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Abstract: Images, texts, voices, and signals can be synthesized by latent spaces in a multidimensional
vector, which can be explored without the hurdles of noise or other interfering factors. In this paper,
we present a practical use case that demonstrates the power of latent space in exploring complex
realities such as image space. We focus on DAVINCIFACE, an AI-based system that explores the
StyleGAN2 space to create a high-quality portrait for anyone in the style of the Renaissance genius
Leonardo da Vinci. The user enters one of their portraits and receives the corresponding Da Vinci-style
portrait as an output. Since most of Da Vinci’s artworks depict young and beautiful women (e.g., “La
Belle Ferroniere”, “Beatrice de’ Benci”), we investigate the ability of DAVINCIFACE to account for
other social categorizations, including gender, race, and age. The experimental results evaluate the
effectiveness of our methodology on 1158 portraits acting on the vector representations of the latent
space to produce high-quality portraits that retain the facial features of the subject’s social categories,
and conclude that sparser vectors have a greater effect on these features. To objectively evaluate
and quantify our results, we solicited human feedback via a crowd-sourcing campaign. Analysis
of the human feedback showed a high tolerance for the loss of important identity features in the
resulting portraits when the Da Vinci style is more pronounced, with some exceptions, including
Africanized individuals.

Keywords: latent space density; industrial survey; Isometric Mapping (ISOMAP); StyleGAN2; model
bias; qualitative and quantitative analysis; dimensionality reduction

1. Introduction

Machine Learning is mainly seen as a method of computing approximate functions
that link data (input) with a label (output) to solve tasks that previously could not be
solved by a human or a traditional algorithm. Deep learning has shifted the focus from
approximate functions to latent spaces and how the approximate functions embed the data
into these spaces through their parameters. Tuning the parameters of the approximate
functions (e.g., approximating the model weights) is conducted by training the model,
which is driven by the loss function of the task calculated from the labels. However, from
an application perspective, the real goal is to create a latent space of data representation
that provides a numerical/vectorial representation that effectively supports a particular
machine learning task.

Although the meaning of latent is “existing but not yet manifest”, latent space is depen-
dent on the context in which the term is used in different domains. Latent space generally
refers to a space that is not tangible but is inferred or explored from the observed data.
However, in machine learning (ML), latent space refers to a multidimensional numeri-
cal space (usually lower-dimensional than the original data space) that models the data
under analysis.

More specifically, each layer within an ML model learns how to build its own latent
space to represent or embed the data while retaining as much information about the data
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structure as possible. These spaces, once created, can later be used to explore the data
properties and the underlying geometry of the manifold on which the data lives [1]. Much
of the research has focused on investigating how exactly such a geometry represents the
original data space (cf. [2–5]); others directly investigate the relationship between the
latent data representation (embeddings) to obtain a better model of the data distribution
(cf. [1,6,7]). However, both approaches have been used in various applications, e.g., anomaly
detection (cf. [8]), data augmentation (cf. [9]) and data manipulation (cf. [10]), explainability
(cf. [11]) as well as text and image generation (cf. [12,13]).

Recently, many large language models (LLMs) (e.g., generative pre-trained Trans-
formers (GPTs) [14]) have used a latent space in which the relationships between words
(tokens) are very precisely tuned to a variety of different contexts. Previously, image-based
latent representations have been extensively studied. The leading examples are generative
adversarial networks (GANs) ([15]) and variational autoencoders (VAEs) [16], where the
former have demonstrated a high capability in generating and creating non-existent but
realistic data, while the latter are still superior in terms of computational and time costs. In
any case, the exploration and interpretation of such latent spaces are not trivial.

Although latent spaces embed real-world data in a low-dimensional space, this space
is usually not low-dimensional enough to be easily analyzed (e.g., GPT has an embedding
vector with 12,288 dimensions and the latent space of StyleGAN2 consists of 18 × 512);
thus, dimensionality reduction techniques are required in such cases to better highlight the
underlying data relationships.

In this work, we address a social-specific challenge in the DAVINCIFACE application
(described in Section 3.1), namely to generate a Leonardo da Vinci-style portrait for each
person. In our study, we analyze the ability of DAVINCIFACE to correctly perform portrait
generation in terms of gender, age, and race. To this end, we thoroughly analyze the latent
image space of StyleGAN2 on a dataset of 1158 human face images by first applying a
dimensionality reduction technique (namely ISOMAP [17]) to visualize the dataset and
investigate the density of latent vectors. Our study highlights the behavioral differences
between sparse and dense representations of human features. We then present the detailed
results of an industrial survey we sent to users of the application, which highlights potential
biases related to gender and race.

The main contributions of this paper are the following:

1. The extension of DAVINCIFACE portraits to evaluate its capability to generate portraits
for different social categories in the style of the Renaissance genius Leonardo da Vinci,
and the demonstration of the effectiveness of latent space to support this goal.

2. A qualitative and quantitative analysis of a significant number of portraits to provide
clear evidence of the effectiveness of our methodology in using DAVINCIFACE to
create high-quality and realistic portraits in terms of diversity of facial features (e.g.,
beard, hair color, and skin tone).

3. Analyzing user feedback collected via a survey on the performance of DAVINCIFACE

using a scale of identity vs style trade-off settings, including subjects with diversity
regarding gender, race, and age. Where a high tolerance for the loss of identity features
is observed in general to preserve more style features.

The remainder of this paper is organized as follows: The literature review is discussed
in Section 2, the presentation of our methodology is discussed in Section 3, the obtained
results are discussed in Section 4, and the discussion and conclusion are discussed in
Sections 5 and 6, respectively.

2. Related Work

Here, we discuss the current state of research on the use of artificial intelligence (AI)
in art and its acceptance in the community of artists and non-artists. We then explain
the latent spaces and dimensionality reduction techniques and possible forms of biases in
AI models.
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Artificial intelligence for art: Visual AI applications for art generation and style transfer.
With the unprecedented success of AI-based solutions in almost all areas of life, art is no
exception. AI is used not only for analysis, authorship identification, or forgery detection
but also for creative generation and style transfer (cf. “Creating Art with AI” [18], “AI art
in architecture” [19], and “Can Computers Be Creative” [20]). Recently, many AI-based
art applications have emerged, but not all have been well received by critics or even non-
experts; therefore, some critical studies and reviews have been developed (cf. [21–24]).
The style transfer approach is an active field of research not only in art (cf. [25,26]), but
also in text processing [27], medical cancer classification [28], and in videos [29]. In this
paper, we investigate the main features of an existing application that creates Da Vinci-style
portraits by conducting an online survey among the users of the application, distinguishing
art-related backgrounds, gender, and age.

