang, S. V. Buldyrev, P. A. Trunfio,
L. A. Braunstein, and S. Havlin. Cascading failures in complex networks. Journal of
Complex Networks, 8(2), 2020.

70. A. E. Motter and Y.-C. Lai. Cascade-based attacks on complex networks. Physical
Review E, 66:065102, 2002.

71. A. E. Motter. Cascade control and defense in complex networks. Physical Review Letters,
93(9):1–4, 2004.

72. P. Crucitti, V. Latora, and M. Marchiori. Model for cascading failures in complex net-
works. Physical Review E, 69(4):4, 2004.

73. S. Arianos, E. Bompard, A. Carbone, and F. Xue. Power grid vulnerability: A complex
network approach. Chaos, 19(1), 2009.

74. E. Bompard, E. Pons, and D. Wu. Extended topological metrics for the analysis of power
grid vulnerability. IEEE Systems Journal, 6(3):481–487, 2012.

75. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robustness
and fragility: Percolation on random graphs. Physical Review Letters, 85:5468–5471,
2000.

76. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to random
breakdowns. Physical Review Letters, 85:4626–4628, 2000.

77. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakdown of the internet under
intentional attack. Physical Review Letters, 86:3682–3685, 2001.

78. E. Bompard, R. Napoli, and F. Xue. Analysis of structural vulnerabilities in power
transmission grids. International Journal of Critical Infrastructure Protection, 2(1-2):5–
12, 2009.

79. D. J. T. Sumpter. Collective Animal Behavior. Princeton University Press, Princeton
NJ, US, 2011.

80. W. Ren and E. Atkins. Distributed multi-vehicle coordinated control via local information
exchange. International Journal of Robust and Nonlinear Control, 17(10-11):1002–1033,
2007.

81. F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks: A Math-
ematical Approach to Motion Coordination Algorithms. Princeton University Press,
Princeton NJ, US, 2009.

82. A. Isidori. Nonlinear Control Systems. Springer, London, UK, 3 edition, 1995.
83. W. Yu, G. Chen, and M. Cao. Some necessary and sufficient conditions for second-order

consensus in multi-agent dynamical systems. Automatica, 46(6):1089–1095, 2010.
84. R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE

Transactions on Automatic Control, 51(3):401–420, 2006.



Network Science and Automation 37

85. D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum, and J. K. Parrish. Oscillator
models and collective motion. IEEE Control Systems Magazine, 27(4):89–105, 2007.

86. J. Wu and X. Li. Collective synchronization of kuramoto-oscillator networks. IEEE
Circuits and Systems Magazine, 20(3):46–67, 2020.

87. F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths. The Kuramoto model in complex
networks. Physics Reports, 610:1–98, 2016.

88. F. Heider. Attitudes and cognitive organization. The Journal of Psychology, 21(1):107–
112, 1946. PMID: 21010780.

89. G. Shi, C. Altafini, and J. S. Baras. Dynamics over Signed Networks. SIAM Review,
61(2):229–257, 2019.

90. W. Xia, M. Cao, and K. H. Johansson. Structural balance and opinion separation in
trust–mistrust social networks. IEEE Transactions on Control of Network Systems,
3(1):46–56, 2016.

91. A. Jadbabaie, Jie Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control,
48(6):988–1001, 2003.

92. R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–
1533, 2004.

93. W. Ren and R. W. Beard. Consensus seeking in multiagent systems under dynamically
changing interaction topologies. IEEE Transactions on Automatic Control, 50(5):655–
661, 2005.

94. L. Moreau. Stability of multiagent systems with time-dependent communication links.
IEEE Transactions on Automatic Control, 50(2):169–182, 2005.

95. P. DeLellis, M. diBernardo, F. Garofalo, and M. Porfiri. Evolution of complex networks
via edge snapping. IEEE Transactions on Circuits and Systems I: Regular Papers,
57(8):2132–2143, 2010.

96. P. DeLellis, M. di Bernardo, and M. Porfiri. Pinning control of complex networks via
edge snapping. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(3):033119,
2011.

97. I. Belykh, M. di Bernardo, J. Kurths, and M. Porfiri. Evolving dynamical networks.
Physica D: Nonlinear Phenomena, 267:1–6, 2014. Evolving Dynamical Networks.

98. S. S. Kia, B. V. Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez. Tutorial
on dynamic average consensus: The problem, its applications, and the algorithms. IEEE
Control Systems, 39(3):40–72, 2019.

99. I. V. Belykh, V. N. Belykh, and M. Hasler. Blinking model and synchronization in
small-world networks with a time-varying coupling. Physica D: Nonlinear Phenomena,
195(1):188–206, 2004.

100. M. Porfiri. Stochastic synchronization in blinking networks of chaotic maps. Physical
Review E, 85:056114, 2012.

101. Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE Transactions on
Automatic Control, 50(11):1867–1872, 2005.

102. N. Abaid, I. Igel, and M. Porfiri. On the consensus protocol of conspecific agents. Linear
Algebra and its Applications, 437(1):221–235, 2012.
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