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ABSTRACT
This paper introduces NLCMap, a framework for the map-
ping space exploration targeting Non-Linear Convolutional
Networks (NLCNs). NLCNs [1] are a novel neural network
model that improves performances in certain computer vi-
sion applications by introducing a non-linearity in the weights
computation. NLCNs are more challenging to efficiently map
onto hardware accelerators if compared to traditional Convo-
lutional Neural Networks (CNNs), due to data dependencies
and additional computations. To this aim, we propose NL-
CMap, a framework that, given an NLC layer and a generic
hardware accelerator with a certain on-chip memory budget,
finds the optimal mapping that minimizes the accesses to the
off-chip memory, which are often the critical aspect in CNNs
acceleration.

Index Terms— Non-linear signal processing, Convolu-
tional Neural Networks, Dataflow, HW Mapping

1. INTRODUCTION

Convolutional Neural Networks (CNNs) are nowadays domi-
nating in a vast range of fields in which AI is adopted, such as
robotics, healthcare, business and finance, or computer vision.
CNNs have achieved outstanding results particularly in the
field of image processing, exceeding the accuracy of humans
in tasks such as object recognition and tracking, image re-
construction, or noise removal. However, these cutting-edge
performances are obtained at the cost of heavy memory and
computational requirements.

For this reason, the hardware acceleration of neural net-
works has become relevant in the last years, as shown by
the explosion of architectures dedicated to these workloads.
Among the various available hardware platforms, e.g. GPUs
or ASICs, FPGAs are often the first choice for edge com-
puting. Their structure allows in fact to obtain high paral-
lelism and throughput, maintaining however the power con-
sumptions low.

In the context of image processing, in particular, in the
case of high resolution or high FPS requirements, it is very
often not possible to store all the data and intermediate re-
sults in the on-chip memory. For this reason, data need to

be continuously moved between the off-chip and the on-chip
memory, increasing the consumed power. Moreover, modern
architectures are facing the von Neumann bottleneck, i.e., the
maximum performance is limited by the memory bandwidth
rather than by the availability of computational resources. To
overcome this issue, several optimizations can be applied at
various levels, e.g., algorithmic, software, or hardware.

Recently, a novel neural network architecture, called Non
Linear Convolutional Network (NLCN) [1], has been pro-
posed. In traditional CNNs the kernels are learned at training
time and are then used as constant coefficients during the in-
ference. On the other hand, NLCNs use space-variant kernels,
i.e., the weights, adopted in the convolution, are input depen-
dent and continuously updated during inference time. There-
fore, the more complex kernels in NLCNs make the system
more capable of adating to local spatial variations in the input
images.

Moreover, as demonstrated in [1], on equal performance,
NLCNs require a lower number of layers compared to CNNs.
This makes them a good candidate for embedded FPGA ac-
celerators, since they have an overall lower computational and
memory footprint. However, the advantages of NLCNs come
at the cost of more complex NLC layers. As it will be shown
in the following sections, a NLC layer requires a double set
of weights and two convolutions, which make the mapping
of the operations on hardware accelerators much harder, as in
the case of FPGAs with limited on-chip memory. To tackle
these limitations, we propose NLCMap, the first framework
for the automatic mapping of NLC layers on generic hardware
accelerators with limited on-chip memory and bandwidth.

The paper is organized as follows: in Sec. 2 we give the
necessary background on NLC layers and present the related
works on automatic mappings of neural networks on hard-
ware accelerators, in Sec. 3 we present the NLCMap frame-
work, and in Sec. 4 we provide a use case.

