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Abstract
Collective cellmigration is amulticellular phenomenon that arises in various biological
contexts, including cancer and embryo development. ‘Collectiveness’ can be promoted
by cell-cell interactions such as co-attraction and contact inhibition of locomotion.
These mechanisms act on cell polarity, pivotal for directed cell motility, through influ-
encing the intracellular dynamics of small GTPases such as Rac1. To model these
dynamics we introduce a biased random walk model, where the bias depends on the
internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and
chemoattractive cues. In an extensive simulation study we demonstrate and explain
the scope and applicability of the introduced model in various scenarios. The use of a
biased random walk model allows for the derivation of a corresponding partial differ-
ential equation for the cell density while still maintaining a certain level of intracellular
detail from the individual based setting.
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1 Introduction

Collective behaviour is ubiquitous in the living world and can be observed on various
length-scales in many different cells and organisms (Sumpter 2010; Deisboeck and
Couzin 2009; Friedl et al. 2004; Li et al. 2013). One example is collective cell migra-
tion, which is involved inwound-healing (Friedl andGilmour 2009), cancermetastasis
(Friedl and Gilmour 2009; Rørth 2009; Li et al. 2013) and embryonic development
(Friedl and Gilmour 2009; Schumacher 2019). Notably, both metastatic cancer cells
and neural crest cells undergo epithelium-to-mesenchyme transition (Theveneau and
Mayor 2012; Friedl and Gilmour 2009). Hence, studying one can also give insights
into the other.

During vertebrate embryogenesis, the coordinated migration of neural crest cells
(NCCs) plays a crucial role (Theveneau and Mayor 2012; Friedl and Gilmour 2009).
NCCsare amultipotent cell population that undergoes epithelial-to-mesenchymal tran-
sition during embryonic development (Theveneau andMayor 2012). In their epithelial
state, they reside in the neural tube, a precursor tissue of the brain and spinal cord.
However, in their mesenchymal state, NCCs either migrate individually or collec-
tively through the embryo, differentiate into various cell types, and contribute to the
formation of a multitude of developing tissues and organs (Weston 1970). Success-
ful migration of NCCs involves a diverse array of processes that vary both between
species and between different types of NCCs, such as cranial, vagal, trunk, or sacral
NCCs (Bronner and Simões-Costa 2016).

A combination of both in vivo and in vitro experiments have demonstrated that
NCC migration involves various contributing mechanisms (Carmona-Fontaine et al.
2011; Boer 2015; Burns et al. 2002; Theveneau et al. 2010). In in vitro studies with
zebrafish and Xenopus, the presence of co-attraction, contact inhibition of locomotion
(CIL), and spatial confinement were sufficient for the successful collective migration
of NCCs (Carmona-Fontaine et al. 2011). Conversely, in vivo investigations indicate
that a chemoattractant, such as Sdf1, is required for the guided migration of NCCs
in a particular stage of embryonic development in zebrafish (Boer 2015). Moreover,
alternative in vivo studies involving vagal NCC transplantation into the sacral neu-
roaxis suggest that a chemoattractive cue is dispensable for vagal and sacral NCCs in
chick and quail embryos, as these NCCs were capable of colonising the hindgut by
following pathways usually taken by sacral cells (Burns et al. 2002). The reader is
referred to Theveneau and Mayor (2011), Theveneau and Mayor (2012) for reviews
on mechanisms involved in NCC migration.

Using mathematical modeling in this context to simulate biological experiments in
silico can contribute to the support or explanation of hypotheses and enhance under-
standing of the mechanisms involved. Previous approaches to model the collective
behaviour of NCC comprise, for example, off-latice individual based approaches
(McLennan et al. 2012, 2015a; Schumacher 2019), cellular Potts models (Land-
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man et al. 2011), agent-based models (Schumacher 2019; Wynn et al. 2012, 2013;
Carmona-Fontaine et al. 2011; Szabó et al. 2016; Martinson et al. 2023) and discrete
modelswith polygonal cell structures (Merchant et al. 2018;Merchant andFeng 2020).
The proposedmodels differ not only in their approach but also in the level of biological
detail taken into consideration as well as in the type of mechanisms involved in the
collective motion.

In the latter mentioned models (Merchant et al. 2018; Merchant and Feng 2020),
cell-cell contacts mediate the Rac1 and RhoA levels on the cell membrane, which in
return influence the direction of movement. This modeling approach captures more
details about intracellular processes involved in cell migration, however, the complex-
ity of the model limits to a pure simulation study, as opposed to less involved models
that can potentially admit analytical investigation. In the individual-based models,
mentioned above, the cell-cell and cell-environment interactions directly affect the
direction of movement without considering the intracellular Rac1-RhoA bridge. On
the other hand, derivation techniques can be applied to acquire a corresponding contin-
uous equation for the cell density. For an extensive review onmodelling techniques for
collective cellmigration the reader is referred toCamley andRappel (2017),Giniūnaitė
et al. (2020).

