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Abstract—Smart agriculture is a promising solution to improve
food production and reduce waste of resources. The idea is to
adopt electronics and sensors to monitor key parameters of the
crops and integrate these data with farmer knowledge. Sensors
monitor both the environment and the plant itself, generating a
huge amount of data. Data processing is a key aspect of smart
agriculture, and machine learning can help to understand the
data and extract the needed feature. In this paper, we present
a performance comparison of several machine learning models
trained to detect the water stress condition of plants. The dataset
used for this study includes the stem electrical impedance, a novel
parameter directly measured on the plants. The machine learning
models are compared based on three different metrics, and the
average accuracy is higher than 85%. The effect of removing the
stem electrical impedance results in worse performance of the
models, indicating its impact in the application.

Index Terms—Machine learning, support vector machines,
decision tree, random forest, smart agriculture, food security

I. INTRODUCTION

In recent years, the world has been facing the effects of
global warming. The progressive rise in global temperatures,
primarily triggered by the release of greenhouse gases into the
atmosphere, is exacerbating the desertification phenomenon,
placing an increasing number of lands at risk and reducing
the available grounds for cultivation [1]. Moreover, the global
population is constantly growing, and the projections suggest
it is expected to surpass 10 Billion by 2050 [2]. Global food
security is a big concern as climate change, and the subsequent
lack of water affect crop production’s potential yield [3].
Smart agriculture, also known as precision agriculture or
digital farming, offers advanced technologies and data-driven
approaches in agricultural practices to optimize and enhance
various aspects of crop production and livestock management.
It leverages innovative technologies such as the Internet of
Things (IoT), artificial intelligence (AI), drones, sensors, and
big data analytics to monitor, collect, and analyze real-time
data about soil conditions, weather patterns, crop growth, and
livestock health [4]. One of the main aspects to consider
when building an efficient and automatic monitoring system
for smart agriculture is assessing plants’ health. Monitoring
plants involves detecting and diagnosing various factors that
can affect their growth, such as nutrient deficiencies, diseases,
pests, and environmental stressors. Modern IoT systems with

nodes connected inside a Wireless Sensor Network (WSN)
can help farmers by inspecting the surrounding environmental
conditions providing valuable information for efficient culti-
vation management. On the other hand, it is also essential that
monitoring is not limited only to the plant’s surroundings but
to one or more parameters directly extracted from it.

In [5] Garlando et al. propose a novel approach to directly
evaluate plants’ water stress status by measuring the value
of stem impedance. This approach is explored in our work,
and environmental and stem impedance measurements are
used as features to build binary classifiers able to identify
water stress conditions. This study evaluates and compares
the results obtained using different learning algorithms such
as Support Vector Machine (SVM), Decision Tree, Random
Forest, and Artificial Neural Networks to asses water stress in
tobacco plants. This paper is organized as follows: Section II
summarizes the existing literature on machine learning applied
in smart agriculture. Section III presents how data in this study
are collected and how machine learning models are used to
evaluate tobacco plants’ water stress. Then, in section IV, the
results are presented. Finally, section V draws conclusions and
future perspectives.

II. RELATED WORK

In recent years, many machine learning techniques have
been applied to various aspects of smart agriculture, such
as crop monitoring, yield prediction, disease detection, and
resource management [6] [7]. Regarding disease and pest
detection, computer vision is widely used: for instance, in [8],
the authors focus on utilizing Convolutional Neural Networks
(CNN) to identify various diseases in potatoes. Similarly,
in [9], a hybrid approach that combines CNN and SVM is
explored to detect diseases in rice leaf images.

Kerkech et al. [10] used visible and infrared images col-
lected by an Unmanned Aerial Vehicle (UAV) to build CNN
based model able to detect vine diseases both at grapevine and
at leaf level.

Much effort is put into optimizing the irrigation procedure;
for example, authors in [11] employ a neural network to build
an irrigation prediction model based on light intensity, external
temperature, soil conductivity, and soil moisture.



In their study, Bettelli et al. [12] conducted direct plant
monitoring by employing a sensor named ”bioristor.” They
effectively utilized the gathered data to classify and forecast
water stress in tomato plants by applying decision trees,
random forests, and recurrent neural networks.

