
13 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mix & Latch: An Optimization Flow for High-Performance Designs with Single-Clock Mixed-Polarity Latches and Flip-
Flops / Minnella, Filippo; Cortadella, Jordi; Casu, Mario R.; Lazarescu, Mihai T.; Lavagno, Luciano. - In: IEEE ACCESS. -
ISSN 2169-3536. - ELETTRONICO. - 11:(2023), pp. 1-1. [10.1109/ACCESS.2023.3265809]

Original

Mix & Latch: An Optimization Flow for High-Performance Designs with Single-Clock Mixed-Polarity
Latches and Flip-Flops

Publisher:

Published
DOI:10.1109/ACCESS.2023.3265809

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2977854 since: 2023-04-11T07:18:27Z

IEEE

Received 4 November 2022, accepted 20 December 2022, date of publication 10 April 2023, date of current version 13 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3265809

Mix & Latch: An Optimization Flow for
High-Performance Designs With Single-Clock
Mixed-Polarity Latches and Flip-Flops
FILIPPO MINNELLA 1, JORDI CORTADELLA 2, (Fellow, IEEE),
MARIO R. CASU 1, (Senior Member, IEEE),
MIHAI T. LAZARESCU 1, (Senior Member, IEEE),
AND LUCIANO LAVAGNO 1, (Senior Member, IEEE)
1Department of Electronic and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
2Department of Computer Science, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

Corresponding author: Filippo Minnella (filippo.minnella@polito.it)

ABSTRACT Flip-flops are the most used sequential elements in synchronous circuits, but designs based
on latches can operate at higher frequencies and occupy less area. Techniques to increase the maximum
operating frequency of flip-flop based designs, such as time-borrowing, rely on tight hold constraints
that are difficult to satisfy using traditional back-end optimization techniques. We propose Mix & Latch,
a methodology to increase the operating frequency of synchronous digital circuits using a single clock tree
and a mixed distribution of positive- and negative-edge-triggered flops, and positive- and negative-level-
sensitive latches. An efficient mathematical model is proposed to optimize the type and location of the
sequential elements of the circuit. We ensure that the initial registers are not moved from their initial location,
although they may change type, thus allowing the use of equivalence checking and static timing analysis
to verify formally the correctness of the transformation. The technique is validated using a 28 nm CMOS
FDSOI technology, obtaining 1.33X post-layout average operating frequency improvement on a broad set
of benchmarks over a standard commercial design flow. Additionally, the circuit area was also reduced by
more than 1.19X on average for the same benchmarks, although the overall area reduction is not a goal
of the optimization algorithm. To the best of our knowledge, this is the first work that proposes combining
mixed-polarity flip-flops and latches to improve the circuit performance.

INDEX TERMS Integrated circuit synthesis, design automation, sequential circuits, latches, flip-flops.

I. INTRODUCTION
Sequential circuits use flip-flops (FFs) or latches for data stor-
age. Latches can be used in error-resilient applications [1],
work at lower supply voltages, reduce power consumption
[2], [3], [4], and can increase operating frequency [5], [6].
Yet, more complex timing constraints limit their support in
commercial flows and their use in industrial designs. This
motivated us (and many others, as described below) to auto-
matically convert an FF-based design to a latch-based design.
We focus mostly on performance, i.e., on reducing the clock

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

period, but in some cases we also achieve area improvements.
We use three combined techniques: (1) latch-based design
with time borrowing, (2) negative transparent latch (NTL)-
based retention barriers, instead of delay padding, to meet
short-path hold constraints, and (3) only one clock tree.
We start with an arbitrary FF-based design and temporarily
convert it into a pulse-based single-phase positive transparent
latch (PTL) design functionally equivalent to the original, but
faster thanks to time borrowing and reduced delays in latches.
Latch-based designs exacerbate the presence of hold viola-
tions, whichmust traditionally be fixed either by using narrow
clock pulses or adding buffers to delay short paths [7]. Narrow
clock pulses are difficult to distribute without vanishing and

35830
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6713-8942
https://orcid.org/0000-0001-8114-250X
https://orcid.org/0000-0002-1026-0178
https://orcid.org/0000-0003-0884-5158
https://orcid.org/0000-0002-9762-6522
https://orcid.org/0000-0001-9315-1788

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

reduce the margins for time borrowing. On the other hand,
buffers increase area and power and may have a negative
impact on timing.

We propose theMix&Latch method, which uses a conven-
tional 50% duty cycle (DC) single-phase clock. Hold time
violations are solved by inserting NTLs driven by the same
clock tree as the PTLs. First the resulting clock period is
optimized by combining time borrowing and NTL retiming.
Then, as a secondary objective, area recovery is used to
reduce the area overhead by creating NTL-PTL sequences
whenever possible. These primary/secondary pairs are then
converted into either positive-edge-triggered flops (PETFs)
or negative-edge-triggered flops (NETFs), thus obtaining an
optimized mixed design with PTL, PETF, NTL, and NETF
sequential elements. Mix&Latch also preserves a sequential
element in each of the original FF locations. This enables a
1-to-1 mapping from FFs to sequential elements and ensures
that equivalence checking can be performed using conven-
tional methods comparing combinational clouds.

Fig. 1 shows the application of our optimization algo-
rithm to a simple case. The original arbitrary PETF circuit
is shown in Fig. 1a. All pins are annotated with a paren-
thesized number pair indicating the (minimum arrival time
at pin p (ATmin

p), maximum arrival time at pin p (ATmax
p)).

For simplicity, in this figure we assume unitary delays for
combinational gates, zero delays for the sequential elements,
and zero setup/hold FF constraints, while our algorithm uses
delays from timing analysis. In a PETF-based circuit, the
minimum clock period, Tmin, is set to the longest maximum
arrival time at the endpoint pin (ATmax

end), hence Tmin = 6 in
our example. After the PTL conversion shown in Fig. 1b, the
circuit can use time borrowing up to half a clock period (for
DC = 50%) for ATmax

end

ATmax
end = Tmin (1+ DC) H⇒ Tmin =

6
1+ 0.5

= 4. (1)

Note that there is an additional critical path with delay 6,
PTLB→ PTLZ, due to time borrowing at PTLB.

