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Abstract—The paper introduces Opportunistic Federated
Learning (OFL) as an approach to enhance the efficiency of
distributed learning in intelligent IoT systems. OFL allows any
node in the network to initiate a learning task and collabo-
ratively use local resources. The framework enables nodes to
adapt configurations based on circumstances, optimizing resource
utilization. Hence, this paper proposes a reliable node selection
mechanism that accommodates the dynamic nature of local
data and computing resources. Incentives for participating nodes
are explored through a peer-to-peer communication using the
Bertrand game to determine optimal pricing strategies. Results
demonstrate the Nash equilibrium of the game-based incentive
mechanism in a realistic FL setup.

Index Terms—Distributed learning, reputation analysis, game
theory, Nash equilibrium, edge computing.

I. INTRODUCTION

The increasing interest in enhancing people’s lives through
intelligent, efficient, and secure IoT systems is hindered by
challenges in implementing centralized Machine Learning
(ML) techniques in distributed systems [1]. Centralized learn-
ing, while useful for applications like image recognition,
faces privacy concerns and high communication bandwidth
requirements. Decentralized learning, exemplified by federated
learning (FL), is explored to address these challenges. This
approach enables distributed training without sharing raw data,
preserving privacy and utilizing local resources efficiently.
However, challenges arise from limited computing nodes and
their effectiveness in dynamic environments [2], [3].

To address these challenges, this paper proposes Decentral-
ized Opportunistic Federated Learning (OFL) as a framework.
OFL leverages opportunistic learning, allowing edge nodes
to adapt based on conditions and benefits. The framework
enables any node to initiate a learning task, engaging a subset
of available nodes by exchanging weights based on local
data. The proposal enhances task performance by considering
the reliability of participating nodes, incorporating various
reliability metrics. OFL is particularly valuable for ML-based
intelligent IoT systems, enabling flexible distributed learning
with collective responsibility [4].

Furthermore, to effectively utilize FL at the network edge,
attention is needed on obstacles such as resource management
and incentive mechanisms. Incentive mechanisms encourage
user engagement in developing a global FL model, incor-
porating user-defined utility and monetary rewards. Various
frameworks, including auction theory and game theory, can
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Fig. 1: The proposed OFL system architecture.

be employed for designing these rewards, factoring in com-
munication and computation costs [5].

II. SYSTEM MODEL

In the OFL architecture, a critical aspect is the selection of
computing nodes for learning tasks. To enhance this process,
a reliable node selection scheme has been developed, aiming
to identify the optimal subset of computing nodes proficient
in executing a specific learning task effectively. The approach
considers the reliability of available computing nodes and the
associated learning cost, to facilitate optimal selection. The
scheme operates by selecting the optimal subset of Machine
Learners (MLs) for each learning iteration of the requester,
accounting for constraints such as node availability, minimum
reliability, and maximum cost. The overarching goal is to
maximize the total reliability at the requester Rt, which
incorporates the reliability Ri of each selected computing node
i and the total number of selected nodes M . The computa-
tion of Ri involves three quality metrics: model reliability
rmi , data quality Dq

i , and computational reliability rci . The
model reliability metric evaluates the quality of the local
model generated by node i based on the number of epochs
k, following a logarithmic relationship established through
empirical predictability. Additionally, in our framework, the
learning cost refers to the monetary cost paid by the requester
to the selected computing nodes at each Federated Learning
iteration, represented as Cr =

∑N
i=1 Ci · Ri, where Ci is the

computational and communication cost of node i to train and
upload its local model (for more details, refer to [6], [7]).

Rt = 1−
M∏
i=1

(1−Ri) = 1−
M∏
i=1

(1− rmi ·Dq
i · r

c
i ) . (1)
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Fig. 2: Performance of the reliability-based selection. 2a shows price convergence for i-th node while 2b profit convergence
for i-th node. In 2c and 2d, we show the performance of the FL model with the proposed solution. Fig. 2d shows the influence
of selecting more nodes (increasing Cmax) over the perfromance of the FL model.

III. THE CONSTRUCTION OF BERTRAND GAME

This section introduces an incentives allocation algorithm
reliant on the reputation of available nodes within the OFL
architecture. The framework assumes a Bertrand game be-
tween the requester and participating nodes, wherein nodes
seek to maximize profit while ensuring the requester’s total
reliability. Participants offer differentiated goods (ML models)
at discrete-time periods upon the requester’s request. The
requester estimates the initial price of each ML model based
on reliability, and a utility function U(qn) represents the
requester’s preferences. The utility function considers price
pi, selection indicator qi, and total reliability for the i-th
node. The ω parameter denotes the degree of differentia-
tion between products, influencing diversification. The initial
price for each model is calculated by maximizing the utility
function at each node. The participants’ profit incorporates
price pi, selection indicator qi, and a strategic parameter θi.
The discrete dynamical system governs participants’ price
decisions, reaching equilibrium when marginal profit is non-
negative. The requester, following Nash equilibrium, selects
nodes optimizing reliability and cost. The presented lemma
establishes that participants are chosen based on their ability to
achieve maximum reliability and minimal cost while ensuring
maximum payoff. The equilibrium position is achieved when
participants maximize their payoff through the non-negative
solution of the algebraic system. The paper analyzes a static
Bertrand duopoly game in the FL setting, considering fixed
initial conditions and potential for a dynamic Bertrand game
with changing conditions . We consider qi to be the selection
parameter of each participant and that the requester’s prefer-
ences are represented by the following demand function:

U(qn) =

N∑
i=1

(piqi)− ωC

N∑
i=1

(Riqi) (2)

IV. PERFORMANCE EVALUATION

We consider a Convolutional Neural Network (CNN) model
at each node with 10 layers and 0.001 learning rate. The model
is trained using the healthcare dataset in [8], with 60, 000
samples and 13 classes, i.e., representing the physical activity
of a person such as setting, walking, and running. This split
across 10 CNs, with a non-IID data distribution. The requester
receives the weights from each participant, then use the FL
model for aggregation.

In Fig. 2c, we compare our reliability-based selection
scheme (RS) with three baseline schemes: Model Quality-

based selection (MQS), Data Quality-based selection (DQS),
and Computational reliability-based selection (CRS). The re-
sults show that the RS algorithm outperforms baseline algo-
rithms in terms of accuracy.

The OFL framework offers flexibility in network customiza-
tion to meet the diverse Quality of Service (QoS) requirements
of various ML models. This flexibility allows for the selection
of different numbers of collaborators with varying capabilities
based on the specific needs of the ML model. Fig. (2d)
shows that accuracy improves as more users participate in the
learning process, although at a higher cost.

V. CONCLUSION

The paper presents a novel framework, called Opportunistic
Federated Learning (OFL), which enables effective and large-
scale collaborative learning for any ML task. Furthermore, the
paper proposes a reliability-dependent node selection method
that enhances the OFL system’s performance while satisfying
various the requirements of learning Models. To incentivize
opportunistic collaboration among available nodes in the sys-
tem and a node requesting help for ML model training, we
leverage the heterogeneous case of the Bertrand game. We
demonstrate the Nash equilibrium of the game-based incentive
mechanism, as well as the FL performance with our proposed
node selection algorithm.
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