2. BACKGROUND AND RELATED WORKS
2.1. Non-Linear Convolutional Networks (NLCNs)

The main novelty of the NLC layer proposed in [1] is the
substitution of the fixed weights with a set of space-variant
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for (l=0, l<L, l++)
  for (p=0, p<K, p++)
     for (n=0, n<W1,n++)
        for (m=0, m<W1, m++)
           for (i=0, i<Ho, i++)
               for (j=0, j<Wo, j++)
                  for (q=0, q<K, q++)
                     for (r=0, r<W2, r++)
                        for (s=0, s<W2, s++)
                           v[i,j,l][n,m,p] += x[i+r, j+s, q] 
                                               u[n,m,p,l][r,s,q]
  v = AF(v)
  v = NORM(v)
  for (i=0, i<Ho, i++)
     for (j=0, j<Wo, j++)
        for (p=0, p<K, p++)
           for (n=0, n<W1, n++)
              for (m=0, m<W1, m++)
                 y[i,j,l] += x[i+n,j+m,p]   v[i,j,l][n,m,p] 

Loop 1B

Loop 2B

Loop 3B

Loop 1A

Loop 2A

Loop 3A

Loop 4A

Loop 5A
Loop 6

.

.

Fig. 1. a) Pseudocode of a NLC layer, b) dimensions of the input feature maps (IFMs), output feature maps (OFMs), and
weights, c) block diagram of a NLC layer, d) NLC accelerator architecture.

weights v, which change the response of the layer accord-
ing to the characteristics of its input. To obtain this behavior,
the space-variant weights v are computed convolving a set
of constant weights u with the input feature maps x, and then
applying a non-linear activation function (AF) and normaliza-
tion (Norm) as in (1). In (1), o1 and o2 are the padding values
needed to have the output feature maps of the same size of the
input feature maps. Fig. 1 (a) and (b) show the pseudocode
of the computations and the parameters of a NLC layer. Fig.
1 (c) and (d) highlight a block scheme of a NLC layer and the
corresponding accelerator architecture.

vi,j,l(n,m, p) = Norm
{
AF

{ K∑
q=1

W2∑
r=1

W2∑
s=1

x(i+ r − o2, j + s− o2, q) · un,m,p(r, s, q)l

}}
yi,j,l =

K∑
p=1

W1∑
n=1

W1∑
m=1

x(i+ n− o1, j +m− o1, p)·

· vi,j,l(n,m, p)

(1)

The proper activation and normalization functions must
be chosen depending on the application, as they affect the fil-
ter response of the layer. A practical use of NLCNs for image
denoising is shown in [2].

2.2. Hardware Mapping Space Exploration

Many prior works have proposed solutions to efficiently map
convolutional layers onto hardware accelerators, differing
mainly in how the design space is explored. [3] and [4] pro-
pose mapping algorithms dedicated to specific architectures.
In [5, 6, 7, 8] the design space is reduced by considering only
a subset of the possible computation orders, while [9, 10]
focus on the tiling factors. [11] considers a limited set of
mappings and chooses among them. [12] considers all the
components of hardware mapping (loop order, tiling, un-
rolling), but pruning the search space, while [13] and [14]
explore the full space with exhaustive and random search.

3. NLCMAP WORKFLOW AND DETAILS

As shown in Section 2, a NLC layer requires a larger mem-
ory to store the weights and the intermediate results of the
operations. Moreover, in NLC layers it is also necessary to
take into account the data dependencies when tiling the com-
putations. This leads to a more complex management of data
movement between off-chip and on-chip memories, in partic-
ular in systems in which the latter is limited, such as FPGAs.
For this reasons it is crucial to carefully orchestrate and opti-
mize the dataflow, to maximize the data reuse and limit data
movements between different levels of memory.

To this end, we propose NLCMap, a framework that
given a NLC layer configuration and a generic hardware ac-
celerator (Sec. 3.1), optimizes the scheduling of data move-
ments and operations. The space of the possible dataflows
(Sec. 3.2) is pruned with heuristic knowledge and by swiping
through the loop factors in a discrete way. The on-chip mem-
ory requirements (Sec. 3.3) and off-chip memory accesses
(Sec. 3.4) are estimated analytically, and these estimations are
used to find the optimal dataflow given an on-chip memory
budget.