Despite the desirable Tmin reduction by 33% compared to
the PETF version, there are hold violations at the inputs of
PTLsX, Y, and Z because their minimum arrival time (ATmin)
is lower than the positive pulse width, PPW = DC · Tmin.
To solve the hold violations, a group of nets is selected
using the mathematical model described below, and an NTL
is placed in front of the endpoint pin of the selected nets.
As the NTLs become transparent after the positive pulse, they
guarantee a delay longer than the PPW for all paths.

However, the added NTLs can reduce performance. For
example, Fig. 1c shows that while placing the NTL too close
to the source PTL solves the hold violation at the input
of PTLX, the additional delay causes a setup violation at
the input of PTL Z, which now requires a longer period,
T > Tmin. Fig. 1d shows that an NTL can solve the hold
violations at the input of PTLZ, but it causes a new setup
violation at the input of the NTL that closes at T . Hence,

the signal cannot reach PTLZ in time, which also requires
a longer T > Tmin.
Our algorithm optimizes the position of NTLs to reach

a solution that, as shown in Fig. 1e, solves all hold viola-
tions without performance penalty, under the assumptions
discussed in Section III-C.

Next, adjacent NTL-PTL pairs are merged as PETF to
reduce the area, and PTL-NTL pairs as NETF, as shown in
Fig. 1f. This solution has the same Tmin and area as the one
in Fig. 1b, no hold violations, and uses the same number of
sequential elements as the original version. In some cases
some latches cannot be merged, which leads to some area
penalty (discussed in the experimental results). In other cases
the PTLs do not need hold time fixing, yielding both faster
and smaller circuits.

Several works propose design optimization using a mix of
PETF and PTL. Here we describe the main ones, in order to
set the stage for our work, while a more complete literature
review is provided in the next section. Hassan et al. [3]
propose to start from an FF-based netlist, analyze sequences
of three FFs, and replace themiddle onewith a PTL retimed to
match the timing constraints. This approach seems to increase
the clock frequency, reduce the power consumption and the
cell area, but the experimental data cover only logic synthe-
sis, without considering placement and routing. Furthermore,
equivalence checking may be more difficult because retiming
changes the original position of the sequential elements [8].

Singh et al. [2] describe a retiming method to gener-
ate a PTL-NTL-based netlist starting from a FF-based one.
Because the synthesis tools have poor support for latch retim-
ing, they propose replacing the primary/secondary latches
with FF pairs, doubling the frequency and finally retiming
the design using a commercial tool. Although they focus
on reducing the power consumption, the results are poor
in terms of both power and area because the algorithm is
effective for only one frequency due to a sub-optimal retiming
strategy. Moreover, experimental results are shown only for
one circuit.

Our main contributions to the state-of-the-art are:
• A two-step implementation flow to obtain a working
layout for an optimized version (Fig. 1f) of the PETF-
based netlist (Fig. 1a). The implementation is fully based
on commercial EDA tools and we fully exploit useful
skew, both in the baseline against which we compare and
in our own results.

• A methodology to reduce the sequential resources and
generate the NTL allocation, using post-layout timing
data and exploiting incremental placement and routing
starting from the post-layout netlist. The NTLs work as
retention barriers for signals in short paths, reducing the
hold constraints complexity. To recover area, the PTL-
NTL pairs are merged into FFs.

• Maintaining a 1-to-1 correspondence between each orig-
inal FF and a FF or a latch in the final circuit, to allow
equivalence checking for design verification with tradi-
tional tools.

VOLUME 11, 2023 35831

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

FIGURE 1. Optimization algorithm applied to an arbitrary positive-edge-triggered flop (PETF) circuit (1a). Conversion to a circuit based on positive
transparent latch (PTL) (1b). Optimization for sequences of PTL-to-negative transparent latch (NTL) (1c) or NTL-to-PTL (1d). Conversion of complementary
latch sequences (1e) into positive-edge-triggered flops (PETFs) (1f) or NETFs. Pins are annotated with (minimum arrival time (AT min), maximum arrival
time (AT max)). Gate delays are unitary and sequential delays are zero.

• The evaluation of the proposed method on a diverse
range of circuits, each implemented at multiple frequen-
cies, achieving an average frequency increase of 1.33X
and a 1.19X average area reduction.

II. RELATED WORK
A. LATCH-BASED DESIGN TIMING ANALYSIS
The seminal work of [9] and [10] provides a formal definition
of the min clock cycle problem for PTL-based circuits based
on linear programming. They resolve the non-linearity of the
constraints using linear inequality constraints to implement
themin/max functions. Their formulation points out twomain
parameters for optimizing the clock scheduling for each PTL:
the phase and the width of the high clock pulse.

B. PULSED LATCH SOLUTIONS
The pulsed latch design style is introduced in [11], [12],
[13], [14], and [15] using a circuitry to generate, from
the input clock of the digital system, a different width
of the high clock pulse (Ti) for each sequential block.
To limit the area cost, the pulse generators are shared by PTL
groups and they are integrated either in a single sequential

cell for pulsed FF (P-FF) (pulsed latches with the pulse
generator within the latch cell) or in a cell containing multiple
sequential blocks for pulsed registers.

Nevertheless, with shared pulse generators it is very diffi-
cult to prevent pulse signal degradation in all operating con-
ditions [11], and the additional retimed registers for solving
the remaining hold violations further increase the area.

