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Abstract

In this thesis, I summarize my work on supergravity and supersymmetric quantum
field theories in the context of holography [1–3]. From the gravity side of the
correspondence, I present a solution of D = 4, N = 4 gauged supergravity, firstly
found in [1], conjectured to be a near-horizon solution of an extremal dyonically
charged, rotating, and accelerating supersymmetric black hole in AdS4. The solution
is distinguished by the presence of an orbifold geometry: the shape of the event
horizon is Σ = WCP1[n+,n−]. Following the steps of [4], I provide an exhaustive
thermodynamic analysis of the solution, motivating the setup of the dual supersym-
metric field theory. I then consider a three-dimensional N = 2 supersymmetric field
theory defined on a general complex-valued background, capable of accommodating
the spindle. Finally, I present the novel "spindle index," introduced in [2], and its
derivation by a localization computation involving an application of the equivariant
orbifold index theorem [3].
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Chapter 1

Introductions

1.1 Holographic Principle and AdS/CFT Correspon-
dence

The holographic principle posits that the physical information contained within a
volume is in perfect equivalence with the information that can be extracted from the
volume’s boundary. In the realm of quantum gravity, more specifically in the context
of string theory, this concept was first introduced in the early 1990s by ’t Hooft,
Thorn, and Susskind [5–7]. Starting with Maldacena’s groundbreaking work in 1997
[8], the scientific community was able to concretely realize the holographic principle
within the frameworks of string theory, M-theory, and supergravity theories. In Mal-
dacena’s work, he presented his conjecture, now widely recognized as the AdS/CFT
correspondence (Anti-de Sitter and Conformal Field Theory). This conjecture asserts
the equivalence of two seemingly unrelated theories. In its initial application, these
theories were the type IIB string theory on an AdS5 x S5 background and the N = 4
super Yang-Mills in d = 4 on a flat background. An in-depth understanding of
this duality relies on string theories, given their inherent association with "branes,"
extended objects of intricate nature. These branes act as intermediaries between the
two theories, with their world-volume defining the background spacetime of the dual
field theory and the configurations of string on them determining the dual fields.

This thesis primarily centers on supergravity theories in D = 4, representing con-
sistent truncations of D = 11 supergravity. This supergravity, which first appeared
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in the 1978 paper by Cremmer et al. [9], is now often presented as a classical, low-
energy limit of M-theory, implying that solutions in D = 4 have direct counterparts
as solutions involving M2-branes within the framework of M-theory. Consequently,
the associated dual field theories manifest in three dimensions. For a more compre-
hensive understanding of the process of uplifting four-dimensional gravity solutions,
we refer to Appendix B.

Within the realm of theoretical physics, the holographic principle holds a mul-
titude of potential applications. However, I will specifically focus on its relevance
in the field of black hole physics. Theoretical research in black hole physics is of
paramount importance because it provides a unique avenue for investigating the
quantum nature of gravity and potentially arriving at a coherent theory of quan-
tum gravity that aligns with our existing field theories. In D = 4, a productive
approach, initially introduced in references [10, 11], has been developed to replicate
the Bekenstein-Hawking entropy of supersymmetric asymptotically locally AdS4

black holes. This approach involves a meticulous analysis of specific supersymmet-
ric statistical ensembles within the corresponding dual d = 3 SCFT, which can be
precisely computed using localization techniques. This achievement stands as one of
the most significant results in the recent theoretical research on black hole physics.

This thesis is inserted in an ongoing and prolific research endeavor that began with
the 2020 publication [12], where the central focus is the complex weighted projective
space WCP1

[nN ,nS]
, commonly known as the spindle. In these four years, many works

related to spindles have been published, bearing witness to the vitality of this research
topic. Here, we provide a partial summary [1–3, 12–27]. In this thesis the spindle will
embody both the structure of a black hole’s horizon in supergravity and the curved
geometric background where the dual SQFT is defined. A crucial characteristic of
the spindle is its role as an extension of the sphere. In essence, through a carefully
controlled limit, the spindle can be reduced to the sphere. Consequently, every paper
involving the spindle can be seen as a generalization of prior works involving spheres.
This broader perspective enables researchers to unveil essential general features that
may have eluded previous examination due to the inherent limitations of spheres.
The second, and undeniably more striking, aspect of the spindle geometry lies in its
capacity to accommodate supersymmetry in a more intricate manner when compared
to spheres, which is called anti-twist. Moreover there exist instances of spindle
solutions, as evidenced in [15], where supersymmetry can manifest through both
the conventional topological twist and the novel anti-twist. This anti-twist can be
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regarded as an extension of the concept of a no-twist, which is typically associated
with spheres. This intriguing possibility has led to the emergence of a novel index,
elegantly unifying both the topological twisted index and the superconformal index.
This unification is exemplified in [2] and is comprehensively elucidated in chapter 4.

1.2 Supergravity in Four Dimensions

AdS/CFT correspondence has proven to be a powerful tool in recent years for gaining
insights into the microscopic degrees of freedom of various classes of black holes. In
the context of D= 4 dimensions, two main classes of black holes have been discussed
using this approach. One class consists of static black holes, for which the dual
field theory is typically defined on S1 ×Σg, where Σg is a genus g Riemann surface
equipped with a constant curvature metric, and in order to preserve supersymmetry
one performs the so-called topological twist [28]. A second class consists of rotating
Kerr-Newman-AdS black holes with spherical horizons, for which the dual field
theory is defined on a “spinning” S1 ×S2 [29].

In [13] a different class of asymptotically locally AdS4 black holes has been
considered in the context of holography. These are a family of solutions to Einstein-
Maxwell theory with a cosmological constant, or equivalently minimal D= 4, N = 2
gauged supergravity, originally constructed by Plebański and Demiański [30, 31].
The Plebański-Demiański solutions describe the most general dyonic, rotating and
accelerating black holes in minimal gauged supergravity, and have a number of
striking features. The term “accelerating” refers to the fact that the black hole
curvature singularity can be shown to have a uniform proper acceleration, and more
generally in a natural frame any world-line with constant space-like coordinates also
has this property – see, e.g. section III of [31]. It is well-known that the acceleration
is associated with conical deficit angles, which may be interpreted as being sourced
by strings in the black hole geometry [32]1. The conical deficits manifest themselves
as orbifold singularities on the horizon, which becomes a spindle Σ. An important
property of these Plebański-Demiański solutions is that, in the context of minimal
gauged supergravity, they admit a supersymmetric and extremal sub-family of dyonic

1It is also well-known that such accelerating black holes emit gravitational radiation [33], but the
resulting energy loss is balanced by the force exerted by the strings, which keeps the acceleration
constant.
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accelerating and rotating black holes [34], whose near horizon geometry is a spinning
AdS2 ×Σ solution [13].

In chapter 2 of this thesis, we will discuss extensions of the above solutions to
non-minimal supergravities, focusing on an N = 4 supergravity model that arises
as a consistent truncation of D = 11 supergravity. Alternatively, this can be regarded
as minimal N = 2 gauged supergravity coupled to one vector multiplet with a
particular prepotential. As such, solutions of this model can be uplifted to solutions
of D = 11 supergravity, and therefore interpreted holographically as dual to N = 4
[35] (or N = 2), d = 3 SCFTs arising on M2-branes.

Several solutions to this supergravity theory are known in the literature, and
we have summarized those relevant for holography in the diagram in Figure 1.2
below. In particular, there exist two notable classes of solutions. A solution

[15 Here → Here 
Magnetic Accelerating 

Magnetic Rotating Dyonic Rotating

Dyonic Accelerating

Conjectural → Here 

Conjectural → Here 

Electric Rotating 

Electric Accelerating 

Dyonic Accelerating Rotating 

[20] → [19] [18] → [19] 

[17] 

Special case of [18] 

[1]

[1]

[1] [1][1]

[36][36]

[35]

[37][37][38]

[1]

Fig. 1.1 Summary of AdS4 black holes with either spherical or spindle horizons in D = 4,
N = 4 gauged supergravity. The solutions in the red frames admit a supersymmetric and
extremal limit and their near horizon AdS2 ×Σ geometries are represented pictorially. From
bottom-left to top-right: a spinning sphere, a spinning spindle, and a non-spinning spindle.
In all cases the reference on the left refers to the non-extremal black holes, and that on the
right refers to the near horizon solution in the supersymmetric limit.

describing electrically charged, non-rotating, accelerating black holes was presented
in [36]. This is a multi-charge generalization of the AdS C-metric in the Einstein-
Maxwell theory, which is a member of the solutions in [30], and does not admit
a supersymmetric limit. Reference [37] constructed a dyonic, rotating, but non-
accelerating, family of black hole solutions. Imposing supersymmetry on this
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family leads to a dyonic rotating solution, recovered in [38], that also discusses
the AdS2 × S2 near horizon solution. In turn, switching off the magnetic charge,
the solution reduces to a multi-electric charge version of the Kerr-Newman black
hole of Maxwell-Einstein theory, that was previously discovered in [39]. The
supersymmetric limit of this was discussed in [40], and is the multi-electric charge
counterpart of the extremal Kerr-Newman black hole of Maxwell-Einstein theory
[41]. Based on these and on the family of black hole solutions of the minimal theory
[30, 31], my colleagues and I have conjectured in [1] that there should exist a family
of multi-charge, dyonic, accelerating and rotating AdS4 black holes, from which all
the other solutions should arise as special cases. Unfortunately, the construction of
this general family of black holes has remained a challenge. Nevertheless, we have
constructed a family of supersymmetric multi-charge spinning spindle solutions,
namely rotating AdS2 ×Σ solutions. We expect this family to arise as the near
horizon limit of the corresponding family of supersymmetric and extremal black
holes conjectured above. Interestingly, the Bekenstein-Hawking entropy of the black
holes as a function of the physical charges, as well as the spindle deficit angles, can
be obtained purely from the near horizon solutions.

In AdS/CFT one identifies the holographically renormalized on-shell action in
gravity with minus the logarithm of the dual field theory partition function in a grand
canonical ensemble. The latter is a function of the associated chemical potentials,
and the two ensembles are related by a Legendre transform. While the black hole
entropy can be computed from the near horizon solution, in order to compute the
on-shell action we in principle need the full (non-extremal) black hole solutions.
Nevertheless, in [1], we have presented a conjectural formula for the euclidean on-
shell action associated to the full black hole. In the special case where the conjectural
black hole reduces to the solution of the minimal theory, in [4] it has been shown
that the entropy can be derived from a Legendre transform of the Euclidean on-shell
action, similarly to [42, 43], thus setting the stage for a direct analysis of the dual
d = 3 SCFT, defined on S1 ×Σ.
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1.3 Supersymmetric Field Theory in Three Dimen-
sions

In order to assess the validity of the AdS/CFT correspondence, it becomes imperative
to calculate quantities within supersymmetric quantum field theories (SQFTs) defined
on curved manifolds. Starting from the foundational work presented in [44], a
systematic framework has emerged for delineating the necessary conditions that
background fields, including the metric, must meet to enable the realization of a
supersymmetric theory on the given background. The background fields that allow
the realization of supersymmetry are identified with the rigid limit of the gravity
multiplet fields of an off-shell formulation of supergravity.

In the context of [44], the focus is directed toward four-dimensional theories.
Similar insights have been extended to three-dimensional theories, as elaborated
in [45], where the off-shell realization of supergravity pertains to new minimal
supergravity. It is in the framework of the rigid limit of new minimal supergravity
in d = 3 that, in our paper [2], we introduced a comprehensive category of rigid
supersymmetric backgrounds conducive to accommodating the spindle. This par-
ticular background preserves two distinct Killing spinors (ζ , ζ̃ ) with R-charges ±1,
respectively and it represents the most general background invariant under two real
Killing vectors. Furthermore, it exhibits a metric characterized by complex values in
order to accomodate the intrinsically complex geometry of [4], which is discussed in
Chapter 3.

Once we have an SQFT on a curved background, the computation of quantities
becomes feasible through localization techniques. The roots of these techniques
can be traced back to [46], but their modern wide application gained momentum
after [47], where the author successfully calculated the partition function of different
theories on an S4 background. Localization techniques can be viewed as a stationary
phase approximation of the path integral of the theory. Thanks to supersymmetry,
it turns out that this approximation yields an exact result. In a supersymmetric
theory, there exists a fermionic symmetry generated by a supersymmetric charge
Q. This Q can either be a nilpotent operator or can square to a bosonic symmetry.
In both cases, it is possible to deform the action of the theory with a Q-exact term
without changing the path integral: quantum physical states of the theory reside on
the cohomology (or equivariant cohomology) group generated by the operator Q.
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Introducing a deformation parameter t ∈ R, we express the partition function as

Z(t) =
∫

e−S+tQX . (1.3.1)

Taking the limit t → ∞ and making a judicious choice of the deformation action X ,
the path integral localizes to the saddle points:

Z(t = ∞) = ∑
saddle points

e−Sclassical
det fermions
detbosons

. (1.3.2)

At this point, the computation involves two contributions: one from the values of
the field on the saddle points, termed the "classical contribution," and a second
from small oscillations around these stable configurations, termed the "one-loop
determinant."

In the contest of three-dimensional SQFTs, the supersymmetric localization was
employed to compute the topologically twisted index in [28] and the superconformal
index [48, 49]. The topologically twisted index is defined as the partition function
of a supersymmetric theory defined on a background Σ× S1 where a topological
twist is performed on Σ, otherwise if there is no flux through Σ we refer to the
partition function as superconformal index. As discussed in the previous section, the
large-N limit of these quantities provides a microscopic interpretation of the entropy
of magnetically charged supersymmetric black holes in AdS4 with an event horizon
shaped like Σ [10].

In [2], it was demonstrated that performing the new anti-twist through a spindle
Σ leads to an associated index, generalizing the superconformal index. Moreover, the
unification of this index with the topologically twisted index resulted in a comprehen-
sive newly defined index termed "the spindle index." This nomenclature emphasizes
the fundamental role of the orbifold nature of the spindle in achieving this result.
Moreover, in [3], it was shown that the same procedure can be applied to other
orbifolds. In Chapter 4 of this thesis, we provide specific details regarding the
new background capable of accommodating the spindle, as well as the localization
computation that gives rise to the spindle index.



Chapter 2

Supergravity Side/Spindle Black
Holes

2.1 The supergravity model

In this chapter, we present the supersymmetric AdS2×Σ solutions of D = 4, N = 4
gauged supergravity, firstly found in [1]. This theory can also be described, in the
language of D= 4, N = 2 supergravity [50], as a theory with no hypermultiplets and
one vector multiplet, with prepotential F =−iX0X1 and electric Fayet-Iliopoulos
gauging. Yet another viewpoint is that it is a truncation of the STU model [51],
where the four Abelian gauge fields are set pairwise equal and two of the complex
scalars are identified. Introducing the axio-dilaton

z =
X1

X0 = e−ξ + i χ , (2.1.1)

we can write the bosonic action of the theory as

S =
1

16πG(4)

∫ [
(R−g2 V )⋆1− 1

2
dξ ∧⋆dξ − 1

2
e2ξ dχ ∧⋆dχ − e−ξ F2 ∧⋆F2

+χ F2 ∧F2 −
1

1+χ2e2ξ

(
eξ F1 ∧⋆F1 +χ e2ξ F1 ∧F1

)]
,

(2.1.2)
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where Fi = dAi, i = 1,2, and the scalar potential V is given by

V = −
(

4+2coshξ + eξ
χ

2
)
. (2.1.3)

We shall henceforth set g = 1, so that in the AdS4 vacuum of the theory there is
an effective cosmological constant Λ = −3. We also remark that minimal D = 4,
N = 2 gauged supergravity is obtained via the consistent truncation ξ = 0 = χ ,
A1 = A2 = A.

Although we shall not consider the fermionic completion of the action (2.1.2),
it will be important to consider the supersymmetry variations of the gravitini and
gaugini of this theory, which must vanish for bosonic backgrounds that preserve
some amount of supersymmetry. While it is customary to formulate D = 4, N = 2
supergravity in terms of Weyl fermions, we follow [52] and combine them into
complex Dirac fermions: a gravitino ψµ , a dilatino λ and a supersymmetry parameter
ε . In terms of these, the Killing spinor equations (KSEs) can be written as

δψµ =

[
∇µ − i

2
(A1 +A2)µ +

i
4

eξ
∂µ χ γ5 +

1
4

(
eξ/2 + e−ξ/2

)
γµ +

i
4

χ eξ/2
γµ γ5

+
i
8

(
eξ/2

1+χ2 e2ξ
/F1 + e−ξ/2 /F2

)
γµ − 1

8
χ e3ξ/2

1+χ2 e2ξ
/F1 γµ γ5

]
ε = 0 ,

δλ =

[
i e−ξ /∂ξ − e−ξ

2

(
eξ/2

1+χ2 e2ξ
/F1 − e−ξ/2 /F2

)
− i e−ξ

(
eξ/2 − e−ξ/2

)
+

(
/∂ χ +

i
2

χ eξ/2

1+χ2 e2ξ
/F1 +χ e−ξ/2

)
γ5

]
ε = 0 .

