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Conservative Gaussian Process Models for
Uncertainty Quantification and Bayesian
Optimization in Signal Integrity Applications

Paolo Manfredi™, Senior Member, IEEE

Abstract— Surrogate modeling is being increasingly adopted
in signal and power integrity analysis to assist design explo-
ration, optimization, and uncertainty quantification (UQ) tasks.
In this scenario, machine learning methods are attracting an
ever-growing interest over alternative and well-consolidated tech-
niques due to their data-driven nature. However, an open issue
is to properly assess the trustworthiness of predictions when
generalizing beyond training data. Among various machine
learning tools, Gaussian process regression (GPR) has the notable
feature of providing an estimate of the prediction uncertainty (or
confidence) due to the lack of data. Nevertheless, the uncertainty
introduced by the estimation of the Gaussian process parameters,
which is part of the training process, is typically not accounted
for. In this article, we introduce improved GPR formulations
that take into account the additional uncertainty related to the
estimation of (some of) the Gaussian process parameters, thereby
providing a more accurate estimate of the actual prediction
confidence. Furthermore, the advocated framework is extended
to UQ and Bayesian optimization (BO) settings. The technique is
applied to two test cases concerning the analysis of crosstalk in a
transmission line network and of the frequency-domain response
of a microstrip line with a ground plane discontinuity.

Index Terms— Bayesian optimization (BO), Gaussian pro-
cesses, Kkriging, machine learning, signal integrity, surrogate
modeling, uncertainty quantification (UQ).

I. INTRODUCTION

HE computer-aided design of modern mass production

electronics is increasingly relying on surrogate mod-
els to assist expensive exploration tasks as required, e.g.,
by optimization and uncertainty quantification (UQ) [1], [2].
In particular, manufacturing tolerances play a key limiting
factor to the miniaturization and downsizing of modern inte-
grated circuits. The burgeoning field of machine learning led
to the rapid availability of new surrogate modeling paradigms
in the integrated circuit design and signal integrity analysis [3],
[4], [5], including for example support vector machines [6],
[71, [8], [9], Gaussian processes [10], [11], [12], neural
networks [13], [14], and reinforcement learning [15], [16].
Alternatively, the method of polynomial chaos expansion also
became widely popular for UQ [17], [18], [19], [20], [21].
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Among the abovementioned methods, the polynomial chaos
expansion is mainly limited by the model complexity, which
does not scale favorably with the number of independent
design parameters. Moreover, the number of required training
samples is also somewhat related to the input dimension-
ality [17], and may become therefore intractable. Neural
networks are also very data hungry, and the related approaches
require a massive amount of simulations of the actual model
to achieve a reasonable training accuracy. This issue can
be mitigated by leveraging suitable knowledge-based net-
works [22] or multiple neural networks trained at different
levels of fidelity [23], when applicable. Not surprisingly,
neural networks turn out to be effective mainly for those
tasks for which huge datasets are available, e.g., image
processing. Furthermore, the selection of an optimal neural
network architecture, i.e., the number of layers and hidden
neurons, and the activation functions, is also rather arbitrary
and case-dependent, and it mostly relies on experience or
trial and error. As such, this approach is more suitable for
models that can be reused many times, rather than for one-
off simulations. Indeed, a lot of manual tuning is typically
involved to obtain an acceptable model, which makes neural-
network-based methods rather cumbersome and with scarce
flexibility.

On the other hand, kernel-based machine learning methods,
such as support vector machines [24] and Gaussian process
regression (GPR) [25], are very effective in this regard. They
are characterized by a much simpler structure, in which the
main key ingredient is the underlying kernel. This is usually
chosen upfront, as there exist some standard kernels with
excellent generalization performance. Alternatively, an optimal
kernel can be selected from a pool of candidates during
the training phase. Kernels are typically characterized by
some free “hyperparameters,” which are optimized during the
training phase (similar to the weights in neural networks).
The simpler structure of kernel-based methods does not imply
lower modeling capabilities. Quite the opposite, it has been
shown that GPR models are equivalent to infinitely wide fully
connected neural networks [26]. Support vector machine and
GPR were successfully used for high-dimensional UQ, e.g.,
in [7], [9], [10], and [11].

One of the main open questions related to surrogate models
is their prediction accuracy. This is usually assessed based
on the available training data or, more appropriately, on a
(small) additional set of validation data that has not been
considered for training. Nevertheless, very little information
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is available as to the generalization beyond the observed data.
In this regard, one of the attractive features of GPR is that
the model inherently embeds an estimate of the prediction
uncertainty outside the training dataset. In the context of
Bayesian optimization (BO) [27], this information is used to
drive the acquisition of additional observations in an iterative
scheme [28], [29]. GPR was also applied to UQ in [10]
and [11], in which the single-point prediction uncertainty
was propagated to aggregate UQ estimates (e.g., statistical
moments and distribution functions).

However, the estimated prediction confidence is rigorous
only as long as prior information on the Gaussian process is
fully available, which is virtually never the case in practice.
In particular, the additional uncertainty introduced by the
estimation of the GPR model parameters is not accounted
for [30]. As a result, classical and naive implementations of
GPR only provide a rough (typically, overconfident) estimation
of the actual prediction uncertainty.

In this article, the GPR framework is extended by improving
the accuracy of the prediction confidence, with targeted appli-
cation to signal integrity analysis. With some relatively simple
corrections of the posterior covariance [31], the uncertainty in
the estimation of (some of) the prior parameters is accounted
for, which naturally leads to more robust surrogates that embed
a more accurate (i.e., conservative) estimation of the prediction
confidence. The enhanced GPR models are then used in the
context of UQ and BO.