C. SINGLE AND MULTI-PHASE CLOCK SOLUTIONS
A different set of solutions use single or multi-phase clock-
ing schemes without focusing on the width of the high
clock pulse. Zhang and Calhoun [16] study the distribu-
tion of errors caused by sub-threshold voltage supply and
propose a two-phase clocked latch-based method to solve
the timing violations. Fojtik et al. [1] analyze a two clock-
phase latch-based implementation of Razor flops to detect
errors in an ARM Cortex-M3 processor. Cheng et al. [17]
discuss a conversion algorithm using three clock phases to
improve area and power consumption. Yoshikawa et al. [18]
present a single-phase forward retiming algorithm for
FF-based design conversion, using commercial tools for
retiming. Hassan et al. [3] and Singh et al. [2] present

35832 VOLUME 11, 2023

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

FIGURE 2. Implementation flow starting from the register-transfer level
(RTL) description using positive-edge-triggered flops (PETFs), positive
transparent latches (PTLs), and negative transparent latches (NTLs).
Synthesis steps are in red, post-synthesis netlists in orange, layout steps
in green, and post-layout netlists in blue. The PETF layout is only used to
provide the baseline results.

implementation flows to transform FF-based designs into
latch-based ormixed designs. In almost all previous cases, the
optimization uses post-synthesis timing information that may
substantially differ from the post-layout one, thus potentially
leading to grossly sub-optimal post-layout performance.
Furthermore, [3], [18] evaluate the performance only on post-
synthesis data, thus ignoring the place and route (P&R) over-
heads.

III. Mix & Latch OPTIMIZATION FLOW
Fig. 2 shows our optimization flow, which starts from a
register-transfer level description description and produces a
layout with mixed sequential resources. It includes four main
steps:
• Generate the PTL-based layout by replacing all sequen-
tial elements with PTLs (shown in the second column in
Fig. 2 and discussed in Section III-A).

• Create a graph representation of the timing and posi-
tional information extracted from the PTL-based lay-
out (discussed in Section III-B, Section III-C, and
Section III-D).

• Define the circuit location of NTLs, PETFs, and NETFs
using an integer linear programming (ILP) formulation,
and inserting them in the PTL-based netlist.

• Generate the layout of this new circuit (see the right
column in Fig. 2 and the discussion in Section III-E).

The NTL selection using ILP is similar to backward retim-
ing [18] in a primary/secondary FF netlist. However, the
formulation and graph representation are different because
they consider the post-layout timing data and avoid the

redundant NTLs. The designs are synthesized and imple-
mented at several clock frequencies to determine iteratively
the highest possible operating frequency for both the mixed
design and of the PETF design.

We leave to future work the in-depth analysis of design
for testability (DFT) needed for the practical adoption of our
methodology.We note however that DFT can be implemented
with traditional tools by adding some scan-only NTLs to
the PTLs [19].

Retiming techniques have the drawback that equivalence
checking for design verification cannot be solved in a reason-
able amount of time even for relatively small circuits, such
as the s38584 from the ISCAS benchmark [8], which we
also use in our experiments as shown in Section IV. Mix &
Latch does not have this problem because it preserves a
1-to-1 correspondence with the FFs in the original design
using either FFs or PTLs. The 1-to-1 correspondence also
helps solving the initialization problem for the netlist, i.e.,
finding a consistent initial value of the circuit registers that
maintains the circuit equivalence [20].

A. POSITIVE TRANSPARENT LATCH-BASED CIRCUIT
The first processing step generates the PTL-based layout. The
register-transfer level (RTL) description of the target design
is synthesized using a commercial tool. The considered cir-
cuits have only PETFs to ease the analysis, but the same
methodology can be extended to circuits based on NETFs
or mixed. Once the netlist is synthesized, all the PETFs are
replaced with PTLs using the same commercial tool. Because
cell resizing will be automatically done by the layout tool
(if needed), the PETFs are replaced with the smallest PTLs
from the technological libraries.

The netlist modified this way is provided to the lay-
out tool, which produces the post-P&R design. Unlike [9],
[10], all hold constraints are temporarily ignored (using a
standard design constraint command of the tool) to obtain
a layout of the PTL-based netlist that meets the setup
constraints.

The generated layout thus potentially violates hold condi-
tions, which will be solved afterwards.

B. GRAPH MODEL
The state-of-the-art circuit graph representations [10], [21]
are not suitable for our optimization algorithm because they
either exclude the sequential elements [21], or aggregate pin
data for the worst case delay [10].

For our method, the circuit is represented as a graph (V ,E),
where V represents the set of all pins and I/O ports and E the
connections (wires or cells) between them. The nets and pins
of the clock tree are not included.

Fig. 3 shows an example of two graphs which are dis-
cussed later. Static timing analysis (STA) timing informa-
tion is a three-value tuple associated to graph edges (see
Section III-C), while latch location is a value associated to
edges of a different graph (see Section III-D).

VOLUME 11, 2023 35833

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

FIGURE 3. Graph generation: (a) TG of the example in Fig. 1b. The attribute is a 3-tuple with elements computed using Alg. 1, Eqn. (6), and Eqn. (5),
respectively. The first value is an estimation of the setup slack caused by NTL insertion, the second and third values are the lengths of the
sub-paths generated by NTL insertion. (b) SPG of the same circuit: it has fewer edges and vertices than TG because it considers only pins and
connections that belong to short paths.

FIGURE 4. Timing diagram, showing the arrival times and the slacks
related to an ideal clock. During attribute computations the clock
latencies are real and referred to the clock tree built in the PTL-based
netlist. Because AT max

end arrives during the PTL transparent window,
SSp is 0.

C. TIMING GRAPH
We create a timing graph (TG) that drives our optimization
algorithm to limit the setup slack (SS) degradation due to
potential NTL insertions before gate input pins in the PTL-
based netlist. The computation of the edge attributes of this
graph uses the timing data extracted from static timing analy-
sis (STA), shown in Fig. 4, Fig. 5, and Table 1. Unlike Fig. 4,
all arrival times are obtained from the STA considering the
clock latencies of the PTL-based layout. The pin (p) for which
STA extracts the info is the endpoint of the edge (e) to which
the related attribute is associated. From the STA timing data
we obtain three values: (1) the Estimated Setup Slack for pin
p (ESSp), (2) the p to SCPp endpoint delay (Dpptl), and (3)

the SCPp startpoint to p delay (D
ptl
p). These three values are

assigned as a 3-tuple attribute to the edges of TG.