In [13], authors exploited neural networks to highlight the
importance of impedance as an indicator of plants’ well-being,
and this approach is extended in this research by adding
different machine learning algorithms, namely support vector
machine, decision tree, and random forest.

III. METHODOLOGY

The first step in this research is data collection from tobacco
plants. Following that, it is crucial to preprocess the data,
employing operations such as standardization and division into
train and test portions. This preprocessing ensures that the
measurements are appropriate for feeding into the learning
algorithm and facilitates the evaluation of the models. The
models are built using Python 3.9.15 and the SciKit-Learn
framework [14], and training is run on a laptop with the
following characteristics: Intel Core i7-8750H 8th generation
processor, Graphical Processing Unit (GPU) NVIDIA GeForce
GTX 1050, 16 GB of RAM and Microsoft Windows 11 as the
operating system.

Models’ performance is evaluated by splitting the dataset
using a 5-fold cross-validation technique. Three binary classi-
fication metrics are calculated: accuracy, F1 score, and Area
Under the ROC Curve (AUC) [15]. A block diagram showing
the methodology employed in this work is depicted in figure
1.

Fig. 1. Methodology block diagram

A. Data collection

Data analyzed in this paper is obtained using the setup
described in [5] and [16]. Impedance modulus and phase
measurements are performed using a Keysight 4294a bench
analyzer with a four-point probe technique. The operating
frequency at which impedance is measured is set to 10.145
KHz, where the best trade-off between sensitivity and noise

mitigation is available [16]. Environmental measurements
(temperature, air humidity, soil water potential, and ambient
light) and impedance value (modulus and phase) are sampled
every hour; moreover, a plant picture is taken to allow visual
inspection and subsequent labeling of plant status. Up to 4
plants can be connected and monitored by the system simul-
taneously. Plants must be subjected to different conditions
to create a meaningful dataset: initially, each plant is kept
regularly watered; then, drought stress is induced by water
deprivation. Pictures taken at each measurement are analyzed,
and a label ”water stress” is assigned to a sample where the
plant shows signs of drought (such as low leaves turgidity)
and a label ”water ok” when there are no apparent signs of
water stress. Overall data is collected from 24th March 2021
to 28th July 2021 for 6306 samples in total. Figure 2a shows
a pie chart representing the distribution of the labels inside the
dataset, showing that both classes are adequately represented
with a slight prevalence of ”Water stress” labels (52.7 %) with
respect to ”Water ok (47.3%).

Fig. 2. (a) Pie chart showing the distribution of labels in the dataset. (b) Box
plot of impedance modulus distribution.

As an initial analysis, comparing the stem impedance mod-
ule values in presence of water stress is worthwhile since
it can help gain interpretability on the trained models. Each
plant shows a different value ranges for impedance modulus.
However, the emerging trend is that when the plant is subject
to drought conditions, this value tends to rise compared to
regular watering conditions, as demonstrated by authors in [5].

Figure 2b illustrates a boxplot showcasing the distribution of
impedance module values under the two conditions highlighted
in this paper for a single plant contained in the dataset.
Machine learning models can automatically use this infor-
mation and calculate a sophisticated decision boundary when
combined with environmental variables, providing detection
capability of the plant’s hydration condition.

B. Data pre-processing

This preparatory step is imperative due to the varying ranges
of features, which often exhibit different orders of magnitude.
If data preprocessing is not performed, it can result in the
dominance of larger features within the model. Many solutions
to this problem exist, but normalization and standardization are



the most common. Normalization rescales the features in the
[0 − 1] range, while standardization rescales the features to
have zero mean and unit variance.

In this paper, the standardization technique is employed, and
this is achieved by applying the following formula:

xscaled,stand =
x− µx

σx
(1)

In this context, x represents the actual feature value, µx

denotes the mean value across the entire dataset, and σx

represents the standard deviation. It is crucial to emphasize
that the mean and standard deviation should only be computed
using the training portion of the dataset. Subsequently, these
calculated values must be applied consistently to the training
and test portions. Failing to do so would result in information
leakage into the test dataset, which could compromise the
reliability of the quality evaluation for the model.