3.1. Accelerator structure
The accelerator used for the estimations of memory accesses
and data movements has a generic structure, including: an
array of processing engines (PEs) to perform multiply-and-
accumulate (MACs) operations in parallel, on-chip data mem-
ories dedicated to the inputs (input feature maps and fixed
weights) and the intermediate/output results (space-variant
weights and output feature maps). Data are loaded from an
off-chip memory, and a computational unit is dedicated to the
activation functions and normalization.

3.2. Dataflow and Tiling

Mapping a layer to an accelerator requires the definition of
the dataflow, i.e., the order and parallelism of the operations,
and of the tiling strategy [15, 16]. In the following, these
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Fig. 2. Volumes and tiling factors for the computation of: a) the space-variant weights, b) the output pixels.

three components will be briefly explained, together with the
considerations that need to be made for NLC layers mapping.

• Loop reordering: The order of the loops in Fig.1 will de-
termine the data dependencies and the opportunities of data
reuse, both spatial and temporal. Optimizing the loop order
will therefore reduce the data movements between off-chip
and on-chip memory. When reordering the loops of a NLC
layer, particular attention must be paid to data dependen-
cies. When performing the normalization, all the weights
vi,j,l(:, :, :) along directions W1, W1, and K are needed to
compute one element vi,j,l(n,m, p). Therefore, we impose
to complete the loops 5A and 4A before scheduling the nor-
malization. In this way the un-normalized weights can be
kept in the on-chip memory, an the normalization is then
performed without needing to fetch data from the off-chip
memory. This heuristic constraint prunes the space of pos-
sible loop orders.

• Loop tiling: loop tiling consists in splitting large loops in
groups of smaller loops, reducing the number of operands
(IFMs, weights, OFMs) that need to be loaded in the on-
chip memory of the accelerator. In this scope, the tile size
along a dimension d will be denoted as Td. Refer to Fig.
2 for the graphical representation of the tiling factors along
each dimension.

• Loop unrolling - Parallelization: the execution of a loop
can be speeded up by scheduling part of its operations in
parallel, taking advantage of hardware parallelism. As a
consequence, the required hardware resources, i.e.. the
number of PEs, are dependent from the parallelization fac-
tors, and viceversa. For a NLC layer, it is necessary to
account for the multiply-and-accumulate operations (NM )
of two convolutions. Knowing the parallelization factors,
denoted in this paper as P (Td) for tile Td, it is possible
to analytically compute the number of MACs required by
each of the convolutions (2) as:

NMc1 = P (Tr) · P (Ts) · P (Tq) · ΦA · P (TL),

NMc2 = ΦB · P (TL),
(2)

where Φd = P (THid) · P (TWid) · P (Tnd) · P (Tmd) ·
P (Tpd) with d ∈ {A,B} and all the parameters are defined
in Figs. 1 (b) and 2.

3.3. On-chip memory size

The on-chip memory must be large enough to store all the
data used during the execution of a computational block, i.e.,
the input pixels I PXL, the fixed weights F W, the space-
variant weights SV W and the output pixels O PXL (3) and
can be evaluated as:

σ mem = I PXL + F W+ SV W+O PXL, (3)

where the different contributions depend on the tiling factors
(see Fig. 2) as follows:

• I PXL: the input volume to be placed in on-chip memory
depends on whether the first or second convolution is be-
ing performed (see Fig. 2). Assuming one convolution is
computed at a time, the memory size should be such to ac-
commodate the larger of the two volumes, as shown in (4),
where Din DW accounts for the input data width.