The present article builds upon the preliminary work in [32],
which presented the general idea for increasing the conserva-
tivity of GPR models. In [32], a single test case with a single
output was considered. In the present article, the theory and
analysis are complemented and extended with:

1) detailed information on the necessary corrections to
increase the conservativity of the model prediction
uncertainty;

2) extension of the framework to BO;

3) investigation of additional test cases with a larger num-
ber of independent parameters.

Moreover, the combination with principal component analysis
(PCA) is adopted to address problems with multiple and/or
time- or frequency-dependent outputs.

The remainder of the article is organized as follows.
Section II reviews the classical GPR framework. Section III
introduces the necessary corrections to make the GPR models
more conservative and account for the estimation of prior
parameters. The improved GPR models are applied in the
context of BO and UQ in Section IV. Sections V and VI
present two application examples, whereas conclusions are
drawn in Section VIIL

II. STANDARD GPR MODELING
We start by considering a generic system in the form of
y = M(x) (1)

with M : X € R? — R. This is a shorthand notation
to describe an arbitrary computational model that, given a
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configuration of design parameters x € X', provides a given
output quantity of interest (Qol) y. For example, x could
be a set of optimizable or uncertain design variables (geo-
metrical or material parameters and circuit elements), and
y the result of a circuit or electromagnetic simulation (e.g.,
a crosstalk voltage, an absorbed power, and a scattering
parameter).

In surrogate modeling, the goal is to approximate (1)
with an accurate though inexpensive mathematical representa-
tion that mimics the actual computational model. To begin
with, we assume the Qol to be scalar. Clearly, especially
in the context of UQ, the Qol may be an entire transient-
or frequency-domain response. Hence, we later relax this
restriction.

The fundamental assumption of GPR (also called Kriging,
especially in geostatistics where the method originated [33])
is that the functional relationship (1) can be assimilated to
a specific realization of a Gaussian process called prior,
ie.,

M(x) ~ GP(u(x), o*r(x, x")) 2)

where w(x) is the prior mean function, or trend, o?r(x,x') is
the covariance function, or kernel, and o2 is its variance [25].

A. Definition of the Prior

Usually, the prior trend is expressed as a linear combination
of basis functions, i.e.,

K
p(x) =" Behi(x). 3)
k=1
The basis functions h; are often polynomials of increasing
order (“universal Kriging”), with a constant trend and a
polynomial chaos expansion being notable special cases in
the so-called “ordinary Kriging” and “polynomial-chaos-based
Kriging” [34], respectively. For a given amount of training
data, the latter was shown to perform better or at least as
good as plain polynomial chaos expansion and traditional
GPR.

Furthermore, the kernel is often described by a station-
ary correlation function r(x,x’) = r(x — x’|#), which
depends only on the difference between x and x’ and
on a set of lengthscales 8 = (0y,...,6;). The length-
scales describe the degree of correlation along each input
dimension, which in turn defines the smoothness of the
function in that dimension. These are the so-called hyper-
parameters of the GPR model. The squared-exponential
and Matérn 5/2 covariances are popular kernel functions
(see [25], [35]). The kernel is said to be isotropic if the same
lengthscale is considered for each dimension, or anisotropic
otherwise.

B. Classical Prediction

If the prior trend and kernel are fully known a priori, the
realization that best represents the function (1) is inferred by
collecting a certain number of observations {(x;, yl)}lL:l, with
yi = M(x;) (the “training samples”), and applying Bayesian
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inference. This leads to the best linear unbiased prediction of
y at unseen points [31], which is provided by the posterior
trend [35], [36]

m(x) =hx)' 3 +r@) R (y — HB) )
where
ey = Oi,....,y)T € RE is the vector of training
observations;

« R ¢ REXL is the correlation matrix of the training
samples, with entries Ry, = r(x;, X,;);

o r(x) = (r(x1,x),...,r(xz,x))" € RE is the vector of
cross-correlations between the training samples and the
prediction point;

e« H ¢ REXK ig the matrix of the trend basis functions
evaluated at the training samples, with entries Hy =
hi(x1);

o h(x) = (h(x), ..., hg(x))T € RX is the vector with the
trend basis functions evaluated at the prediction point.

Without loss of generality, we assume the training obser-
vations to be noiseless. The framework is readily extended,
with minimal modifications, to the case of noisy data
[25], [35].

One important feature of this Bayesian approach is that
it allows assigning quantitative information on the predic-
tion uncertainty due to the limited amount of information
that is used for the inference. This is expressed by the
function

co(x,x") =r(x,x") —r(x)"R™'r(x) (5)

which describes the posterior correlation between predictions
at two different points. Hence, the GPR model (posterior) is
a Gaussian process with mean function (4) and covariance
function co(x, x') = o2¢o(x, x'), i.e.,

Mapro(x) ~ GP(m(x), co(x, x1)). (6)

In the above equations, the subscript “0” is used to differentiate
this “primitive” covariance model from the modifications
that will be introduced later. We shall label this model as
“GPR-0,” indicating a model with the lowest confidence level.
This corresponds to the most standard and popular model
considered in the literature and available in commercial tools
(e.g., MATLAB").

The quantity co(x, x) provides the variance of the predic-
tion. The variance collapses to zero at the training samples,
as (4) provides an exact interpolation of the observations [31].
Since the posterior distribution remains Gaussian, knowing
the prediction variance allows obtaining rigorous confidence
bounds. For instance, we can expect the true value of y
to lie with 95% probability within the interval [m(x) —
2(co(x, x)'2, m(x) 4 2(co(x, x))'/2].