1) ESTIMATED SETUP SLACK
The Estimated Setup Slack (ESSp) is computed for each edge
(e) endpoint pin (p) using Algorithm 1, which estimates the
value of the setup slack (SS) related to the pin (p) if an NTL
were placed in front of it. It receives in input the timing info
from STA for the considered pin and returns the attribute
ESSp. It is important to highlight that the computation of

FIGURE 5. Circuit showing how the information from the STA tool is
extracted.

TABLE 1. Timing computed by Algorithm 1 with data from static timing
analysis.

ATmax
p takes into account the possible time borrowed by the

launching PTL. It relies on the following assumptions:

• To estimate the SSp degradation caused by the NTL
insertion, we need theNTL opening time, tntlopen, and clos-
ing time, tntlclose. They depend on the NTL clock latency
(tntldel), fromPPW and from T . Since it is difficult to know
tntldel at this stage, we assume that it is equal to tHCPcapture,
unless an NTL is merged into a NETF when we use the
latency tHCPlaunch.

35834 VOLUME 11, 2023

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

Algorithm 1 Estimated Setup Slack Attribute for Pin p
Inputs: Parameters from Table 1 Output: ESSp
1: if HSp ≥ 0 then
2: ESSp←∞
3: else
4: if p is output of PTL then
5: tntldel← tHCPlaunch
6: else
7: tntldel← tHCPcapture
8: end if
9: tntlopen← tntldel + PPW
10: tntlclose← T + tntldel
11: if ATmax

p < tntlopen then
12: ESSp← SSp − tntlopen + AT

max
p + mTBend

13: else
14: if ATmax

p > tntlclose then
15: ESSp← tntlclose − AT

max
p

16: else
17: ESSp← SSp + mTBend
18: end if
19: end if
20: end if

In Fig. 4, the NTL would have the clock latency of
PTLX. Lines 4–10 implement these computations. The
condition on line 4 checks if the pin is the output of
a PTL, thus the resulting NTL would be merged into
a NETF.

• The additional delay from NTL insertion is ignored
because it is usually small compared to the SCPp delay
and because it is hard to estimate before the layout. Note
that we ignore it only to simplify the Timing Graph (TG)
generation, but in the final layout step the P&R tool does
consider the NTL delays.

We explain the steps in Algorithm 1 analyzing the four
cases which cover all the possible combinations, while in
Fig. 3a we illustrate an example of TG for the circuit
of Fig. 1b:

a: CASE 1 — POSITIVE HOLD SLACK
If the considered p has positive hold slack, HSp, then there is
no violation to fix. To reduce the number of NTLs that will be
used after retiming, all the NTLs that would be placed close to
pins not belonging to short paths will not be added to the PTL
netlist. Avoiding NTL insertion means no SSp degradation,
hence in this case we set weight (W) to ∞ (lines 6–7 of
Algorithm 1). An example is the edgeD1O→ N3I in Fig. 3a,
corresponding to the edge D1→ N3 in Fig. 1b, which does
not belong to a short path.

b: CASE 2 — NTL CLOSE TO THE SOURCE PTL
The additional delay caused by the late opening of the NTL
may cause a setup violation, as shown in Fig. 1c. Attribute
computation estimates the degradation of the pin setup slack,

taking into account the late arrival time at the selected pin
(ATmax

p), SSp, tntlopen, and the margin for time borrowing
(mTBend). The delay introduced by the NTL can be tolerated
up to mTBend. Lines 11–12 of Algorithm 1 perform these
computations. An example is edge AQ→ N1I from Fig. 3a,
corresponding to the edge from PTL A to N1 in Fig. 1c.
Considering that the SCP for this edge ends in PTL Z , the

parameters SSp, ATmax
p andmTBend are all equal to 0 because

the SCP delay is equal to the T added to the maximum time
borrowing. tntlopen is equal to 2 for all the cases shown in Fig. 3a
because the clock is considered ideal. Given the previous
considerations, compute ESSp:

ESSp = 0− 2+ 0+ 0 = −2 (2)

c: CASE 3 — NTL CLOSE TO THE SINK PTL
If the input signal of the sink PTL belongs to a critical path,
then the setup constraints added by the early NTL closing
will likely prevent satisfying the setup constraints. If the late
arrival time at the pin, ATmax

p , exceeds tntlclose, then the signal
will not pass through the NTL. The SSp degradation is com-
puted as the difference between these two values (lines 14–15
of Algorithm 1). An example is edge D2O → ZD from
Fig. 3a, corresponding to the edge from D2 to PTL Z in
Fig. 1d. tntlclose is equal to 4 for all the cases because the
clock is considered ideal and ATmax

p is 6. Given the previous
considerations, ESSp is computed as:

ESSp = 4− 6 = −2 (3)

d: CASE 4 — GENERAL CASE
If none of the previous cases occurs, then ATmax

p at the NTL
input falls into the NTL transparency interval and there is no
SSp degradation (line 17 of Algorithm 1). An example is edge
D1O→ YD from Fig. 3a, corresponding to the edge fromD1
to PTL Y in Fig. 1d.
Considering that the SCP for this edge ends in PTL Y ,

SSp = 1 because the signal arrives 1 time unit before the
rising edge of the clock, while mTBend = 2 because there is
no time borrowing. Given the previous considerations, ESSp
can be computed as:

ESSp = 1+ 2 = 3 (4)

2) SUB-PATH DELAYS
The second value of the tuple, Dpptl, shows the delay of the
path between the pin p and the endpoint PTL of SCPp. It is
equal to the difference between ATmax

end and ATmax
p

Dpptl = ATmax
end − AT

max
p . (5)

The third value of the tuple, Dptl
p , shows the delay of the

path between the start point PTL of the SCPp and the pin p.
It is computed as the difference between tSCPlaunch and AT

max
p

Dptl
p = ATmax

p − tSCPlaunch. (6)

VOLUME 11, 2023 35835

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

TABLE 2. Variable definitions for Alg. 2. (ILP model).