Latent spaces and density. A latent space is mainly concerned with how the model layers
represent the data in it. Therefore, studying the characteristics of this space is crucial in
most real-world applications. By learning such characteristics, tasks such as classification,
prediction, or even generation become clearer and easier [1]. The most studied latent spaces
are those generated by either generative adversarial networks (GANs) [15] or variational
autoencoders (VAEs) [16]. However, GAN-based spaces are not only used intensively for
the generation and manipulation in computer vision applications ([13,30]), but also for
medical data, sensors, multi-modal data, and others (cf. medical image synthesis [10],
brain imaging [31], collocating clothes [32], cross-modal image generation [33], and a built
environment [34]). For example, the latent space StyleGAN2, first proposed in [35] and
improved in [36], is one of the most widely used pre-trained models for generating realistic
faces from noise, for which its ability to learn unsupervised high-level attribute separation
(e.g., pose) [37] has been demonstrated. StyleGAN usually requires task-specific training
for different tasks, but in terms of image manipulation and editing tasks, it produces high-
quality and realistic generations, which has encouraged many researchers to propose tools
to detect the generated fake photos to limit misuse and forgery (cf. [38,39]). In this work,
we dive deep into the latent space of StyleGAN2 to visualize, analyze, and observe how
the representations of the data in this space are either sparse or dense.

Dimensionality reduction. Although GAN-based frameworks reduce the dimension-
ality of high-dimensional input data to their latent spaces [12], the dimensions of these
spaces are not low enough to be analyzed by humans (e.g., the latent space of StyleGAN2
is 18 × 512 [36]). Some research has proposed to apply clustering and data exploration
techniques within the latent representation to better understand these spaces and dis-
entangle the original data features (cf. embedding algorithm [40], attribute editing and
disentanglement [41], clustering [6], interpretability and disentanglement [42], latent space
organization [43], and disentanglement inference [44]); others use traditional non-linear
dimensionality reduction (cf. [25,45]). Non-linear dimensionality reduction techniques are
used for numerous purposes, e.g., for feature extraction [46], data visualization [47], pat-
tern recognition [48] or even as a pre-processing step [49]. Isometric mapping (ISOMAP),
discussed in [17], is one of the timeless algorithms of nonlinear projection-based algorithms
that focus on global structure. More recent algorithms preserve more information in the
reduced dimensions when the local geometry is close to Euclidean geometry, such as
t-distributed stochastic neighbor embedding (t-SNE) [50] and uniform manifold approxi-
mation and projection (UMAP) (cf. [51,52]). In this work, we use ISOMAP to visualize the
latent space of StyleGAN2 as it can understand the global structure of the data.

Bias of AI models (in human images). Biases in AI [53] can generally be due to either a
bias in the data or in the model processing. The latter is not easy to detect as the decision of
the model is not readable by humans, making the detection and characterization of bias
challenging. The bias in the dataset can be caused by the labeling of the data, which is a
subjective task [54]. The bias of the model in photo-based systems and its mitigation are
studied in depth in face recognition with an in-depth analysis of bias related to gender or
race (cf. [53–58]). However, in style transfer applications (see [59–61]), a different type of
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bias occurs. This bias may be related to the photos of the reference style, and so far the
style features cannot be completely separated from the subject presented in the reference
to be transferred without compromising the identity of the new subject. In this paper, we
investigate bias in the application of DAVINCIFACE focusing on gender and race aspects
(see Sections 4.3 and 4.4 for our analysis).

Exploring latent space for artistic or human face applications. In [62], the researchers
implemented DeepIE (deep interactive evolutionary) with the style-based generator of a
StyleGAN model to generate visual art from the fusion of two original works, and they
collected subjective ratings through a questionnaire. However, they were concerned with
visual art in general and did not focus on human portraits or the model’s bias toward social
categories. On the other hand, the work of [63] develops a tunable algorithm to mitigate
the hidden biases in the training data of human faces in a variational autoencoder-based
model, while our analysis deals with GAN-based models for artistic applications. Ref. [64]
investigates the entanglement problem using the InterFaceGAN framework on StyleGAN2
to improve the quality of the synthesized images, while our work focuses on the artistic
application DAVINCIFACEand the specific features concerning social categories. The idea
of analyzing the effect of latent spatial representations in preserving specific features of
human faces, especially the beard, for use in artistic portraits has been preliminary intro-
duced before in [25]. The methodology outlined in this paper constitutes a substantial
advancement from [25], introducing: (1) the setup process for configuring the application
to create Da Vinci-style portraits, (2) the establishment of a pipeline for gathering human
feedback alongside its corresponding subjective evaluation, (3) an extensive experimental
assessment aimed at comprehending how latent representations encapsulate portrait fea-
tures, with a nuanced focus on examining socially specific challenges concerning race, age,
and gender, and (4) the execution of a crowd-sourcing survey to collect feedback regarding
DaVinciFace’s capacity to generate high-quality portraits within an artistic framework.

3. Methodology

In this section, we present the materials and methods we used in our research. The
methodological approach is characterized by: (1) First, we describe the main components
of the application DAVINCIFACE (detailed in Section 3.1), an existing application used to
generate a Da Vinci-style portrait. Then, (2) we describe how we used its encoder and
decoder in exploring the StyleGAN2 latent space to find better configurations and settings
for the mixture between the subject and the style photos (detailed in Section 3.2), resulting
in a collection of different possible settings. Finally, (3) we evaluate these settings through
a crowd-sourcing survey to collect human feedback. In doing so, we ask for feedback on
the output generated by the application with different celebrities and test cases as subject
inputs (detailed in Section 3.3).