C. Estimation of the Prior Parameters

Unfortunately, the trend coefficients 3 = (0y,..., ﬂK)T
and the kernel hyperparameters (o2, ) are in practice never
known a priori, and they are typically left as free parameters

"Registered trademark.
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to be estimated based on the training data. This allows better
adapting the GPR model to the problem at hand.

The trend coefficients are estimated using a generalized
least-square estimate, leading to [35] and [36]

B=H"R'H)Y'H'R y. (7)

The kernel parameters are instead estimated by minimizing
a suitable objective function F (o2, 8), i.e.,

62,0 = arg min F (o2, 9). (8)
02,0

Typical objective functions are the negative log-likelihood or a

suitable (e.g., leave-one-out) cross-validation error [25], 135]'

Once an estimate of the prior parameters (3,672, 6) is
available, they are plugged into (4) and (5) to provide the
prediction and the corresponding uncertainty. However, this
approach neglects the uncertainty that is introduced by the
estimation of the prior parameters themselves, thereby leading
to a likely overestimation of prediction confidence [30].

In this article, we show that, by means of relatively
simple modifications to the posterior covariance, we can
account for the uncertainty in the estimate of—at least—(
and o2. Accounting also for the uncertainty in the estima-
tion of # would make the framework much more complex
instead [31].

D. Multioutput Systems

The basic framework works with scalar Qols, as GPR
inherently provides a single-output model. On the other hand,
the Qol is oftentimes a function of some sweep variable, e.g.,
time or frequency. Moreover, several concurrent outputs may
be of interest, e.g., in multiport systems. A naive solution is
to train a separate GPR model for each time point, frequency,
and/or port variable of interest. However, this would quickly
become inefficient because of the massive amount of models
to be trained.

To circumvent this problem, multioutput formulations of
GPR were proposed in the literature [37], [38], [39], [40].
Another viable solution, which we will adopt in this article,
is to compress the multioutput data using PCA [9] or, similarly,
proper orthogonal decomposition [41], [42]. This limits the
separate models to be trained to the principal components
only, thereby effectively reducing their number by orders of
magnitude. The interested reader is referred to [9] and [10] for
further details on the use of PCA in conjunction with surrogate
models.

III. CONSERVATIVE GP MODELS

In this section, we outline the modifications of the posterior
covariance that are required to account for the uncertainty in
the estimation of 3 first and, in a second step, also of o2,
An important fact is that the posterior prediction remains the
one provided by (4).

To account for the uncertainty in the prediction of f,
the posterior correlation (5) requires to be modified with an
additional term, leading to [31] and [36]

c1(x, x') = ¢o(x, x") +ux) (H'R'H) 'u(x)  (9)
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where

u(x) = H' R 'r(x) — h(x). (10)

The posterior distributions remaining Gaussian, with covari-
ance function c¢;(x,x’) = o2¢i(x,x’). We shall label this
model “GPR-1,” with

Mapr-1(x) ~ GP(m(x), c1(x, x')). (11)

To account also for the uncertainty in the prediction of
02, we must use a Bayesian setting in which the kernel
variance is inferred from the available data. In this case,
the posterior distribution is no longer Gaussian, but it rather
becomes a Student’s ¢-distribution with v = L — K degrees of

freedom [43] and scale function [31]

o(x,x') = %gl(x,x’) (12)

where
AT R

y=0—HpB) R (y—Hp).
Recalling that the r-distribution is a sort of “wider” nor-
mal distribution, which approaches the latter for v — oo,
we can observe that the prediction uncertainty is higher if
the number of training samples L is low and/or the number
of trend basis functions K is large, which is reasonable.?
The posterior covariance is in this case given by c¢,(x, x) =

(v/(v —2))g2(x, x’), which is defined only for v > 2.
We shall label this model “GPR-2.” with

Mapra(x) ~ TP (m(x), c2(x, x'), v)

(13)

(14)

where the above notation indicates a Student’s ¢-process with
v degrees of freedom.

In summary, while GPR-0 only accounts for the prediction
uncertainty resulting from the limited amount of data that is
used to train the model, GPR-1 also accounts for the uncer-
tainty introduced by the estimation of the trend coefficients B
and GPR-2 further accounts for the uncertainty due to the
estimate of the kernel variance 62. As we will show, this
leads to an increasing level of conservativity and to a more
accurate confidence information. It is important to remark that
the proposed corrections to the posterior covariance are readily
applied to any GPR formulation for which the prior trend can
be cast as in (3), i.e., it is linear in its unknown coefficients
3, and the kernel variance o> can be factored out from the
prior correlation function. This covers the vast majority of the
formulations available in the literature.

IV. SURROGATE MODELING FOR BO AND UQ

Using the GPR model to surrogate (1) implies using (4)
to generate model predictions, possibly combined with (5),
(9), or (12) to assess the confidence of such predictions with
an increasing level of conservativity. For a significance level
of « (i.e., a confidence level of 1 — «), the upper and lower
confidence bounds (LCB) are given by

UCB(x) = m(x) + F ' (a/2) - s(x) (15)

The latter suggests that more degrees of freedom are “spent” to learn the
trend coefficients.
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and
LCB(x) = m(x) + F~'(1 —a/2) - s(x) (16)
respectively, where s(-) is a scale parameter that is,
s() = Vei (1) = 66 (x, x) (17

for GPR-0 and GPR-1, respectively, with i =0 and i = 1, or

s(x) =+vs(x,x) (18)

for GPR-2. Moreover, F~!(-) is the inverse cumulative distri-
bution function of the (normalized) posterior distribution, i.e.,
the standard normal inverse cumulative distribution function
for GPR-0 and GPR-1, or the Student’s ¢ inverse cumulative
distribution function with v degrees of freedom for GPR-2.
For example, for a 95% confidence level, « = 0.05 and
F~1(0.975) = —F~'(0.025) ~ 2 for GPR-0 and GPR-1
(recall the “2-sigma rule”) or ~3.18 for a GPR-2 model with
v = 3 degrees of freedom.

