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ABSTRACT: Fine chemicals produced via batch crystallization
with properties dependent on the crystal size distribution require
precise control of supersaturation, which drives the evolution of
crystal size over time. Model predictive control (MPC) of
supersaturation using a mechanistic model to represent the
behavior of a crystallization process requires less experimental
time and resources compared with fully empirical model-based
control methods. Experimental characterization of the hexamine−
ethanol crystallization system was performed in order to collect the
parameters required to build a one-dimensional (1D) population
balance model (PBM) in gPROMS FormulatedProducts software
(Siemens-PSE Ltd.). Analysis of the metastable zone width
(MSZW) and a series of seeded batch cooling crystallizations informed the suitable process conditions selected for supersaturation
control experiments. The gPROMS model was integrated with the control software PharmaMV (Perceptive Engineering Ltd.) to
create a digital twin of the crystallizer. Simulated batch crystallizations were used to train two statistical MPC blocks, allowing for in
silico supersaturation control simulations to develop an effective control strategy. In the supersaturation set-point range of 0.012−
0.036, the digital twin displayed excellent performance that would require minimal controller tuning to steady out any instabilities.
The MPC strategy was implemented on a physical 500 mL crystallizer, with the simulated solution concentration replaced by in situ
measurements from calibrated attenuated total reflection−Fourier transform infrared (ATR-FTIR) spectroscopy. Physical
supersaturation control performance was slightly more unstable than the in silico tests, which is consistent with expected
disturbances to the heat transfer, which were not specifically modeled in simulations. Overall, the level of supersaturation control in a
real crystallizer was found to be accurate and precise enough to consider future adaptations to the MPC strategy for more advanced
control objectives, such as the crystal size.

1. INTRODUCTION
1.1. Background. A variety of fine chemical products

including pharmaceuticals and agrochemicals are produced
through batch cooling crystallization, optimizing the process
conditions to reach a high yield and purity of product crystals.
It is also important to achieve good particle physical properties,
such as a specific crystal size distribution (CSD), in order to
optimize product performance properties that are connected to
size and shape, such as the dissolution rate. Downstream
operations including filtration and drying are also impacted by
the product CSD and can be hindered significantly by the
overabundance of fine material.

In the case of batch cooling crystallization, the objective for
control is usually to find an optimal temperature profile that
will lead to the desired CSD. The supersaturation generated
during cooling is directly connected to the key rate
mechanisms of crystal nucleation and growth, which drive
the crystallization process. The creation of an accurate
supersaturation control system has been robust for over a

decade since advancements in analytical technology have
allowed this property to be monitored and controlled
directly.1,2

Seed crystals are typically introduced to tailor a crystal-
lization process to achieve specific CSD properties; however,
they also bring potential challenges to the control of
supersaturation. For example, a high seed mass can inhibit
nucleation, leading to a completely different shape of the
product CSD.3 The supersaturation trajectory can also be
altered by the quality of seed crystals, due to the effects on
crystal growth caused by uneven surfaces formed during
milling.4 Surface effects such as these are usually repaired
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through the preparation of seed slurries for the feed, which
treat these problems through Ostwald ripening.5 Seed loading
has also been observed as a key factor during supersaturation
control, which can affect the frequency of nucleation events.6

Measurement-based control schemes have been applied
using techniques such as attenuated total reflection (ATR)−
Fourier transform infrared (FTIR) spectroscopy, which can
provide an accurate measurement of solution concentration
and therefore supersaturation. In addition to alternatives for
concentration measurement including Raman and ATR-UV/
Vis spectroscopy, there exist a range of well-established
techniques for in situ particle imaging and size analysis,
including focused-beam reflectance measurement (FBRM) and
particle vision and measurement (PVM).7,8

In situ concentration measurement can then be used to
either maintain a constant level of supersaturation or follow a
predetermined profile. These controllers operate using simple
algorithms to manipulate the temperature of the heating/
cooling jacket around a crystallization vessel using a feedback
loop.9−11 For example, Fujiwara et al.12 calibrated a propor-
tional-integral (PI) temperature controller to follow a set
supersaturation profile close to the metastable limit, therefore
ensuring optimum crystal growth. This approach to control is
referred to as direct design, which attempts to overcome
uncertainty on the kinetic parameters of a crystallization
system using an engineering understanding of the metastable
zone.13

A major downside to this approach is the empirical nature of
the controller development, requiring large amounts of
experimental data to quantify mechanisms that in practice
vary widely depending on the chosen operating conditions.
Khan et al.2 studied supersaturation control during the batch
cooling crystallization of L-glutamic acid at both 20 and 250 L
scales. Each scale required a different cooling profile to
maintain the same level of supersaturation, and variation in the
product CSD was influenced by the more prevalent secondary
nucleation occurring in the smaller scale.

The progression from measurement-based to model-based
control has helped to quantify the necessary understanding of a
batch crystallization process in a more generally applicable
form. Ideally, models would be solely derived from physical
concepts, but in real cases, there is always a partial empirical
contribution. So-called “first-principles” or mechanistic models
use experimentation to aid parameter estimation, an improve-
ment over fully empirical “batch-to-batch” models that require
extensive experimental characterization to function suffi-
ciently.14−16 The mechanistic approach to crystallization
modeling is focused around connecting material and energy
balances to a crystal population balance model (PBM) in order
to optimize a function like the supersaturation profile.17

The PBM describes the number and size of particles through
the number density function n(L), including terms for
nucleation, growth, breakage, and agglomeration that can be
included or removed as required. A one-dimensional (1D)
PBM can be written in the following simplified form for a
batch crystallizer with no inward or outward flow and a growth
rate G that is independent of crystal size

+ = +n L
t

Gn L
L

B D J
( ) ( ( ))

(1)

The number density can also be expressed as a volume density
function v(L) using a specific crystal’s characteristic length and
shape factor18

=v L n L K L( ) ( ) v
3 (2)

Empirical models benefit from the use of more easily gathered
off-line measurements, such as in the batch-to-batch iterative
model developed by Forgione et al.16 Improved super-
saturation control was achieved by updating the cooling
profile after comparison with previous batch data. However, as
a feedforward mode of control, it was susceptible to being
impacted negatively by external disturbances to temperature
dynamics, which can generate significant model mismatch.
Griffin et al.19 paired ATR-FTIR with chord length and particle
count measurements from FBRM to develop a dynamic model
for controlling the average crystal size and yield within set
batch times. This was made achievable by limiting the
dimensionality of the model, compromising between computa-
tional efficiency and the level of detail and accuracy that a
PBM could capture.