(2.1.4)

Being a truncation of the maximal D = 4, N = 8 gauged supergravity, all super-
symmetric solutions of this theory can be uplifted on S7 to supersymmetric solutions
of D = 11 supergravity. The details of the uplift for this specific truncation can be
found in [53]. We shall discuss uplifting of the metric in appendix B, where global
regularity of the D = 11 solutions will require quantization of the magnetic charges
of the D = 4 solutions.
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2.2 Local AdS2 solutions

In this section we present a class of rotating, dyonically charged AdS2 ×Σ solutions
of the D = 4, N = 4 supergravity model introduced in the previous section. We
conjecture these solutions to arise as the near horizon limit of accelerating, rotating
and dyonic black holes, that are also extremal and supersymmetric.

The local form of the solutions is given by

ds2
4 =

1
4

λ (y)
(
−ρ

2 dτ
2 +

dρ2

ρ2

)
+

λ (y)
q(y)

dy2 +
q(y)

4λ (y)
(dz+jρ dτ)2 ,

Ai =
hi(y)
λ (y)

(dz+jρ dτ) , eξ =
g1(y)
λ (y)

, χ =
g2(y)
g1(y)

,

(2.2.1)

where all the functions that we introduced are polynomials in y, given by

λ (y) = y2 +j2 −2c2 ,

q(y) = (y2 +j2)2 −4(1−j2 + c2)y2 +4c1

√
1−j2 y− c2

1 +4c2 (c2 −j2) ,

h1(y) =

√
1−j2

2
(1− c3)λ (y)− 1

2

(
c1 +2

√
1−j2

√
2c2 − c2

3j
2
)

y

+(2c2 −j2)
√

1−j2 +
1
2

c1

√
2c2 − c2

3j
2 ,

h2(y) =

√
1−j2

2
(1+ c3)λ (y)− 1

2

(
c1 −2

√
1−j2

√
2c2 − c2

3j
2
)

y

+(2c2 −j2)
√

1−j2 − 1
2

c1

√
2c2 − c2

3j
2 ,

g1(y) = y2 +2
√

2c2 − c2
3j

2 y+2c2 +(1−2c3)j
2 ,

g2(y) = 2c3jy+2j
√

2c2 − c2
3j

2 .

(2.2.2)

Note that the solution depends on the four parameters j, ci (i = 1,2,3), where
j has the interpretation of a rotation parameter. We can interpret the number of
independent parameters in terms of our conjecture that this arises as the near horizon
limit of a supersymmetric and extremal accelerating black hole. One can imagine
a full black hole metric with seven parameters, representing mass, acceleration,
angular momentum and two pairs of dyonic charges. We would then expect two
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constraints on the parameters to come from the supersymmetry conditions, and one
from the requirement of extremality, resulting in a four-parameter solution, as for
that described above. One can then think of the four parameters as representing the
two pairs of dyonic charges, with mass, acceleration and angular momentum related
to them by supersymmetry and extremality.

2.3 Killing spinors

Let us now justify our claim that the solution (2.2.1) is supersymmetric, by showing
explicitly the associated Killing spinors.

We choose the orthonormal frame

e0 =
1
2

√
λ (y)ρ dτ , e1 =

1
2

√
λ (y)

dρ

ρ
,

e2 =

√
λ (y)
q(y)

dy , e3 =

√
q(y)

4λ (y)
(dz+jρ dτ) .

(2.3.1)

The four-dimensional gamma matrices are then taken to be

γa = βa ⊗12, a = 0,1 (2.3.2)

γ2 = β3 ⊗σ
1 , γ3 = β3 ⊗σ

2 , (2.3.3)

with the two-dimensional gamma matrices βa are defined by

β0 = iσ
2 , β1 = σ

1 , β3 ≡ β0β1 = σ
3 , (2.3.4)

where σ i are the Pauli matrices.

We consider the following Killing spinor equation (KSE) for AdS2:

∇aθ =
i
2

nβa β3 θ , (2.3.5)

with n =±1. This is solved by Majorana spinors that can be decomposed as θ1,2 =

θ
(+)
1,2 + θ

(−)
1,2 , with the Majorana-Weyl spinors θ

(±)
1,2 of chirality β3 θ

(±)
1,2 = ±θ

(±)
1,2 ,
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given by

θ
(+)
1 =

√
ρ

0

 , θ
(−)
1 =

 0

in
√

ρ

 , (2.3.6)

θ
(+)
2 =

√
ρ τ − 1√

ρ

0

 , θ
(−)
2 =

 0

in
(√

ρ τ + 1√
ρ

) . (2.3.7)

We are finally ready to discuss the explicit Killing spinors, which solve both
equations in (2.1.4), and can be written as

ε1 = θ
(+)
1 ⊗η1 +θ

(−)
1 ⊗η2 , (2.3.8)

ε2 = θ
(+)
2 ⊗η1 +θ

(−)
2 ⊗η2 , (2.3.9)

where η1,2 are two two-dimensional spinors, given by

η1 =

e
− i

2 arctan
(

g′1(y)
2j(1−c3)

)
q+(y)1/2

λ (y)1/4

i e
i
2 arctan

(
g′1(y)

2j(1−c3)

)
q−(y)1/2

λ (y)1/4

 ,

η2 = nei arccosj

 i e
i
2 arctan

(
g′1(y)

2j(1−c3)

)
q+(y)1/2

λ (y)1/4

−e
− i

2 arctan
(

g′1(y)
2j(1−c3)

)
q−(y)1/2

λ (y)1/4

 .

(2.3.10)

We have also defined

q±(y) ≡ λ (y)±
(

c1 −2
√

1−j2 y
)
, (2.3.11)

which satisfy q(y) = q+(y)q−(y).

Finally, we conclude with some comments about the counting of supercharges.
As we have just discussed, we have a solution to D = 4 supergravity which admits
two independent Dirac Killing spinors, given by (2.3). This is equivalent to four
Majorana, or four Weyl spinors, hence the solution can be described as 1

2−BPS from
the point of view of D = 4, N = 2 supergravity, or 1

4−BPS from the point of view of
D = 4, N = 4 supergravity. In the dual d = 1 superconformal quantum mechanics
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(SCQM), the complex spinor ε1 gives two real Poincaré supercharges, while ε2 gives
two real conformal supercharges. Thus, the SCQM has N = 2 supersymmetry in
one dimension, since in the field theory counting one usually includes only Poincaré
supercharges, with superalgebra su(1,1|1).

2.4 Global analysis

We would now like to determine conditions on the parameters j and ci (i = 1,2,3)
such that the two-dimensional metric

ds2
Σ =

λ (y)
q(y)

dy2 +
q(y)

4λ (y)
dz2 , (2.4.1)

obtained from (2.2.1) on slices of constant τ and ρ , is a smooth orbifold metric on a
spindle. Clearly, we want λ (y)> 0 and q(y)≥ 0, which is also enough to guarantee
the correct signature of the metric (2.2.1). For (2.4.1) to be a metric on a compact
space, we also want to take y ∈ [ya,yb], with ya < yb two roots of q(y) = 0, such that
q(y)> 0 for y ∈ (ya,yb). Since the coefficient of y4 in q(y) is positive, this is only
possible if there are four single1 real roots, and ya,b are taken to be the middle two
roots.

A sufficient condition for λ (y) to be positive is that it has no real roots, which is
the case for c2 <

j2

2 . As for the roots of q(y), they admit a simple expression as

y1 = −
√

1−j2 −
√

1+ c1 +2c2 −2j2 ,

y2 = −
√

1−j2 +
√

1+ c1 +2c2 −2j2 ,

y3 = +
√

1−j2 −
√

1− c1 +2c2 −2j2 ,

y4 = +
√

1−j2 +
√

1− c1 +2c2 −2j2 ,

(2.4.2)

and note that for at least two of the roots to be real we need j ∈ [−1,1]. Since the
sign of j can be reabsorbed with a change of the sign of τ , we are actually free to
set j ∈ [0,1]. We further note that y1,2 are real and distinct for c1 >− f (j,c2), while
y3,4 are real and distinct for c1 < f (j,c2), with f (j,c2) = 1+ 2c2 − 2j2. Thus, a

1If there is a double root, that is necessarily either ya or yb, but then (2.4.1) would not yield a
complete metric on a compact space.



14 Supergravity Side/Spindle Black Holes

necessary condition to have four distinct real roots is that f (j,c2)> 0, which leads to
the constraint c2 > j2 − 1

2 . Note that in this case we also have y1 < y2 < y3 < y4, so
we must set a = 2, b = 3 and take y ∈ [y2,y3]. We also note that the dilaton eξ should
be positive for ξ to be real. Its denominator λ (y) is positive in the ranges discussed
above, while the numerator g1(y) is a polynomial in y of degree two which is always
positive since it has a negative discriminant, given by −4(1− c3)

2j2. Finally, we

should also take c2 such that the square root
√

2c2 − c2
3j

2 appearing in (2.2.2) is

real, which requires 2c2 ≥ c2
3j

2. This gives a non-empty intersection with the other
conditions (in particular c2 <

1
2j

2) only if |c3|< 1.

To summarize, we have shown that when2

0 ≤ j ≤ 1 , max
(
j2 − 1

2 ,
1
2c2

3j
2) < c2 < 1

2j
2 , |c1| < 1+2c2 −2j2 , |c3|< 1 ,

(2.4.3)

we can take y ∈ [y2,y3], with q(y)≥ 0 and λ (y)> 0 in that interval. We shall from
now on assume that these conditions hold, and study the global regularity of (2.4.1)
under this assumption.

Let us then consider the behaviour of the metric (2.4.1) near the poles ya,b. For
any yi such that q(yi) = 0, setting y = r2

4 + yi we find

ds2
Σ ≃ λ (yi)

q′(yi)

(
dr2 + r2 q′(yi)

2

16λ (yi)2 dz2
)
. (2.4.4)

Then, (2.4.1) is a smooth metric3 on WCP1
[n−,n+] if

q′(y2)

4λ (y2)
∆z =

2π

n+
, − q′(y3)

4λ (y3)
∆z =

2π

n−
, (2.4.5)

2Note that from (2.4.3) it seems that taking j = 0 also forces c2 = 0. This is, however, not the
case, since the correct way to turn off the rotation parameter is that of taking a limit c3 → ∞ and
j→ 0, with constant product c3 j.

3In the orbifold sense: the metric is regular everywhere except for the poles y = y2,3, where there

are conical deficit angles 2π

(
1− 1

n±

)
.
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with n± coprime positive integers. Notice here that λ > 0, while q′(y2) > 0 and
q′(y3)< 0, which determines the signs in (2.4.5). These equations are solved by

c1 =
(n2

−−n2
+)(1+2c2 −2j2)

n2
−+n2

+

, ∆z =

√
2
√

n2
−+n2

+

n− n+
√

1+2c2 −2j2
π . (2.4.6)

Using these conditions, and using the expression

√
gΣ RΣ =

d
dy

q(y)λ ′(y)−q′(y)λ (y)
2λ (y)2 , (2.4.7)

for the Ricci scalar of the metric (2.4.1), we can also check that the orbifold Euler
number

χ(Σ) =
1

4π

∫
Σ

RΣ volΣ =
n−+n+
n− n+

, (2.4.8)

takes the correct value for the spindle. Note that the last condition in (2.4.3) is
trivially satisfied for all values of n± due to the constraint (2.4.6).



Chapter 3

Black-Hole Thermodynamics

Since the seminal works of Bekenstein[54, 55] and Hawking[56, 57] in the early
1970s, a remarkable trajectory of research has unfolded, enriching the field of
black hole physics through the lens of thermodynamics. The laws of black hole
thermodynamics can be considered a semiclassical limit of a comprehensive quantum
gravity theory, offering fundamental insights that guide our quest for such a theory.
This becomes apparent when examining the Bekenstein-Hawking formula for black
hole entropy, once constants of nature are reinstated:

SBH =
AkBc3

4Gℏ
(3.0.1)

The presence of the fundamental constants ℏ and G indicates the quantum nature
of gravity. Furthermore, within this formula lie the foundations of the holographic
nature of quantum gravity, as the entropy is proportional to the area of the event
horizon rather than the volume of the black hole.

In this chapter we will work with two solution. The conjectural near horizon
solution presented in chapter 2 and the black hole solution of the minimal theory
worked out in [13]. This solution can be thought as a special case of the conjectural
full black hole of chapter 2. Looking at the solution (2.2.1) and the functions (2.2.2),
one can see that the choice c2 = c3 = 0 sets to zero the scalars and gives A1 = A2. It
is then straightforward to see that our multi-charge spindle solution reproduces in
this limit the AdS2 solutions discussed in [13], if one sets c1 = a , with all the other
coordinates and parameters unchanged. We mention this special solution because in
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this case we have the full black hole solution and it is possible to provide a complete
thermodynamic analysis, as done in [4].

3.1 Near Horizon Analysis

It is possible to compute the conserved charges associated with the conjectural black
hole of which (2.2.1) represents the near horizon limit, as well as its entropy just from
the near-horizon solution. In the full black hole solution, these conserved charges
would usually be defined as integrals over a constant time surface Σ∞ at infinity, the
integrand being constructed from an appropriately conserved current. This approach
will be followed in Chapter 4. However, at least for the electric and magnetic charges
and angular momentum, using Stokes’ Theorem we may equivalently evaluate these
quantities as integrals over the horizon Σ, which may then be computed in the near
horizon solution, following [13].

First, we define the magnetic charges to be

Pi ≡
1

2π

∫
Σ

Fi . (3.1.1)

Since dFi = 0, these charges will be equal to 1
2π

∫
Σ∞

Fi for any solution in which the
horizon Σ is homologous to a spacelike surface Σ∞ at infinity. After a computation
we find

P1 +P2 =
n−−n+
n− n+

≡ 4Qm ,

P1 −P2 = −2
√

2c2 − c2
3j

2 ∆z
2π

.

(3.1.2)

The first equation in (3.1.2) gives the anti-topological twist; this nomenclature was
introduced in [17], due to the relative minus sign (n−−n+)/n−n+ in this expression
for the total flux. This may be contrasted with the orbifoldEuler number of the
spindle χ(Σ) given by (2.4.8). The latter would be the total magnetic flux P1 +P2

if supersymmetry was realized by a topological twist, appropriately identifying the
spin connection on Σ with the R-symmetry gauge fields, so that the Killing spinor
is constant. However, for the anti-topological twist here the spinors are sections of
non-trivial bundles over Σ, and so certainly not constant.
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To define the electric charges, we notice that while in general d ⋆Fi ̸= 0, the
two-forms

F1 ≡ eξ

1+χ2 e2ξ

(
⋆F1 +χ eξ F1

)
, F2 ≡ e−ξ ⋆F2 −χ F2 , (3.1.3)

are closed by virtue of the equations of motion. We thus define

Qi ≡ − 1
2π

∫
Σ

Fi , (3.1.4)

which by a similar comment to that above will be equal to the corresponding integrals
evaluated on Σ∞. We find

Q1 +Q2 = 2j
∆z
2π

≡ 4Qe ,

Q1 −Q2 = −c3 (Q1 +Q2) .
(3.1.5)

The first equation provides the definition of the total electric charge Qe.

Even without knowing the full black hole metric of which (2.2.1) is the near
horizon limit, we can still compute its entropy using the Bekenstein-Hawking formula

SBH =
Area

4
=

1
4

y3 − y2

2
∆z

=
π

4


√

2(n2
−+n2

+)(1−j2)

n− n+
√

1+2c2 −2j2
− n−+n+

n− n+

 .

(3.1.6)

In terms of the two pairs of dyonic charges of this solution, the entropy can be also
expressed as

SBH =
π

4

[
−χ(Σ)+

√
χ(Σ)2 +4(P1P2 +Q1Q2)

]
. (3.1.7)

Another physical quantity that can be computed for a rotating black hole is its angular
momentum. Since the metric of the full black hole is not known, we shall adopt (a
suitably modified version of) the prescription of [13], where the angular momentum
is defined as a sort of Page charge. To define this, we first introduce an angle ϕ = 2π

∆z z
and a Killing vector k = ∂ϕ , in terms of which the angular momentum can then be
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expressed as

J(A1, A2) =
1

16π

[∫
Σ
⋆dk+2(k ·A1)F1 +2(k ·A2)F2

]
. (3.1.8)

Although the integrand here is not a closed form, so that this doesn’t immediately
lead to a conserved quantity, one can verify that k⌟d applied to the integrand is
zero. Assuming that the horizon Σ of the near horizon black hole solution and
the corresponding copy of this surface Σ∞ on the conformal boundary are the two
boundary components of a k-invariant three-manifold, as one would expect for the
black hole solution, it follows from Stokes’ Theorem that (3.1.8) takes the same
value integrated over either Σ or Σ∞. However, being a type of Page charge, this
angular momentum is not gauge invariant. We will evaluate it in the gauge given
in (2.2.1), which is natural from the point of view of a near horizon solution as it
is invariant under the isometries of AdS2 [13]. We refer to the value of the angular
momentum computed in this gauge as JAdS2 , and we find

JAdS2 =
1− c2

3
4

j

√
1−j2

(
∆z
2π

)2

. (3.1.9)

Note that we can also write

JAdS2 =
Q1Q2

4(Q1 +Q2)

√
χ(Σ)2 +4(P1P2 +Q1Q2) , (3.1.10)

and thus the entropy can be rewritten as

SBH =
π

4

[
4(Q1 +Q2)

Q1Q2
JAdS2 −χ(Σ)

]
. (3.1.11)

3.2 First Law of Black Hole Thermodynamics

In this section, we will adopt a systematic approach to define and compute thermody-
namic quantities. As anticipated, we can follow this procedure only in the presence
of the full black hole solution. Therefore, we focus on the solution firstly appeared
in [13].
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It reads 1

ds2 =
1

H2

{
−Q

Σ

(
1
κ

dt −asin2
θdφ

)2

+
Σ

Q
dr2

+
Σ

P
dθ

2 +
P
Σ

sin2
θ

( a
κ

dt −
(
r2 +a2)dφ

)2
}

(3.2.1)

where

P(θ) = 1−2αmcosθ +
(
α

2 (a2 + e2 +g2)−a2)cos2
θ , (3.2.2)

Q(r) =
(
r2 −2mr+a2 + e2 +g2)(1−α

2r2)+ r2 (a2 + r2) , (3.2.3)

H(r,θ) = 1−αr cosθ , (3.2.4)

Σ(r,θ) = r2 +a2 cos2
θ , (3.2.5)

and the gauge field is given by

A =−e
r
Σ

(
1
κ

dt −asin2
θdφ

)
+g

cosθ

Σ

( a
κ

dt −
(
r2 +a2)dφ

)
= At dt +Aφ dφ . (3.2.6)

Here, α,m,a,e, and g are the five fundamental parameters associated with accelera-
tion, mass, rotation, electric and magnetic charge respectively. In the following, we
will make use of Ξ ≡ 1+α2(a2 + e2 +g2)−a2 to shorten the expressions.