A. Application to BO

BO is a global optimization method that is suitable for
objective functions that are expensive to evaluate [27]. Starting
from a minimal set of observations, a GPR model is fit to
the objective function and is iteratively refined by querying
additional data samples. The acquisition is driven by the infor-
mation on the prediction uncertainty [29]. Hence, having a
more accurate estimate of the prediction uncertainty improves
the optimization performance.

All selection strategies involve, at each iteration, the max-
imization (or minimization) or some ‘“acquisition function.”
Hence, the next sampling point is selected as

x, = argmin[—AF(x)] (19)

which, for the sake of notation consistence, we cast as a
minimization problem. Some popular acquisition functions are
discussed in the following, all providing a trade-off between
exploration and exploitation.

1) Lower Confidence Bound: This strategy selects the next
sampling point as the location where the LCB (16) is min-
imum. For a point with a similar prediction uncertainty, the
LCB is more likely to be minimum in the neighborhood of
the actual function minimum.

2) Probability of Improvement: The next sampling point
is selected as the one yielding the largest probability of
improving the current estimate. The corresponding acquisition
function is mathematically defined as

Pol(x) F((ymin —€) — m(x)) 20)
s(x)
where
Ymin = Minm(x) 21

denotes the current estimate of the function minimum, i.e., the
minimum of the posterior prediction, € is a margin parameter
(usually relative, e.g., € = 0.001 - |ymin|), and F(-) is the
cumulative distribution function of the (normalized) posterior
distribution. In essence, (20) defines the probability of finding
a value of y that is smaller than yy;, — €.
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95% bounds (GPR-1)
1 | ——195% bounds (GPR-2)
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b

Fig. 1. BO of function (25). (Top) Actual function (blue solid line), training
samples (blue circles), and GPR prediction (dashed black line). The magenta
circle and the red asterisk are the actual and predicted minimum, respectively.
The shaded areas represent the 95% confidence bounds of GPR-0 (red), GPR-1
(yellow), and GPR-2 (green). (Bottom) LCB (purple), Pol (yellow), and EI
(red) acquisition functions.

3) Expected Improvement: This acquisition function is
designed to take into account not only the probability of
improvement (Pol), but also its magnitude. The expected
improvement (EI) is defined as [44]

El(x) = (Ymin — m(x)) F(z(x)) + s(x) - ¢ (2(x))
for a Gaussian posterior distribution (GPR-0 and GPR-1), and

EI(x) = (Ymin — m(x)) F (z(x))

2
(1 42 i’”)s(x) BE@) (23

(22)

+

v—1

for a Student’s ¢ posterior distribution (GPR-2) [45], where
¢ (-) is the probability density function (pdf) of the (normal-
ized) posterior distribution and

Ymin — m(x)
s(x)

is the standardized output minimum.

It should be noted that the aforementioned acquisition
functions are all analytical and rather well-behaved. Therefore,
the minimization problem (19) is readily solved using some
other standard optimization method, such as genetic algorithm.

In Fig. 1, the concept of BO is illustrated with the aim of
finding the minimum of the analytical function

2(x) = 4)

M(x) = ef?(Z cos(x) + sin(x)) (25)

in the interval x € [3,7]. The actual function is shown in
top of Fig. 1 (blue solid line) together with the corresponding
prediction (dashed black line) of a GPR model with a constant
prior trend and squared-exponential kernel, trained with L = 3
samples at points x = {4, 5, 6} (blue circles). The red, yellow,
and green lines are the 95% confidence bounds of GPR-0,
GPR-1, and GPR-2, respectively. The magenta circle indicates
the true function minimum (i.e., ymin = —0.1719), whereas
the red asterisk is the current estimated minimum (i.e., the
minimum of the GPR prediction).
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TABLE I

CONVERGENCE OF BO APPLIED TO FUNCTION (25) AND BASED ON
GPR-2 WITH DIFFERENT ACQUISITION FUNCTIONS

Acquisition function

Iteration LCB Pol EI
Tmin Ymin Tmin Ymin Tmin Ymin
0 42706 -0.1834 42706 -0.1834 4.2706 -0.1834
1 4.1804 -0.1740 4.1803 -0.1740 4.1804 -0.1740
2 4.1344  -0.1718 4.1349 -0.1719 4.1453  -0.1722
3 4.1346  -0.1719  4.1344 -0.1719 4.1358 -0.1718
4 4.1343  -0.1719 4.1352  -0.1719 4.1349 -0.1719
5 4.1349  -0.1719  4.1350 -0.1719 4.1348 -0.1719

Fig. 1 (bottom) shows the LCB, Pol, and EI acquisition
functions computed based on the GPR-2 posterior, normal-
ized with respect to their maximum value for the ease of
comparison. The next sampling point, selected as the loca-
tion where the acquisition function is maximum, is denoted
with a circle. It is noted that the LCB and EI prescribe to
sample in the corner of the interval, where the prediction
uncertainty is the highest, whereas the Pol suggests sampling
a point that is much closer to the actual minimum. Never-
theless, any acquisition function leads to the correct result
within a few iterations, as indicated by the results summa-
rized in Table I, with Pol providing indeed a slightly faster
convergence.