A stronger form of feedforward control that allows a PBM to
be implemented is model predictive control (MPC), which
involves the generation of control moves made to the
manipulated variable that most efficiently reach and maintain
a controlled variable set-point.10 MPC benefits from being able
to handle complex, dynamic multiple input/output systems,
making it superior over other forms of control for batch
cooling crystallization due to the change in nucleation and
growth rates as the supersaturation varies.20 That being said,
most successful MPC applications for controlling crystal size
have been shown for continuous processes rather than
batch.21−23 An effective real-time process monitoring and
control approach, built using the software PharmaMV
(Perceptive Engineering Ltd.), was demonstrated by Tahir et
al.23 to control the median crystal size within a continuous
oscillatory flow crystallizer. This technique benefitted from the
steady-state nature of continuous processes where a constant
set-point for the median size could be applied. However, this
would need to be expanded upon for batch crystallization,
given that the crystal size is expected to change constantly as it
develops toward a certain end-point throughout the process.

Most industries are undergoing a digital transformation,
using technology in new ways to improve efficiency. For the
fine chemical industry, there exists the concept of Pharma 4.0,
built on a foundation of digital maturity to develop resources,
organization, processes, information systems, and the working
culture.24 Regarding crystallization, the use of technology has
been studied thoroughly to provide more accurate process
models. Szilaǵyi and Nagy25 showed how parallel GPUs
running a high-resolution finite volume technique improved
calculation speed significantly, enough for real-time resolution
of a multidimensional PBM. Camacho Corzo et al.26 used
computational fluid dynamics (CFD) to investigate the
hydrodynamics inside a batch crystallizer, suggesting that
these simulations could be paired with a morphological PBM
to create a more robust representation of the process.27

Another recent advancement for MPC of crystallization
processes is the use of open-loop simulations with the PBM to
train machine-learning control algorithms, such as in the study
by Zheng et al.28 They demonstrated how a recurrent neural
network (RNN) model trained using a semiempirical PBM
could improve the computational efficiency of MPC to achieve
an optimal target product yield and crystal size. However,
advanced control methods such as this have only been tested
in silico, noting particular difficulties that may arise when
applying these MPC methods on a real crystallizer, such as the
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accuracy of available PAT. A reinforced-learning approach to
improve the control of temperature, supersaturation, and
crystal size trajectories was taken by Benyahia et al.29 for the
batch cooling crystallization of paracetamol in water. This
control method showed a significant improvement over MPC
for controlling the crystal size; however, MPC performed
similarly for both temperature and supersaturation, therefore
remaining a relevant and applicable approach to crystallization
process control.

Continuing the Pharma 4.0 vision, this paper presents a
methodology for the development of an MPC strategy
involving the formation of a digital twin30 using two
commercial pieces of software. The mechanistic process
modeling tool gPROMS FormulatedProducts (Siemens-PSE
Ltd.) has been coupled with the in-line monitoring and control
tool PharmaMV (Perceptive Engineering Ltd.) to provide a
way of simulating batch cooling crystallization processes under
the control of both supersaturation and the product CSD.
After assessing the in silico performance of the MPC strategy
using simulated data, the software platform was connected to a
physical lab-scale crystallization setup to control real batch
operations for validation.

The proposed methodology would reduce the experimental
time needed to create a robust model for industrial
crystallization systems, particularly during new product
development. The digital twin can be utilized to train the
predictive controllers in PharmaMV without expending any
physical resources, efficiently capturing the behavior of a given
crystallization system. Communication between the software
and a variety of providers of crystallization equipment and
PAT is already established, allowing a developed MPC strategy
to be physically implemented on industrial equipment setups
with minimal effort.
1.2. Approach to Control Strategy Development. The

general approach adopted toward the development of the
control strategy reported in this paper can be summarized into
four main stages. This approach was taken after the selection of
a model solute−solvent system, which would reduce the
complexity of the initial process model development. The
selection criteria included both being readily available and
having a good temperature dependence of solubility to ensure
a high yield from large-scale crystallization. Most importantly,
the system was to have a crystal morphology resulting in
equant growth in all directions, making it suitable for a 1D
PBM.

Stage 1 involved performing lab-scale experiments to
understand the key crystallization mechanisms for the selected
system, including the characterization of the metastable zone
width (MSZW) and seeded batch cooling crystallizations. The
process data gathered during this step was used for the
construction of the process model and later for validation
purposes.

Stage 2 involved the parameterization of a 1D PBM in
gPROMS FormulatedProducts software, using solubility and
nucleation/growth kinetic data from the literature.31 This
model was used to simulate batch crystallizations in a vessel

with comparable dimensions to experiments, predicting the
final CSDs produced when following set cooling profiles.
Comparisons between the predicted and experimental product
CSDs and supersaturation profiles were used for model
validation, and the growth rate kinetics obtained from the
literature were reestimated using measured concentration data.

Stage 3 coupled the gPROMS process model with the
control software PharmaMV to formulate the MPC strategy for
supersaturation control. Two MPC controllers which con-
nected supersaturation with the cooling profile during a batch
were trained using the process model, allowing in silico
simulations of supersaturation control at varying levels to be
performed.

Stage 4 involved the validation of these simulations, where
the MPC strategy in PharmaMV was connected to a physical
batch crystallizer with appropriate in situ measurement
techniques to replace those simulated by gPROMS. The
MPC strategy’s performance between in silico and physical
supersaturation control was compared to make a final
assessment of the current strategy’s capabilities.