D. SHORT-PATH GRAPH
The Short-Path Graph (Short-Path Graph (SPG)) is a sub-
graph of the TG that only contains the pins and edges that
belong to short paths, i.e., all those pins p such that HSp < 0.
Hold violations will be fixed by finding a cut (subset of edges)
of the SPG where the NTLs will be inserted.

Two types of edges can be distinguished in the SPG:

E = Ecells ∪ Ewires

whereas Ecells correspond to those edges that connect input-
to-output pins in combinational cells and Ewires correspond
to the remaining edges. The cut of the SPG must be defined
using edges in Ewires.

The insertion of an NTL in an edge may benefit from the
presence of an adjacent PTL at the start or end point of the
edge. Thus, both latches can be merged into an FF, either
PETF (NTL-PTL) or NETF (PTL-NTL), as shown in Fig. 1f.
Thus, we can define

Ewires = Eff ∪ Elat

to distinguish these edges, with Eff representing the edges
in which the merging is possible and Elat representing the
remaining edges. Additionally, two parameters are defined
to represent the cost of inserting an NTL, cff and clat, with
cff < clat, since merging implies area savings. These parame-
ters can be tuned to control the area overhead of the solution.

Graph 3b shows the SPG of the example circuit from
Fig. 1b.

E. INTEGER LINEAR PROGRAMMING MODEL
Starting from the SPG and the attributes computed from
static timing analysis of the PTL post-layout netlist, an ILP
model is defined to fix the hold violations and select the NTL
locations. Alg. 2 and Tab. 2 show the ILP model and the
definition of the algorithm variables.

For each pin (p) of the SPG, a binary variable p is cre-
ated. For each edge (e), pend(e) and pstart(e) represent the
variables associated to the endpoint and the start point of e,
respectively. Each edge is characterized by the edge selection

Algorithm 2 Integer linear programming (ILP) Model

Inputs: SPG, T , δ, cff, clat
Output: Location of the NTLs (edges with R(e) = 1)
1: E ← Edges(SPG)
2: Ecells,Ewires,Eff,Elat← E
3: ESSp,D

ptl
p ,Dpptl← TimingAttributes(E)

minimize clat
∑
∀e∈Elat

R(e) + cff
∑
∀e∈Eff

R(e) (7)

subject to ∀e ∈ Ecells : R(e) = 0 (8)

∀e ∈ Ewires : R(e) ≥ 0 (9)

∀e ∈ Ewires : R(e) · ESSp(e) ≥ 0 (10)

∀e ∈ Ewires : R(e) · Dpptl(e) ≤ δ · T (11)

∀e ∈ Ewires : R(e) · Dptl
p (e) ≤ δ · T (12)

FIGURE 6. Solution example showing the cut chosen for the SPG from
Fig. 3b. The vertex attributes correspond to the P variables of the ILP
model and the edge attributes represent the edge selection value (R(e))
computed for each edge. The vertices with input edge attribute equal to
1 are selected for NTL insertion.

value, R(e), defined as

R(e) = pend(e)− pstart(e). (13)

The cut (location of the NTLs) is defined for those edges
with R(e) = 1, i.e., pstart(e) = 0 and pend(e) = 1, as shown
in Fig. 6.

The cost function (7) accounts for the number of new
sequential elements added to the circuit, i.e., the number of
NTLs inserted in edges not connected to a PTL. This will
push the solution of Algorithm 2 to use as many NETFs and
PETFs as possible to reduce the final number of sequential
elements in the circuit.

The constraint (8) avoids that Alg.2 selects edges repre-
senting connections between pins of the same cells (Ecells).

The constraint (9) enforces pend(e) ≥ pstart(e), because
pend(e) and pstart(e) are binary this restricts R(e) to be binary.
It also implies that all pins p belonging to a path that reaches
pstart(e) will have p = 0, while all pins belonging to a path that
crosses pend(e), reaches p, and ends at a PTL will have p = 1.
Then, the algorithm splits the graph in two partitions, before
and after theNTLs, by removing the edgeswithR(e) = 1. The
partition in which all pins have p = 1, i.e. the part of the graph
that includes the PTL endpoints, will have no early arriving

35836 VOLUME 11, 2023

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

signals. Fig. 6 shows an example of the graph partitioning
generated by the model.

Although solving an ILP generally has very high runtime,
in this particular case it is very close to a max-flow min-
cut problem, which is known to have polynomial complexity.
This is the likely reason why the runtime of our algorithm
remains very small, as shown in Table 4, even for designs
with tens of thousands of gates and FFs. The development of
a heuristic algorithm is left to future work, if the execution
time becomes excessive, e.g. comparable to or larger than the
physical design time.

The constraint (10) guides the model towards solutions
that do not worsen setup violations, because the SSp for
each selected edge for NTL insertion must be greater
than zero. The estimation done in ESSp is an approxi-
mation of the final SSp that takes into account not only
the length of the combinational logic delay, but also the
clock tree latency generated by the layout tool, as discussed
in Section III-C.

However, this is an approximation and we need two more
inequalities, (11,12), to simplify the problem of meeting the
setup constraints. The Dpptl and D

ptl
p attributes report the dis-

tance, in terms of post-layout delay, between each pin p and
the source/sink PTLs. An NTL placed in front of p divides
the path in two parts and the two graphs give an estimation of
the length of these sub-paths. To make these paths as short as
possible, these time intervals are constrained to be a fraction
δ of T , that is a parameter of our algorithm. The value of δ,
with 0 < δ < 1, is discussed in the next section.