The standard holographic approach to defining conserved charges of black holes
in AdS, involves first computing the boundary holographic energy-momentum tensor
and conserved currents, the latter being associated with the global U(1) symmetries
dual to the gauge fields Ai in the bulk, i = 1,2. Thus, the physical quantities will be
defined as conserved charges associated with boundary conserved currents.

The first step of this analysis consists of writing the metric in a standard way, such
that its behavior at the boundary becomes manifest. Thanks to Fefferman-Graham’s
theorem [58], we know that any asymptotically locally AdS solution admits this
standard expansion. In the notation of [4], where z = 1

r −α cosθ and xi = (t,θ ,φ)
are the coordinates, and the conformal boundary is located at z = 0, the expansion of

1This solution was presented in [4]. It differs from the one in [13] for the normalization κ of the
time coordinate. This normalization affects the definition of mass as discussed below.
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(3.2.1) reads:

ds2 = N2dz2 +hi j
(
dxi +Nidz

)(
dx j +N jdz

)
, (3.2.7)

where N is the lapse function, Ni the shift vector and hi j the induced metric on the
conformal boundary. The outward-pointing unit vector n, normal to hypersurfaces
of constant z, provides the splitting between the boundary coordinates and the
coordinate z

n =
1
N

(
Ni

∂i +∂z
)
. (3.2.8)

The next essential component for the thermodynamic analysis is the total action. This
includes the bulk action, the Gibbons-Hawking boundary term, and the holographic
renormalization counter terms:

Stot =
1

16πG4

(∫
d4x

√
−g
(

R+
6
l2 −F2

)
+
∫

d3x
√
−h(2K −4−R(h))

)
,

(3.2.9)

where K is the trace, with respect the metric h, of the extrinsic curvature Ki j =
1
2Lngi j.

Subsequently, the boundary stress tensor, the boundary gauge field and the boundary
electric current can be computed. They are defined as

Ti j =
1

8π
lim
ε→0

1
ε

[
−Ki j +hi jK −2hi j +Ri j(h)−

1
2

hi jR(h)
]

z=ε

, (3.2.10)

Abdy = lim
ε→0

Ai|z=εdxi, (3.2.11)

ji =− 1
4π

lim
ε→0

(
1
ε3 nµFµi

)
. (3.2.12)

It is possible to show that for any given Killing vector k for the boundary geome-
try, there is an associated conserved current given by(

T i
j + jiAbdy

j

)
k j, (3.2.13)

and hence a conserved charge. The equation (3.2.13) is the aim of the whole boundary
construction above illustrated. With an appropriate choice of Killing vectors, mass,
angular momentum, electric, and magnetic charge can be defined. The definition of



22 Black-Hole Thermodynamics

mass deserves a brief comment. It is defined as the conserved charge associated with
a time-like Killing vector kt . However, the choice of time-like Killing vector is not
unique. This ambiguity was resolved in [4] by requiring the first law of black hole
thermodynamics to hold. Their analysis leads to the choice of kt = ∂t +Ω∞

∆φ

2π
∂φ as

Killing vector, together with κ =

√
(Ξ+a2)(1−α2Ξ)

1+a2α2 as the normalization for the time
coordinate. For brevity, we keep κ implicit in the following.

A resume of the computations of [4] for the black hole (3.2.1) is

M =
m∆φ

2πκ

(
Ξ+a2)(1−α2Ξ

)
Ξ(1+α2a2)

, J = am
(

∆φ

2π

)2

,

Qe =
e∆φ

2π
, Qm =

g∆φ

2π
,

SBH =
∆φ

2
r2
++a2

1−α2r2
+

, T =
Q′ (r+)

4πκ
(
r2
++a2

) , (3.2.14)

where r+ is the radius of the black hole. Here the entropy is computed with the
Bekenstain-Hawking formula while the temperature is defined as T =

κsg
2π

, with
κsg the surface gravity. This is the standard definition of temperature in the black
hole contest. The surface gravity can be computed starting from the null-vector
generating the black hole horizon which, in our case, is V = ∂t +

1
κ

a
r2
++a2 . Thus we

have κsg =
√
−1

2∇µVν∇µV ν .

Entropy, electric charge and magnetic charge computed in section 3.1 perfectly
reduces to the ones given in (3.2.14). The angular momentum J is the conserved
charge associated with the Killing vector kJ = −∆φ

2π
∂φ . However, as explained

in 3.1, it is not a gauge-invariant quantity. Therefore, we can introduce another
angular momentum, denoted as JAdS2 , computed in a gauge that is natural from the
perspective of the near horizon. The relation between the angular momenta in the
two gauges is given by

JAdS2 = J+
Qe

4
χ. (3.2.15)

The angular momentum computed in 3.1 reduces to JAdS2 after taking the correct
limit. Although there is no counterpart of J in the near horizon solution of Chapter
2, in Section 3.4, a conjecture for the renormalized on-shell action will lead to a
generalization of (3.2.15).



3.3 Supersymmetric and Extremal Limit 23

Before checking the first law of black hole thermodynamics, the chemical poten-
tials associated with the conserved charges need to be computed. The electrostatic
potential Φe and the magnetic potential Φm are defined as

Φe =− lim
r→r+

ιV A, Φm =− lim
r→r+

ιV ∗A. (3.2.16)

The angular velocity associated with the angular momentum J is denoted with
Ω, while the angular velocity of the horizon is ΩH . The computations of [4] lead to

Φe =
er+

κ
(
r2
++a2

) , Φm =
gr+

κ
(
r2
++a2

) , (3.2.17)

Ω∞ =− 2π

κ∆φ

a
(
1−α2Ξ

)
Ξ2 (1+a2α2)

, ΩH =
2π

κ∆φ

a
r2
++a2 ,

Ω = ΩH −Ω∞. (3.2.18)

With these quantities, it is possible to check the first law of black hole thermody-
namics:

dM = T dSBH +ΦedQe +ΩdJ. (3.2.19)

3.3 Supersymmetric and Extremal Limit

In this section, we briefly summarize a key result from [4] due to its significant
impact on the setup chosen for the SQFT in Chapter 4. The solution (3.2.1) has five
free parameters. An observation, initially made in [13], is that these five parameters
are subject to three constraints: two arising from the requirement of supersymmetry
and one from the requirement of extremality. Recall that a black hole is extremal if
the function defining the black hole horizon, denoted as Q(r) in (3.2.2), has a double
root at the horizon solution r+. The three equations are:

g = αm (3.3.1)

0 = α
2(e2 +g2)(Ξ+a2)− (g−aαe)2 (3.3.2)

0 = ag2(aαe−g)(e+aαg)+α
3e2(e2 +g2)2, (3.3.3)
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where the extremality condition is the last one. In this section, our focus is on
studying supersymmetric yet non-extremal solutions. To elucidate this choice, we
must revisit the connection between the gravitational theory and the field theory
within the holographic framework. From the perspective of the field theory, we
have a supersymmetric gauge theory with a gauge group of U(N). This theory
is dually related to the sum of gravitational (or string) objects in AdS that share
the same boundary conditions. The supersymmetric and extremal AdS black hole
represents the leading-order solution in the expansion as N → ∞. This underscores
why we attribute the extremal black hole to being dual to a field theory in the large N
expansion. To gain insights beyond the large N regime, one can relax the extremality
condition to encompass a more general boundary setup, making it relevant to the
dual field theory. The outcomes of the supersymmetric but non-extremal analysis
will, therefore, serve as the rationale for the chosen background in Chapter 4.

While implementing the first supersymmetry condition is straightforward, solving
the second equation of (3.3.1) proves to be challenging. To tackle this, the analysis
in [4] introduces a new set of parameters:

b =
e
g
, c =

a
gα

, s = aα, (3.3.4)

µ =
n++n−
n+−n−

, r+ =
s
α

ρ. (3.3.5)

This parametrization is valid for α,a ̸= 0. The essence of the last equation is to
treat the horizon radius as a new parameter ρ , which must satisfy Q(ρ) = 0 and
also Q′(ρ) = 0 for the extremality condition to hold. The second supersymmetry
condition can now be solved for c, yielding:

c =
2(1+b2)s

1−2bs− s2 µ. (3.3.6)

With this new parametrization, the physical charges in (3.2.14) become:

M =
Qm
√
(2cQm −χs)(2csQm +χ)

χ
√

s
(3.3.7)

J = cQ2
m (3.3.8)

Qe = bQm . (3.3.9)
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By combining the last identity with (3.3.6), we obtain a highly non-trivial relation
between physical charges:

M =
2
χ

J+Qe. (3.3.10)

This formula is known as the BPS relation as it directly descends from the structure
of supersymmetry.

We can now focus on the equation for the horizon radius, Q(ρ) = 0. This
equation can be solved for b instead of ρ , yielding the solution:

b = b± ≡ 2µρ

ρ2 −1
+

(
1− s2 ±2iµs

)
B(ρ,s)

2s(ρ2 −1)(ρ2s2 −1∓ iµs(ρ2 +1))
(3.3.11)

where

B(ρ,s)≡
(
1−ρ

2)(1−ρ
2s2)+2µ

(
1+ρ

2)
ρs. (3.3.12)

This equation plays a crucial role, indicating that, after imposing supersymmetry,
we cannot demand that ρ,b,s are all real parameters. Consequently, the boundary
metric assumes complex values, a factor that must be carefully considered in the
background analysis of the dual field theory made in Chapter 4.

Following the analysis of [4], we require ρ ∈ R. The extremality condition
Q′(ρ) = 0 will set B(ρ,s) and hence

b∗ =
2µρ

ρ2 −1
, (3.3.13)

s∗ =
µ(1+ρ2)

√
µ2(1+ρ2)+(ρ2 −1)2

ρ(ρ2 −1)
, (3.3.14)

where the subscript ∗ denotes the supersymmetric and extremal values of the pa-
rameters. Next, we construct two new complexified chemical potentials, defined as
follows

ω ≡ 1
T
(Ω−Ω∗), ϕ =

1
T
(Φe −Φe,∗). (3.3.15)

It’s noteworthy that these potentials do not trivially approach zero in the extremal
limit since the extremal temperature is also zero, i.e., T∗ = 0. These two chemical
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potentials are interesting as they satisfy the following relation

ϕ − χ

4
ω =±iπ. (3.3.16)

The last constraint on chemical potentials is crucial as it will be obtained in
Chapter 4 in the dual field theory setup. This serves as a highly non-trivial check of
the holographic duality.

3.4 Entropy function

As mentioned in the introduction, the black hole entropy is the logarithm of a partition
function in a microcanonical ensemble, while the renormalized on-shell action is
dual to a field theory defined in a grand canonical ensemble. A direct computation,
showing that the two quantities are related by a Legendre transform, was carried out
in [4], where the authors could directly compute the renormalized Euclidean on-shell
action. They obtained

Imin
E ≡−iStot|on-shell =−SBH −ωJ−ϕQe =± 1

2i

(
ϕ2

ω
+ωQ2

m

)
, (3.4.1)

which is valid for any of the complex supersymmetric solutions introduced at the
end of the last section. Inspired by the results of [4], we conjecture in [1] a formula
for the holographically renormalized on-shell action of the full supersymmetric,
accelerating, rotating and multi dyonically charged black holes. It reads:

I = I(ω,ϕ1,ϕ2) = ± 1
2i

(
16

ϕ1ϕ2

ω
+

1
4

P1P2 ω

)
, (3.4.2)

where we have introduced a rotational chemical potential ω , and the electric chemical
potentials ϕi for the two gauge fields Ai, i = 1,2., in complete anology with the last
part of section (3.3). These chemical potentials are furthermore required to satisfy
the constraint

2(ϕ1 +ϕ2)−
χ(Σ)

4
ω = ±iπ . (3.4.3)
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More precisely, (3.4.2) should be the holographically renormalized on-shell action for
a complex locus of supersymmetric solutions, that arise as an analytic continuation
of the real black hole solutions we have conjecture.

Given the on-shell action (3.4.2), we may write down the following associated
entropy function

S ≡ −I(ω,ϕ1,ϕ2)− (ωJBH +ϕ1 Q1 +ϕ2 Q2) . (3.4.4)

Here the rotational chemical potential ω is conjugate to the black hole angular
momentum JBH . According to the AdS/CFT conjecture, the black hole entropy
should then be obtained by extremizing (3.4.4) over the chemical potentials ω , ϕi,
where the latter are subject to the constraint (3.4.3). This of course then implements
the Legendre transform. We thus write

S(JBH ,Q1,Q2) = ext{ω,ϕ1,ϕ2,Λ}

[
S −Λ

(
2(ϕ1 +ϕ2)−

χ(Σ)
4

ω ∓ iπ
)]

. (3.4.5)

The extremization imposes

− ∂ I
∂ω

= JBH − χ(Σ)
4

Λ , − ∂ I
∂ϕi

= Qi +2Λ , (3.4.6)

and we find the solution

Λ =
{
−Q1 −Q2 ± iχ(Σ)+ iη

[
χ(Σ)2 − (Q1 −Q2)

2 +4P1P2

±2i(Q1 +Q2)χ(Σ)±32iJBH

]1/2}
,

ω =
4πiη√

χ(Σ)2 − (Q1 −Q2)2 +4P1P2 ±2i(Q1 +Q2)χ(Σ)±32iJBH
,

ϕ1 = ± πη [Q2 −Q1 ± iχ(Σ)]

4
√

χ(Σ)2 − (Q1 −Q2)2 +4P1P2 ±2i(Q1 +Q2)χ(Σ)±32iJBH
± iπ

4
.

(3.4.7)

Here ϕ2 is determined by the constraint (3.4.3), and η = ±1 arises as a choice of
sign in taking square roots when solving the equations. Imposing that the entropy is
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real, while assuming all conserved charges are real, we find

JBH =
Q1 +Q2

16

[
−χ(Σ)+

√
χ(Σ)2 +4(P1P2 +Q1Q2)

]
, (3.4.8)

where the sign of the square root in JBH has been fixed by requiring JBH > 0.
Moreover, we then obtain the extremal value of (3.4.5) to be

S(JBH ,Q1,Q2) = ±iπΛ , (3.4.9)

which gives

S(JBH ,Q1,Q2) =
4π

(Q1 +Q2)
JBH

=
π

4

[
−χ(Σ)+

√
χ(Σ)2 +4(P1P2 +Q1Q2)

]
.

(3.4.10)

This precisely agrees with the black hole entropy SBH in (3.1.7) computed from the
near horizon solutions.

Notice that the two angular momenta (3.1.10), (3.4.8) are related via

JAdS2 −
4Q1Q2

(Q1 +Q2)2 JBH =
Q1Q2

4(Q1 +Q2)
χ(Σ) . (3.4.11)

Since we do not have the full black hole solutions it is not immediate to define and
compute JBH directly. However, we note that both JAdS2 and JBH were computed for
the minimal gauged supergravity solutions with Q1 = Q2 (and P1 = P2) in [13], and
the relation (3.4.11) reduces to the corresponding relation in this reference.

The entropy function can be expressed as the Legendre transform of

I(ω,ϕ1,ϕ2) = ± 2
iπ ω

[
FS3(ϕi − 1

8ωPi)+FS3(ϕi +
1
8ωPi)

]
, (3.4.12)

where FS3(∆1,∆2) = 4∆1∆2FS3 is the large N S3 free energy as a function of the trial
R-symmetry, with ∆i satisfying ∆1 +∆2 = 1. Recall here that the free energy on the
three-sphere is FS3 = π

2G4
=

√
2πN3/2

3 . This is consistent with the general expectations
for d = 3, N = 4 SCFT with holographic duals, discussed in [59]. It is worth
mentioning that, firstly in [60] and then in [22], a highly general gravitational block
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formula for the supersymmetric action has been developed. In that context, the
authors were able to reproduce our (3.4.12) as a special case.