3.1. DAVINCIFACE Application

DAVINCIFACE is a software registered with the SIAE (Italian Authors and Publishers
Association)—www.davinciface.com) is a system developed by Mathema—an innovative
SME (small- to medium-sized enterprise) based in Florence, Italy—DAVINCIFACE is a
software registered with the Italian Authors and Publishers Association (SIAE) developed
by Mathema s.r.l. (an innovative SME based in Florence, Italy) and available online:
www.davinciface.com (accessed on 27 June 2024). DAVINCIFACE aims to create a portrait
in the style of Leonardo da Vinci from a photograph of a human face. The main steps,
shown in Figure 1, are as follows: (1) Projecting the photograph of the person’s face into the
latent space using the latent space of StyleGAN2 [36]. (2) Blending with the latent vector
of the style reference photo. (3) Generate a photo of the resulting vector showing a Da
Vinci-style portrait of the person.

StyleGAN2 latent space, proposed in [36], is an improved version of StyleGAN [35] that
maps the input photo to a latent space W with 18 different vectors with 512 features each.
As described in [35], the first four vectors correspond to higher-level aspects such as pose,

www.davinciface.com
www.davinciface.com
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general hairstyle, face shape, and glasses, while the colors of eyes and hair, lighting, or
finer facial features are not modeled. The second four vectors model smaller facial features,
hairstyle, and open/closed eyes, and finally the remaining vectors mainly provide color
scheme and microstructure. Although StyleGAN’s latent space is considered disentangled
and produces high-quality photos, this disentanglement is not yet complete in terms of the
individual vectors. Figure 2 shows two subject examples with all possible combinations
of blending their latent representations with the representation of the reference image
generated by DAVINCIFACE.

Encoder Decoder

S
tyle

Subject photo Portrait in Leonardo 
Da Vinci style

Figure 1. DAVINCIFACE. Main components—general view.

Default Settings
Subject 
photos

Reference 
photo

V0

+ V1

+ V2

+ V3

+ V4+ V5+ V6+ V7+ V8+ V9+ V10+ V11+ V12+ V13

+ V4+ V5+ V6+ V7+ V8+ V9+ V10+ V11+ V12+ V13

V0

+ V1

+ V2

+ V3

+ V14

+ V15

+ V16

+ V14

+ V15

+ V16

Studied 
area

Figure 2. Two examples showing the possible settings when blending two image representations in
the StyleGAN2 latent space (the subject and the reference image), highlighting the default settings of
DAVINCIFACE and the area of the study.

In DAVINCIFACE default settings, led by [35], the first 8 vectors must necessarily come
from the subject. The DAVINCIFACE application, therefore, takes the first eight vectors from
the subject, while the remaining vectors come from the style photo (see the default settings
in Figure 2). Table 1 shows six subjects with their portraits using these default settings.
During the course of using the application, some users commented that the self-portraits
they created did not look like their original photo and that they could not consider the
portrait as their own, which drew attention to the trade-off between style and identity
preservation in such an application. In this paper, we focus on the middle vectors from the
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9th to the 12th vectors (from vector 8 to vector 11, starting from 0, see the examined area
in Figure 2) to further investigate the entanglement of face- and identity-specific features.
The methodology described in Section 3.2 makes it possible to identify the most effective
configurations that can be set in DAVINCIFACE, while the survey (described in Section 3.3)
made it possible to identify the best image among them according to the users.

Table 1. Examples of the original images of the subjects in the first row with the DAVINCIFACE

portraits, using the default settings, for each in the second row.

Original
Portraits

Default Settings
of

DAVINCIFACE

3.2. Parameter Setting

Figure 3 shows our steps for selecting the most effective configurations for creating
Da Vinci-style portraits with respect to the different social categories of the subject. To
investigate and explore the latent space of StyleGAN2, we collected and manually labeled
a dataset of 1158 photos (detailed in Section 4.1), which includes 744 (64.25%) male and
414 (35.75%) female subjects. We then used the DAVINCIFACE encoder to project them
into the latent space of StyleGAN2. We examined the latent representations (consisting
of 18 vectors, each representing 512 features) of these photos by first visualizing each
vector using a nonlinear projection technique (namely ISOMAP) and then computing
the density of the resulting two-dimensional spaces. We found a large variation in the
vector distributions, especially in the density, with some vectors being significantly sparser
than others. Choosing different configurations to include either sparse or dense vectors,
and projecting the photos of mixing led by these configurations using the DAVINCIFACE

decoder, show the higher effect of sparse vectors on identity preservation.

Encoder of 
DaVinci 

Application

Decoder of 
DaVinci 

Application 
with 

different 
settings

Photos 
Dataset

Encoder of DaVinci 
Application

Visualization with 
ISOMAP

Density 
Calculation

Setting 
Configuration

18x512

…

1,158

1,158

18 diagram
 for 1,158 vectors in 2d

…

From style

Projections 
with Style

Methodology

Figure 3. The methodology for selecting the most effective configurations to generate Da Vinci
style portraits.
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3.3. Survey Design

Since the evaluation of the preservation of style and identity features is very subjective,
it requires a subjective evaluation approach. To this end, we rely on a survey tool that
allows us to collect human opinions and evaluate some specific aspects to quantify the key
aspects of the data-driven applications. Collecting subjective opinions could lead to a more
objective view following the method discussed in [22,24]. We conducted a crowd-sourcing
evaluation (see Figure 4) by designing and launching a survey that was sent to DAVINCI-
FACE users to collect their subjective feedback. The aim of the survey was to collect both
quantitative and qualitative data to answer the following questions:

RQ1. Is the current version of DAVINCIFACE able to sufficiently preserve the identity of the
test subject?

RQ2. Is there a better trade-off between style and identity preservation than the current version of
DAVINCIFACE to provide a better portrait?

Projections using DaVinci 
Application

With different settings selected 
through the proposed Methodology

Survey Design
(Select settings)

Crowdsourcing Human 
Feedback

Selected 
subjects

Figure 4. The pipeline for capturing human feedback and conducting a subjective evaluation.

Figure 4 shows different settings for mixing the subject and the style vectors in order to
embed different ratios of identity and style features and we generated the corresponding Da
Vinci-style portraits. We selected celebrities and non-celebrities with different characteristics
in terms of gender, race, and age. And then, we promoted the survey and gathered feedback
from 360 users.

Survey Content. To answer the above research questions, the survey included the
following:

1. To address RQ1, the survey presents portraits of celebrities with the default settings
and asks participants to select those they can recognize. By asking the user to select
all recognized celebrity portraits, we can measure identity preservation in the default
settings. However, the use of celebrities in a particular domain may influence the
recognition of the celebrity itself. We selected eight celebrities from different fields and
social characteristics, namely Maria Sharapova, Roberto Benigni, Edith Piaf, Freddie
Mercury, Lucy Liu, Morgan Freeman, Billie Eilish, and Johnny Depp (see Figure 5).