IV. EXPERIMENTAL RESULTS
Open-source PULP [22] library is used to model the ILP, the
default solver is CBC. To evaluate the proposed algorithm,
we apply the optimization flow to 13 circuits from a pool
of benchmarks, each implemented at a range of operating
frequencies. Four circuits are cryptographic IPs from the
CEP benchmark [23], eight are from the ISCAS89 bench-
mark [24], and one is a small processor core from the ITC99
benchmark [25]. The implementation flow uses an industrial
28 nm FDSOI CMOS technology, Design Compiler from
Synopsys for logic synthesis, and Innovus from Cadence
for P&R.

We set δ = 0.75 in Algorithm 2, i.e. the maximum sub-
path delay is 75% of T . Since δ defines the length of the
sub-paths generated by NTL insertion, 75% for a DC of
50% means that the two sub-paths are reasonably balanced.
Further exploration of the impact of δ is left to future work.

We also set cff = 0 and clat = 1 to account for the number
of new sequential elements in the circuit.

Table 3 shows the frequency improvement for the consid-
ered benchmarks, together with the final sequential resource
mix. The average improvement in frequency is about 1.33X.
We used a granularity of 0.1 ns in the exploration of the
minimum clock period (T). The algorithm is doing better
than average for the cryptography IPs like des3 and md5,

TABLE 3. Operating frequency and sequential resources for designs from
ISCAS⋄, CEP◦ and ITC99• benchmarks. Columns labeled ‘Original’’ refer to
PETF-based layouts, while those labeled ‘‘mixed’’ refer to the
optimized ones.

TABLE 4. ILP execution time (s) and layout times (s). Orig layout refers to
the starting PETF netlist, PTL layout to the netlist without hold constraints
and with only PTLs, and mixed layout to the final step after NTL insertion.
The columns #SEQ. and #COMB. report the number of sequential and
combinational elements in the PTL layout, which is the netlist analyzed
and provided to the ILP solver.

probably because they are designs with acyclic paths that are
generally not well-balanced.

Fig. 7 shows the frequency improvement and the area com-
parison considering the maximum frequency for the original
design and the optimized one. In most of the cases there
is an area penalty which can exceed 1.2X. However, this
is compensated by a maximum frequency increase above
1.2X for these designs. There are also cases in which the
performance improvements do not cause any area increase,
like for des3, sha256, s38584 and b22.
Fig. 8 shows the results obtained at frequencies at which

both design versions meet the timing for a meaningful area
comparison. To demonstrate the actual scalability of this
approach, Table 4 shows the runtime of the ILP algorithm
compared to the time needed for the layout in the three cases.
The ILP runtimes are always less than 10% of the layout
times.

A. TIMING CLOSURE
The P&R tool converges to a good solution if, at the end
of the automated implementation flow, the hold and setup
violations are small and can be fixedwith only a few iterations
of the final design optimization commands. If they are too

1The maximum frequency reached for the original designs is low com-
pared to [17] and to the mixed result. For this reason, we do not report it for
the frequency and runtime comparisons.

VOLUME 11, 2023 35837

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

FIGURE 7. Ratio of post-layout area, considering the layouts obtained at
the highest working frequencies for both MIXED and ORIG versions,
compared to the related frequency improvements. The black line shows
the linear regression of the area increase with respect to the frequency
gain. The offset and the slope of the line are stated in the legend.

large, then the designers typically conclude that the P&R
tool cannot implement the design at that specific frequency.
In these cases we do not report the area because it is usually
excessive. We do at most five optimization iterations to solve
the remaining setup and hold violations.

B. AREA COMPARISON
Fig. 8a shows the area comparison at different frequencies in
the cases in which both the FF-based and the mixed designs
meet the timing. The optimized designs from the ITC99 and
CEP benchmarks also have a smaller area than the original
ones. However, this is not true in general for the circuits from
the ISCAS89 benchmark.

Fig. 8b shows the same area comparison as Fig. 8b, but in
this case the x-axis shows the ratio of FFs in the mixed design
compared to the original netlist

FF_MIXED
FF_ORIG

=
max(#PETFMIXED, #NETFMIXED)

#PETFORIG
(14)

where #PETFORIG is the number of PETF in the original
circuit. The paths that constrain the design the most are those
between pairs of same polarity FFs, because paths from PETF
toNETF allow time borrowing and paths fromNETF to PETF
cannot be generated by Algorithm 2. This is why in (14) we
consider the maximum between the two FF types, rather than
the sum.

Fig. 8b shows that the area increase in the mixed designs
is well correlated with the ratio FF_MIXED/FF_ORIG.
In some circuits, even our cost function, which drives

the solution to use as many FFs as possible, could lead to
considerable overhead of the mixed version area. Fig. 8c and
Fig. 8d show the sequential and combinational area compari-
son. The sequential area increases in most examples because
of the higher number of sequential elements in the design.
However, for the designs with a low FFs ratio, easier timing
convergence reduces the number of high speed gates.

Thus, it tends to compensate this overhead and sometimes
leads to a smaller total area. In the next section, we ana-
lyze the effect on the area overhead of modifying the NETF
allocation cost in the ILP model. We show that results in
a significant improvement in the worst cases. We conjec-
ture that power would also be improved, but its evaluation
is outside the scope of this paper, which focuses on per-
formance gains with limited area cost, or even with area
improvement.

C. ALGORITHM TUNING TO REDUCE AREA OVERHEAD
To reduce the area overhead, we discouraged the use of
NETFs by increasing the cost of inserting NTLs in locations
enabling the PTL-NTL merging.

We slightly modified the ILP model by defining a different
cost for merging latches into NETF (cost 1) or PETF (cost 0).
Fig. 8e shows that the original area overhead for the ISCAS89
circuits is reduced.

Although this configuration improves the quality of the
ISCAS89 worst cases, it increases the area compared to
Fig. 8a for some of the des3, md5, and b22 designs. Con-
sidering the best result among these two values for NETF
costs, the average area improvement is 1.19X over the con-
sidered benchmarks, with above-average performance for
the cryptography IPs. In some cases belonging to ISCAS89
benchmark, the area increases considerably. Addressing this
issue, e.g. by further tuning the algorithm parameters, is left
to future work.