B. Application to UQ

GPR was also applied in the context of UQ, in which
the prediction confidence was propagated from point-wise
predictions to UQ measures, such as moments and distribution
functions [10], [11]. Although some semianalytical results are
available that require the integration of the posterior [10], for
high-dimensional problems, the most viable and convenient
approach is to use the GPR model to surrogate the actual
system (1) in a Monte Carlo (MC) analysis.

In the above scenario, the GPR prediction is calculated
for a (typically large) ensemble of samples {x} lN: - This
leads to a set of N correlated random variables defining the
model predictions at the above ensemble of points, which are
described by the mean vector

m=hlB+rlR(y—HP (26)
and by the pertinent covariance matrix computed according
to the posterior distribution. In (26), h, € RX¥*N and r, €
RE*N are matrices with entries [h,J; = he(x}) and [r.]; =
r(x;, x}), respectively.

To obtain the covariance matrices, we first define the
correlation matrices stemming from (5), (9), and (12), i.e.,

ZO = R** —rlRilr* (27)
for GPR-0

T =%04+ul (HR'H) 'u, (28)



1266

for GPR-1, and

» =1Ly, (29)
Vv

for GPR-2, where R,. € R¥*¥ is a matrix with entries
[R**]ij = r(x;'k»xj) and

u,=H R 'r, — h,. (30)

Then, the covariance matrix is C; = 62X; for GPR-0 and
GPR-1, respectively, with i = 0 and i = 1, and C, =
(v/(v — 2))X, for GPR-2. The covariance matrix for GPR-2 is
well defined only for v > 2, which requires to have a number
of training samples

L>K+2. 31)

Based on the above definitions, the mean of the MC predic-
tions (an estimate of the mean of the Qol) is a random variable
whose expected value and variance are analytically computed
from the mean vector (26) and the pertinent covariance matrix,
as reported in [11]. Indeed, the results for the output mean
in [11] readily apply regardless of the posterior distribution.

Furthermore, the variance of the MC predictions (an esti-
mate of the variance of the Qol) is also a random variable.
Closed-form results for its expected value and variance were
also derived in [11], yet the latter is valid only for a Gaussian
posterior distribution, i.e., for GPR-0 and GPR-1 models. Nev-
ertheless, empirical results suggest that assuming a Gaussian
approximation for the distribution of both the posterior and the
variance incurs a small error in the calculation of confidence
bounds, while providing a useful assessment of the dispersion
due to the limited amount of data used to train the GPR model.

In summary, the outlined procedure allows assigning con-
fidence bounds to the MC prediction of the output mean and
output variance, respectively, obtained when the GPR model
is used to surrogate the actual model (1). When the posterior
covariance of GPR-0 is considered, the confidence bounds
only account for the uncertainty due to the limited availability
of training data. Using the covariance of GPR-1 and GPR-2
allows accounting also for the uncertainty introduced by the
estimation of the trend coefficients /3 and kernel variance 672,
respectively. Confidence bounds for higher order moments and
probability distributions are computed numerically by gener-
ating a large number of posterior realizations instead [32].

C. Implementation

The outlined framework is implemented in MATLAB by
leveraging the Statistics and Machine Learning Toolbox® [46]
for training the GPR models. The toolbox estimates the trend
coefficients via (7) and the kernel hyperparameters using maxi-
mum likelihood. The provided predictive covariance is the one
of GPR-0, i.e., (5). For GPR-1 and GPR-2 models, we correct
the posterior covariance as outlined in Section III. For the
latter, only the estimated lengthscales are retained, whereas
the estimate of the kernel variance is already embedded in the
posterior distribution.

3Trademarked.
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Fig. 2. Schematic of the transmission line network.

V. APPLICATION EXAMPLE #1: MULTICONDUCTOR
TRANSMISSION LINE NETWORK

The first application test case considers the interconnect
of Fig. 2, consisting of three sections of coupled embedded
transmission lines, some of which are terminated by nonlinear
inverters at the far end [47]. The cross section of the multicon-
ductor transmission line sections is depicted at the bottom of
the figure. The nominal values of the geometrical parameters
and element values are provided in the second column of
Table II. The central line of the first section is driven by a
trapezoidal voltage pulse with an amplitude of 5 V, a duration
of 1 ns, and rise/fall times of 100 ps.

The Qol is taken as the maximum absolute value of the
far-end crosstalk occurring over time at the 0.5-pF termination
(i.e., C.3). We perform an UQ task first, and then we optimize
the parameters to minimize crosstalk. The simulations are
carried out using HSPICE [48] which, for this example,
implements the map (1) between the circuit parameters and
the Qol.

A. UQ of Maximum Crosstalk

For this analysis, the uncertainty is provided by d = 9
parameters, namely the trace widths, gaps, and distances from
the ground plane in each of the three sections, whose nominal
values are indicated in the first nine rows of Table II. These
parameters are assumed to have a Gaussian distribution with a
10% standard deviation from the nominal value, and the same
variation is considered for all traces within the same section
(i.e., for all parameters in the same row of Table II).