2. To address RQ2, the survey presents different portraits created with different settings
for the selected subjects, using the original image as a reference. By asking the user
to select the best portraits, we can identify the best settings for the trade-off between
style and identity preservation. We selected eight subjects (see Table 2), including four
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different celebrities with different fields and social characteristics (namely Monica
Bellucci, Luciano Pavarotti, G-Dragon, and Barack Obama) and four other test cases
(an example is shown in Figure 6).

Figure 5. The survey question to address RQ1, where users were asked to select all recognized
celebrities from eight Da Vinci portraits of (starting from top left) Maria Sharapova, Roberto Benigni,
Edith Piaf, Freddie Mercury, Lucy Liu, Morgan Freeman, Billie Eilish, Johnny Depp. The celebrities
were selected to cover different social categories, nationalities, and fields of activity.

Table 2. The subjects of the survey were four different celebrities (Monica Bellucci, Luciano Pavarotti,
G-Dragon, and Barack Obama) and four other non-celebrities test subjects. The subjects were selected
to include different social categories, such as female and male, bearded and non-bearded men, light
and dark hair and skin, as well as different races and age groups.

Monica Bellucci Luciano Pavarotti G-Dragon Barack Obama

Test Case 1 Test Case 2 Test Case 3 Test Case 4
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Figure 6. Examples of the 8 questions to address RQ2, which include test case 3, starting with the
original photo, and then 4 different options with different settings that gradually increase the identity
as the style preservation decreases.

Survey Design Validation. With the ultimate goal of designing and distributing an
effective survey (similar to the authors in [65,66]), we evaluated the survey content with
the support and feedback of a group of 19 domain experts. In detail:

• Instrumentation: In designing this survey, we conducted a pilot survey with 19 partic-
ipants to help us determine the extent to which the questionnaire was understandable
and complete. Participants had the opportunity to give their feedback on the question-
naire in terms of wording, clarity, and presentation.

• Selection of participants: Participants took part in the survey voluntarily.
• Maturation: Risks of fatigue or boredom were not considered as the average comple-

tion time was 3:44 min.
• The representativeness of the participant population was ensured by sending the

survey to all users of the DAVINCIFACE.

4. Results

In this section, we discuss our experimental results to better understand how the
latent representations embed the characteristics of the analyzed data, to address social-
specific challenges related to racial, age, and gender diversity. To this end, we first describe
the dataset and the corresponding latent representations in the Sections 4.1 and 4.2. The
discussion of the effects of some representations on the projected portraits (generated with
the application DAVINCIFACE) in terms of gender and other characteristics is presented
in Section 4.3, while the analysis of the crowd-sourcing survey to collect feedback in an
artistic context is answered in Section 4.4.

4.1. Dataset and Latent Representations

We used a dataset of 1158 input images from the test environment of the applica-
tion DAVINCIFACE with the corresponding latent vectors (18 × 512 each). The dataset
is protected by copyright and, therefore, cannot be published. However, it consists of
images of faces used in the first steps of creating and testing the application. The image is
pre-processed with the two most important steps before projection:

• Human face detection: using a pre-trained model on the FFHQ dataset available on
paperswithcode.com/dataset/ffhq (accessed on 14 May 2022) that extracts the most
distinct face in the image;

• Centering and cropping the detected face in a square frame with the dimensions
1024 × 1024.

The projection into the latent space of the pre-trained model StyleGAN2 is performed
in reverse order, starting with a random latent vector, generating the image, calculating
the pixel-wise loss between this image and the original, and optimizing the latent vector,

paperswithcode.com/dataset/ffhq
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which is repeated for 1000 iterations. The output for each image consists of 18 vectors, each
with a length of 512. For all results reported in this paper, we normalized the mixed vector
in the latent space before creating the image, and we used a variance proportion of 0.4%.

4.2. Dimensionality Reduction and Density Calculation

We used ISOMAP to visualize each vector distribution in two-dimensional space to
examine the effects of each vector—in terms of its density—on the output to detect any
disentanglement between the images under study and their representation in latent space.
Tables 3 and 4 show the ISOMAP representations of the 18 vectors of the latent vectors
of the points in the dataset using the scatter plot and the kernel density estimation plot,
respectively (count starts at zero). The differences in the distributions can be clearly seen in
Table 3. Some vectors are sparser than others (e.g., vectors 2 and 15), others are very dense
around zero (e.g., vectors 5 and 6).

Table 3. ISOMAP reduction of the 18 vectors in two dimensions visualized by the scatter plot.

Vector 0 Vector 1 Vector 2

Vector 3 Vector 4 Vector 5

Vector 6 Vector 7 Vector 8

Vector 9 Vector 10 Vector 11
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Table 3. Cont.

Vector 12 Vector 13 Vector 14

Vector 15 Vector 16 Vector 17

Table 4. ISOMAP reduction of the 18 vectors in two dimensions visualized by the kernel density
estimate plot.

Vector 0 Vector 1 Vector 2

Vector 3 Vector 4 Vector 5

Vector 6 Vector 7 Vector 8
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Table 4. Cont.

Vector 9 Vector 10 Vector 11

Vector 12 Vector 13 Vector 14

Vector 15 Vector 16 Vector 17

Furthermore, Table 4 shows that the density within the sparse vectors is not uniform.
While vector 2 has approximately one central dense region, vector 15 has 3 regions. Within
these vectors, we found that the coarse features (the first 5 vectors) and the fine features
(the last six vectors) are sparser, while the middle vectors are relatively dense (except for
vector 8), suggesting that sparse vectors may entangle more distinguishable features, while
dense vectors embed the general human features. This motivates us to further investigate
the effects of sparse and dense vectors on the creation of the resulting image. Since ISOMAP
tends to learn the manifold of the original data and preserve the geometry [49], this gives
us evidence that the features in the StyleGAN2 space not only have a local geometry but
also a global geometry.

To obtain a quantitative measure of the density of the vectors, we calculate the average
distance between the data points, as shown in Table 5. First, we reduce the dimensions
of the individual vectors from 512 to two each using ISOMAP and then calculate the
average Euclidean distance between the resulting two-dimensional representations. Table 5
underpins the previous discussion, so we can see the large difference in the average distance
between the sparse and dense vectors (the minimum is vector 6 at 5.42 and the maximum
is vector 3 at 49.73).