2. MATERIALS AND METHODOLOGY
2.1. Selection of Solute−Solvent System. The material

chosen for this study was hexamethylene tetramine (hexam-
ine), widely used in applications including the treatment of
urinary tract infections and the manufacture of fuel tablets that
burn smokelessly.32 Hexamine was suitable for study due to its
single growth form {110}, developing a rhombic dodecahedron
morphology as determined through the Bravais−Friedel−
Donner−Harker (BFDH) method.33 This is due to its highly
symmetrical, body-centered cubic unit cell resulting in
relatively equant growth in all directions, therefore being well
represented by a 1D PBM (i.e., well represented by a sphere).

Hexamine’s solubility in pure water increases as temperature
decreases, making it an unsuitable solvent for batch cooling
crystallization. For this reason, pure ethanol was chosen
instead to fit the more conventional solubility relationship, at
the cost of a slightly reduced potential yield.34 Myerson et al.31

reported power law rate expressions for nucleation and growth
of hexamine in various solvents; the data for crystallization
from ethanol is summarized in Table 1.

Although unspecified in their study, it was assumed that the
nucleation expression would most closely represent secondary
nucleation, given its determination via continuous crystal-
lization. Additionally, the lack of terms that account for
agitation and slurry density suggested a poorly accurate
description of the system’s behavior. However, this was a
reasonable starting point and posed an important challenge to
the MPC strategy’s performance. If a good level of control
could be maintained despite slight differences between the
simulated and real crystallization behavior, it would be a useful
tool for industrial applications that typically face unpredictable
disturbances.

In contrast to the widely recognized mechanism of
agglomeration through particle collisions, hexamine exhibits
an interesting agglomeration mechanism involving nucleation,

Table 1. Solubility, Nucleation Rate, and Growth Rate Expressions for Hexamine−Ethanol Crystallization System Reported by
Myerson et al.31

solubility (g (g solution)−1) C* = 1.373 × 10−2 + 5.729 × 10−4T + 6.707 × 10−6T2

nucleation rate (#/s·m3 solvent) J = (5.0 ± 2.0) × 1013ΔC2.6 ± 0.9

growth rate (m s−1) G = 2.6 × 10−2ΔC1.95
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typically referred to as “primary” agglomeration.35−38 Dendritic
growth following from nucleation on the corners of hexamine’s
morphology leads to clusters of around 6−7 crystals, which
incorporate solvent inclusions into the structure upon further
crystal growth. Although this mechanism has been thoroughly
understood through the molecular modeling work by Nguyen
et al.,39 the agglomeration rate has not yet been quantified
sufficiently for application in a PBM. Therefore, this poses an
interesting challenge to the performance of the MPC strategy
when agglomeration is not modeled.
2.2. Experimental Setup for MSZW Characterization

and Seeded Batch Crystallization. The crystallization
system consisted of hexamine (purity > 99%, Scientific
Laboratory Supplies) recrystallized from solution in pure
ethanol (purity > 99.8%, Sigma-Aldrich).

Figure 1 shows a schematic of the experimental setup used
to measure the MSZW and carry out seeded batch
crystallizations. A Radleys 500 mL unbaffled jacketed glass
crystallization vessel with a dish-shaped bottom was clamped
to a supporting frame alongside a Radleys RS50 Control
Overhead Stirrer, fitted with a 40 mm diameter 4-blade pitched
blade impeller. An agitation speed of 450 rpm was used in all
batch experiments. The temperature within the vessel was
controlled using a Huber Ministat 230 thermostatic bath
(operated via in-house LabVIEW software) to circulate water
through the jacket and monitored with a PTFE Pt-100
temperature probe connected to the Huber Ministat. An in-
house built turbidimetric fiber-optic probe9 was inserted into
the vessel to measure the solution turbidity and determine the
clear/cloud points during heating/cooling. A Mettler Toledo
Lasentec S400A FBRM probe was used to measure particle
count, while an ATR-FTIR probe connected to an ABB
MB3000 FTIR spectrometer was used to measure solution
concentration. The method for calibration of the IR spectra to
concentration is detailed in the following section.
2.3. ATR-FTIR Calibration Model Using HorizonMB. In

order to determine the concentration in situ during
crystallization experiments, the IR spectra of hexamine−
ethanol solutions at varying temperatures and concentrations
were measured using an ABB MB3000 FTIR spectrometer. A
partial least squares (PLS) regression model was calibrated

against the known solution concentrations within the
accompanying software, HorizonMB.

For each concentration selected, the appropriate amount of
hexamine was dissolved in 400 g of ethanol and heated to
approximately 5 °C above the saturation temperature. Once
the hexamine had been fully dissolved, spectra were measured
every minute, performing 16 scans in the range of 700−1600
cm−1 at a resolution of 4 cm−1. After holding the temperature
for 10 min, the solution was rapidly cooled in steps of 2 °C,
holding at each temperature for 10 min. This procedure
continued until primary nucleation occurred, and any spectra
measured at a constant temperature before the point of
nucleation were used in the calibration model.

Concentrations between 0.025 and 0.050 g (g solution)−1

were measured at temperatures between 16 and 44 °C. Table
S1 (see the Supporting Information) summarizes the range of
solution conditions of which IR spectra were measured. Figure
S1 shows typical FTIR spectra measured for a hexamine−
ethanol solution. Two distinct peaks characteristic of hexamine
were selected to calibrate the spectra against concentration.
These were located between wavenumbers of approximately
1227−1246 and 993−1024 cm−1.

Of the total 320 measured spectra, 50 were excluded from
the calibration model to use for model validation. A second
derivative transformation using a Savitzky−Golay filter with 17
points of smoothing was applied to the spectra before
calibration. The PLS model calculated after pre-processing
the calibration spectra was applied to the 50 validation spectra.
The model-predicted concentrations and actual values are
compared in Figure S2, where the data fit an R2 correlation
coefficient of 0.9828.
2.4. Characterization of MSZW with Varying Scale.