In the next chapter, we will compute the partition function for a supersymmetric
quantum field theory for a generic N. This result, after performing the correct
large N limit, should match the expression in (3.4.12). The partition function will
be computed using a localization technique and can be organized as the sum of
two terms arising from contributions at the two poles of the spindle. This mirrors
the same behavior shown in (3.4.12), providing a strong indication that the duality
between the two theories can be directly proven.



Chapter 4

Supersymmetric Field Theory

4.1 General Complex Backgrounds

As anticipated in the introduction 1.3, we consider a general class of rigid supersym-
metric backgrounds of Euclidean new minimal supergravity where it is possible to
accommodate the Σ×S1 coming from the boundary orbifold geometry of the black
hole. These backgrounds preserve two Killing spinors (ζ , ζ̃ ) with R-charges ±1,
respectively.

The Killing spinor equations (KSEs), which the background fields must satisfy
in order to preserve supersymmetry, are

(∇µ − iAµ)ζ =−H
2

γµζ − iVµζ ∓ εµνρ

V ν

2
γ

ρ
ζ ,

(∇µ + iAµ)ζ̃ =−H
2

γµ ζ̃ + iVµ ζ̃ ∓ εµνρ

V ν

2
γ

ρ
ζ̃ , (4.1.1)

where Aµ is the R-symmetry background gauge field, Vµ is a globally defined co-
closed one-form and H a scalar, a priori all complex-valued. We emphasise that
(ζ , ζ̃ ) are not related by charge conjugation and, consistently with the analysis of
section 3.3, the metric gµν can be complex-valued.

Following the conventions of [45], we introduce

v = ζ ζ̃ , Kµ = ζ γ
µ

ζ̃ , (4.1.2)

Pµ = ζ γ
µ

ζ/v , P̃µ = ζ̃ γ
µ

ζ̃/v (4.1.3)
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where (Pµ)∗ ̸= P̃µ . The KSEs imply that Kµ is a complex Killing vector. Thanks to
Fierz identities

(
K,P, P̃

)
is a canonical complex frame generating the line element

ds2 =
1
v2 K2 −PP̃ , (4.1.4)

with non-zero contractions being

ιKK = v2 , ιP̃P = ιPP̃ =−2 . (4.1.5)

Using the KSEs, it is possible to determine the background fields Aµ ,Vµ ,H in terms

of
(

K,P, P̃
)

, as shown in [3]. In particular, we get

∇(µKν) = 0, (4.1.6)

which ensures that K is a complex Killing vector. Thus, it can be parametrized as

K = ∂ψ +ω∂ϕ , (4.1.7)

where ω is a complex constant and ϕ,ψ are 2π-periodic angular coordinates.

The most general metric on M3 invariant under two real Killing vectors ∂ψ ,∂ϕ

can be written as

ds2 = f2dx2 +hijdψidψj with ψ1 = ψ ,ψ2 = ϕ , (4.1.8)

where the complex-valued functions f (x) and hi j(x), i, j = 1,2 depend only on the
coordinate x. In these coordinates we have

K = (h11 +ωh12)dψ +(h12 +ωh22)dϕ ,

P = e2iθ( f dx+ i(
√

h/v)(−ωdψ +dϕ)
)
,

P̃ = e−2iθ(− f dx+ i(
√

h/v)(−ωdψ +dϕ)
)
, (4.1.9)

v2 = h11 +2ωh12 +ω
2h22 ,



32 Supersymmetric Field Theory

where h = det(hi j) and θ ≡ α1ψ+α2ϕ

2 , with α1,α2 two real constants that we shall
discuss momentarily. Defining AC ≡ A− 3

2V , the background fields read

V =
1
v

[
iHK −⋆dK

]
,

AC =
v3

4 f
√

h

[ 1
ω

(h11

v2

)′
dψ −

(h22

v2

)′
dϕ

]
+dθ , (4.1.10)

where a prime denotes derivative with respect to x. The function H satisfies LKH = 0
and is otherwise arbitrary; however, it will enter in the localization computation only
though the following combinations:

hR ≡ ιKV − ivH =− 1
2v

⋆ (K ∧dK) ,

ΦR ≡ ιK

(
AC +V

)
− ivH = (α1 +ωα2)/2 . (4.1.11)

Taking γ1 = σ2, γ2 = σ3, γ3 = σ1, with σ i being the Pauli matrices, in the frame
where

e1 =− f dx , e2 =

√
h

h11
dϕ , e3 =

√
h11
(
dψ +

h12

h11
dϕ
)
, (4.1.12)

the Killing spinors satisfying (4.1.1) take the form

ζα = eiθ

 u1

−u2


α

, ζ̃α =−e−iθ

u2

u1


α

, (4.1.13)

where

u1,2 = 2−1/2
√

v∓ω
√

h/h11 . (4.1.14)

4.1.1 Σ×S1 with twist and anti-twist

On Σ×S1 we adopt the line element

ds2 = f 2dx2 +
(
1− x2)(dϕ −Ωdψ)2 +β

2dψ
2 , (4.1.15)
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where the function f = f (x) satisfies

lim
x→±1

f → n±√
2(1∓ x)

. (4.1.16)

Wet take ψ to parameterize S1 and x ∈ [−1,1],ϕ as coordinates on Σ. We require
that f is regular on the complementary domain (−1,+1), but we leave arbitrary
the specific profile of f . The positive integers n± are coprime and encode the
conical singularities C/Zn± at the poles of the spindle. The dimensionless complex
parameter Ω induces a refinement of the partition function by a fugacity for the
angular momentum on the spindle, as it happens on the round sphere [28]. The
parameter β is the ratio between the radius of S1 and the radius of the equatorial
circle of Σ.

We use an orthonormal frame explicitly realizing Σ×S1 as a topologically trivial
U(1) fibration over the spindle base:

e1 =− f dx ,

e2 = β

√
1− x2

β 2 +Ω2(1− x2)
dϕ ,

e3 =
√

β 2 +Ω2(1− x2)
(

A(1)+dψ

)
, A(1) =

−Ω
(
1− x2)

β 2 +Ω2(1− x2)
dϕ , (4.1.17)

where the flux of A(1) through Σ is vanishing, as it behooves a trivial circle fibration
over a spindle. Near the north pole of Σ at x =+1 we have

e1
U+

=− n+dx√
2(1− x)

= dρ+ , e2
U+

=
√

2(1− x)dϕ =
ρ+

n+
dϕ , ρ+ = n+

√
2(1− x) .

(4.1.18)

Hence, an open neighbourhood of x = +1 can be parametrized by the complex
coordinate z+ satisfying

z+ = ρ+eiϕ/n+ , z+ ∼ w+z+ , w+ = e2πi/n+ , (4.1.19)

where the identification involving the root of unity w+ makes manifest that U+ is
isomorphic to C/Zn+ . On the other hand, near the south pole of the spindle at x =−1
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we have

e1
S =− n−dx√

2(1+ x)
=−dρ+ , e2

S =
√

2(1+ x)dϕ =
ρ−
n−

dϕ , ρ− = n−
√

2(1+ x) .

(4.1.20)

Thus, a proper coordinate in an open neighbourhood U− of x =−1 is

z− = ρ−e−iϕ/n− , z− ∼ w−1
− z− , w− = e2πi/n− , (4.1.21)

meaning that U− ∼= C/mathbbZn− . The minus sign in the exponential of z− =

ρ−e−iϕ/n− takes into account the reversed orientation of U− with respect to that of
U+. The frame (K,P±), background fields A,V,H and Killing spinors (ζ , ζ̃ ) are
then completely determined by our general formulae (4.1.9), (4.1.10), (4.1.13) in
terms of the metric functions f (x),Ω,β and the parameter ω .

By using (4.1.10) we find

1
2π

∫
Σ

dA =−1
2

(
s+
n+

+
s−
n−

)
, (4.1.22)

where s± denote the signs of the function v/
√

h11 at the north and south poles,
respectively.

We recall that supersymmetry on Σ is preserved by an R-symmetry background
gauge field A satisfying only one [15] of the following conditions:

∫
Σ

dA
2π

=
1
2

(
1

n−
+

σ

n+

)
≡ χσ

2
, (4.1.23)

with σ =±1 being twist and anti-twist configurations, respectively. In this notation,

χ+ =
1

n−
+

1
n+

=
1

4π

∫
Σ

√
gR (4.1.24)

is the orbifold Euler characteristic of the spindle, previously defined in 2.4.8. In
the case of σ =+1, the magnetic flux of the R-symmetry background field equals
half of the orbifold Euler characteristic of the spindle χ+. This configuration is
the topological twist as it is the orbifold generalization of the analogous setup
found in spheres [28, 61] and Riemann surfaces [62]. In the special case where
n+ = n− = 1 the spindle become a smooth sphere, and the anti-twisted Σ× S1
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configuration reduces to the generalized superconformal index background studied
in [48, 49], characterized by the absence of magnetic flux for the R-symmetry
connection. Eventually, after shrinking to zero the radius of S1 in Σ×S1 and keeping
n+ = n− = 1, the anti-twisted spindle becomes the supersymmetric sphere with no
R-symmetry twist explored in [63].

By comparing 4.1.22 and 4.1.23, it is clear that the type of supersymmetry-
preserving twist is completely encoded in the behaviour of the function v. Given
a generic metric on Σ× S1 and a parameter ω , we regard the third equation in
(4.1.9) as a definition of the function v. From this, it follows that generically the
function v/

√
h11 has the same sign at both poles, corresponding to the twist case.

Instead, the anti-twist is realized if the function v/
√

h11 has opposite sign at the
poles. In this case the metric hi j and the parameter ω need be fine-tuned. As
v2 = (1− x2)(ω −Ω)2 +β 2, if no relation is imposed between ω , β and Ω, then
the R-symmetry background field realizes the twist. As a special case, the standard
topological twist corresponds to ω = Ω, yielding v/β =−1, so that in (4.1.23) we
have σ = +1. The Killing spinors corresponding to the twisted Σ× S1 geometry,
occurring if σ =+1, are given by 4.1.13, with

u1,2 =

√√√√−β

2

(
1±Ω

√
1− x2

β 2 +Ω2(1− x2)

)
, (4.1.25)

which satisfy the conformal Killing spinor equations provided that the background
fields AC,V,A take the form

AC = dθ − x

2 f
√

1− x2
(dϕ −Ωdψ) ,

V =−iβHdψ ,

A = AC +
3
2

V . (4.1.26)

Conversely, the anti-twist is realized by choosing Ω = ω ± iβ . In this case we can
take v/β = x, so that in (4.1.23) we have σ =−1.The Killing spinors associated with
the anti-twisted Σ×S1 geometry exhibit a formal similarity to the Killing spinors
corresponding to the twisted background. However, they differ in terms of their
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components u1,2:

u1,2 =

√√√√β

2

[
x∓ (Ω− iβ )

√
1− x2

β 2 +Ω2(1− x2)

]
, (4.1.27)

fulfilling the conformal Killing spinor equations if the background fields AC,V,A are

AC = dθ +
1

2 f
√

1− x2
[dϕ − (Ω+ iβ )dψ] ,

V =
(
x−1 + x

)
Hdϕ + i

{
β

f
√

1− x2
+ x−1[

β + iΩ
(
1− x2)]H}dψ ,

A = AC +
3
2

V . (4.1.28)

Requiring (ζ , ζ̃ ) to be (anti-)periodic under ψ ∼ ψ +2π implies that α1 = n ∈ Z.
Finally, one can see that at the north and south poles of Σ the spinors behave as

ζ
N/S
α ∼

 1

−s±


α

, ζ̃
N/S ∼

s±

1


α

, (4.1.29)

so that indeed they have the same 2d-chirality for the twist and the opposite 2d-
chirality for the anti-twist [15].

4.2 Localization

Let G be a semi-simple Lie group with Lie algebra g, with RG a generic representa-
tion of G and AdG its adjoint representation. For a three-dimensional N = 2 gauge
theory, the supersymmetry transformations of a vector multiplet (A ,σ,λ , λ̃ ,D) ∈
AdG and those of a chiral multiplet (φ ,ψ,F) ∈RG can be written as a cohomolog-
ical complex [47]. Solving the BPS equations δψ = δψ̃ = δλ = δ λ̃ = 0 yields
the localizion locus of classical configurations contributing by Zclass to the partition
function. Also, this formulation allows for recasting the computation of vector and
chiral multiplets 1-loop determinants, ZVM

1-L ,ZCM
1-L , as a cohomological problem. The

explicit supersymmetry variations, as well as the cohomological fields, are provided
in appendix C.
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On general grounds, if G = Gg ×G f , the partition function of a theory on S1 ×Σ

with gauge group Gg and flavour group G f reads

ZS1×Σ

(
ω,u f , f f

)
= ∑

fg∈Γhg

∮
C

dug

|Wg|
Ẑ
(
ug, fg|ω,u f , f f

)
, (4.2.1)

where hg is the maximal Cartan-subalgebra of gg, Γhg the corresponding co-root
lattice and Wg its Weyl group; while ug, f∈hg, f and fg, f∈Γhg, f denote gauge/flavour
holonomies and fluxes, respectively; Ẑ is the product of Zclass, ZVM

1-L and ZCM
1-L and C

is a suitable integration-contour for ug. This expression also depends on the spindle
data (n±,σ). ZS1×Σ is also a G f -flavoured Witten-index of the theory quantized on
Σ,

ZS1×Σ = TrH [Σ]

[
e−ωJ−φR−∑iφiFi

]
, (4.2.2)

where J,R,Fi generate angular momentum, R-symmetry and flavour symmetries,
respectively; while H [Σ] is the Hilbert space of states on the spindle, with either
twist or anti-twist. The partition function (4.2.1) will be further elucidated in the fol-
lowing sections, providing explicit computations for each component. We anticipate
that the fugacities ω and φ are not independent, but are related by

φ− χ−σ

4
ω= iπn , n ∈ Z . (4.2.3)

For the anti-twist (σ =−1), taking n =±1 so that the spinors are anti-periodic on
S1, this reproduces the relation (3.3.16) for the dual accelerating black holes.

4.2.1 BPS locus

We parametrize an Abelian gauge or flavour 1-form field on Σ×S1 as

A = Aϕ(x)dϕ +Aψ(x)dψ , fG =
1

2π

∫
Σ

dA =
m

n+n−
, exp

(
i
∮

S1
A

)
= h ,

(4.2.4)

with m ∈ Z and h ∈U(1), where we removed the component Ax(x) along dx via a
gauge transformation.
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The 1-form in (4.2.4) is the representative of an O(−m) orbibundle on the spindle
Σ and of the U(1) holonomy group of S1. In particular, the component Aϕ(x)
evaluated at the north pole at x = 1 and at the south pole at x = −1 of the spindle
reads

Aϕ(+1) =
m+

n+
, Aϕ(−1) =

m−
n−

, n+m−−n−m+ = m , (4.2.5)

where the integers (m+,m−) can be expressed in terms of m and two other integers
(a+,a−) satisfying

m+ = ma+ , m− = ma− , n+a−−n−a+ = 1 . (4.2.6)

Especially, given a pair (a+,a−) satisfying the constraint above, any pair (a++n+δa,a−+n−δa)

with δa ∈ Z fulfils the constraint too. Physical observables are supposed to be inde-
pendent of δa.

The 1-form (4.2.4) is consistent with the gauge fields used in [15] provided that

A N = A N
(0)+

mN

nN
dϕ = A S

(0)+

(
p+

mS

nS

)
dϕ = A S +pdϕ , (4.2.7)

with p ∈ Z modelling a gauge transformation in the overlap of the two patches (N,S),
where the connections

(
A N ,A S) are well defined. The dictionary between our

notation and that of [15] is

A N
(0) = A − m+

n+
dϕ , nN = n+ , mN =m+ ,

A S
(0) = A − m−

n−
dϕ , nS = n− , mS =m−−n−p . (4.2.8)

In this language, the flux of A reads [15]

1
2π

∫
Σ

dA = p+
mS

nS
− mN

nN
=

m

n+n−
, (4.2.9)

in agreement with (4.2.4). If we add a flat connection (β2dϕ) to A in (4.2.4) as

A → A ′ =
(
Aϕ +β2

)
dϕ +Aψdψ , (4.2.10)
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we can make A vanish at the poles of Σ at x = ±1 by setting β2|U+ = −m+/n+
in the northern patch U+ including x =+1 and β2|U− =−m−/n− in the southern
patch U− covering x =−1.

The vector-multiplet BPS equations are obtained by setting to zero the gauginos(
λ , λ̃

)
and their variations

(
δλ ,δ λ̃

)
, giving

ΦG = ιKA − ivσ = ϕG = constant ,

D+
i
2

Pµ P̃νFµν +
i
v

σ [ιKV − ivH] = 0 . (4.2.11)

We do not impose any reality conditions on fields, for the moment. Inserting the
gauge field (4.2.4) into the BPS equations above yields the BPS values of the scalar
σ and the auxiliary scalar D. Specifically, if σ =+1, we have topologically twisted
Σ×S1 and the BPS locus

σ |BPS = iβ−1[−ϕG +ωAϕ(x)+Aψ(x)
]
, D|BPS =−

A ′
ϕ(x)

f
√

1− x2
, (4.2.12)

whereas, if σ =−1, we have anti-twisted Σ×S1 and

σ |BPS =−i
[
−ϕG +ωAϕ(x)+Aψ(x)

]
/(βx) ,

D|BPS =
β σ |BPS +

[
β + iΩ

(
1− x2)]A ′

ϕ(x)+ i
(
1− x2)A ′

ψ(x)

βx f
√

1− x2
. (4.2.13)

Such supersymmetric values of (σ ,D) provide a non-trivial classical contribution
to the partition function of the corresponding gauge theory thanks to the presence
of (possibly mixed) Chern-Simons and Fayet–Iliopoulos terms, for example. Fur-
thermore, the profiles (σ |BPS,D|BPS) implicitly affect the one-loop determinant of
supersymmetric fluctuations via the gauge fugacity ϕG and the flux fG.