The full disentanglement of these vectors is still ongoing and the analysis is mainly
based on the results discussed in [35], where the initial vectors are for pose and coarse
features, gradually moving to fine features and style. However, gender, race, and age are
distributed throughout the vectors as they are based on different facial and style features.
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Table 5. ISOMAP visualization of the density of the 18 vectors, calculated by the mean Euclidean
distance. The underlined numbers stand for a higher mean distance, which indicates a sparser
distribution.

Vector 0 Vector 1 Vector 2 Vector 3 Vector 4 Vector 5

39.43 49.18 45.37 49.73 48.80 5.89

Vector 6 Vector 7 Vector 8 Vector 9 Vector 10 Vector 11

5.42 7.02 35.96 6.36 10.95 6.17

Vector 12 Vector 13 Vector 14 Vector 15 Vector 16 Vector 17

23.92 11.70 26.86 23.45 19.30 18.95

4.3. The Effect of Sparse Vectors

To better understand the effect of vectors on human facial features, we show the
images resulting from blending the subject image with the style image using different
settings and analyze the difference. As mentioned in Section 3.1, we focus on the middle
vectors from vector 8 to vector 11 to investigate the social-specific feature entanglement.

Compared to the default settings of DAVINCIFACE which can be seen in Table 1,
bearded or mustachioed males obtain less or almost no bearded/mustachioed portraits, and
in general all examples lose important identity features such as eyebrow shape, cheekbones,
and chin structure as well as lip and nose type. In particular, the square face shape, the
very light eyebrows, the double lower eyelid, the Greek nose, and the corners of the mouth
are strongly influenced by the reference photo of Da Vinci’s masterpiece, the famous Mona
Lisa. This has also been commented on, in rare cases, by users of the application who noted
the lack of self-representation in the resulting portraits, which can be self-referential and
subjective. However, we reduce self-involvement by using the subjects (celebrities or not)
to provide subjective feedback, but with some self-detachment in the judgment.

Table 6 compares six examples, starting with the subject image on the left, then the
portrait with the default settings (vectors 0 to 7 from the subject image and the rest from the
style image), and then continuing to the right, with each time adding another vector from
the subject image instead of the style image (using the same subjects from Table 1). The
effect of vector 8 is immediately apparent in the identity and gender features such as the
beard and mustache in the male portraits and hair color and makeup in the female portraits.

However, adding more vectors (to the right) has a slight effect on increasing the
identity features, and the style is gradually lost as the colors are lightened and changed. In
addition, not only are the identity features clearer in the male portraits, but the individuals
also tend to become younger toward the right. In the female examples, on the other hand,
the light eye and hair color in the second example are more clearly visible, as is the light
skin color in the sixth example and the dark skin of the fourth example. Our original aim is
to enhance the identity while retaining the Da Vinci style as much as possible.

If we focus more on the effect of vector 8, it is expected to embed more distinctive
features due to its low density compared to the other vectors (as explained in Section 4.2).
Table 7 shows the two test cases (cases 1 and 2) and another five examples of bearded and
blond subjects. In the first row, the first 12 vectors of the subject, including vector 8, are
compared (with the same settings as in the last column Table 6), and in the second row, the
same settings are kept, but vector 8 from the style image is used instead. The absence of
this vector has a significant effect on the hair color and beard, but also on the chin, face
shape, and eye type. However, other features such as eyebrow shape, nose type, and lips
are not as strongly affected. We conclude that this sparse vector has a greater influence on
identity and gender features than the other dense vectors. However, it is not the only one.
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Table 6. Compare the results of the style transfer. From left to right: the subject image (original), the
default settings, add vector 8, add vector 9, add vector 10, add vector 11.

Subject Default settings +Vector 8 +Vector 9 +Vector 10 +Vector 11

Table 7. The effect of vector 8 on identity and gender features on test cases 1, 2, and 5 further examples
of bearded and blond-haired individuals to generalize our results. First row: the first 12 vectors are
from the subject including vector 8; second row: the first 12 vectors are from the subjects, excluding
vector 8.
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4.4. Survey Results

We evaluate our results using a crowd-sourcing survey. The survey was advertised
for one month, conducted online, and sent to all users of the application. Out of 525 total
views, 370 completed the survey and 9 started it without completing it. This results in a
participation rate of 72.2% and a completion rate of 97.6%, with an average completion
time of 3:44 min. We used SurveyHero (www.surveyhero.com (accessed on 27 June 2024) is
a software for designing, collecting, and analyzing survey responses) to design the survey
and collect the responses. Figure 7 shows the population pyramid of participants in terms
of age range and gender, male in orange and female in purple.

Figure 7. Population pyramid of participants shows the number of male (in orange) and female (in
purple) participants for each age group.

The demographic and background information on the participants is as follows:

• Gender perspective, out of 360 responses: 224 (62.22%) are men, 129 (35.83%) are
women and 7 (1.94%) preferred not to answer.

• Age perspective: Out of 360 responses, 39.44% of participants belong to the age group
(31–45), followed by 28.89% in the age group (46–60), 18.33% are older than 61 and
13.33% are younger than 30.

• Art-related background: Most users are interested in art (56.82%), followed by people
not related or are not interested in art (21.17%), while professional artists and art
students represent 16.71% and 5.29% respectively.

The results of the survey on research question 1 (RQ1) (whether the default setting
sufficiently preserves the subject’s identity) are shown in Figure 8, which shows that
the highest recognition was given to Lucy Liu, followed by Freddie Mercury and then
Roberto Benigni.

In order to address research question 2 (RQ2) mentioned in Section 3.3 (i.e., finding a
better trade-off between style and identity preservation than the default settings), the survey
contained 8 questions presenting four different celebrities (i.e., Monica Bellucci, Luciano
Pavarotti, G-Dragon, and Barack Obama) and four additional test cases (see Table 2). Each
question contains the photo of the corresponding subject with the following four settings:
(a) default settings; (b) add vector 8 from the original image; (c) add up to vector 10 from

www.surveyhero.com
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the original image; (d) add up to vector 11 from the original image; (see Figure 6 as an
example). The user can select the most favorable alternative from the various alternatives.