The MSZW was first measured in a 500 mL crystallization
vessel. Following the polythermal method,40 the vessel
temperature was cycled 3 times between 5 and 50 °C at a
heating rate of 0.15 °C min−1 and cooling rate of −0.3 °C
min−1. Dissolution and crystallization points were recorded
where the turbidity probe measured 100 and <90% trans-
mittance, respectively. The solution concentration was varied
by dissolving enough hexamine into 400 g of ethanol to reach

Figure 1. Schematic of the 500 mL jacketed crystallizer and associated in situ measurement technology.
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the solubility limit at 15, 25, 30, and 40 °C, as calculated using
the solubility expression presented in Table 1.

MSZW data was also obtained using a Technobis Crystal16
system, which was fitted with sixteen 1.5 mL vials each with a 7
mm magnetic stirrer. The same temperature ramp procedure as
previously described was applied to vials containing around 1.5
mL (1.18 g) of ethanol, with appropriate amounts of hexamine
to reach similar saturation points as in the 500 mL vessel.
Tuning of the turbidity measurements (automatic adjustment
of the brightness) was performed after the first heating step in
all cases. Agitation using the magnetic stirrer speeds was set to
900 rpm throughout the full duration.
2.5. Process Model Parameterization. The mixed-

suspension, mixed-product removal (MSMPR) crystallizer
module in gPROMS FormulatedProducts v2.2.0 solves a 1D
PBM through discretization of the volume-based CSD by the
method of classes.41 The CSD is divided into a number of size
ranges known as classes with a width of ΔCi = Li − Li−1, where
i denotes a given size class. The number of particles per unit
volume within class Ci at time t is determined using the
following equation

=N t v L t L( ) ( , ) di
L

L

i

i

1 (3)

Integrating this equation and following the same assumptions
as before for a batch crystallizer (no flow in or out, growth rate
independent of size) results in the following expression that
represents the change in particle numbers between classes over
time

+ = +
+

N
t

G
C

N
G
C

N R R
d
d 2 2

i

i
i

i
i i i

1
1

1
a, b,

(4)

The flowsheet for a batch cooling crystallization process, built
within the software to provide the structure for resolving a 1D
PBM for the hexamine−ethanol system, contained a few key
features for monitoring the crystallization process. Size
distribution and composition sensors were used to closely
monitor the CSD and supersaturation, respectively, during the
simulation. The types of input data required for each
remaining component in this flowsheet are summarized below:

• Global specifications�information about the selected
crystallization system, including the components’ mo-
lecular weights, physical properties, crystal shape factor,
and the solubility curve.

• MSMPR crystallizer�kinetic parameters for the rates of
primary nucleation, growth, and secondary nucleation
(attrition), equipment size with impeller diameter, speed
and power/pumping numbers, and initial composition
and mass of liquid.

• Temperature controller�a piecewise linear temperature
profile constructed from multiple segments, specifying
the start/end temperatures, and durations of each
segment.

The solubility and kinetic information listed in Table 1 were
implemented into the model, using the nucleation rate
expression as attrition-based secondary nucleation and
selecting values for the rate constant/supersaturation order
in the middle of the reported variance. A logarithmic grid with
a resolution of 200 grid points was used to calculate the CSD,
with the bounds of crystal size set to 1−1500 μm.
2.6. Seeded Linear Cooling Crystallization for Model

Validation. A series of seeded linear cooling crystallizations

were carried out in the Radleys 500 mL crystallization vessel to
investigate the effects of various seeding conditions on the
hexamine−ethanol crystallization system. In addition, the
resulting concentration and size measurements were used to
validate the process model’s CSD prediction.

Two sets of seed crystals were prepared through different
methods. 100 g of the raw hexamine from the supplier was
sieved by hand through a 250 μm sieve, producing around 50 g
of seeds with a volume mean size of 178.4 μm. A second batch
of seeds was prepared through milling; 50 g of raw hexamine
was put through a ball mill with 1 cm−3 yttrium stabilized
zirconia milling media for 20 h. This method produced around
40 g of seeds with a volume mean size of 69.4 μm.

At the beginning of each run, hexamine was added to 400 g
of ethanol to make up an initial concentration of 0.0507 g (g
solution)−1 (saturation temperature of around 42 °C). The
solution was heated to 50 °C and held for 60 min to ensure all
material had dissolved. The solution was then rapidly cooled to
the selected seeding temperature, and dry solid seed crystals
were added. A constant temperature was held for 30 min to
allow the system to equilibrate, before cooling at the selected
linear cooling rate down to 7 °C.

Five crystallization experiments were performed in total, the
conditions of which are summarized in Table 2. These were

selected such that comparisons could be made between specific
conditions through different pairs of experiments, including
cooling rate (Runs A and D), seed type/size (Runs A and B),
seeding temperature (Runs B and E), and seed mass (Runs B
and C). The solution concentration was measured in situ using
the ATR-FTIR probe. Additionally, the particle count was
monitored during Runs A, B, and C using the FBRM probe.
Product crystals were removed and filtered under vacuum
using a Buchner funnel and their shape and size were analyzed
using a Malvern Morphologi G3 and an Olympus BX51
fluorescence microscope.

Runs D and E were selected as cases for model validation.
To simulate these experiments using the gPROMS process
model, the measured temperature profiles were reconstructed
in the temperature controller of the model flowsheet. The
initial seed CSDs were input through two methods: the
measured volume CSD from the Morphologi G3, or a
lognormal peak that most closely represented the measured
CSD. The D50 and standard deviation of this peak for the
sieved seeds were 199 and 40 μm, respectively, whereas for the
milled seeds they were 58 and 30 μm, respectively. Simulations
of these batches were run with a time interval of 5 s. The full
range of input data for the Global Specifications, MSMPR
Crystallizer and Temperature Controller components of the
gPROMS flowsheet are summarized in Tables S2−S4 (see the
Supporting Information).