Analogously, the BPS locus for the chiral multiplet is found by setting to zero the
spinor fields (ψ, ψ̃) together with their supersymmetric variations (δψ,δψ̃). The
outcome of this procedure is the following set of BPS equations:

(LK − irΦR − iqGΦG)φ = 0 , (LK + irΦR + iqGΦG)φ̃ = 0 ,

F + iLP̃φ = 0 , F̃ + iLPφ̃ = 0 . (4.2.14)
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For arbitrary values of (ΦR,ΦG) the unique solution to the chiral-multiplet BPS
equations is

φ |BPS = φ̃ |BPS = F |BPS = F̃ |BPS = 0 . (4.2.15)

As a consequence, we do not expect classical contributions to the partition function
to come from F-terms or superpotentials, for instance. In this setup, matter fields
affect the theory at the quantum level only, via one-loop determinants.

4.2.2 1-loop determinants

The chiral-multiplet one-loop determinant entering the partition function can be
obtained by exploiting the cancellations between bosonic and fermionic degrees of
freedom due to supersymmetry. This procedure is implemented by the formula

ZCM
1-L =

detKerLP δ 2

detKerLP̃
δ 2 =

detKerLP (LK +GΦG)

detKerLP̃
(LK +GΦG)

. (4.2.16)

Indeed, the operators LP and LP̃ pair bosonic and fermionic fields in the supersymme-
try transformations written in cohomological form. The formula above follows from
the fact that the squared supersymmetry variation δ 2 ∝ (LK +GΦG) commutes with
such pairing operators. Thus, the unpaired eigenvalues surviving the cancellations
and contributing to ZCM

1-L are those corresponding to the eigenfunctions spanning the
kernels of LP and LP̃.

The 1-loop determinant of a vector multiplet, ZVM
1-L , includes the contribution of

BRST-ghosts compatible with supersymmetry [47]. However, a standard argument
implies that formally ZVM

1-L = ZCM
1-L (r = 2)|RG=AdG [28], so in the following we shall

focus on chiral multiplets.

One-loop determinants of supersymmetric partition functions can be obtained
from equivariant index theory [47]. For instance, in the case of a chiral multiplet on
a manifold M and of charge r with respect to the U(1)R R-symmetry and charge qG

with respect to a gauge or flavour group U(1)G, the eigenvalues contributing to ZCM
1-L
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are encoded by the formula

ind
(
LP̃; ĝ

)
= ∑

p∈M ĝ

trΓ0 ĝ− trΓ1 ĝ
det(1− Jp)

, (4.2.17)

which is the index of the operator LP̃ with respect to the action of the group element
ĝ = exp

(
−iεδ 2) induced by the square of the supersymmetry variation δ 2 and

tuned by the equivariant parameter ε . The summation in (4.2.17) spans across the
fixed-point set M ĝ of the transformation ĝ on the manifold M . At each fixed point
p ∈M , the group element ĝ induces an action on the manifold M , thereby effecting
a mapping from the coordinate zp to z′p. This transformation generates a non-trivial
Jacobian denoted as Jp = ∂ z′p/∂ zp, appearing in the denominator of (4.2.17). In
addition, ĝ acts upon both Γ0 and Γ1, where Γ0 represents the space of sections of
the U(1)R ×U(1)G-valued line bundle L over M , while Γ1 is the image of Γ0 under
by LP̃. These combined contributions yield the numerator of (4.2.17). In the case
of our interest M = Σ× S1 and the neighborhoods Up covering the fixed points
p ∈ M ĝ are isomorphic to C/Znp . In order for the computation to accomodate such
new structures, the orbifold version of (4.2.17) is required. The fixed point formula
in the framework of the equivariant orbifold index theorem is expressed as follows:

indorb
(
LP̃; ĝ

)
= ∑

p∈M ĝ

1
np

∑
ŵ∈Znp

trΓ0(ŵ ĝ)− trΓ1(ŵ ĝ)
det(1−WpJp)

, (4.2.18)

where Wp is the Jacobian resulting from the action of ŵ on the coordinates zp

within Up. The elements ŵ ∈ Zp act on both sections and coordinates akin to the
action of ĝ, but their action is weighted by the roots of unity wℓ

p = e2πiℓ/np , with
ℓ = 0, . . . ,(np −1), rather than by the equivariant parameter ε . Specifically, on
Σ×S1 we have

δ
2 =−2i(LK +GΦG) =−2i(LK − iqRΦR − iqGΦG) ,

LK =
(
ω∂ϕ +∂ψ

)
, (4.2.19)
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where (ΦR,ΦG) are to be evaluated on the BPS locus. The operator ĝ factorizes as
ĝ = ĝΣĝS1 , with

ĝΣ = exp
[
−2t

(
ω∂ϕ − iqRΦR − iqGΦG

)]
,

ĝS1 = exp
(
−2t∂ψ

)
, (4.2.20)

being group actions corresponding to the spindle Σ and to the circle S1, respectively.
In particular, the fixed-point set M ĝS1 is empty as ĝS1 acts freely on S1. Instead,
M ĝΣ is non-trivial and it contains the poles of the spindle at x =±1. The actions of
ĝΣ and ŵ upon the complex coordinates defined in (4.1.19) and (4.1.21) is

ĝΣz+ = q+z+ , q+ = exp(2iεω/n+) ,

ĝΣz− = q−1
− z− , q− = exp(2iεω/n−) ,

ŵ+z+ = w+z+ , w+ = exp(2πi/n+) ,

ŵ−z− = w−1
− z− , w− = exp(2πi/n−) . (4.2.21)

The form of LP̃ as well as the action of ĝΣ and ŵ on sections in Γ0 and Γ1 exhibit
slight differences for twisted and anti-twisted spindles. Consequently, we analyze
these two cases separately. We keep the notation compact by defining the following
quantities:

p+ = qG p+−σ
r
2
, p− = qG p−+

r
2
,

b= 1+σ

⌊
σ
p+
n+

⌋
+

⌊
−p−

n−

⌋
, c=

J−p−Kn−

n−
−σ

Jσ p+Kn+

n+
,

γR =−α3

2
+

ω

4
χ−σ , γG =−ϕG +

ω

2

(
p−
n−

+
p+
n+

)
,

q = e2πiω , y = qc/2e2πi(rγR+qGγG) , (4.2.22)

where by J•K⋄ we indicate the reminder of the integer division of • by ⋄. In partic-
ular, (b−1) is the degree of the line orbibundle O(−p) = O(−n+p−+ n−p+) =
O(−(r/2)(n++n−)−qGm), with p= (n+p−−n−p+). Also, ω , γG and γR are ef-
fective fugacities for angular momentum, gauge and R-symmetry, respectively. The
objects written in (4.2.22) are valid for a theory invariant under a U(1) gauge or
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flavour group. For a general, possibly non-Abelian, Lie group G, the substitutions

m± → ρ(m±) , γG → ρ(γG) , (4.2.23)

are in order, with ρ being the weight of the representation RG that we defined
previously.

Topological twist

In computing the contribution to the index formula (4.2.18) coming from the north
and south pole of the spindle we work with 1-form fields whose components on Σ

vanish at the origin of the patches U+ and U−. This makes the calculation simple as
LP̃ becomes a pure differential operator, for instance. Especially, the component ϕ

of the R-symmetry field vanishes at the origin of U+ and U− if

α2|U+ =
1

n+
, α2|U− =− 1

n−
. (4.2.24)

Analogously, the component Aϕ of the flavour field (4.2.10) vanishes at x =±1 if

β2|U+ =− p+
n+

, β2|U− =− p−
n−

, (4.2.25)

in the patches U+ and U− , respectively. In this setting,

LP̃|U+ =−2i∂+ , LP̃|U− = 2i∂− , (4.2.26)

where ∂± is the complex conjugate of ∂± = ∂z± . In particular, the operators LP̃|U+

and LP̃|U− are transversally elliptic with respect to the free action of ĝS1 ∈ U(1).
Then, according to [64], the index of LP̃|U+ on Σ×S1 is given by the weighted sum
of the index on the quotient

(
Σ×S1)/S1 ∼= Σ over all irreducible representations of

U(1), where the weights are the characters χRU(1)
(ĝS1) = χn(ĝS1) = e−2iεn with n

being the label of the representative φn ∈ Γ0, where the latter is the space of sections
of the line orbibundle

L = O(−p) = O(−p) = O(−n+p−+n−p+) = O(−(r/2)(n++n−)−qGm) .

(4.2.27)
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The operator ĝΣ acts as

ĝΣ|U+φn = ξ q−qG p++(r/2)
+ φn = ξ q−p+

+ φn ,

ĝΣ|U−φn = ξ q−qG p−−(r/2)
− φn = ξ q−p−

− φn , ξ = e2iε[(r/2)α3+qGϕG] . (4.2.28)

Moreover, the action of ĝΣ on sections in the image Γ1 reads

ĝΣ|U+∂+φn = ξ q−p+−1
+ φn ,

ĝΣ|U−∂−φn = ξ q−p−+1
− φn . (4.2.29)

Combining all these ingredients in the fixed point formula (4.2.18) yields

indorb
(
LP̃; ĝ

)
= ∑

n∈Z

indorb
(
LP̃; ĝΣ

)
χn(ĝS1)ξ ,

indorb
(
LP̃; ĝΣ

)
=

1
n+

n+−1

∑
j=0

w− jp+
+ q−p+

+

1−w j
+q+

+
1

n−

n−−1

∑
j=0

w− jp−
− q−p−

−

1−w− j
− q−1

−
, (4.2.30)

where we factored out the flavour fugacity ξ . The identities

1
np

np−1

∑
j=0

w jνp
p

1−w j
p qp

=
1
np

np−1

∑
j=0

w− jνp
p

1−w− j
p qp

=
q
J−νpKnp
p

1−qnp
p

,
•
np

=

⌊
•
np

⌋
+

J•Knp

np
,

(4.2.31)

imply

indorb
(
LP̃; ĝ

)
= ∑

n∈Z

indorb
(
LP̃; ĝΣ

)
χn(ĝS1)ξ ,

indorb
(
LP̃; ĝΣ

)
=

q−⌊p+/n+⌋

1−q
+

q⌊−p−/n−⌋

1−q−1 =
q−⌊p+/n+⌋−q1+⌊−p−/n−⌋

1−q
, (4.2.32)

with q = qn+
+ = qn−

− . If

−⌊p+/n+⌋= 1+ ⌊−p−/n−⌋ ⇐⇒ b= 0 , (4.2.33)
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then indorb
(
LP̃; ĝΣ

)
= 0, where b=(1+degL) defined in (4.2.22) naturally appeared.

Instead, if

−⌊p+/n+⌋< 1+ ⌊−p−/n−⌋ ⇐⇒ b≥ 1 , (4.2.34)

then

indorb
(
LP̃; ĝΣ

)
= q−⌊p+/n+⌋1−qb

1−q
= q−⌊p+/n+⌋

(
1+q+ · · ·+qb−1

)
, (4.2.35)

where the overall factor q−⌊p+/n+⌋ is the lift of the equivariant action [65] at the
north pole of the spindle. In fact, given that LP̃ equals the Dolbeault operator ∂

in the vicinity of any fixed point, indorb
(
LP̃; ĝΣ

)
represents the equivariant orbifold

index of ∂ on Σ in presence of the line bundle L. This index assigns a monomial
qℓ to each element within the basis of anti-holomorphic sections of L in the kernel
of ∂ , where ℓ ∈ N, q0 = 1 corresponds to the constant section and the polynomial’s
degree is (b−1) = degL. This generalizes what occurs in the case of the equivariant
index of the Dolbeault operator on manifolds, where, modulo a sign, the degree of
a line bundle equals the first Chern class of its representatives. Especially, in the
non-equivariant limit q → 1 the index becomes

indorb
(
LP̃

)
= indorb(∂ ) = b= 1+degL , (4.2.36)

reproducing the Riemann-Roch-Kawasaki theorem for orbifolds of genus zero [66].
We can rewrite the index as

indorb
(
LP̃; ĝ

)
|b≥1 = ∑

n∈Z

e−2iεne2iε[(r/2)α3+qGϕG]
⌊−p−/n−⌋

∑
ℓ=−⌊p+/n+⌋

qℓ ,

= ∑
n∈Z

⌊−p−/n−⌋

∑
ℓ=−⌊p+/n+⌋

e2iε[−n+(r/2)α3+qGϕG+ωℓ] , (4.2.37)

and then exploiting the rule

ind
(
D ;e−iεδ 2

)
= ∑

j
d j e−iελ j → Zind = ∏

j
λ
−d j
j , (4.2.38)

relating the index of a differential operator D to the determinant Zind, with j being a
multi-index, λ j the j-th eigenvalue of δ 2 and d j the degeneracy of λ j. Applying the
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prescription (4.2.38) to indorb
(
LP̃; ĝ

)
|b≥1 provides the infinite product

Zind|b≥1 = ∏
n∈Z

⌊−p−/n−⌋

∏
ℓ=−⌊p+/n+⌋

[2(n− (r/2)α3 −qGϕG −ωℓ)]−1 ,

= ∏
n∈Z

⌊p+/n+⌋

∏
j=−⌊−p−/n−⌋

[
2
(

n+ω j− r
2

α3 −qGϕG

)]−1
,

= ∏
n∈Z

b−1

∏
j=0

[
2
(

n+ω

(
j+

1−b+ c

2

)
+ rγR +qGγG

)]−1

,

= ∏
n∈Z

∏
j∈N

n+ω
(

j+ 1+b+c
2

)
+ rγR +qGγG

n+ω
(

j+ 1−b+c
2

)
+ rγR +qGγG

=

(
−y−1)b/2(

q(1−b)/2y−1;q
)
b

.

(4.2.39)

Finally, if

−⌊p+/n+⌋> 1+ ⌊−p−/n−⌋ ⇐⇒ b≤−1 , (4.2.40)

then

indorb
(
LP̃; ĝΣ

)
= q⌊−p−/n−⌋q1−b−q

1−q
=−q1+⌊−p−/n−⌋

(
1+q2 + · · ·+q−b−1

)
,

=−q−⌊p
′
−/n−⌋

(
1+q2 + · · ·+qdegL′

)
, (4.2.41)

with

p′+ = p++1 = qG p+− r−2
2

,

p′− = p−−1 = qG p−+
r−2

2
,

L′ = O
(
−n+p′−+n−p′+

)
= O

[
qGm+

r−2
2

(n++n−)
]
,

−(b+1) =
⌊
−
p′+
n+

⌋
+

⌊
p′−
n−

⌋
= degL′ . (4.2.42)
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The overall factor q⌊p
′
−/n−⌋ is the lift of the equivariant action at the south pole of Σ.

Indeed, by writing

indorb
(
LP̃; ĝ

)
|b≤−1 =− ∑

n∈Z

−1−⌊p+/n+⌋

∑
ℓ=1+⌊−p−/n−⌋

e2iε[−n+(r/2)α3+qGϕG+ωℓ] , (4.2.43)

and applying (4.2.38), we obtain

Zind|b≤−1 = ∏
n∈Z

−1−⌊p+/n+⌋

∏
ℓ=1+⌊−p−/n−⌋

2
(

n− r
2

α3 −qGϕG −ωℓ
)
,

= ∏
n∈Z

−1−b

∏
j=0

[
n+ω

(
j+

1+b+ c

2

)
+ rγR +qGγG

]
,

= ∏
n∈Z

∏
j∈N

n+ω
(

j+ 1+b+c
2

)
+ rγR +qGγG

n+ω
(

j+ 1−b+c
2

)
+ rγR +qGγG

=

(
−y−1)b/2(

q(1−b)/2y−1;q
)
b

.

(4.2.44)

We then conclude that, on topologically twisted Σ×S1, the one-loop determinant
for a chiral multiplet with weight ρ in a representation RG of a gauge group G is

ZCM
1-L = ∏

ρ∈RG

(−yρ)b/2(
q(1−b)/2yρ ;q

)
b

= ∏
ρ∈RG

(−y−ρ)
b/2(

q(1−b)/2y−ρ ;q
)
b

. (4.2.45)

The property (•;q)0 = 1 enjoyed by the finite q-Pochhammer symbol ensures that
ZCM

1-L |b=0 = 1, as anticipated. In the degenerate case n+= n−= 1 the spindle becomes
a smooth sphere and the simplifications

b= 1−qGm− r = 1−qGfG − rfR , c= 0 ,

2γR =−α3 ∈ Z , y = (−1)rα3e2πiqGγG , (4.2.46)

occurr. In turn, (4.2.45) becomes identical to the one-loop determinant for a chiral
multiplet on topologically twisted S2 × S1 computed in [28], where α3 = 0 was
assumed.