Figure 8. RQ 1: Number of positive responses (preserving the identity of the test subjects) for each
selected test subject. The percentage indicates the number of users who recognized the celebrity
divided by the total number of responses to this question (the total number of responses was 167).

Table 8 shows the statistics of the selected options for the 8 subjects. According to the
responses, the default version (which has the most style) is chosen most often, although
identity preservation is the least favorable. More specifically, the percentage of default
settings increases when the subject is a brunette female (Monica Bellucci with 67.93% and
test case 4 with 57.49%), while it decreases for bearded males (test case 1 with 31.21% and
Luciano Pavarotti with 43.84%). However, the default settings are no longer the preferred
option if the test subject is not Caucasian (G-Dragon with a majority of 38.15% for option
(b), Barack Obama with a majority of 28.86% for option (d), and test case 3 with a majority
of 31.14% for option (b)).

Table 8. Detailed statistics on the participants’ responses to the 8 survey questions, in bold is the
highest percentage for each subject. The options are (a) default settings, (b) add to vector 8 from the
original image, (c) add to vector 10 from the original image, (d) add to vector 11 from the original
image.

Subject Description 1 Total Option a Option b Option c Option d
Responses (Default) (+Vector 8) (+Vector 10) (+Vector 11)

Monica Bellucci Woman, Brunette 343 67.93% 10.79% 9.62% 11.66%
Luciano Pavarotti Bearded man, Caucasian 349 43.84% 23.78% 15.19% 17.19%
G-Dragon Man, Asian 346 35.84% 38.15% 13.01% 13.01%
Barack Obama Man, African 350 26% 16.57% 28.57% 28.86%
Test case 1 Bearded man, Caucasian 346 31.21% 25.43% 22.83% 20.52%
Test case 2 Woman, blonde 352 45.74% 11.65% 23.30% 19.32%
Test case 3 Woman, African 167 30.54% 31.14% 18.56% 19.76%
Test case 4 Woman, Brunette 167 57.49% 20.96% 10.78% 10.78%

1 The descriptions of the subject’s images are our subjective opinions to categorize the subjects under diversity aspects.

Tables 9 and 10 show the most selected option for the same subjects, but grouped
by art-related background and the stated gender identity of the participants respectively.
Grouping by participant information shows more detail about each group’s responses and
eliminates the effect of the majority group’s dominance on the overall result.
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Table 9. Detailed statistics of the answers to the 8 questions of the survey, grouped by art reference.
The options are (a) default settings, (b) add vector 8 from the original image, (c) add up to vector 10
from the original image, (d) add up to vector 11 from the original image.

Art-Related Monica Luciano G-Dragon Barack Test Case 1 Test Case 2 Test Case 3 Test Case 4

Professional artist a (65%) a (43%) a (43%) c (37%) a (32%) a (49%) c (31%) a (45%)
Art student a (61%) a (58%) b (44%) c (32%) b (56%) a (37%) b (50%) a (70%)
Interested in art a (72%) a (44%) b (41%) d (32%) a (32%) a (47%) a (39%) a (59%)
Not related to art a ( 64%) a (37%) a (38%) c (34%) b (32%) a (41%) b (33%) a (60%)

Table 10. Detailed statistics of the participants’ answers to the 8 questions of the survey, grouped by
gender. The options are (a) default settings, (b) add vector 8 from the original image, (c) add up to
vector 10 from the original image, and (d) add up to vector 11 from the original image.

Gender Monica Luciano G-Dragon Barack Test Case 1 Test Case 2 Test Case 3 Test Case 4

Female a (72%) a (52%) a (39%) a (28%) a (29%) a (53%) a (40%) a (64%)
Male a (66%) a (39%) b (37%) d (30%) a (32%) a (42%) b (31%) a (53%)

In Table 9, the majority group is interested in art (56.82%), and the dominance of this
group clearly affects the final results in the cases:

• For G-Dragon, two other groups chose option (a), and the majority chose option (b);
• For Barack Obama, all other groups chose option (c), and the majority chose option (d);
• For test case 1, two other groups chose option (b), and the majority chose option (a).

On the other hand, the majority group could not dominate in test case 3, although
their choice was option (a).

In Table 10, the majority of the group is male (62.22%). We can see the dominance of
this group in all cases, as the female group chose option (a) for all subjects. The reason why
the female group chose more styles for all subjects is not clear. However, we can assume
that females prefer artistic output or that the participants are mainly concerned with art.

5. Discussion

A crowd-sourcing survey was advertised for one month, conducted online, and sent to
all users of the application. Of the total of 525 total views, 370 users completed the survey.
We were able to analyze the performance of DAVINCIFACE using a scale of attitudes toward
identity and style compromise that included subjects of different genders, races, and ages.
The results of the survey are not to be expected. It turned out that the use of DAVINCIFACE

with celebrities or even with non-celebrities where the user is not personally involved in the
portraits allows more tolerance for the loss of important identity features while retaining
more style. In addition, the audience of DAVINCIFACE is mainly interested in art, artists, or
art students, which might justify the skew of results toward more style in general.

Identity preservation: When users were asked to recognize celebrities portrayed with
DAVINCIFACE, Figure 8 shows that the most frequently recognized celebrity is Lucy Liu,
followed by Freddie Mercury and then Roberto Benigni, although we can attribute these
celebrities to the age majority of participants. The low percentage of recognition for young
celebrities such as Billie Eilish is as expected, but we can say that DAVINCIFACE might have
more recognition if it is a celebrity in general. The low recognition of Maria Sharapova as a
celebrity in sports can also be explained by the fact that the audience is more interested in
art. However, the case of Morgan Freeman is the most interesting, as he is internationally
known and has a longer career. The reason for the low percentage of recognition could
point to the bias of the DAVINCIFACE toward subjects of African descent.

Identity/style trade-off : The results of the other eight questions (Tables 8–10) show that
participants generally chose to maintain the Da Vinci style even if it meant losing identity
features. This is particularly evident when the subject is a Caucasian Female (Monica
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Bellucci, test cases 2 and 4) (see Tables 8 and 9). However, further analysis based on the
participant’s stated gender identity (Table 10) shows that the first option for Females retains
most of the style, regardless of the subject’s characteristics. The reason for this bias toward
option (a) (more style) cannot be determined, whether due to a bias of the model toward
female subjects, due to the fact that Da Vinci’s works contained mostly female subjects, or
due to the fact that the identity is somehow preserved in this particular case.