Table 2. Process Conditions Applied to Each Seeded Linear
Cooling Crystallization Run

Run A Run B Run C Run D Run E

seeding temperature
(°C)

40 40 40 40 38

cooling rate (°C min−1) 0.2 0.2 0.2 0.3 0.2
seed type sieved milled milled sieved milled
seed mean size (μm) 178.4 69.4 69.4 178.4 69.4
seed mass (g) 1 1 3 1 1
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2.7. Growth Rate Parameter Estimation. After evaluat-
ing the performance of the process model using the growth
kinetics obtained from the literature, the parameter estimation
feature in gPROMS software was used to investigate whether a
better fit to experimental data could be achieved. In addition to
reestimating the parameters for the power law growth
expression, implementation of the two-step growth expression
was also tested.

The reestimated growth rate parameters were found to be
unreliable as to whether model predictions were improved or
worsened depending on the operating conditions. Therefore,
the reestimated parameters were rejected and the original
model parameters given in Table 1 were retained. The full
procedure and results of the parameter estimation exercise can
be found in Section 1 in the Supporting Information.
2.8. Supersaturation MPC Development Using Phar-

maMV. Most information in the PharmaMV real-time control
software is treated as either an actuation signal (sent from
PharmaMV to external software/equipment) or a measured
signal (calculated by PharmaMV or measured from external
source). A typical MPC “block” within PharmaMV will involve
a statistical relationship being calculated between an actuation
signal and one or more measured signals. The MPC strategy
for supersaturation control used two of these blocks that had
been built as part of the CrystalMV template by Perceptive
Engineering Ltd. The gPROMS process model was connected
with PharmaMV to provide the necessary temperature,

concentration, and other process measurement data, as
described by the diagram in Figure 2.

A batch crystallization simulation in gPROMS and data
sampling in PharmaMV were run simultaneously, where the
latter received signals for the current temperature and
supersaturation within the vessel. The first MPC block
compared the current supersaturation with a manual set-
point value, manipulating the cooling rate as a control move to
drive the necessary change in supersaturation. This cooling rate
informed the second MPC block to make an appropriate
control move on the circulator temperature, in turn affecting
the vessel temperature in relation to a PI controller simulated
within gPROMS. Data was transferred within the digital twin
at a time interval of 5 s, stopping automatically when a set end
temperature was reached. The temperature and supersatura-
tion MPC blocks made decisions to update their associated
manipulated variables every 15 and 60 s, respectively.

Each MPC block was trained through pseudo-random
binary sequence (PRBS) testing, where the corresponding
manipulated variable for each controller was varied between set
limits during a gPROMS process simulation. The resulting
changes in the controlled variables were statistically calibrated
to an autoregressive with exogenous input (ARX) model
structure using the recursive least squares (RLS) method.42

For the temperature MPC, the circulator temperature was held
constant and stepped between 5 and 50 °C. For the
supersaturation controller, a cooling ramp was run starting

Figure 2. Data flow within the gPROMS/PharmaMV digital twin during a supersaturation control simulation.

Figure 3. Data flow within the MPC strategy during a physical batch cooling crystallization with supersaturation control.
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from 40 °C to generate supersaturation and the cooling rate
was stepped between 0.1 and 1.5 °C min−1.

To test the fully trained digital twin, examples of in silico
supersaturation control were simulated. Experimental con-
ditions for these simulations such as the supersaturation set-
points were chosen based on the results of the seeded linear
cooling experiments, which have been listed in the
corresponding Section 3.
2.9. Validation of Supersaturation MPC Strategy. The

MPC strategy for supersaturation control developed in
PharmaMV was implemented into a similar crystallization
setup as that described in Section 2.2, which was adjusted to
allow for automated operation of the circulator through
communication with the software platform. Experiments were
performed in a Radleys 500 mL jacketed crystallizer with a 40
mm diameter 4-blade pitched blade impeller running at 450
rpm, which matched the conditions used during pervious
seeded crystallization experiments. A LAUDA Proline RP 855
refrigerating circulator was used to control the jacket
temperature, using water as the coolant. Vessel and circulator
temperature signals alongside IR spectra measured using a
Mettler Toledo ReactIR spectrometer were connected to a PC
dedicated to running the MPC strategy in PharmaMV.

Figure 3 illustrates how the MPC data flow schematic in
Figure 2 was adapted for the physical crystallization setup. A
concentration calibration model was developed within

PharmaMV software using new spectral measurements with
the ReactIR system, following the same procedure and
experimental conditions described in Section 2.3. A second
derivative transformation using a Savitzky−Golay filter with 10
points of smoothing was applied to the spectra before
calibration. The calibration model was incorporated into the
overall strategy as its own MPC block, which communicated
the measured concentration to the supersaturation MPC block.

The seed crystals used in supersaturation control experi-
ments were produced via wet milling using an IKA magic LAB.
The raw hexamine from the supplier was suspended in 500 mL
of saturated ethanol solution and pumped continuously
through the mill and attached hopper. Using a pipette, 10
mL samples were removed every 5 min to check the progress
of milling using a Malvern Mastersizer 3000, stopping the
milling process once the desired size had been achieved. Two
sets of seed crystals were prepared using different conditions.
Using a fine-toothed rotor at a speed of 20 000 rpm for 30 min,
approximately 30 g of seeds with a volume mean size of 69 μm
were produced. Using a coarse-toothed rotor at 8000 rpm for
20 mins produced approximately 50 g of seeds with a mean
size of 112 μm.

3. RESULTS AND DISCUSSION
3.1. MSZW of Hexamine−Ethanol Crystallization

System. At both the 1.5 and 500 mL scales, high fluctuations

Figure 4. Measured concentration and supersaturation profiles during the seeded linear cooling crystallizations, starting from the point of seeding.
(a) Run A, (b) Run B, (c) Run C, (d) Run D, and (e) Run E.
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were experienced in the transmittance (the turbidimetric probe
output signal) during the initial heating step, improving
significantly during dissolution of the recrystallized material in
the second temperature cycle. It was thought that this was due
to caking of the raw hexamine feed and therefore presence of
clumps of material in the initial cycle that caused disruptive
readings when passing the turbidity probe, as opposed to the
much finer recrystallized material during the second and third
cycles due to the abundance of nuclei formed.