The one-loop determinant (4.2.45) can also be interpreted as the partition function
of a weakly gauged chiral multiplet, namely a chiral multiplet coupled to a non-
dynamical background vector multiplet. Such a partition function is not invariant
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under large gauge transformations shifting the effective fugacity γG by an integer n:

y → e2πiny =⇒ ZCM
1-L → (−1)nbZCM

1-L . (4.2.47)

This multi-valuedness of ZCM
1-L is usually associated to a parity anomaly affecting

the matter sector of the theory. Such an anomaly can be cured by considering the
classical contribution ZCS

eff of an effective Chern-Simons term with half-integer level,
whose anomaly cancels that of ZCM

1-L . In the case of S2 ×S1 the counterterm needed
is ZCS

eff = y±fG/2 = y±m/2, while for ZCM
1-L on Σ×S1 it is

ZCS
eff = (−y)±b/2 . (4.2.48)

We discuss the differences between effective and canonical Chern-Simons terms in
Section 4.2.3, where we compute the relevant classical contributions to the partition
function of a gauge theory on Σ×S1.

Anti-twist

In the case of anti-twisted Σ×S1 the ϕ-component of the R-symmetry background
field vanishes at the poles of the spindle if

α2|U+ =− 1
n+

, α2|U− =− 1
n−

, (4.2.49)

while flavour field (4.2.10) behaves as in the case of the topological twist. The
pairing operator LP̃ is again transversally elliptic with respect to the free action of
ĝS1 ∈U(1), and near the poles of Σ assumes the value

LP̃|U+ =−2i∂+ , LP̃|U− = 2i∂− . (4.2.50)

Repeating the methodology employed in the case of the topologically twisted Σ×S1

yields

indorb
(
LP̃; ĝ

)
= ∑

n∈Z

indorb
(
LP̃; ĝΣ

)
χn(ĝS1)ξ ,

indorb
(
LP̃; ĝΣ

)
=

q⌊−p+/n+⌋

1−q−1 +
q⌊−p−/n−⌋

1−q−1 =
q⌊−p+/n+⌋

1−q−1 − q1+⌊−p−/n−⌋

1−q
. (4.2.51)
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Expanding indorb
(
LP̃; ĝ

)
in powers of q gives

indorb
(
LP̃; ĝ

)
= ∑

n∈Z

e2iε[−n+(r/2)α3+qGϕG] ∑
ℓ∈N

(
q−ℓ+⌊−p+/n+⌋−qℓ+1+⌊−p−/n−⌋

)
,

(4.2.52)

which, according to the rule (4.2.38), corresponds to the infinite product

Zind = ∏
n∈Z

∏
ℓ∈N

−n+(r−2)(α3/2)+qGϕG +ω(ℓ+1+ ⌊−p−/n−⌋)
−n+(r/2)α3 +qGϕG +ω(−ℓ+ ⌊−p+/n+⌋)

,

= ∏
n∈Z

∏
ℓ∈N

−n+ω
(
ℓ+ b+1−c

2

)
− r γR −qGγG −α3

−n+ω
(
ℓ+ b−1+c

2

)
+ r γR +qGγG

,

=
(
−y−1√q

) 1
2 (b−1)

(
q

1
2 (b+1)y−1;q

)
∞(

q
1
2 (b−1)y;q

)
∞

. (4.2.53)

Finally, the identities enjoyed by q-Pochhammer symbols allows for the deriva-
tion of a unique expression for ZCM

1-L valid for both topologically twisted and anti-
twisted Σ×S1:

ZCM
1-L = ∏

ρ∈RG

(
−y−ρ

) 1
4 (2b−1+σ)q

1
8 (1−σ)(b−1)

(
q

1
2 (b+1)y−ρ ;q

)
∞(

q
σ

2 (b−1)y−σρ ;q
)

∞

. (4.2.54)

Once we have the 1-loop determinant for the chiral multiplet, we can exploit the
relation ZVM

1-L = ZCM
1-L (r = 2)|RG=AdG to obtain the 1-loop determinant of the vector

multiplet. The fields of the vector multiplet transform in the adjoint representation of
the gauge group. After the root decomposition, the 1-loop determinant of an adjoint
vector multiplet turns out to be manifestly independent of the R-symmetry twist and,
up to a regularization-dependent sign, it reads:

ZVM
1-L = ∏

α>0
∏
I=±

(
z−α/2 −q

α+
2n+

+
α−
2n−−

⌊
αI
nI

⌋
zα/2

)µI

×q
1
8 (µ−−µ+)α(fG) , (4.2.55)

where α± = α(m±), zα = e2πiα(u), α is the weight of the adjoint representation and
µI ≡ 1+ ⌊αI/nI⌋+ ⌊−αI/nI⌋.
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4.2.3 Canonical and effective classical terms

General supersymmetric gauge theories include Chern-Simons and Fayet-Iliopoulos
terms. The canonical Chern-Simons action at level k for a non-Abelian vector
multiplet in the adjoint representation of a gauge group G is

SCS =
ik
4π

∫
d3xe tr

[
ε

µνρ

(
Aµ∂νAρ −

2i
3

AµAνAρ

)
+2iDσ +2λ̃λ

]
, e = εxϕψ ,

(4.2.56)

which, once evaluated on the BPS locus, contributes to the classical part of the
partition function as follows:

ZCS
class|BPS = e−SCS |BPS = e2πikγGfG = e2πikγGm/(n+n−) . (4.2.57)

The latter can be generalized to a mixed Chern-Simons term at level ki j that combines
two vector multiplets in the adjoint of different gauge groups G(i) and G( j) with
i ̸= j:

SMCS =
iki j

2π

∫
d3xe

(
ε

µνρA
(i)

µ ∂νA
( j)

ρ + iD(i)
σ
( j)+ iD( j)

σ
(i)+ λ̃

(i)
λ
( j)+ λ̃

( j)
λ
(i)
)
,

(4.2.58)

yielding

ZMCS
class |BPS = e2πiki j

(
γGi fG j+γG j fGi

)
. (4.2.59)

The gauge symmetry can also be mixed with the R-symmetry via an R-symmetry-
gauge Chern-Simons term, whose action reads [45]

SRCS =
ikR

2π

∫
d3xe

[
ε

µνλ Aµ∂ν

(
Aλ − 1

2
Vλ

)
+ iDσ +

iσ

4
(
R+2VµV µ +2H2)] ,

(4.2.60)

giving

ZRCS
class|BPS = e2πikR(γRfG+γGfR) , (4.2.61)



4.2 Localization 51

which depends on the twist through the R-symmetry fugacity γR defined in (4.2.22)
and the flux fR = χ±/2. Finally, for any Abelian factor in a gauge group G, a classical
contribution to the partition function can also descend from Fayet-Iliopoulos terms
with parameter ζFI and action

SFI =
ζFI

2π

∫
d3xe

(
D−AµV µ −σH

)
. (4.2.62)

In fact, thanks to the relation [45]

V µ =−iεµνλ
∂νCλ , (4.2.63)

the Fayet-Iliopoulos term can be interpreted as a mixed Chern-Simons term coupling
fields in an Abelian vector multiplet to the background scalar H and the graviphoton
field Cµ . Hence,

ZFI
class|BPS = e2πiζFI(γC fG+γGfC ) , (4.2.64)

where γC and fC are the fugacity and the flux associated to Cµ , respectively.

In general, the classical contributions obtained from evaluating on the BPS locus
the canonical actions above are not invariant under large gauge transformations
along S1. For example, under a large gauge transformation acting as γG → γG + ℓ,
with ℓ ∈ N, the classical part of the canonical Chern-Simons partition function term
behaves as follows:

ZCS
class|BPS = e2πikγGm/(n+n−) → Z̃CS

class|BPS = e2πikℓm/(n+n−)ZCS
class|BPS .

(4.2.65)

In the case in which the spindle is a sphere, then n+ = n− = 1 and the partition func-
tion exhibits invariance under large gauge transformations as Z̃CS

class|BPS = ZCS
class|BPS.

Conversely, for a general spindle Σ, the parameters (n+,n−) are arbitrary coprime
integers and Z̃CS

class|BPS ̸= ZCS
class|BPS unless either the Chern-Simons level k or m is a

multiple of (n+n−).

A similar circumstance arises in supersymmetric theories on the manifold with
boundary D2 ×S1, where D2 represents a two-dimensional disk or hemisphere. The
canonical Chern-Simons term lacks supersymmetry and gauge invariance on D2×S1.
Restoring these properties requires taking into account degrees of freedom localized
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at the boundary ∂
(
D2 ×S1)= T 2, with T 2 = S1 ×S1 being a two-dimensional torus.

A convenient method for promptly deriving the correct expression for the effective
Chern-Simons term on D2 ×S1 was elucidated in [67], where it was demonstrated
that the partition function for a Chern-Simons term at level k =±1 equals the collec-
tive partition function of two anomaly-free chiral multiplets

(
φ(1),φ(2)

)
coupled by a

superpotential W
(
φ(1),φ(2)

)
= m0φ(1)φ(2), where m0 encodes a mass. Such a proce-

dure allowed to show that the Chern-Simons partition function on ∂
(
D2 ×S1)= T 2

is given by the theta function θ(x;q) =
(
−√q/x;q

)
∞

(
−√qx;q

)
∞

depending on
gauge and flavour fugacities x, as well as on an equivariant parameter ε appearing in
the fugacity q = eε for the angular momentum on D2. In particular, gauge invariance
of such an effective Chern-Simons term is ensured by the analytic properties of the
Theta function.

We can apply the same procedure to the case of Σ×S1. Two chiral multiplets(
φ(1),φ(2)

)
coupled by the aforementioned superpotential W

(
φ(1),φ(2)

)
= m0φ(1)φ(2)

have charges satisfying

r(1)+ r(2) = 2 , q(1)G +q(2)G = 0 , (4.2.66)

which, in the case of the twisted spindle1, imply

b(1)+b(2) = 0 , c(1)+ c(2) =−χ− , y(1)y(2) = 1 , (4.2.67)

where
(
b(i),c(i),y(i)

)
are (b,c,y) evaluated at r = r(i) and qG = q(i)G with i = 1,2. In

particular, y(1)y(2) = 1 follows from the constraint γR − (ωχ−/4) ∈ Z. As in [67],
we consider anomaly-free chiral multiplets, whose partition function is obtained
from ZCM

1-L by removing the phase factors and considering the q-Pochhammer part
only. For instance, in the case of the topologically twisted Σ×S1, we have

Z(2) =
1(

q(1−b2)/2y−1
(2);q

)
b2

=
1(

q(1+b1)/2y(1);q
)
−b1

,

=
(
−y(1)

)b1
(

q(1−b1)/2y−1
(1);q

)
b1
=
(
−y(1)

)b1/Z(1) , (4.2.68)

1Similar relations hold in the case of the anti-twisted spindle Σ.
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yielding

Z(1)Z(2) =
(
−y(1)

)b1 . (4.2.69)

Then, according to [67] the partition function of the effective Chern-Simons term
at level k = ±1 has the form ZCS

eff = y±b. Since we have fixed only the sum of

the R-charges
(

q(i)G ,r(i)
)

but not their specific values, ZCS
eff contains information

on all global and gauge symmetries affecting the chirals
(
φ(1),φ(2)

)
. Indeed, if

n+ = n− = 1, the spindle Σ boils down to a two-sphere and

ZCS
eff |n+=n−=1 = e2πiqGγG(1−r−qGm) . (4.2.70)

At arbitrary level k we have

ZCS
eff = ykb , (4.2.71)

More generally, an effective Chern-Simons term mixing two gauge groups
(
Gi,G j

)
reads

ZMCS
eff = yki j b j

(i) yki j bi
( j) . (4.2.72)

The partition function (4.2.71) is manifestly invariant under large gauge transforma-
tions:

ZCS
eff |BPS → Z̃CS

eff |BPS = e2πikℓbZCS
eff |BPS = ZCS

eff |BPS . (4.2.73)

In presence of matter, the Chern-Simons level k is affected by non-trivial corrections:
for instance, a chiral multiplet causes an half-integer shift k → k′ = k+(1/2), as we
see from 4.2.54.

In [3], drawing an analogy from the case of D2×S1, we have conjectured that the
modifications to the canonical Chern-Simons theory’s stem from degrees of freedom
localized at the conical singularities of the spindle Σ.
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4.3 Examples and dualities

The results presented in the previous sections can find some direct applications. In
[3], they were used to calculate the vacua of an effective Chern-Simons theory and
also to verify the validity of a well-known duality between two different SQFTs.

4.3.1 Effective U(1) Chern-Simons theory at level k

As a first example let us calculate the effective partition function of an Abelian
Chern-Simons theory with gauge group U(1) at level k. The corresponding contour
integral reads

Z =− ∑
m∈Z

∫
C

dy
2πiy

ykbynzb , (4.3.1)

where y is the gauge fugacity, m the label of the gauge flux fG =m/(n+n−), while z
and n are background flux and fugacity, respectively. The integer b is given by

b= b(m) = 1+
⌊

p+
n+

⌋
+

⌊
− p−

n−

⌋
= 1+

⌊
ma+
n+

⌋
+

⌊
−ma−

n−

⌋
, n+a−−n−a+ = 1 .

(4.3.2)

We write m ∈ Z as

m= n+n−m′+ r , r= 0, . . . ,(n+n−−1) , (4.3.3)

with m′ ∈ Z. The integral then becomes

Z =− ∑
m∈Z

∫
C

dy
2πiy

ykb+nzb ,

=−
n+n−−1

∑
r=0

∑
m′∈Z

∫
C

dy
2πiy

y−km′+kb(r)+nz−m′+b(r) ,

=−
n+n−−1

∑
r=0

∑
m′′∈Z

∫
C

dy
2πiy

ykm′′+nzm
′′
. (4.3.4)
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The latter is non-vanishing only if the contour C surrounding y = 0 and if

km′′+n= 0 , (4.3.5)

which is a Diophantine equation that can be solved by conveniently splitting n as

n= kn′+ JnKk . (4.3.6)

Indeed, plugging the expression above into the Diophantine equation gives

m′′ =−n′ , JnKk = 0 , (4.3.7)

which yields the final result

Z = n+n− z−n′
δJnKk,0 = n+n− z−⌊n/k⌋

δJnKk,0 , (4.3.8)

meaning that Z ̸= 0 only if JnKk = 0. Especially, if n= 0, we find Z = (n+n−), sug-
gesting that the effective Chern-Simons theory on Σ has (n+n−) vacua. Technically,
this degeneracy stems from the fact that for any b ∈ Z there are (n+n−) values of
m ∈ Z such that b(m) = b.

4.3.2 Effective U(1) Chern-Simons theory coupled to a chiral
multiplet

As another example we compute the partition function of a chiral multiplet coupled
to an effective Chern-Simons term with gauge group U(1) at level k = 1. We also
add a mixed Chern-Simons term with flavour fugacity (−z) and effective flux b̃. We
again consider a countour C such that all contributions to the integral comes from
the pole at y = 0. The collective partition function is

Z = ∑
m∈Z

∫
C

dy
2πiy

(−z)byb̃yb−1(
yq(1−b)/2;q

)
b

, (4.3.9)

where the finite q-Pochhammer symbol corresponds to a chiral multiplet on topologi-
cally twisted Σ×S1, while yb−1 is the spindle counterpart of e2πiγGm, which is the
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Chern-Simons term on S2 ×S1. It is convenient to expand the integrand as

Z = ∑
m∈Z

∫ dy
2πiy

(−z)byb̃+b−1(
yq(1−b)/2;q

)
b

= ∑
m∈Z

∑
ℓ∈N

∫ dy
2πiy

(−z)byb̃+b−1+ℓ

(
qb;q

)
ℓ

(q;q)ℓ
qℓ(1−b)/2 ,

(4.3.10)

where we employed the q-binomial theorem

1
(t;q)b

=

(
t qb;q

)
∞

(t;q)
∞

= ∑
ℓ∈N

(
qb;q

)
ℓ

(q;q)ℓ
tℓ , (4.3.11)

valid for both finite and infinite q-Pochhammer symbols. The contour integral
providing Z is non-vanishing if

b̃+b−1+ ℓ= 0 , (4.3.12)

which is an integer-valued equation that can be solved by writing m as

m= n+n−m′+ r , m′ ∈ Z r= 0, . . . ,(n+n−−1) , (4.3.13)

yielding

b̃−m′+b(r)−1+ ℓ= 0 . (4.3.14)

Inserting the latter in the expression for Z gives

Z =−
n+n−−1

∑
r=0

∑
ℓ∈N

(−z)1−b̃−ℓ

(
q1−b̃−ℓ;q

)
ℓ

(q;q)ℓ
qℓ(n+ℓ)/2 ,

=−n+n− ∑
ℓ∈N

(−z)1−b̃−ℓ

(
qb̃;q

)
ℓ

(q;q)ℓ
qℓ(b̃+ℓ)/2

(
−q1−b̃−ℓ

)ℓ
qℓ(ℓ−1)/2 ,

=−n+n−
(−z)1−b̃(

q(1−b̃)/2z−1;q
)
b̃

,

= n+n−
z(

zq(1−b̃)/2;q
)
b̃

, (4.3.15)
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where in the second, fourth and fifth equalities we exploited the identity

(t;q)ℓ =
(

t−1 q1−ℓ;q
)
ℓ

(
−t q(ℓ−1)/2

)ℓ
. (4.3.16)

Therefore, we find that on Σ×S1 the partition function of a chiral multiplet coupled
to an effective Chern-Simons theory is dual to a free chiral multiplet, interpreted as
describing a monopole operator. The overall factor (n+n−) originates from a sum
over r in the integer range going from 0 to (n+n−−1), spanning degenerate sectors
of the original theory.