C. Machine learning models

In this work, the analyzed models include support vector
machine, decision tree, random forest, and neural network.
Performance evaluation is conducted using a 5-fold cross-
validation technique, wherein the dataset is divided into 5
folds. Iteratively, 4 folds are employed as the training set,
while the remaining fold serves as the test set. This process is
repeated 5 times, each altering the combination of the portions
used for training and testing. The final metrics to assess the
models are the average values across all fold combinations.

The considered evaluation metrics are accuracy, F1-score,
and AUC.

Accuracy is calculated by the ratio between the total correct
predictions over the total number of samples considered.

F1-score is the harmonic mean between precision and recall,
and it is evaluated as

F1 = 2 · prec · rec
prec+ rec

where precision is calculated with

prec =
true positives

true positives+ false positives

and recall

rec =
true positives

true positives+ false negatives

F1 score is helpful when the dataset is not well balanced
between the number of instances for every class. In those
cases, accuracy can be misleading due to the possible high
number of correct predictions for the majority class.

AUC stands for Area Under the Receiver Operating Charac-
teristic (ROC) Curve, a plot that illustrates the performance of
a binary classifier varying the discrimination threshold. AUC
can be interpreted as the probability that a random sample
belonging to the negative class has a lower probability of
being classified as positive than the one of a random example
belonging to the positive class [17].

Initially, all features, including environmental and
impedance ones, are considered. Subsequently, the impedance

modulus and phase are alternately excluded, leading to three
distinct feature subsets. This process ensures that at least one
feature directly extracted from the plant is retained to prevent
classifiers from relying solely on the plant’s surroundings.
In this way, it is possible to evaluate the importance of
impedance for detecting water stress.

The models evaluated are described here.
a) Support Vector Machine (SVM): Support vector ma-

chine (SVM) is a supervised machine learning that can be
used for regression and classification tasks. In particular,
given a binary classification problem, an SVM aims to find a
hyperplane or decision boundary that can separate data points
in classes. If data are not linearly separable, a hyperplane can
still be found by applying kernel functions.

For this model, the training parameters used are a regular-
ization parameter C = 1 and radial basis function as kernel.

b) Decision Tree: The decision tree classifier is an often-
used supervised machine learning algorithm for classification
tasks. This model takes input data conditions or features and
makes decisions in a flowchart-like manner. By traversing a
binary tree structure, the decision tree classifier predicts the
class label of a given sample. Each node in the tree can be
a decision node, where a specific feature is used to make a
decision or a leaf node that represents a class prediction. The
decision tree is designed to efficiently categorize input data by
utilizing a criterion that measures the effectiveness of decision
splits in dividing the data into classes. The two most common
splitting criteria are Gini impurity and information gain [18].
The trained decision tree models employ Gini impurity as
splitting criterion in this work.

c) Random Forest Classifier (RF): In machine learn-
ing, ensembles enhance performance by combining multiple
models. One such ensemble technique is the random forest,
which merges multiple decision trees and can be applied to
both regression and classification tasks. The concept involves
generating numerous decision trees, each trained on a random
subset of the training data, and constructing the trees using
only a subset of features for their nodes. This approach
mitigates the risk of overfitting, as each tree is trained on
distinct samples and feature subsets, thereby reducing the
model’s sensitivity to specific patterns or noise within the
dataset. Each random forest model trained during this work
employs 100 decision trees.

d) Artificial Neural Network: The artificial neural net-
work is a learning model inspired by the functioning of the
human brain. It can be employed in a wide range of problems
and comprises different layers of connected artificial neurons.
The input layer receives the initial inputs, propagating through
one or more hidden layers, ultimately reaching the output
layer that generates the desired output. The network training
is performed by minimizing the difference between the actual
and the predicted output using the backpropagation technique.
The following hyperparameters are used for training: 2 hidden
layers with 10 neurons, batch size equal to 20, 300 training
epochs, and ReLU as activation function.



IV. RESULTS

Each model is accompanied by a table that presents the
mean and standard deviation of the evaluation metrics calcu-
lated over the 5 cross-validation folds.