The MSZW curves for each scale of crystallizer are plotted
in Figure S3 (see the Supporting Information). Using the
Crystal16 resulted in an MSZW between 8 and 15 °C, whereas
in the 500 mL vessel, a narrower 5−10 °C range was observed.
Both appeared to approach the solubility curve at higher
temperatures. It was noted that the narrow MSZW at −0.3 °C
min−1 cooling rate may make seeding within these conditions
difficult if primary nucleation was to be avoided; however, the
results of the seeded linear cooling batches later disproved this
concern.

Dissolution point measurements were generally a good
match with the solubility data from the literature. The data
point at 15 °C saturation (0.0267 g (g solution)−1) showed the
largest discrepancy, being measured at 12.9 °C. This was put
down to undissolved hexamine trapped within a small vortex
below the impeller, undetected by the turbidity probe and
therefore indicating an earlier clear point.
3.2. Seeded Linear Cooling Crystallizations. The

concentration profiles measured by the ATR-FTIR probe
during each of the seeded linear cooling crystallizations are
presented in Figure 4, alongside the relative supersaturation

((C − C*)/C*) that was calculated using the saturation
concentration. To improve upon the instability of the
concentration measurements, the profiles shown in Figure 4
have been averaged over 5 data points (measured over 5 min).
For the three batches that included the FBRM probe, the
square-weighted particle counts of fine (<100 μm) and coarse
(>300 μm) material are shown in Figure 5. The volume-based
CSDs and mean sizes of the product crystals from each batch
are shown in Figure 6 and Table 3, respectively.

While most cases do not show a noticeable drop in
concentration during the initial holding period after adding the
seed crystals, this is much more significant in Run E where a
lower seeding temperature was chosen. The resulting mean
crystal size was higher than that from Run B, for which all
other conditions were identical. This suggested a high
importance of the growth rate during the holding period,
which would have been faster due to the higher super-
saturation generated from choosing a lower seeding temper-
ature.

The saturation point was reached most rapidly in Run C,
where a larger mass of seed crystals was added than in Run B.
Given the larger surface area available for crystal growth, the
supersaturation remained low throughout the entire batch. At a

Figure 5. Measured square-weighted particle counts during the seeded linear cooling crystallizations, starting from the point of seeding. (a) Run A,
(b) Run B, and (c) Run C.

Figure 6. Measured seed and product volume CSD for batch crystallizations using (a) sieved seeds 178 μm volume mean size and (b) milled seeds,
69 μm volume mean size.

Table 3. Volume Mean Size of Product Crystals from Each
Seeded Linear Cooling Crystallization Run

Run A Run B Run C Run D Run E

product volume mean size
(μm)

407.7 207.4 157.8 478.5 214.4
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higher seed loading, the reduced final mean crystal size was
likely due to the same mass of solute being distributed around
a larger number of particles. This is an important consideration
for supersaturation control, as a larger seed mass would likely
increase difficulty in being able to maintain the supersaturation
if the growth rate was too high.

Another key factor that would affect process control is the
cooling rate. Comparing Runs A and D, which only differed in
cooling rate, it was observed that a lower maximum

supersaturation was generated when cooling more slowly.
This implied that the potential cooling power achievable
through control of the jacket temperature may limit the
supersaturation set-points that would be feasible.

From the particle count measured during Runs A, B, and C,
it was found that each batch followed the same general trends.
The total particle counts remained relatively constant over
time, whereas there was a more obvious increase and decrease
in the coarse and fine material, respectively. This would suggest

Figure 7. Microscope images of (a) sieved seeds used in Run D, (b) milled seeds used in Run E, (c) product crystals from Run D, and (d) product
crystals from Run E.

Figure 8. Comparison of CSDs, concentration, and supersaturation profiles predicted by gPROMS with measured data. Simulations starting with
either the measured seed CSD or a representative lognormal peak. Results correspond to seeded linear cooling (a−c) Run D and (d−f) Run E.
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that the crystallization of hexamine from ethanol under these
conditions was dominated by crystal growth, without any
significant secondary nucleation processes occurring.

Microscope images that were taken of the seed and product
crystals, such as those from Runs D and E that are shown in
Figure 7, further supported the “growth only” hypothesis.
There was no obvious increase in the number of fine particles
at the end of batches that used both the larger sieved and
smaller milled seed crystals.

A more significant difference observed was the increase in
agglomeration present when starting with the smaller seeds.
Given that no agglomeration in the absence of any kinetic
parameters to describe this mechanism was considered in the
PBM, experiments involving larger seed crystals would likely
have their crystallization behavior more accurately predicted. It
would therefore be more favorable to use larger seeds during
process control experiments, to ensure the MPC strategy
performed well during the initial validation phase.
3.3. Crystallization Process Model Validation. Batch

crystallization Runs D and E were simulated using the kinetic
parameters given in Table 1. These batches were selected due
to being the most different from each other (seed size, seeding
temperature, and cooling rate) to ensure the model was
accurate over a wide range of conditions. Figure 8 shows a
comparison between the predicted and measured CSDs,
concentration profiles, and supersaturation profiles for these
batches. When the seed CSD was defined using the measured
distribution, the gPROMS process model underpredicted the
final crystal size in both cases. Improvements were observed
when specifying the seeds as a lognormal peak, which had a
more significant effect on Run D due to the elimination of the
fine material tail in the distribution. The predicted volume
mean crystal size increased from 216 to 393 μm for Run D,
and 99 to 113 μm for Run E.