Chapter 5

Conclusions

In this thesis, I have synthesized the key findings from my research. The incorpo-
ration of orbifold geometry has yielded intriguing outcomes in both supergravity
and supersymmetric field theory. While these results were achieved within a holo-
graphic research framework, their significance extends beyond holography and holds
relevance in both of the aforementioned research scopes.

In Chapter 2, I presented the solution found in [1], which generalizes the analysis
of [13] to non-minimal D = 4 gauged supergravity, particularly in theories with
multiple gauge fields and, consequently, multiple conserved electric and magnetic
charges. However, beyond these solutions, relatively little is known about super-
symmetric accelerating black holes in other theories or supersymmetric accelerating
black objects more generally. Nevertheless, it is clear that such solutions exhibit
interesting properties and extended thermodynamics, as shown in [4] and explained
in Chapter 3. For instance, the solution presented in Chapter 2, has also been used as
a proving example for the validity of very general formulas in [60, 22].

In Chapter 4, I have summarized the results of [2, 3], where we demonstrated that
three-dimensional N = 2 SQFTs can be defined on Σ×S1, endowed with both types
of supersymmetry-preserving twists and that the corresponding partition functions
give rise to the novel spindle index, generalizing and unifying the superconformal
and topologically twisted indices. We have also shown that the generalization of
the index theorem for orbifolds can find a direct application in physics, just as
its more famous version for manifolds does. For instance, in [3], we have shown
that the formalism of Chapter 4 can be apply to other orbifold as the branched
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lens space Lb1,b2,n+,n−(n,1). This is a three-dimensional orbifold encompassing
the squashed three-sphere, the branched sphere and the squashed lens space. The
branched lens space is a O(−nn+n−) circle fibration over the spindle or, equivalently,
can be viewed as the free quotient S3

b1,b2,n+,n−
/Zn acting upon the S1 fiber of the

branched, squashed three-sphere. One more interesting point is the investigation of
supersymmetric dualities, aiming to gain a deeper understanding of the quantum
moduli space pertaining to supersymmetric quantum field theories on orbifolds. For
instance, in the study of gauge theories on manifolds, the phenomenon of partition
functions factorizing into holomorphic blocks is well-known [68, 67, 69, 70]

Regarding holography and the aim of reproducing 3.4.4, much work has been
done, and much remains to be accomplished. In order to extract the microscopic
entropy of the accelerating black holes in four-dimensional Anti-de Sitter spacetime,
we need to compute the large-N limit of the spindle index of N = 2 theories
with AdS4 duals. More generally, the large-N limit of the spindle index should
reproduce the entropy functions presented in [60], valid for an extensive class of
three-dimensional N = 2 theories with gravity duals.



Appendix A

Spindle Geometry

In this appendix we will introduce the geometrical features of the so called "spindle".
A mathematical introduction to orbifolds can be found in [71]. The main reference
for orbi-bundle over spindle in the physical literature is [15]. Other useful material
can be found, for example in [66, 72].

A.1 Weighted Projective Space

The term ’spindle’ refers to the weighted projective space in complex dimension
one, denoted as Σ= WCP1

[n+,n−]. Topologically, it is a 2-sphere S2, while its orbifold
structure can be obtained by taking a suitable quotient of S3 by U(1). Let z1 and
z2 be the standard complex coordinates of the embedding of S3 inside C2 as the
unit sphere S3 =

{
|z1|2 + |z2|2 = 1

}
⊂ C2. The quotient is achieved by applying a

weighted circle action given by

(z1,z2)→ (λ n+z1,λ
n−z2) (A.1.1)

where λ = eiθ ∈U(1),n± ∈ N. This action is effective since hcf(n+,n−) = 1. All
powers of the primitive n+−th root of unity λ = e2πi/n+ act trivially on (z1,0), while
the primitive n−−th root of unity λ = e2πi/n− act trivially on (0,z2).

We recall the definition of orbifold charts [73] (Ũ ,Γ,φ) for a 2-dimensional
orbifold Σ. The underlying Hausdorff topological space is indicated by |Σ|. We
require:
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• Ũ to form a basis of open sets in R2,

• Γ to be a finite group acting on Ũ by linear transformations,

• φ : Ũ −→ |Σ| to be a continuous Γ-invariant map inducing a homeomorphism
from Ũ /Γ to U := φ(Ũ )⊆ |Σ| such that:

– the U form a basis of open sets in |Σ|;

– both charts satisfy the following compatibility condition: If U1 ⊆ U2,
then there is an injection κ :

(
Ũ1,Γ1,φ1

)
−→

(
Ũ2,Γ2,φ2

)
which, by

definition, amounts to:

* a diffeomorphism k : Ũ1 −→ k
(
Ũ1
)
⊆ Ũ2

* and a group isomorphism K : Γ1 −→ K (Γ1) ⊆ Γ2 such that φ1 =

φ2 ◦ k and k is K-equivariant k ◦g = K(g)◦ k, for all g ∈ Γ1.

We cover the spindle with two charts in complete analogy with the sphere. The north
and sud patch charts are given by (C,Zn+,φ+) and (C,Zn−,φ−) respectively, where
Zn± are cyclic groups. The action of these group on coordinates z± ∈ C is:

z± → ω±z± (A.1.2)

where ω± ∈ Zn± . In future we will use the explicit notation ω
j
± = e2πi j

n± with
j = 0,1, ..,n±−1. The Zn+-invariant map φ+ is given by

φ+ : z+ → zn+
+ (A.1.3)

while the Zn−-invariant map φ− is given by

φ− : z− → z−n−
− (A.1.4)

On the intersection of the two charts, the transition function φ± : C→ C is given by:

φ± : z+ → zn−
− = z−n+

+ (A.1.5)

Note that this presentation is a ’weighted’ version of the well-known stereographic
projection. Similar to manifolds, we can define orbifold coverings [71]. A covering
of a smooth orbifold O is a pair (Ô,ρ), where Ô is another orbifold, and ρ is a
surjective smooth map Ô → O satisfying the following conditions:
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• For each x ∈ |O|, there is a chart (Ũ ,H,ϕ) over x such that |ρ|−1(U) is a
disjoint union of open subsets Vi,

• Each Vi admits an orbifold chart of the type
(

Ũ ,Hi,ϕi

)
, where Hi < H, such

that ρ lifts to the identity ρ̃i : Ũ → Ũ , with ρ̄i : Hi ↪→ H.

Notice that, in general, |ρ| is not a covering between the underlying topological
spaces. When an orbifold can be covered by a manifold, it is referred to as a ’good-
orbifold.’ Conversely, if a manifold cover is not possible, it is termed a ’bad-orbifold’.
Good-orbifold are global quotients of manifold by a finite group while bad-orbifold
are generic quotient by Lie groups. The spindle is an example of a bad-orbifold,
and it is one of the simplest instances to study in this category since it only has two
orbifold points.

A.2 U(1)-Orbibundles

To specify a principal U(1)-orbibundle, we need to choose, in each chart, a ho-
momorphism h from the local orbifold group into the fibre group U(1). For the
spindle, we will have two of these homomorphisms characterized by the choice of
two integers m+ and m−.

h+ : Zn+ →U(1), where h+(ω) = ω
m+ (A.2.1)

h− : Zn− →U(1), where h−(ω) = ω
m−. (A.2.2)

Note that, since ω
n±
± = 1, we have m± ∈ Zn± . The homomorphisms h encode the

action of the finite groups on fibers, completely determining the quotient on each
local trivialization:(

C×S1)/Zn±, where ω± · (z±,ξ±) =
(
ωz±,ω

m±
± ξ±

)
. (A.2.3)

Over the intersection of the charts, the two fiber coordinates are related by

t± : ξ+ → ξ− = ξ

m+n−−m−n+
n+n−

+ ≡ ξ

d
n+n−
+ , (A.2.4)
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where we have defined d = m+n−−m−n+. It is customary to refer to the orbibundle
as O(d), as the integer d specifies the orbibundle and determines the local modes
near the orbifold points.
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Uplift to D = 11

As already commented at the end of section 2.1, the solutions (2.2.1) can automati-
cally be locally uplifted on S7 to supersymmetric solutions of D = 11 supergravity.
The relevant uplifting formulas are given in [53]. In this appendix we briefly com-
ment on the conditions required for global regularity of these D = 11 solutions.

The uplifted D = 11 metric is given by

L−2 ds2
11 = (UV )1/3ds2

4 +4(UV )1/3
{

dη
2 +

cos2 η

4V

[
dθ

2
1 + sin2

θ1dφ
2
1

+(dψ1 + cosθ1dφ1 −A1)
2]+ sin2

η

4U

[
dθ

2
2 + sin2

θ2dφ
2
2

+(dψ2 + cosθ2dφ2 −A2)
2]} .

(B.0.1)

Here we have introduced an overall constant length scale L > 0, and have defined
the functions

U ≡ (e−ξ +χ
2 eξ )sin2

η + cos2
η , V ≡ eξ cos2

η + sin2
η . (B.0.2)

Here the metric in curly brackets is a metric on S7, where one views S7 ⊂ C2 ⊕C2

as unit sphere, with the metrics in square brackets being metrics on the two copies
of S3 ⊂ C2. It follows that θi ∈ [0,π], η ∈ [0, π

2 ], while φi have period 2π and ψi

have period 4π , i = 1,2. The gauge fields Ai then fibre the two three-spheres over
the D = 4 spacetime, effectively gauging the Hopf U(1) isometry of each S3. The
formula for the D = 11 four-form flux G is rather more involved, and can be found
in [53].
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For the spinning spindle solutions (2.2.1) the gauge fields are not in general
globally defined one-forms on AdS2 ×Σ, as must be the case since the magnetic
fluxes in (3.1.1) are generically non-zero. On the other hand, these gauge fields
fibre the internal S7 over this spacetime via (B.0.1), and this will lead to a globally
well-defined D = 11 spacetime only if the Pi satisfy certain quantization conditions.
Specifically, this requires

Pi =
2pi

n−n+
, (B.0.3)

where pi ∈ Z are integers coprime to n±. Imposing (B.0.3) the D = 11 spacetime is
then the total space of an S7 fibration over AdS2 ×Σ, with this total space being free
from orbifold singularities.

The D = 11 solution can be understood as the near horizon limit of N M2-branes
wrapped on the spindle Σ, where the flux number N is defined by

N =
1

(2πℓp)6

∫
S7
⋆11G+

1
2

C∧G . (B.0.4)

Here the S7 is a copy of the fibre, at any point in the D = 4 spacetime. We find that
in turn this fixes the constant L via

L6

(2πℓp)6 =
N

128π4 , (B.0.5)

while the D = 4 Newton constant is

1
G(4)

=
2
√

2
3

N3/2 . (B.0.6)
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Supersymmetry and cohomology

C.1 Vector multiplet

C.1.1 Supersymmetry transformations.

Given a gauge group G, a non-Abelian N = 2 vector multiplet in three dimensions
contains a gauge field Aµ , a scalar field σ , the two-component spinors λα , λ̃α and
an auxiliary field D, all transforming in the adjoint representation of G. The fields
(Aµ ,σ ,λ , λ̃ ,D) respectively have R-charges (0,0,1,−1,0). The corresponding
supersymmetry transformations are

δAµ =−iζ γµ λ̃ − iζ̃ γµλ ,

δσ =−ζ λ̃ + ζ̃ λ ,

δλ =− i
2

ε
µνρ

γρζFµν + iζ (D+σH)− γ
µ

ζ (iDµσ −Vµσ) ,

δ λ̃ =− i
2

ε
µνρ

γρ ζ̃Fµν − iζ̃ (D+σH)+ γ
µ

ζ̃ (iDµσ +Vµσ) ,

δD = Dµ

(
ζ γ

µ
λ̃ − ζ̃ γ

µ
λ

)
− iVµ

(
ζ γ

µ
λ̃ + ζ̃ γ

µ
λ

)
−
[
σ ,ζ λ̃ + ζ̃ λ

]
−H

(
ζ λ̃ − ζ̃ λ

)
,

(C.1.1)

where Fµν = ∂µAν −∂νAµ − i
[
Aµ ,Aν

]
, while the gauge-covariant derivative Dµ

acts on a field Ψ of R-charge qR, central charge qZ and in the representation R of
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the gauge group G as follows:

DµΨ =

[
∇µ − iqR

(
Aµ − 1

2
Vµ

)
− iqZCµ − iAµ◦R

]
Ψ , (C.1.2)

with, for instance,

A ◦adjoint Ψ = [A ,Ψ] , A ◦fundamental Ψ = A Ψ , A ◦anti−fundamental Ψ =−ΨA .

(C.1.3)

The fields belonging to the vector multiplet have vanishing central charge, hence Cµ

appears in (C.1.1) only implicitly, via Vµ .

C.1.2 Cohomological complex.

The supersymmetry variation δ = δζ + δ
ζ̃

is an equivariant differential. Indeed,
the supersymmetry transformations for the vector multiplet can be rewritten as a
cohomological complex containing the gauge field A , the scalar σ , the Grassmann-
odd 0-form χ = i(ζ̃ λ +ζ λ̃ )/(2v) and their δ -differentials:

δA = Λ , δΛ =−2i(LK +GΦG)A ,

δσ =−(i/v)ιKΛ , δΦG = 0 ,

δ χ = ∆ , δ∆ =−2i(LK +GΦG)χ , (C.1.4)

with LK being the covariant Lie derivative

LK = LK − iqR

(
ιKA− 1

2
ιKV

)
− iqZ(ιKC )+ v(qZ −qRH) ,

= LK − iqRΦR − iqZ(ιKC + iv) . (C.1.5)

In fact, LK = LK in (C.1.4) as all fields in (C.1.4) have vanishing central charge qZ

and R-charge qR. The cohomological complex of the vector multiplet is independent
of the U(1)R bundle. In (C.1.4) also appears GΦG , which is a gauge transforma-
tion with parameter ΦG, respectively acting on A and on a field X ̸= A in the
representation R of the gauge group as

GΦGA =−dAΦG =−dΦG + i[A ,ΦG] , GΦGX =−iΦG ◦R X . (C.1.6)
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Explicitly, the Grassmann-odd 1-form Λµ , the Grassmann-odd 0-form χ and the
Grassmann-even 0-forms ΦG,∆ are defined by

Λµ =−i
(

ζ γµ λ̃ + ζ̃ γµλ

)
,

χ =
i

2v

(
ζ̃ λ +ζ λ̃

)
,

ΦG = ιKA − ivσ ,

∆ = D+
1
v

ιK(⋆F )+
i
v

σ [ιKV − ivH] = D+
i
2

Pµ P̃νFµν +
i
v

σ [ιKV − ivH] ,

(C.1.7)

with the map from (Λ,χ) to (λ , λ̃ ) being

λ = i
(

1
2v2 ιKΛ+χ

)
ζ − i

2v
(ιPΛ)ζ̃ , λ̃ = i

(
1

2v2 ιKΛ−χ

)
ζ̃ − i

2v

(
ιP̃Λ
)
ζ .

(C.1.8)

C.2 Chiral multiplet

C.2.1 Supersymmetry transformations.

A three-dimensional N = 2 chiral multiplet of R-charge r, central charge z and in
a representation R of a gauge group G contains a complex scalar field φ , a two-
component spinor ψα and an auxiliary field F . The fields (φ ,ψ,F) respectively have
R-charges (r,r−1,r−2) and central charge z. The corresponding supersymmetry
transformations are

δφ =
√

2ζ ψ ,

δψ =
√

2ζ F + i
√

2(σ + rH − z)ζ̃ φ − i
√

2γ
µ

ζ̃ Dµφ ,

δF = i
√

2[z−σ − (r−2)H]ζ̃ ψ − i
√

2Dµ

(
ζ̃ γ

µ
ψ

)
+2i(ζ̃ λ̃ )φ . (C.2.1)

Analogously, a three-dimensional N = 2 anti-chiral multiplet of R-charge −r,
central charge −z and in the conjugate representation R of a gauge group G contains
a complex scalar field φ̃ , a two-component spinor ψ̃α and an auxiliary field F̃ . The
fields (φ̃ , ψ̃, F̃) respectively have R-charges (−r,−r+1,−r+2) and central charge
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−z. In this case, the supersymmetry transformations read

δ φ̃ =−
√

2ζ̃ ψ̃ ,

δψ̃ =
√

2ζ̃ F̃ − i
√

2φ̃(σ + rH − z)ζ + i
√

2γ
µ

ζ Dµ φ̃ ,

δ F̃ = i
√

2(ζ ψ̃)[z−σ − (r−2)H]− i
√

2Dµ(ζ γ
µ

ψ̃)+2iφ̃(ζ λ ) . (C.2.2)

C.2.2 Cohomological complex.