D. COMPARISON WITH OTHER WORK
Some of our results can be directly compared with those
presented in [17], which converts an FF-based netlist to a
3-phase PTL-based netlist using two variants of the same
algorithm. While our main goal is to improve the maximum
operating frequency, [17] focuses instead on reducing the area
occupation. For this reason, despite the differences in technol-
ogy and implementation setup, the area overhead introduced
by our optimization algorithm is compared with the results
of [17]. There are six common benchmark circuits used by
us and [17], four from CEP and two from ISCAS89. For
the CEP benchmarks, [17] reports maximum area reductions
at 500MHz of 14% for des3, 17.7% for sha256, and
5.8% for md5. Our results in Fig. 8d and Fig. 8e show that,
for the cryptography IPs our area reduction exceeds [17],
with peaks of 22.38% for des3, 41.32% for sha256, and
51.13% for md5. But for most ISCAS89 benchmark circuits
our algorithm increases or only slightly reduces the area,
while the area reduction achieved by [17] is more than 10%.
Specifically, our algorithm reduces the area by 5.29% for
s1423, 7.59% for s5378, and 8.82% for s38584, and
increases the area by 3.28% for s38417, 9.35% for s9234,
4.79% for s1196, and 41.75% for s13207. Note that
performance, which is our main design goal, is improved in
all cases.

35838 VOLUME 11, 2023

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

FIGURE 8. Results of area comparison when both the mixed-based netlist and the PETF-based one successfully yield a layout.

V. CONCLUSION AND FUTURE WORK
The Mix & Latch methodology introduced in this paper
optimizes flip-flop (FF)-based netlists by replacing the
positive-edge-triggered flops (PETFs) with positive transpar-
ent latches (PTLs), and solving the hold violations gener-
ated by such replacement using an efficient integer linear
programming (ILP) model that selects a specific group of
edges, and places negative transparent latches (NTLs) on
short paths. The algorithm takes as input the timing data from
the post-layout netlist of the FF-based design.

We obtain simultaneously smaller area and higher working
frequency for all the circuits that we considered, except for
s38417, s9234, s1196, and s13207, where only per-
formance is significantly improved. For most cryptography
circuits, the area improvement exceeds 1.3X.

Even though our approach does not aim at improving
area and uses just one clock phase, our area reduction is in
some cases comparable to that of a recent work [17], which
uses three clock phases,rather than just one, and focuses on
area optimization. Note also that [17] reports the final area
without including the three clock trees, that most likely would
decrease their gains significantly.

Future work will focus on further improving parameter
selection (e.g., depending on circuit topology) to reduce area
occupation at a given operating frequency, on extending the
evaluation to other circuits, and on analyzing the impact on
power consumption and on design for testability.

REFERENCES

[1] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. M. Harris, D. Blaauw, and
D. Sylvester, ‘‘Bubble Razor: Eliminating timing margins in an ARM
Cortex-M3 processor in 45 nm CMOS using architecturally independent
error detection and correction,’’ IEEE J. Solid-State Circuits, vol. 48, no. 1,
pp. 66–81, Jan. 2013.

[2] K. Singh, H. Jiao, J. Huisken, H. Fatemi, and J. P. de Gyvez, ‘‘Low power
latch based design with smart retiming,’’ in Proc. 19th Int. Symp. Quality
Electron. Design (ISQED), Mar. 2018, pp. 329–334.

[3] N. A. N. Hassan, A. B. A. Manaf, and L. C. Ming, ‘‘Optimization of
circuitry for power and area efficiency by using combination between
latch and register,’’ in Proc. IEEE Int. Conf. Comput. Appl. Ind. Electron.
(ICCAIE), Dec. 2011, pp. 240–244.

[4] M. Pons, T.-C. Le, C. Arm, D. Severac, J.-L. Nagel, M. Morgan, and
S. Emery, ‘‘Sub-threshold latch-based icyflex2 32-bit processor with wide
supply range operation,’’ in Proc. 46th Eur. Solid-State Device Res. Conf.
(ESSDERC), Sep. 2016, pp. 33–36.

[5] P. A. Hurst and K. R. Brayton, ‘‘The advantages of latch-based design
under process variation,’’ in Proc. IWLS, 2006, pp. 241–246.

[6] B. Taskin and I. S. Kourtev, ‘‘Time borrowing and clock skew scheduling
effects on multi-phase level-sensitive circuits,’’ in Proc. IEEE Int. Symp.
Circuits Syst., May 2004, p. 617.

[7] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, ‘‘Mini-
mum padding to satisfy short path constraints,’’ in Proc. Int. Conf. Comput.
Aided Design (ICCAD), 1993, pp. 156–161.

[8] C. Yu, C.-C. Huang, G.-J. Nam, M. Choudhury, V. N. Kravets, A. Sullivan,
M. Ciesielski, and G. De Micheli, ‘‘End-to-end industrial study of retim-
ing,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2018,
pp. 203–208.

[9] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, ‘‘Optimal clocking
of synchronous systems,’’ in Proc. ACM Int. Workshop Timing Issues
Specification Synth. Digit. Syst. Vancouver, BC, Canada: Univ. British
Columbia, Aug. 1990.

VOLUME 11, 2023 35839

F. Minnella et al.: Mix & Latch: An Optimization Flow for High-Performance Designs

[10] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, ‘‘Analysis and design of
latch-controlled synchronous digital circuits,’’ IEEE Trans. Comput.-Aided
Design Integr., vol. 11, no. 3, pp. 322–333, Mar. 1992.

[11] Y. Shin and S. Paik, ‘‘Pulsed-latch circuits: A new dimension in
ASIC design,’’ IEEE Des. Test Comput., vol. 28, no. 6, pp. 50–57,
Nov./Dec. 2011.

[12] J. F. Lin, ‘‘Low-power pulse-triggered flip-flop design based on a signal
feed-through,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 1, pp. 181–185, Jan. 2014.