For the GPR models, we consider a polynomial-chaos-
Kriging model [34] with a second-order Hermite expansion for
the trend and an isotropic squared-exponential kernel. As a rule
of thumb, it is often recommended to use a number of training
samples from 5 to 10 times the number of uncertain parameters
(see [11], [31]). Since the trend features K = 55 expansion
terms, we consider L = {60, 70,70} training samples so
that condition (31) is also fulfilled. The training points are
generated randomly using a uniform Latin hypercube sam-
pling scheme in the hyperinterval spanning three times the
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TABLE I

NOMINAL VALUES OF THE INTERCONNECT PARAMETERS, TOGETHER
WITH TOLERANCE AND RANGE OF VARIATION FOR UQ AND BO

TASKS
Parameter(s) Nominal value  Tolerance (UQ) Range (BO)
w1, Wie, Wir 150 pum 10% +30 pm
wWay, Wy 130 pm 10% +30 um
w3y, W3y 170 pm 10% +30 pm
dyy, dic, dir 100 pem 10% +20 pm
doy, dor 140 pm 10% 420 pm
dsy, d3r 70 pm 10% +20 pm
gii» gir 150 pum 10% +30 pm
g2 150 pm 10% +30 pm
g3 150 pm 10% +30 pm
h 200 pm - +20 pm
t1g, tic, t1r 30 pm - 410 pm
oy, tar 20 pm - 410 pm
t3g, t3r 40 pm - +10 pm
Cp1, Cp2, Cp3 1 pF - +0.25 pF
Ce1, Ce21, Ceas 1 pF - +0.25 pF
Ces 0.5 pF - +0.25 pF
Ci21, Cla3 1 pF - +0.25 pF
TABLE III

MEAN AND VARIANCE OF THE MAXIMUM CROSSTALK VOLTAGE

Method  Observations Mean (V) Variance (V?)
MC N = 1000 0.4795 0.0043
GPR-0 [0.4700,0.4705]  [0.0036,0.0037]
GPR-1 L =60 (0.4588,0.4817]  [0.0035,0.0040]
GPR-2 (0.4191,0.5215]  [0.0025,0.0086]
GPR-0 [0.4921,0.4931]  [0.0039, 0.0040]
GPR-1 L=170 [0.4856,0.4996]  [0.0037,0.0043]
GPR-2 [0.4763,0.5089]  [0.0037,0.0050]
GPR-0 [0.4813,0.4818]  [0.0040,0.0041]
GPR-1 L =280 [0.4780,0.4851]  [0.0040, 0.0042]
GPR-2 [0.4749,0.4882]  [0.0039,0.0043]

standard deviation (i.e., =30%) around the nominal value of
the parameters.

Table III provides the results for the first two statistical
moments, i.e., mean and variance, of the maximum crosstalk
voltage. The first row reports the result obtained with a MC
simulation performed in HSPICE for N = 1000 random
configurations of the geometrical parameters. The remaining
rows provide the 2-sigma intervals of the moments predicted
with the GPR model based on the same ensemble of MC
samples,* computed for different conservativity levels of the
prediction uncertainty and for increasing training set size.
It is observed that the confidence intervals of GPR-0 are
very narrow and do not include the reference values, even
for the largest training dataset with L = 80 samples. On the
contrary, the estimates of GPR-1 and GPR-2 models are more
conservative, yet only the latter always include the correct
result. As the number of training samples is increased, the
confidence interval of GPR-2 shrinks around the correct result.

This example shows that the classical model of the posterior
covariance is prone to an underestimation of the prediction

“This ensures the results are comparable regardless of the MC sample size.
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Fig. 3. Distribution of the upper and lower bounds of the 2-sigma confidence
interval of the maximum crosstalk mean (top) and variance (bottom) computed
over 100 independent runs for the GPR-0, GPR-1, and GPR-2 models (red,
yellow, and green histograms, respectively) trained with L = 60 samples, and
comparison with the reference MC values (blue bars).

TABLE IV
POSTERIORI VERIFICATION OF THE ACTUAL PREDICTION CONFIDENCE

Mean  Variance Mean  Variance Mean  Variance
Model
L =60 L="70 L =280
GPR-0 5% 5% 5% 9% 11% 8%
GPR-1 41% 45% 64% 47% 82% 32%
GPR-2  95% 94% 99% 96% 97% 86%

uncertainty, while the introduced corrections lead to a more
accurate estimation. As mentioned before, confidence bounds
can be obtained numerically also for the pdf of the Qol.
Results in this regard were provided in [32] are therefore they
are not repeated here.

So far, the results were obtained with a single configuration
of the training dataset for a given size. To evaluate the disper-
sion of the performance across different training datasets, the
analysis is repeated for 100 independent runs for each training
set size (i.e., L = {60, 70, 80}). The aim of this analysis is
to assess whether the better conservativity holds for many
random configurations of the training samples.

Fig. 3 shows the distribution of the upper and lower 2-sigma
bounds of the predicted mean (top) and predicted variance
(bottom) obtained with the smallest training set size (i.e.,
L = 60) and the three different conservativity levels (left, cen-
tral, and right). In particular, the lighter and darker histograms
show the distribution of the LCB and UCB, respectively. The
vertical blue line indicates the reference value from the MC
analysis (see Table III).

It is interesting to note that for GPR-0 (left plot, red his-
tograms), the two distributions overlap completely, indicating
that it is very likely that the reference MC value falls outside
the confidence interval. The two distributions become increas-
ingly separated for the more conservative GPR-1 and GPR-2
models (central and right plots, respectively). In particular, for
GPR-2 (green histograms), the two distributions are well apart,
with the reference value lying in the middle. This signifies that
the confidence bounds almost always enclose the correct result,
as their distributions rarely cross its value.
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Fig. 4. Relative error on the mean (top) and variance (bottom) obtained with
the plain polynomial chaos method (left) and the GPR-2 model with the same
polynomial chaos expansion as trend (right).

The above conclusion is further corroborated by counting
the rate at which the correct value falls within the 2-sigma
confidence interval over the 100 runs. As indicated in Table IV,
the rate is remarkably close to 95% for GPR-2, whereas
it is much lower for GPR-0 and GPR-1.° This indicates
a severe overestimation of the prediction confidence, which
turns out to be actually much lower than 95% for those
models.