Social perspective: For individuals with darker skin tones (e.g., Barack Obama and
test case 3), option (a) is not consistently preferred across all groups, as mentioned above.
It is still crucial to maintain distinctive identity characteristics, even if stylistic nuances
are gradually softened. This also applies to personalities such as Morgan Freeman. The
reason for this—whether it is the loss of identity features (such as the lower eyelid, nose,
and lip shape) or the fact that participants are unfamiliar with Da Vinci’s style, which is
synonymous with such distinct features—is not yet clear. Furthermore, since the changes
in skin color affect all subjects influenced by the style’s color palette, the effect could
be more pronounced in those with darker skin tones. Further analysis is required to
determine whether this bias stems from the training data used in StyleGAN2 or from
the DAVINCIFACE application. In contrast, for the bearded man (e.g., Luciano Pavarotti
and test case 1), option (a) is typically—but not always—preferred. Although Da Vinci’s
style did not traditionally include a beard, participants often favored this style over more
masculine features, especially the beard.

However, we can conclude that the highest bias of the model toward the reference
photo is observed in people of African race according to our participants. A lower bias is
observed for bearded males, while Caucasians and Asians, especially females, were also ac-
cepted by the participants with a less identity-preserving but more style-preserving option.

6. Conclusions

In this paper, we presented the exploration of the latent space of StyleGAN2 by
analyzing it from the perspective of social features. We concluded that sparse vectors
have a greater effect on these features. To evaluate our results, we conducted a survey
that we sent to the users of DAVINCIFACE to collect their feedback, and we collected
360 responses. We demonstrate the analysis of these responses and find that the crowd-
sourcing application maintains style even when identity or gender-specific features are lost,
with the exception of African individuals.

The main limitation in generalizing these results is the subjective opinion of partici-
pants, especially if they are not related to or interested in art. Another known limitation
is that surveys are best suited to show trends. In addition, the survey was only sent to
users who have already tried DAVINCIFACE before, which can lead to a personal bias
based on previous experiences. These results will be taken into account when designing
the next version of the survey with new industry and research questions to appeal to a
wider audience. Another approach to exploring the latent space is to use a reinforcement
agent that aligns with the survey results to create the “perfect” portrait.

As a next step, we plan to develop strategies to improve the DAVINCIFACE features
and mitigate biases in both the dataset and the corresponding AI application, especially
biases affecting individuals with darker skin tones. We also want to compare different
artistic styles to evaluate their impact on the accuracy of face recognition.

Author Contributions: Experimental settings and data analytics, D.A.; writing—original draft
preparation, D.A. and A.B.; writing—review and editing, T.C.; supervision, A.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by a Marie Skłodowska-Curie Innovative Training Net-
work Fellowship of the European Commission’s Horizon 2020 Programme under contract number
955901 CISC.

Institutional Review Board Statement: Not applicable.



J. Imaging 2024, 10, 157 19 of 21

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data used in this work are unavailable due to privacy and ethi-
cal restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GANs generative adversarial networks
VAEs variational autoencoder
ISOMAP isometric mapping
t-SNE t-distributed stochastic neighbor embedding
UMAP uniform manifold approximation and projection
AI artificial intelligence

References
1. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
2. Arvanitidis, G.; Hansen, L.K.; Hauberg, S. Latent space oddity: On the curvature of deep generative models. arXiv 2017,

arXiv:1710.11379.
3. Connor, M.; Rozell, C. Representing closed transformation paths in encoded network latent space. Proc. Aaai Conf. Artif. Intell.

2020, 34, 3666–3675. [CrossRef]
4. Donoho, D.L.; Grimes, C. Image manifolds which are isometric to Euclidean space. J. Math. Imaging Vis. 2005, 23, 5–24. [CrossRef]
5. Smith, A.L.; Asta, D.M.; Calder, C.A. The geometry of continuous latent space models for network data. Stat. Sci. Rev. J. Inst.

Math. Stat. 2019, 34, 428. [CrossRef] [PubMed]
6. Mukherjee, S.; Asnani, H.; Lin, E.; Kannan, S. Clustergan: Latent space clustering in generative adversarial networks. In

Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial
Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, HI, USA, 27
January–1 February 2019, Volume 33, pp. 4610–4617. [CrossRef]

7. Wu, J.; Zhang, C.; Xue, T.; Freeman, B.; Tenenbaum, J. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. Adv. Neural Inf. Process. Syst. 2016, 29.

8. Liao, Y.; Bartler, A.; Yang, B. Anomaly detection based on selection and weighting in latent space. In Proceedings of the 2021
IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 409–415.

9. Liu, X.; Zou, Y.; Kong, L.; Diao, Z.; Yan, J.; Wang, J.; Li, S.; Jia, P.; You, J. Data augmentation via latent space interpolation for
image classification. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20–24 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 728–733.

10. Fetty, L.; Bylund, M.; Kuess, P.; Heilemann, G.; Nyholm, T.; Georg, D.; Löfstedt, T. Latent space manipulation for high-resolution
medical image synthesis via the StyleGAN. Z. FÜR Med. Phys. 2020, 30, 305–314. [CrossRef] [PubMed]

11. Gat, I.; Lorberbom, G.; Schwartz, I.; Hazan, T. Latent space explanation by intervention. Proc. Aaai Conf. Artif. Intell. 2022, 36,
679–687. [CrossRef]

12. Lin, E.; Lin, C.H.; Lane, H.Y. Relevant applications of generative adversarial networks in drug design and discovery: Molecular de
novo design, dimensionality reduction, and de novo peptide and protein design. Molecules 2020, 25, 3250. [CrossRef] [PubMed]

13. Park, S.W.; Ko, J.S.; Huh, J.H.; Kim, J.C. Review on generative adversarial networks: Focusing on computer vision and its
applications. Electronics 2021, 10, 1216. [CrossRef]

14. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
Available online: https://openai.com/index/language-unsupervised/ (accessed on 27 June 2024).

15. Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf.
Manag. Data Insights 2021, 1, 100004. [CrossRef]

16. Asperti, A.; Evangelista, D.; Loli Piccolomini, E. A survey on variational autoencoders from a green AI perspective. Comput. Sci.
2021, 2, 301. [CrossRef]

17. Balasubramanian, M.; Schwartz, E.L. The isomap algorithm and topological stability. Science 2002, 295, 7. [CrossRef] [PubMed]
18. Cetinic, E.; She, J. Understanding and creating art with AI: Review and outlook. ACM Trans. Multimed. Comput. Commun. Appl.