Additionally, an improved agreement with the measured
concentration profile during the batch was achieved using the
lognormal CSD, most significantly for Run D. Despite this,
both cases showed a significant underprediction of the level of
supersaturation experienced during the linear cooling section.
The impacts of this on the performance of the controllers
trained using the digital twin in its current state have been
discussed when considering the differences between the in
silico and physical supersaturation control.
3.4. In Silico MPC of Supersaturation. To test the fully

trained digital twin, examples of in silico supersaturation
control were simulated. Table 4 summarizes the process
conditions applied in these simulations. The parameters
describing the seed CSD were selected based on those
produced for physical validation, as described in the following
section. During each simulation, the temperature was held at

the initial value for 30 min before switching on both of the
MPC blocks in Figure 2.

The cooling and supersaturation profiles resulting from the
in silico supersaturation control simulations at three different
supersaturation set-points are presented in Figure 9. The set-
points were chosen based on the maximum values reached
during the seeded linear cooling experiments. In each case, the
supersaturation decreased as expected during the initial 30 min
holding period, where the seeds crystals were left to grow. The
increase in supersaturation at the beginning of cooling would
typically result in an offshoot above the set-point, which the
MPC strategy was able to correct by manipulating the cooling
rate. The circulator set-point temperature and measured
circulator and vessel temperatures always overlapped; there-
fore, only a single temperature profile has been plotted in
Figure 9. This is due to the gPROMS process model assuming
almost instantaneous heat transfer dynamics (i.e., no time
delay between change in circulator and response in vessel
temperatures), which were captured when training the
temperature MPC block.

For the lowest set-point of 0.012, the simulation was
stopped early due to the anticipated length of the batch time.
Although the level of control was very good after the initial
offshoot, it was expected based on the cooling rates chosen by
the controller that the conditions would lead to a long batch
that may be considered ineffective from an industrial
viewpoint. Experiments were completed in a more reasonable
time for the remaining set-points, due to the overall higher
cooling rates required to maintain higher supersaturations.
There was a noticeable increase in the instability of control as
the set-point increased, caused by the more aggressive changes
made to the cooling rate by the supersaturation MPC block.

The tuning weights within the MPC block could be adjusted
to reduce these unstable fluctuations in supersaturation by
preventing large changes in the cooling rate. However, a
variable tuning would have to be applied to dampen these
responses only when the measured supersaturation is close to
the set-point. Otherwise, the MPC strategy would take too
long to bring the supersaturation up to the set-point in the
early stages of the crystallization process.
3.5. Physical MPC of Supersaturation for Validation.

At the beginning of each physical control run, hexamine was
added to 400 g of ethanol to make up an initial concentration
of 0.0507 g (g solution)−1. The solution was heated to 50 °C
and held for 60 min to ensure all material had dissolved. The
solution was cooled at the maximum rate achievable by the
circulator (−0.6 °C min−1) down to 40 °C, where 1 g of the
112 μm dry seed crystals were added. Following this, the
crystallizer was held at a constant temperature for 30 min to
allow the system to equilibrate, after which the temperature
and supersaturation MPC blocks in PharmaMV were switched
on.

Starting with an initial cooling rate of −0.4 °C min−1, the
MPC strategy compared the predicted supersaturation
trajectory to in situ measurements via the ReactIR to
determine the cooling rate required to maintain the super-
saturation close to the selected set-point. The cooling rate was
updated by the control block every 30 s, continuing until a final
temperature of 5 °C was reached. Each of the three
supersaturation set-points (0.012, 0.024, 0.036) chosen for
the in silico simulations was applied to the physical setup for
validation.

Table 4. Process Conditions Applied to the gPROMS/
PharmaMV Digital Twin for Supersaturation MPC
Performance Testing

crystallizer volume (mL) 500
D50 of seed CSD (μm) 110
standard deviation of seed CSD (μm) 25
initial seed mass (g) 1
initial temperature (°C) 40
end temperature (°C) 5
supersaturation set-point 0.012, 0.024, 0.036
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The cooling and supersaturation profiles resulting from
supersaturation control experiments performed on the 500 mL
jacketed crystallizer at CMAC are presented in Figure 10. To
assess the performance of the MPC strategy, the means and
standard deviations of the measured supersaturation profiles
have been calculated and listed in Table 5, alongside those
calculated from the in silico simulated profiles for the same
conditions.

Generally, it was observed that higher cooling rates were
required to reach and maintain a given supersaturation set-
point compared with simulations. At a supersaturation set-
point of 0.012, an approximately doubled cooling rate meant
that the final temperature of 5 °C was reached in a much
shorter time than expected. Higher cooling rates often led to
more unstable control, given the work required by the
circulator to respond to its constantly changing temperature
set-point. This may have been a contributing factor toward the
noticeable increase in instability of the supersaturation from
simulations to physical experiments, as reflected by the
standard deviations being an order of magnitude higher. The

trend of increasing instability at higher supersaturation set-
points matched that observed in simulations.

Considering potential factors related to the software, the
heat transfer dynamics captured by the training data provided
to each MPC block may have been a cause of instability. The
temperature MPC block could be adjusted to match the
dynamics achievable by the circulator and jacketed vessel quite
easily. However, the gPROMS model-trained supersaturation
MPC block was still operating under the assumption of perfect
temperature control. This meant that the MPC strategy would
expect an immediate change in supersaturation upon choosing
a new cooling rate, which was not feasible to achieve in the
physical experimental setup. The mean supersaturation values
were much further from the set-points for the physical
experiments, as expected when considering the disturbances
caused by imperfect temperature control and concentration
measurement accuracy and precision. With a supersaturation
set-point of 0.012, this was the only case where the mean value
exceeded the set-point. With the concentration declining very
gradually due to slower growth rates at low supersaturations, it

Figure 9. Temperature, cooling (ramp) rate, concentration, and supersaturation profiles generated during in silico supersaturation MPC, for
supersaturation set-points of (a, b) 0.012, (c, d) 0.024, and (e, f) 0.036.
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is likely that the system was more sensitive to increases in
supersaturation when the cooling rate was set too high.