Similarly to the case of the vector multiplet, the supersymmetry variation δ = δζ +δ
ζ̃

acts on the fields of the chiral multiplet as an equivariant differential, which induces
the following cohomological complex:

δφ =C , δC =−2i(LK +GΦG)φ ,

δB = Θ , δΘ =−2i(LK +GΦG)B , (C.2.3)

where the Grassmann-odd 0-forms B,C and the Grassmann-even 0-form Θ are
defined by

B =− ζ̃ ψ√
2v

,

C =
√

2(ζ ψ) ,

Θ = F + i
[
LP̃ − ir

(
ιP̃A− 1

2
ιP̃V
)
− iz(ιP̃C )− i(ιP̃A )

]
φ . (C.2.4)

The inverse map from the Grassmann-odd scalars (B,C) to the spinor ψ is

ψ =
√

2Bζ +
C√
2v

ζ̃ . (C.2.5)
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For completeness, we report the intermediate form of the supersymmetry transfor-
mations, the one obtained before introducing Θ:

δφ =C ,

δC =−2i
[
LK − ir

(
ιKA− 1

2
ιKV

)
+ v(z− rH)− iz(ιKC )− iΦG

]
φ ,

δB =F + i
[
LP̃ − ir

(
ιP̃A− 1

2
ιP̃V
)
− iz(ιP̃C )− i(ιP̃A )

]
φ ,

δF =−2i
[
LK − i(r−2)

(
ιKA− 1

2
ιKV

)
− izιKC + v[z− (r−2)H]− iΦG

]
B

− i
[
LP̃ − ir

(
ιP̃A− 1

2
ιP̃V
)
− iz(ιP̃C )− i(ιP̃A )

]
C− (ιP̃Λ)φ . (C.2.6)

Analogously, the cohomological complex of the anti-chiral multiplet reads

δ φ̃ = C̃ , δC̃ =−2i(LK +GΦG)φ̃ ,

δ B̃ = Θ̃ , δ Θ̃ =−2i(LK +GΦG)B̃ , (C.2.7)

where the Grassmann-odd 0-forms B̃,C̃ and the Grassmann-even 0-form Θ̃ are
defined by

B̃ =
ζ ψ̃√

2v
,

C̃ =−
√

2(ζ̃ ψ̃) ,

Θ̃ = F̃ + i
[
LP + ir

(
ιPA− 1

2
ιPV
)
+ iz(ιPC )

]
φ̃ − φ̃(ιPA ) , (C.2.8)

with the inverse map from the Grassmann-odd scalars (B̃,C̃) to the spinor ψ̃ being

ψ̃ =
√

2B̃ζ̃ +
C̃√
2v

ζ . (C.2.9)
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The intermediate step in the derivation of the cohomological complex of the anti-
chiral multiplet is given by the transformations

δ φ̃ =C̃ ,

δC̃ =−2i
[
LK + ir

(
ιKA− 1

2
ιKV

)
+ v(−z+ rH)+ iz(ιKC )

]
φ̃ +2φ̃ΦG ,

δ B̃ =F̃ + i
[
LP + ir

(
ιPA− 1

2
ιPV
)
+ iz(ιPC )

]
φ̃ − φ̃(ιPA ) ,

δ F̃ =−2i
[
LK + i(r−2)

(
ιKA− 1

2
ιKV

)
+ iz(ιKC )+ v[−z− (−r+2)H]

]
B̃+2B̃ΦG

− i
[
LP + ir

(
ιPA− 1

2
ιPV
)
+ iz(ιPC )

]
C̃+C̃(ιPA )+ φ̃(ιPΛ) . (C.2.10)
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red frames admit a supersymmetric and extremal limit and their
near horizon AdS2 ×Σ geometries are represented pictorially. From
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horizon solution in the supersymmetric limit. . . . . . . . . . . . . 4



References

[1] Pietro Ferrero, Matteo Inglese, Dario Martelli, and James Sparks. Multicharge
accelerating black holes and spinning spindles. Phys. Rev. D, 105(12):126001,
2022.

[2] Matteo Inglese, Dario Martelli, and Antonio Pittelli. The spindle index from
localization. J. Phys. A, 57(8):085401, 2024.

[3] Matteo Inglese, Dario Martelli, and Antonio Pittelli. Supersymmetry and
Localization on Three-Dimensional Orbifolds. 12 2023.

[4] Davide Cassani, Jerome P. Gauntlett, Dario Martelli, and James Sparks. Ther-
modynamics of accelerating and supersymmetric AdS4 black holes. Phys. Rev.
D, 104(8):086005, 2021.

[5] Charles B. Thorn. Reformulating string theory with the 1/N expansion. In The
First International A.D. Sakharov Conference on Physics, 5 1991.

[6] Gerard ’t Hooft. Dimensional reduction in quantum gravity. Conf. Proc. C,
930308:284–296, 1993.

[7] Leonard Susskind. The World as a hologram. J. Math. Phys., 36:6377–6396,
1995.

[8] Juan Martin Maldacena. The Large N limit of superconformal field theories
and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.

[9] E. Cremmer, B. Julia, and Joel Scherk. Supergravity Theory in Eleven-
Dimensions. Phys. Lett. B, 76:409–412, 1978.

[10] Francesco Benini, Kiril Hristov, and Alberto Zaffaroni. Black hole microstates
in AdS4 from supersymmetric localization. JHEP, 05:054, 2016.

[11] Francesco Benini, Kiril Hristov, and Alberto Zaffaroni. Exact microstate
counting for dyonic black holes in AdS4. Phys. Lett., B771:462–466, 2017.

[12] Pietro Ferrero, Jerome P. Gauntlett, Juan Manuel Pérez Ipiña, Dario Martelli,
and James Sparks. D3-Branes Wrapped on a Spindle. Phys. Rev. Lett.,
126(11):111601, 2021.



74 References

[13] Pietro Ferrero, Jerome P. Gauntlett, Juan Manuel Pérez Ipiña, Dario Martelli,
and James Sparks. Accelerating black holes and spinning spindles. Phys. Rev.
D, 104(4):046007, 2021.

[14] Federico Faedo, Alessio Fontanarossa, and Dario Martelli. Branes wrapped on
orbifolds and their gravitational blocks. Lett. Math. Phys., 113(3):51, 2023.

[15] Pietro Ferrero, Jerome P. Gauntlett, and James Sparks. Supersymmetric spin-
dles. JHEP, 01:102, 2022.

[16] Christopher Couzens, Koen Stemerdink, and Damian van de Heisteeg. M2-
branes on discs and multi-charged spindles. JHEP, 04:107, 2022.

[17] Pietro Ferrero, Jerome P. Gauntlett, Dario Martelli, and James Sparks. M5-
branes wrapped on a spindle. JHEP, 11:002, 2021.

[18] Federico Faedo and Dario Martelli. D4-branes wrapped on a spindle. JHEP,
02:101, 2022.

[19] Minwoo Suh. M5-branes and D4-branes wrapped on a direct product of spindle
and Riemann surface. 6 2022.

[20] Igal Arav, Jerome P. Gauntlett, Matthew M. Roberts, and Christopher Rosen.
Leigh-Strassler compactified on a spindle. JHEP, 10:067, 2022.

[21] Andrea Boido, Juan Manuel Pérez Ipiña, and James Sparks. Twisted D3-brane
and M5-brane compactifications from multi-charge spindles. JHEP, 07:222,
2021.

[22] Andrea Boido, Jerome P. Gauntlett, Dario Martelli, and James Sparks. Gravita-
tional Blocks, Spindles and GK Geometry. Commun. Math. Phys., 403(2):917–
1003, 2023.

[23] Kwok Chung Matthew Cheung. Consistent truncations and applications of
AdS/CFT: spindles, interfaces & S-folds. PhD thesis, Imperial Coll., London,
2022.

[24] Minwoo Suh. Spindle black holes from mass-deformed ABJM. 11 2022.

[25] Antonio Amariti, Nicolò Petri, and Alessia Segati. T1,1 truncation on the
spindle. JHEP, 07:087, 2023.

[26] Kiril Hristov and Minwoo Suh. Spindle black holes in AdS4× SE7. JHEP,
10:141, 2023.

[27] Antonio Amariti, Salvo Mancani, Davide Morgante, Nicolò Petri, and Alessia
Segati. BBBW on the spindle. 9 2023.

[28] Francesco Benini and Alberto Zaffaroni. A topologically twisted index for
three-dimensional supersymmetric theories. JHEP, 07:127, 2015.



References 75

[29] Jun Nian and Leopoldo A. Pando Zayas. Microscopic entropy of rotating
electrically charged AdS4 black holes from field theory localization. JHEP,
03:081, 2020.

[30] J. F. Plebanski and M. Demianski. Rotating, charged, and uniformly accelerat-
ing mass in general relativity. Annals Phys., 98:98–127, 1976.

[31] J. Podolsky and J. B. Griffiths. Accelerating Kerr-Newman black holes in
(anti-)de Sitter space-time. Phys. Rev., D73:044018, 2006.

[32] William Kinnersley and Martin Walker. Uniformly accelerating charged mass
in general relativity. Phys. Rev. D, 2:1359–1370, Oct 1970.

[33] Jiri Podolsky, Marcello Ortaggio, and Pavel Krtous. Radiation from accelerated
black holes in an anti-de Sitter universe. Phys. Rev. D, 68:124004, 2003.

[34] Dietmar Klemm and Masato Nozawa. Supersymmetry of the C-metric and the
general Plebanski-Demianski solution. JHEP, 05:123, 2013.

[35] Davide Gaiotto and Edward Witten. S-Duality of Boundary Conditions In N=4
Super Yang-Mills Theory. Adv. Theor. Math. Phys., 13(3):721–896, 2009.

[36] H. Lü and Justin F. Vázquez-Poritz. C-metrics in Gauged STU Supergravity
and Beyond. JHEP, 12:057, 2014.

[37] David D. K. Chow and Geoffrey Compère. Dyonic AdS black holes in maximal
gauged supergravity. Phys. Rev. D, 89(6):065003, 2014.

[38] Kiril Hristov, Stefanos Katmadas, and Chiara Toldo. Matter-coupled super-
symmetric Kerr-Newman-AdS4 black holes. Phys. Rev. D, 100(6):066016,
2019.

[39] Z. W. Chong, Mirjam Cvetic, H. Lu, and C. N. Pope. Charged rotating black
holes in four-dimensional gauged and ungauged supergravities. Nucl. Phys. B,
717:246–271, 2005.

[40] Mirjam Cvetic, G. W. Gibbons, H. Lu, and C. N. Pope. Rotating black holes in
gauged supergravities: Thermodynamics, supersymmetric limits, topological
solitons and time machines. 4 2005.

[41] Marco M. Caldarelli and Dietmar Klemm. Supersymmetry of Anti-de Sitter
black holes. Nucl. Phys., B545:434–460, 1999.

[42] Alejandro Cabo-Bizet, Davide Cassani, Dario Martelli, and Sameer Murthy.
Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric
AdS5 black holes. JHEP, 10:062, 2019.

[43] Davide Cassani and Lorenzo Papini. The BPS limit of rotating AdS black hole
thermodynamics. JHEP, 09:079, 2019.



76 References

[44] Guido Festuccia and Nathan Seiberg. Rigid Supersymmetric Theories in
Curved Superspace. JHEP, 06:114, 2011.

[45] Cyril Closset, Thomas T. Dumitrescu, Guido Festuccia, and Zohar Komar-
godski. Supersymmetric Field Theories on Three-Manifolds. JHEP, 05:017,
2013.

[46] Edward Witten. Supersymmetry and Morse theory. J. Diff. Geom., 17(4):661–
692, 1982.

[47] Vasily Pestun. Localization of gauge theory on a four-sphere and supersym-
metric Wilson loops. Commun. Math. Phys., 313:71–129, 2012.

[48] Yosuke Imamura and Shuichi Yokoyama. Index for three dimensional super-
conformal field theories with general R-charge assignments. JHEP, 04:007,
2011.

[49] Anton Kapustin and Brian Willett. Generalized Superconformal Index for
Three Dimensional Field Theories. 6 2011.

[50] B. de Wit and Antoine Van Proeyen. Potentials and Symmetries of General
Gauged N=2 Supergravity: Yang-Mills Models. Nucl. Phys. B, 245:89–117,
1984.

[51] Mirjam Cvetic, M. J. Duff, P. Hoxha, James T. Liu, Hong Lu, J. X. Lu,
R. Martinez-Acosta, C. N. Pope, H. Sati, and Tuan A. Tran. Embedding
AdS black holes in ten-dimensions and eleven-dimensions. Nucl. Phys. B,
558:96–126, 1999.

[52] Sergio L. Cacciatori, Dietmar Klemm, Diego S. Mansi, and Emanuele Zorzan.
All timelike supersymmetric solutions of N=2, D=4 gauged supergravity cou-
pled to abelian vector multiplets. JHEP, 05:097, 2008.

[53] Arash Azizi, Hadi Godazgar, Mahdi Godazgar, and C. N. Pope. Embedding of
gauged STU supergravity in eleven dimensions. Phys. Rev. D, 94(6):066003,
2016.

[54] J. D. Bekenstein. Black holes and the second law. Lett. Nuovo Cim., 4:737–740,
1972.

[55] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346,
1973.

[56] S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974.

[57] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys.,
43:199–220, 1975. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[58] Charles Fefferman and C. Robin Graham. The ambient metric. Ann. Math.
Stud., 178:1–128, 2011.



References 77

[59] Seyed Morteza Hosseini and Alberto Zaffaroni. Universal AdS Black Holes
in Theories with 16 Supercharges and Their Microstates. Phys. Rev. Lett.,
126(17):171604, 2021.

[60] Andrea Boido, Jerome P. Gauntlett, Dario Martelli, and James Sparks. Entropy
Functions For Accelerating Black Holes. Phys. Rev. Lett., 130(9):091603,
2023.

[61] Cyril Closset, Stefano Cremonesi, and Daniel S. Park. The equivariant A-twist
and gauged linear sigma models on the two-sphere. JHEP, 06:076, 2015.

[62] Francesco Benini and Alberto Zaffaroni. Supersymmetric partition functions
on Riemann surfaces. Proc. Symp. Pure Math., 96:13–46, 2017.

[63] Francesco Benini and Stefano Cremonesi. Partition Functions of N = (2,2)
Gauge Theories on S2 and Vortices. Commun. Math. Phys., 334(3):1483–1527,
2015.

[64] M. F. Atiyah. Elliptic Operators and Compact Groups, volume 401. Springer-
Verlag, Berline, Germany, 1974.

[65] Vasily Pestun. Review of localization in geometry. J. Phys. A, 50(44):443002,
2017.

[66] Cyril Closset, Heeyeon Kim, and Brian Willett. Seifert fibering operators in 3d
N = 2 theories. JHEP, 11:004, 2018.

[67] Christopher Beem, Tudor Dimofte, and Sara Pasquetti. Holomorphic Blocks in
Three Dimensions. JHEP, 12:177, 2014.

[68] Sara Pasquetti. Factorisation of N = 2 Theories on the Squashed 3-Sphere.
JHEP, 04:120, 2012.

[69] Fabrizio Nieri and Sara Pasquetti. Factorisation and holomorphic blocks in 4d.
JHEP, 11:155, 2015.

[70] Pietro Longhi, Fabrizio Nieri, and Antonio Pittelli. Localization of 4d N = 1
theories on D2 ×T2. JHEP, 12:147, 2019.

[71] Francisco C. Caramello Jr au2. Introduction to orbifolds, 2022.

[72] Eckhard Meinrenken. Symplectic surgery and the spinc–dirac operator. Ad-
vances in Mathematics, 134(2):240–277, 1998.

[73] Ana M. L. G. Canas da Silva. Multiplicity formulas for orbifolds, 1996.


	Contents
	1 Introductions
	1.1 Holographic Principle and AdS/CFT Correspondence
	1.2 Supergravity in Four Dimensions
	1.3 Supersymmetric Field Theory in Three Dimensions

	2 Supergravity Side/Spindle Black Holes
	2.1 The supergravity model
	2.2 Local AdS2 solutions
	2.3 Killing spinors
	2.4 Global analysis

	3 Black-Hole Thermodynamics
	3.1 Near Horizon Analysis
	3.2 First Law of Black Hole Thermodynamics
	3.3 Supersymmetric and Extremal Limit 
	3.4 Entropy function

	4 Supersymmetric Field Theory
	4.1 General Complex Backgrounds
	4.1.1 S1 with twist and anti-twist

	4.2 Localization
	4.2.1 BPS locus
	4.2.2 1-loop determinants
	4.2.3 Canonical and effective classical terms

	4.3 Examples and dualities
	4.3.1 Effective U(1) Chern-Simons theory at level k
	4.3.2 Effective U(1) Chern-Simons theory coupled to a chiral multiplet


	5 Conclusions
	Appendix A Spindle Geometry
	A.1 Weighted Projective Space
	A.2 U(1)-Orbibundles

	Appendix B Uplift to D=11
	Appendix C Supersymmetry and cohomology
	C.1 Vector multiplet
	C.1.1 Supersymmetry transformations.
	C.1.2 Cohomological complex.

	C.2 Chiral multiplet
	C.2.1 Supersymmetry transformations.
	C.2.2 Cohomological complex.


	List of Figures
	References