(TOMM) 2022, 18, 1–22. [CrossRef]
19. Ploennigs, J.; Berger, M. Ai art in architecture. Civ. Eng. 2023, 2, 8. [CrossRef]
20. Zylinska, J. AI Art Machine Visions and Warped Dreams; Open Humanities Press: London, UK, 2020.
21. Grba, D. Deep else: A critical framework for ai art. Digital 2022, 2, 1–32. [CrossRef]

http://doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1609/aaai.v34i04.5775
http://dx.doi.org/10.1007/s10851-005-4965-4
http://dx.doi.org/10.1214/19-STS702
http://www.ncbi.nlm.nih.gov/pubmed/33235407
http://dx.doi.org/10.1609/aaai.v33i01.33014610
http://dx.doi.org/10.1016/j.zemedi.2020.05.001
http://www.ncbi.nlm.nih.gov/pubmed/32564924
http://dx.doi.org/10.1609/aaai.v36i1.19948
http://dx.doi.org/10.3390/molecules25143250
http://www.ncbi.nlm.nih.gov/pubmed/32708785
http://dx.doi.org/10.3390/electronics10101216
https://openai.com/index/language-unsupervised/
http://dx.doi.org/10.1016/j.jjimei.2020.100004
http://dx.doi.org/10.1007/s42979-021-00702-9
http://dx.doi.org/10.1126/science.295.5552.7a
http://www.ncbi.nlm.nih.gov/pubmed/11778013
http://dx.doi.org/10.1145/3475799
http://dx.doi.org/10.1007/s43503-023-00018-y
http://dx.doi.org/10.3390/digital2010001


J. Imaging 2024, 10, 157 20 of 21

22. Hong, J.W.; Curran, N.M. Artificial intelligence, artists, and art: Attitudes toward artwork produced by humans vs. artificial
intelligence. Acm Trans. Multimed. Comput. Commun. Appl. 2019, 15, 1–16. [CrossRef]

23. Jiang, H.H.; Brown, L.; Cheng, J.; Khan, M.; Gupta, A.; Workman, D.; Hanna, A.; Flowers, J.; Gebru, T. AI Art and its Impact on
Artists. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, Montreal, QC, Canada, 8–10 August 2023;
pp. 363–374.

24. Latikka, R.; Bergdahl, J.; Savela, N.; Oksanen, A. AI as an Artist? A Two-Wave Survey Study on Attitudes Toward Using Artificial
Intelligence in Art. Poetics 2023, 101, 101839. [CrossRef]

25. Almhaithawi, D.; Bellini, A.; Cuomo, S. Exploring Latent Space Using a Non-linear Dimensionality Reduction Algorithm for
Style Transfer Application. In Proceedings of the European Conference on Advances in Databases and Information Systems,
Turin, Italy, 5–8 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 277–286.

26. Xu, Z.; Wilber, M.; Fang, C.; Hertzmann, A.; Jin, H. Learning from multi-domain artistic images for arbitrary style transfer. arXiv
2018, arXiv:1805.09987.

27. Prabhumoye, S.; Tsvetkov, Y.; Salakhutdinov, R.; Black, A.W. Style transfer through back-translation. arXiv 2018, arXiv:1804.09000.
28. Shaban, M.T.; Baur, C.; Navab, N.; Albarqouni, S. Staingan: Stain style transfer for digital histological images. In Proceedings of

the 2019 IEEE 16th International Symposium on Biomedical Imaging (Isbi 2019), Venice, Italy, 8–11 April 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 953–956.

29. Ruder, M.; Dosovitskiy, A.; Brox, T. Artistic style transfer for videos and spherical images. Int. J. Comput. Vis. 2018, 126, 1199–1219.
[CrossRef]

30. Figueira, A.; Vaz, B. Survey on synthetic data generation, evaluation methods and GANs. Mathematics 2022, 10, 2733. [CrossRef]
31. Laino, M.E.; Cancian, P.; Politi, L.S.; Della Porta, M.G.; Saba, L.; Savevski, V. Generative adversarial networks in brain imaging: A

narrative review. J. Imaging 2022, 8, 83. [CrossRef] [PubMed]
32. Liu, L.; Zhang, H.; Xu, X.; Zhang, Z.; Yan, S. Collocating clothes with generative adversarial networks cosupervised by categories

and attributes: A multidiscriminator framework. IEEE Trans. Neural Networks Learn. Syst. 2019, 31, 3540–3554. [CrossRef]
[PubMed]

33. Li, D.; Du, C.; He, H. Semi-supervised cross-modal image generation with generative adversarial networks. Pattern Recognit.
2020, 100, 107085. [CrossRef]

34. Wu, A.N.; Stouffs, R.; Biljecki, F. Generative Adversarial Networks in the built environment: A comprehensive review of the
application of GANs across data types and scales. Build. Environ. 2022, 223, 109477. [CrossRef]

35. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

36. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 8110–8119.

37. Kammoun, A.; Slama, R.; Tabia, H.; Ouni, T.; Abid, M. Generative Adversarial Networks for face generation: A survey. Acm
Comput. Surv. 2022, 55, 1–37. [CrossRef]

38. Wong, A.D. BLADERUNNER: Rapid Countermeasure for Synthetic (AI-Generated) StyleGAN Faces. arXiv 2022, arXiv:2210.06587.
39. Khoo, B.; Phan, R.C.W.; Lim, C.H. Deepfake attribution: On the source identification of artificially generated images. Wiley

Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1438. [CrossRef]
40. Abdal, R.; Qin, Y.; Wonka, P. Image2stylegan: How to embed images into the stylegan latent space? In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4432–4441.
41. Liu, K.; Cao, G.; Zhou, F.; Liu, B.; Duan, J.; Qiu, G. Towards disentangling latent space for unsupervised semantic face editing.

IEEE Trans. Image Process. 2022, 31, 1475–1489. [CrossRef] [PubMed]
42. Shen, Y.; Yang, C.; Tang, X.; Zhou, B. InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs. IEEE

Trans. Pattern Anal. Mach. Intell. 2020, 44, 2004–2018. [CrossRef] [PubMed]
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