Finally, Fig. 4 compares the performance of the GPR-2
model against the popular polynomial chaos method based
on least-angle regression [49], implemented via the UQLab
toolbox [50] and using the same second-order Hermite expan-
sion as the GPR trend. In particular, the boxplot assesses
the dispersion across the 100 training datasets of the relative
error on the mean and variance with respect to the MC result,
respectively, denoted with €, and €,. The red lines indicate the
median error, whereas the bottom and top edges of the boxes
are the 25th and 75th percentiles, respectively. The whiskers
indicate the minimum and maximum values, while the red
crosses are outliers. For the polynomial chaos method, the
mean and variance are analytically derived from the model
coefficients. For the GPR model, they are obtained via the
analytical relations in [11].

It is noted that the two methods achieves a similar error for
the mean, which is usually estimated with very good accuracy
by most methods. For the variance instead, the GPR model
overall provides a better accuracy, with a median error of about
3% for the datasets with 70 and 80 training samples, compared
to about 10% obtained with polynomial chaos. The higher
dispersion of the GPR-2 model trained with 60 samples reflects
its higher and more conservative prediction uncertainty, while
the median error is still slightly lower compared to polynomial
chaos. These results confirm that GPR models provide better
or comparable accuracy as polynomial chaos, an outcome that
was also highlighted in [11] and [34].

5The 2-sigma bounds theoretically correspond to a 95% confidence only
for the mean computed with GPR-0 and GPR-1 models.
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Fig. 5. Evolution of the minimum objective (maximum crosstalk) throughout
the iterations of the BO scheme implemented with GPR-0 and GPR-2 models
in conjunction with Pol and EI acquisition functions.

B. BO of Maximum Crosstalk

In this second scenario, we aim to minimize the far-end
crosstalk with respect to all the 35 design variables indicated
in Table II, which are now allowed to vary independently in the
range indicated in the last column. To this end, we implement
the BO scheme outlined in Section IV-A in conjunction with
both GPR-0 and GPR-2 models.

It should be noted that the goal of this example is to
assess the efficacy of the optimization scheme with a more
conservative posterior covariance on a large input space,
but some of the parameters considered may not be opti-
mizable in practice (or, at least, not individually) due to
other design or fabrication constraints. Moreover, even if the
optimal design may lie in a corner of the design space,
a full corner analysis would require to test 2% =~ 3x10'"
configurations.

For the GPR models, we use an isotropic squared-
exponential kernel and a constant trend, since a polynomial
trend would feature an excessive number of terms in such
a high-dimensional space. We start from a common initial
dataset of L = 20 observations to initialize the GPR model,
and we run the optimization scheme for 40 iterations using
either the Pol or EI acquisition function.

Fig. 5 compares the evolution of the minimum predicted
objective (maximum crosstalk, in volts) throughout the BO
iterations obtained with the four combinations of the two GPR
models and the two acquisition functions. It is observed that
the EI acquisition function (red and purple curves) provides
a faster and smoother convergence compared to Pol (yellow
and blue curves) for a given model type. Moreover, for both
acquisition functions, a better convergence is achieved by
using the GPR-2 model instead of the GPR-0 one, especially
in the first iterations. This is reasonable, since increasing
the number of observations in turn increases the number
of degrees of freedom in the GPR-2 posterior distribution,
thereby reducing the difference in the covariance. In general,
since GPR-2 provides a more accurate estimation of the pre-
diction confidence, on which BO is highly reliant, we expect
GPR-2 to always provide better, or at least similar performance
compared to the standard GPR-0 model. Hence, GPR-2 should
be preferred over GPR-0, also in view of its limited additional
computational complexity.
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Fig. 7. Layout of the microstrip line with ground plane discontinuity.

Furthermore, Fig. 6 (top) compares the transient crosstalk
response of the optimal design achieved with GPR-2 and EI
(red line) against the spread of 1000 MC configurations drawn
randomly within the design space (gray area). The comparison
highlights that the maximum crosstalk over time of the optimal
design is lower than any of the random MC configurations.

Fig. 6 (bottom) further enhances the comparison, with the
cyan circles indicating the maximum crosstalk level of all
the random configurations, whereas the colored lines indi-
cate the maximum crosstalk of the optimal designs achieved
with the aforementioned four configurations of BO (i.e.,
GPR-0 and GPR-2 models with Pol and EI acquisition func-
tions). It should be noted that, as opposed to Fig. 5, the
results in Fig. 6 now refer to the actual maximum crosstalk
that is achieved in the SPICE simulation, and not to the
one predicted by the GPR model. It is observed that the all
optimal designs exhibit a lower crosstalk level than any of the
random configurations, and the overall best result is achieved
by using GPR-2 in conjunction with the EI acquisition function
(red line).
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Fig. 8. UQ of Sj; and S»;. (Top) Magnitude of a subset of samples from
the MC simulation (gray lines) together with the average value computed
from the MC samples (blue solid line) and predicted by the GPR models
(dashed green line). The shaded areas are the 2-sigma confidence intervals of
the GPR-0 (red), GPR-1 (yellow), and GPR-2 (green) predictions. (Bottom)
Comparison between the variance obtained with MC and the one predicted
by the GPR models (same color labeling as above).

VI. APPLICATION EXAMPLE #2: MICROSTRIP WITH
GROUND PLANE DISCONTINUITY

The second application example concerns the analysis of
the signal integrity in a microstrip line with a discontinuity
in the ground plane, shown in Fig. 7 [20], [51]. The free
design parameters are the location / and the width w of the
slot in the ground plane, both with a nominal value of 15 mm.
The scattering (S§)-parameters are simulated with CST Studio
Suite! software from Dassault Systemes [52] at 1859 equally
spaced frequency points from dc to 10 GHz.