The opposite effect could explain why the mean super-
saturation fell short of the higher set-points of 0.024 and 0.036;
in these cases, the system appeared to be more sensitive to a
drop in supersaturation should the cooling rate be insufficient.
For the highest set-point, the MPC strategy struggled to bring
the supersaturation up to this value for most of the batch. This
suggested that a supersaturation of 0.036 may have been above
the limit achievable by the cooling rates allowed by the MPC

strategy. These cooling limits could not be increased without
creating a large temperature differential between the vessel and
circulator temperatures, which would have made precise
control over the cooling rate difficult to maintain.

4. CONCLUSIONS
The hexamine−ethanol crystallization system was character-
ized through a series of unseeded and seeded cooling
crystallizations performed at various scales. The MSZW
measured at −0.3 °C min−1 cooling rate was narrower in a
500 mL jacketed crystallizer compared with the 1.5 mL
Crystal16 system. Despite this, the operating conditions
chosen for the seeded crystallization experiments were typically
able to avoid both primary and secondary nucleation from
occurring. It was found that seed crystals with a mean size
greater than 100 μm were most suitable for investigating the
performance of process control, as these would typically grow
into the expected morphology without significant agglomer-
ation. A low mass was also preferable to prevent an overly

Figure 10. Temperature, cooling rate, concentration, and supersaturation profiles generated during physical supersaturation MPC, for
supersaturation set-points of (a, b) 0.012, (c, d) 0.024, and (e, f) 0.036.

Table 5. Mean and Standard Deviation of Supersaturation
during In Silico Simulations and Physical Validation
Experiments for Supersaturation Control

supersaturation mean supersaturation std. dev.

supersaturation
set-point in silico experimental in silico experimental

0.012 0.0121 0.0137 4.79 × 10−4 2.03 × 10−3

0.024 0.0239 0.0227 4.76 × 10−4 3.15 × 10−3

0.036 0.0359 0.0300 8.05 × 10−4 4.00 × 10−3
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rapid decline in supersaturation when attempting to control
this parameter.

The nucleation and growth rate kinetics used to parameter-
ize the 1D PBM in gPROMS FormulatedProducts proved to
give a reasonable prediction of the change in solution
concentration during a seeded linear cooling crystallization.
The crystal size was often underpredicted; however, this was
improved slightly through the use of lognormal CSDs for the
initial seed crystals. It is hypothesized that the introduction of
agglomeration kinetics into the gPROMS model would
improve its predictions of the crystal size. However, no
expression to describe hexamine’s unique agglomeration
mechanism currently exists, and the quantification of such an
expression was outside the scope of this study.

The gPROMS process model was used to train two RLS
model predictive controllers in PharmaMV. The temperature
MPC block managed the relationship between the vessel and
circulator temperatures, whereas the supersaturation MPC
block managed the relationship between supersaturation and
cooling rate. The digital twin formed by pairing both software
allowed for in silico simulations of supersaturation control over
a virtual 500 mL jacketed vessel. For supersaturation set-points
between 0.012 and 0.036, the overall performance of the
controllers was excellent. It was noted that stability decreased
slightly with increasing set-point values; however, this could
easily be corrected through tuning of the supersaturation MPC
block to prevent large moves in the cooling rate when the set-
point error is low. These results have proven that, despite some
imperfections in the PBM, the MPC strategy was capable of
adapting to the simulated measured data and theoretically
control supersaturation at varying levels.

When the MPC strategy was implemented on a physical 500
mL crystallizer, it was found that higher cooling rates were
required to reach the same supersaturation set-points as the in
silico simulations achieved. The highest set-point of 0.036 was
found to be too high for the MPC strategy to maintain, given
the limits of the circulator’s cooling power. Fortunately, the
remaining two supersaturation targets were achieved at a
reasonably good level of performance, based on the mean and
standard deviation values calculated from the measured
supersaturation profiles. The stability of the control was
expectedly lower due to disturbances resulting from imperfect
heat transfer dynamics and the precision of concentration
measurements.

Overall, the supersaturation control capability of the MPC
strategy is promising for a single-component crystallization
system. Should the accuracy of control be equally sufficient
when following a variable supersaturation set-point (i.e., the
optimal supersaturation profile to achieve a target crystal size),
the strategy would be a valuable tool for industrial
crystallization processes. A particularly beneficial feature is
the adaptability of the digital twin, which could easily be
adjusted for a more complex solute−solvent system than the
model system chosen for this study.
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■ NOMENCLATURE
B birth rate (breakage) (#(s·m3)−1)
C concentration (g (g solution)−1)
C* saturation concentration (g (g solution)−1)
ΔCi width of size class i (m)
D death rate (agglomeration) (#(s·m3)−1)
DAB diffusion coefficient (m2 s−1)
dm molecular diameter of solute (m)
G growth rate (m s−1)
g growth rate supersaturation order
J nucleation rate (#(s·m3 solvent)−1)
Kv volume shape factor of crystals
k Boltzmann constant (J K−1)
kd mass transfer coefficient (m s−1)
kg growth rate constant (m s−1)
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L characteristic length (crystal size) (m)
Ni number of particles in size class I (#m−3)
n(L) number density function (#(m·m3 slurry)−1)
Ra,i net agglomeration rate in size class I (#(s·m3)−1)
Rb,i net breakage rate in size class I (#(s·m3)−1)
T temperature (°C or K)
t time (s)
v(L) volume density function (m3 crystal (m·m3 slurry)−1)
α diffusivity correction factor
ε energy dissipation rate (m2 s−3)
η dynamic viscosity (kg (m·s)−1)
υ kinematic viscosity (m2 s−1)

■ ABBREVIATIONS
1D one-dimensional
ARX autoregressive with exogenous input
ATR attenuated total reflection
BFDH Bravais−Friedel−Donnay−Harker
CFD computational fluid dynamics
CSD crystal size distribution
FBRM focused-beam reflectance measurement
FTIR Fourier transform infared
MPC model predictive control
PBM population balance model
PI proportional-integral
PLS partial least squares
RLS recursive least squares
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