A. SVM results

TABLE I
PERFORMANCE OF SUPPORT VECTOR MACHINE CLASSIFIER

Acc(%) F1(%) AUC(%)
All features 86.53± 1.10 85.63± 1.27 93.30± 0.57

No imp. phase 83.22± 0.48 81.99± 0.54 92.10± 0.46
No imp. modulus 81.26± 1.13 76.37± 1.46 86.52± 0.82

Table I illustrates the outcomes achieved with the support
vector machine (SVM). The overall results are promising, as
a classification accuracy of 86.53 % is attained when utilizing
impedance and environmental measurements. However, upon
removing the impedance phase, there is a decline in perfor-
mance by 3.31%. Similarly, excluding the impedance modulus
leads to a decrease in accuracy by 5.27% compared to the
initial scenario. These findings suggest that impedance is a
relevant feature for assessing water stress, as evidenced by
the model’s inferior performance when these features were
eliminated from the dataset.

B. Decision Tree results

TABLE II
PERFORMANCE OF DECISION TREE CLASSIFIER

Acc(%) F1(%) AUC(%)
All features 96.69± 0.51 96.50± 0.54 96.67± 0.52

No imp. phase 95.65± 0.68 95.40± 0.72 95.64± 0.68
No imp. modulus 91.85± 0.87 91.41± 0.95 91.84± 0.89

Table II presents the outcomes of the decision tree model.
The classification performance is excellent, surpassing the
SVM when all features are utilized by a margin of 10.16%,
resulting in an accuracy of 96.69%. Furthermore, upon remov-
ing the impedance phase, a slight decrease in performance of
1.04% is observed. Finally, excluding the impedance modulus
from the training leads to a drop in accuracy by 4.84%
compared to the initial case.

C. Random Forest Results

.

TABLE III
PERFORMANCE OF RANDOM FOREST CLASSIFIER

Acc(%) F1(%) AUC(%)
All features 98.48± 0.49 97.42± 0.52 99.87± 0.06

No imp. phase 97.57± 0.49 97.42± 0.52 99.75± 0.08
No imp. modulus 94.78± 0.66 94.33± 0.69 98.82± 0.25

Table III presents the results obtained from the random
forest classifier. In this scenario, the performance is enhanced
compared to the decision tree case, achieving an accuracy of
98.48%

TABLE IV
PERFORMANCE OF NEURAL NETWORK CLASSIFIER

Acc(%) F1(%) AUC(%)
All features 90.00± 1.72 89.46± 1.83 96.01± 1.26

No imp. phase 87.36± 2.42 86.53± 2.64 94.99± 1.54
No imp. modulus 82.13± 1.22 79.98± 1.34 89.35± 1.37

D. Neural network results

The neural network was the final model analyzed, and the
results are presented in Table IV. The achieved classification
accuracy is 90.00% when utilizing all the features. Notably,
removing the impedance phase led to a slight reduction in
accuracy by 2.64% compared to the initial case, whereas ex-
cluding the impedance modulus resulted in a more significant
drop of 7.87%.

V. CONCLUSION

In this work, machine learning models are applied to
detect water stress in tobacco plants using environmental
and impedance measurements. In particular, four different
algorithms were considered: support vector machine, decision
tree, random forest, and neural network. All the above models
performed well, and the best results were obtained using a ran-
dom forest classifier, achieving 98.48 % of correct predictions.
The decision tree achieved a little worse performance but was
still excellent with 96.69 %. The neural network reached a
classification accuracy of 90 %, while the model that overall
performed worse was the support vector machine with 86.53
% accuracy.

Models’ performance was also analyzed by alternatively
removing the impedance phase and modulus to assess their
impact on water stress detection. The results revealed the sig-
nificance of both quantities in achieving accurate predictions,
as all models experienced a decrease in performance when ei-
ther was removed. Notably, removing the impedance modulus
resulted in a more pronounced decline in performance across
all considered models, emphasizing its greater relevance as a
feature for water stress detection compared to the impedance
phase.

Future work aims to broaden the dataset by incorporating
new samples from more tobacco plants and extracting addi-
tional features intrinsic to the plant. In addition, the approach
of stem impedance monitoring together with machine learning
models could also be extended to early identification of
harmful organisms in the plants, such as fungi and bacte-
ria. Furthermore, emphasizing neural network architectures is
desirable, given the accessibility of tools to implement such
models on low-cost microcontrollers. This approach opens the
potential to develop a low-power, cost-effective, and reliable
edge system.
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