I PXL = Din DW ·max
{
VA, VB

}
VA = TWiA · THiA · Tq
VB = THiB · TWiB · TpB

(4)

• F W: the memory required to store the fixed weights u
depends on the tiling factors and data width fw DW :

F W = Tr · Ts · Tq · TnA · TmA·
· TpA · TL · fw DW

(5)

• SV W: as discussed in Sec. 3.2, due to the data dependen-
cies introduced by the normalization, all the space-variant
weights along dimensions W1 and K are computed and
stored in the on-chip memory. The memory occupied by
the weights v depends also on the data width svw DW :

SV W = TWo · THo ·W12 ·K · TL · svw DW (6)
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• O PXL: the memory required by the output pixel is show
in (7), where also the data width Dout DW is taken into
account and can be evaluated as:

O PXL = TWo · THo · TL ·Dout DW (7)

3.4. Off-chip memory accesses

If the on-chip memory constraints discussed in Sec. 3.3 are
satisfied, then the off-chip memory accesses can be estimated
as follows. Since the space-variant weights only need to be
stored on-chip, they do not contribute to off-chip memory ac-
cesses. Therefore, the total off-chip memory accesses depend
only on: i) the input pixels for Conv1 (π px c1), ii) the fixed
weights (π fw), and iii) the input pixels for Conv2 (π px c2).
In particular, π px c1 is minimized by scheduling loops 3A
and 2A in Fig. 1 (a) as the outermost loops, maximizing the
input pixels reuse. On the other hand, π fw is minimized by
scheduling loops 6, 5A, 4A, 2A, and 1A as the outermost.

Considering that the space-variant weights are stored on-
chip only, π px c2 can be computed as

π px c2 = ⌈Ho/THo⌉ · ⌈Wo/TWo⌉ ·
· ⌈K/TpB⌉ · ⌈L/TL⌉

(8)

4. EVALUATION AND RESULTS

In memory-bounded algorithms such as neural networks, the
accesses to the off-chip memory risk to be the higher source of
power consumption. Hence, in this case study off-chip mem-
ory access, estimated as

π acc = π px c1 + π fw + π px c2, (9)

is used as a metric for the quality of the NLC mappings pro-
posed by the framework.

The off-chip memory accesses depend not only on the
mapping but also on the available on-chip memory, as it
allows to store data close to the PEs, avoiding off-chip

data movements. However, the available on-chip memory
BUFF SIZE AV is a design constraint of the FPGA that
cannot be modified. Therefore, a mapping is optimal if:

min π acc

s.t. σ mem ≤ BUFF SIZE AV.
(10)

Fig. 3 shows the possible mappings explored by NLCMap
for a given NLC layer configuration and for different values
of available on-chip memory. The configuration of the layer
(⟨Ho,Wo,K,W1,W2,L⟩ = ⟨512, 512, 3, 3, 3, 6⟩) has been
chosen considering the typical sizes of an image with three
RGB channels K in input.

As expected and previously discussed, the off-chip mem-
ory accesses are inversely proportional to σ mem. As it can
be noted from right part of Fig. 3, only THo, TWo, and TL
are considered as tunable parameters, whereas the other tiling
factors are kept fixed. This choice is due to the consideration
that the input pixels need to be used by two convolutions. It
is therefore convenient to maximize their reuse at the expense
of reducing the reuse of the fixed weights. As a consequence,
if enough on-chip memory is available, THo, TWo, and TL
can be increased, reducing the off-chip memory accesses. The
points highlighted in different colors in the left part of Fig. 3
are the optimal mappings selected by NLCMap for different
values of on-chip memory, they lie on the Pareto front of the
σ mem-π acc curve, indeed.

5. CONCLUSION

In this paper we propose the first framework for the opti-
mal mapping of NLC layers on generic hardware accelera-
tors. The mapping space is first pruned by heuristic consid-
erations, and then fully explored. Presently, the only metric
considered for the choice is the number of accesses to the off-
chip memory, which are often the bottleneck in data-centric
systems. Other relevant metrics, such as latency and required
DSP slices, can also be considered when choosing a mapping,
and they will be included in the framework as a future work.
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