A. UQ of the S-Parameters in the Frequency Domain

In this first scenario, the two design parameters are ascribed
an independent Gaussian distribution with a 10% relative
standard deviation. We aim to assess the variability of the
S-parameters in the entire frequency range. To this end,
we compute L = 50 training configurations of the two-port
S-parameters and we compress the resulting dataset using
a PCA with a 1% truncation threshold on the singular val-
ues. This allows compressing the dataset from 1859x4 =
7436 outputs to a mere 18 principal components. Since we
build a separate model for the real and imaginary part of
the scattering data [11], the total number of individual GPR
models to be trained is 36. A constant trend and an anisostropic
Matérn 5/2 kernel are considered for the prior.

Fig. 8 (top) shows the magnitude of S;; (left) and S,; (right)
for some random configurations of the design parameters (gray
lines), as well as their mean computed based on 1000 MC
samples (blue solid line) and the GPR models (dashed green
line). The 2-sigma confidence intervals of the GPR models
(shaded areas) are also provided. Fig. 8 (bottom) shows a sim-
ilar comparison between the variance of the MC samples and
the corresponding GPR predictions. In this case, the prediction
confidence of GPR-0, GPR-1, and GPR-2 models is similar
due to the relatively large number of training samples that is
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Fig. 9. PDF of |Sy;| (left) and |S,;]| (right) computed at 6.2 GHz (top) and
7.3 GHz (bottom). The distribution of the MC samples (blue solid line) is
compared against the 95% confidence intervals of the GPR-0, GPR-1, and
GPR-2 predictions (red, yellow, and green areas, respectively).

required to properly capture the high-frequency variability of
the scattering responses.

The GPR results are computed by recombining the 18 prin-
cipal components to obtain the model of the real and imaginary
part of the S-parameters at each port and frequency, as indi-
cated in Section II-D. The posterior mean and covariance are
then combined with the analytical estimates of the output
mean and variance. In this process, the posterior distribution
is assumed to be Gaussian, even though this is not the
case for GPR-2. Nevertheless, a good accuracy of the GPR
model is established, despite the very large variability of the
S-parameters that can be observed in Fig. 8. Indeed, as it was
shown in [20], the accurate modeling of the high-frequency
response is particularly challenging for this structure.

Furthermore, Fig. 9 provides a comparison on the pdf at the
frequencies of 6.2 and 7.3 GHz (top and bottom, respectively).
The blue lines are the distribution of the MC samples of the
S-parameter magnitude at those frequencies. The shaded areas
are the 95% confidence bounds of the GPR-0, GPR-1, and
GPR-2 predictions. These are obtained by generating a large
number of posterior predictions and, as noted before, turn out
to be similar in this case. Once again, they compare well with
the reference MC distribution.

To better illustrate the difference between the prediction
confidence of the various GPR models, Fig. 10 compares the
GPR-0, GPR-1, and GPR-2 confidence intervals in predicting
the same distributions based on ten training samples only.
The confidence intervals are now wider to reflect the larger
prediction uncertainty that results from considering a much
lower number of training samples. In turn, the discrepancy
between the various confidence intervals is also more visible,
which reflects the higher uncertainty in the estimation of the
trend coefficient and kernel variance.

B. BO of the Insertion Loss at Specific Frequencies

We now want to obtain the configurations that maximize
the transmission (i.e., minimize the insertion loss) at some

Magnitude (dB) Magnitude (dB)

Fig. 10. Comparison between the confidence of GPR-0, GPR-1, and GPR-2
models trained with only 10 samples in predicting the distribution of |Si]
and |S>;| at 6.2 and 7.3 GHz.

TABLE V

OPTIMAL VALUE OF THE DESIGN PARAMETERS MINIMIZING THE
INSERTION LOSS AT VARIOUS OPERATING FREQUENCIES

Frequency fo (GHz) 5 6 7 8 9
. [ (mm) 1.5 137 176 155 19.0
Optimal value
w (mm) 131 114 11.0 187 183
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Fig. 11. Insertion loss of the optimal designs at various frequencies (colored

lines) and comparison against the spread of responses of 1000 random
configurations of the design parameters (gray area).

specific frequencies, namely fy = (5,6,7,8,9) GHz. To this
end, we run a BO scheme by considering the insertion loss
at the operating frequency, i.e., IL = —20log;q [S21(f0)l,
as the objective function. We consider a range of the design
parameters within +35% around their nominal value. We start
from a set of L = 10 configurations to initialize the GPR-2
model of the insertion loss and we run 20 iterations of the
optimizer. Since the optimal configuration will differ for each
operating frequency, we run an individual optimization for
each value of fj.

The optimal design values are indicated in Table V, whereas
Fig. 11 illustrates the corresponding responses. The insertion
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loss of the optimal designs (colored lines) is compared
against the spread of 1000 random responses from the MC
analysis (gray area). It is observed that the optimal design
provides indeed the smallest insertion loss at the corresponding
operating frequency.

VII. CONCLUSION

This article introduced conservative GPR models with appli-
cation to UQ and BO in signal integrity analyses. Compared to
classical GPR implementations, whose prediction uncertainty
accounts only for the lack of training data, the proposed
models also take into account the estimation of the prior trend
coefficients and kernel variance. As a results, the estimated
prediction confidence turns out to be more accurate and much
closer to the actual one.

The advocated framework was applied to two test cases
involving the analysis of crosstalk in a multiconductor trans-
mission line network and of the insertion loss in a microstrip
with a ground plane discontinuity, for which both UQ and opti-
mization tasks were performed. The results highlighted that
the proposed conservative GPR models yield more accurate
results compared to state-of-the-art implementations of GPR.
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