[13] H. Lee, S. Paik, and Y. Shin, ‘‘Pulse width allocation and clock skew
scheduling: Optimizing sequential circuits based on pulsed latches,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 3,
pp. 355–366, Mar. 2010.

[14] S. Paik, L.-E. Yu, and Y. Shin, ‘‘Statistical time borrowing for pulsed-latch
circuit designs,’’ in Proc. 15th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2010, pp. 675–680.

[15] T. Baumann, D. Schmitt-Landsiedel, and C. Pacha, ‘‘Architectural assess-
ment of design techniques to improve speed and robustness in embedded
microprocessors,’’ in Proc. 46th Annu. Design Autom. Conf., Jul. 2009,
pp. 947–950.

[16] Y. Zhang and B. H. Calhoun, ‘‘Hold time closure for subthreshold circuits
using a two-phase, latch based timing method,’’ in Proc. IEEE SOI-
3D-Subthreshold Microelectron. Technol. Unified Conf. (SS), Oct. 2013,
pp. 1–2.

[17] H. Cheng, X. Li, Y. Gu, and P. A. Beerel, ‘‘Converting flip-flop to
clock-gated 3-phase latch-based designs using graph-based retiming,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 4,
pp. 979–992, Apr. 2022.

[18] K. Yoshikawa, K. Kanamaru, S. Inui, Y. Hagihara, Y. Nakamura, and
T. Yoshimura, ‘‘Timing optimization by replacing flip-flops to latches,’’
in Proc. Asia South Pacific Design Autom. Conf., Jan. 2004, pp. 186–191.

[19] K. Y. Chung and S. K. Gupta, ‘‘Design and test of latch-based circuits to
maximize performance, yield, and delay test quality,’’ in Proc. IEEE Int.
Test Conf., Nov. 2010, pp. 1–10.

[20] J.-H.-R. Jiang andR.K. Brayton, ‘‘Retiming and resynthesis: A complexity
perspective,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 12, pp. 2674–2686, Dec. 2006.

[21] C. E. Leiserson and J. B. Saxe, ‘‘Retiming synchronous circuitry,’’ Algo-
rithmica, vol. 6, nos. 1–6, pp. 5–35, Jun. 1991.

[22] (2009). Optimization With Pulp. [Online]. Available: https://coin-
or.github.io/pulp/

[23] MIT-LL. (2021). Common Evaluation Platform (CEP). [Online]. Avail-
able: https://github.com/mit-ll/CEP.git

[24] F. Brglez, D. Bryan, and K. Kozminski, ‘‘Combinational profiles
of sequential benchmark circuits,’’ in Proc. ISCAS, May 1989,
pp. 1929–1934.

[25] F. Corno, M. S. Reorda, and G. Squillero, ‘‘RT-level ITC’99 benchmarks
and first ATPG results,’’ IEEEDes. Test. Comput., vol. 17, no. 3, pp. 44–53,
Sep. 2000.

FILIPPO MINNELLA received the master’s
degree from Politecnico di Torino, in 2018, where
he is currently pursuing the Ph.D. degree. He was
with STMicroelectronics Automotive Group as
an IC Designer focusing on digital circuits for
mixed-signal devices and developing different
SoC solutions. His main research interests include
digital circuits optimization, EDA, and HLS.

JORDI CORTADELLA (Fellow, IEEE) received
the Ph.D. degree in computer science fromUniver-
sitat Politècnica de Catalunya, Barcelona, Spain,
in 1987. He is a Professor with the Computer
Science Department, Universitat Politècnica de
Catalunya. His current research interests include
formal methods and computer-aided design of
VLSI systems, with a special emphasis on asyn-
chronous circuits, concurrent systems, and logic
synthesis. He is a member of Academia Europaea.

He received the Best Paper Awards at the International Symposium on
Advanced Research in Asynchronous Circuits and Systems, in 2004 and
2016, the Design Automation Conference, in 2004, and the International
Conference on Application of Concurrency to System Design, in 2009.
He has served on the technical committees of several international confer-
ences in the field of design automation and concurrent systems.

MARIO R. CASU (Senior Member, IEEE)
received the Ph.D. degree in electronics and
communications engineering from Politecnico di
Torino, Torino, Italy, in 2001. He is currently an
Associate Professor with Politecnico di Torino.
His research interests include systems-on-chip
(SoC) with specialized accelerators, system-level
design and design methodology for FPGAs and
ASICs, and embedded machine learning. He is
also interested in the design of circuits, systems,

and platforms for industrial applications, such as biomedical, automotive,
and food. His past work focused on the latency-insensitive design of SoC and
networks-on-chip. He regularly serves on the Technical Program Committee
for international conferences, such as DAC, ICCAD, and DATE.

MIHAI T. LAZARESCU (Senior Member, IEEE)
received the Ph.D. degree in electronics and com-
munications from Politecnico di Torino, Italy,
in 1998. He is currently an Assistant Professor
with Politecnico di Torino. He was a Senior Engi-
neer with Cadence Design Systems and founded
several startups. He has coauthored over 60 sci-
entific publications, four books, and international
patents. His research interests include design tools
for the WSN/IoT platforms, ubiquitous environ-

mental sensing, efficient neural networks, indoor human localization, edge
and the leaf IoT data processing, and high-level HW/SW co-design and
synthesis.

LUCIANO LAVAGNO (Senior Member, IEEE)
received the Ph.D. degree in electrical engineer-
ing and computer science from UC Berkeley,
in 1992. He was an Architect with POLIS HW/SW
Co-Design Tool. From 2003 to 2014, he was an
Architect with Cadence CtoSilicon High-Level
Synthesis Tool. Since 1993, he has been a Pro-
fessor with Politecnico di Torino, Italy. He has
coauthored four books and over 200 scientific
papers. His research interests include the synthe-

sis of asynchronous circuits, HW/SW co-design, high-level synthesis, and
design tools for wireless sensor networks.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

35840 VOLUME 11, 2023