The aim of this work is to combine the advantages of a simple random walk model
with the consideration of intracellular processes. Hence, we introduce a biased random
walkmodelwhere the bias depends on the intracellularRac1 levels surrounding the cell
midpoint. By using a random walk approach we maintain the possibility of deriving
a corresponding partial differential equation for the cell density following standard
methods, e.g. Painter and Hillen (2018), Stevens and Othmer (1997). In this paper we
present a two-dimensional hybrid lattice model describing the continuous evolution of
the intracellular Rac1 dynamics and the discrete-in-time migration of the cells biased
by the internal differences in Rac1. In Sect. 2 the mathematical model is introduced,
before the simulation setup is presented in Sect. 3. The numerical simulation results
are presented in Sect. 4 and discussed in Sect. 6. In certain cases a representation of
this model can be derived in the form of a system of partial differential equations and
the main principle of the derivation is demonstrated in Sect. 5.

1.1 Mechanisms involved on themolecular scale

One of the main mechanisms regulating cell polarity and hence the direction of
movement for amotile cell is the intracellularRac1-RhoA system (Mayor and Etienne-
Manneville 2016). At locations with higher Rac1 activity, actin polymerization is
enhanced and the extension of lamellipodia and filopodia is promoted; in other words,
protrusions are formed at the leading edge of the cell (Mayor and Etienne-Manneville
2016). Areas with a higher concentration of activeRhoA form at the trailing edge of the
cell, where it controls myosin phosphorylation and actomyosin contractions that pull
the back end of the cell forward (Mayor and Etienne-Manneville 2016). The result-
ing cell-polarity is pivotal for directed cell motility (Mayor and Etienne-Manneville
2016).
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Chemokines, such as Stromal cell-derived factor 1 (Sdf1) or Vascular endothelial
growth factor (VEGF), have been found to act as chemoattractants for specific sub-
populations of NCCs (Belmadani et al. 2005; Braun et al. 2002;McLennan et al. 2010,
2015b). Additionally, it has been shown that Sdf1 is capable of stabilizing and main-
taining the polarity of NCCs induced by cell-cell contacts (Theveneau et al. 2010).

It has been observed that most NCC types tend to migrate collectively, rather than
individually (Theveneau andMayor 2011;Kulesa et al. 2010). Short-range chemotaxis,
up the gradient of the auto-produced complement factor C3a, has been suggested
as a mechanism for maintaining cohesiveness within the NCC cluster (Carmona-
Fontaine et al. 2011). Specifically, when C3a binds to its receptor C3aR, it activates
theRac1 pathway (Carmona-Fontaine et al. 2011), inducing sufficient cell polarization
in escaping cells to enable them to return to the group (Carmona-Fontaine et al. 2011).

A counterbalance to the co-attraction is a short-ranged repulsion mechanism
between colliding cells, referred to as contact inhibition of locomotion (CIL) (Mayor
and Carmona-Fontaine 2010). This phenomenon, first observed and described in vitro
in fibroblasts (Abercrombie and Heaysman 1953, 1954) causes cells to alter their
migration direction upon collision and move in opposing directions. In Xenopus and
zebrafish, NCCs have been shown to exhibit CIL in both in vivo and in vitro studies
(Carmona-Fontaine et al. 2008). Additionally, it has been demonstrated that the induc-
tion of cell polarity through cell-cell contact is pivotal for the collective chemotaxis in
NCCs (Theveneau et al. 2010). Mechanistically, on the site of cell-cell contact RhoA
increases (Carmona-Fontaine et al. 2008) while Rac1 activity decreases concurrently
(Theveneau et al. 2010). These mechanisms are induced by N-Cadherin andWnt/PCP
signalling processes (Carmona-Fontaine et al. 2008; Theveneau and Mayor 2010).

Other important factors influencing NCC migration include surrounding spatial
constraints or chemorepellents (Shellard and Mayor 2019). Extracellular matrix com-
ponents, such as Versican or signalling factors such as ephrins, semaphorins and DAN
act as chemorepellents and prevent mixing between separate NCC streams and keep
the NCC from invading certain tissues (Theveneau and Mayor 2012). In Xenopus, the
repulsive signal Versican is located at the border of the NCCs and by acting as spatial
constraint it enhances NCC migration (Szabó et al. 2016).

The following articles provide detailed information on chemotaxis in NCCs (Shel-
lard and Mayor 2016), chemical and mechanical signals involved in NCC migration
(Shellard and Mayor 2019), contact inhibition of locomotion (Mayor and Carmona-
Fontaine 2010) and molecular mechanisms involved in regulation of Rac1 and RhoA
(Theveneau and Mayor 2010), respectively.

2 Model description

In this section, we present a novel hybrid model to describe the collective movement
of neural crest cells (NCCs). Our model adopts a biased random walk in discrete time
and space, where the internal state variables that govern the bias evolve continuously
between two discrete jumps. The distinctive feature of our approach lies in the unique
cell shape that we consider. Previous models of collective migration and chemotaxis
have employed random walks of point particles (Stevens and Othmer 1997), which
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Fig. 1 Visualization of a single cell on a two-dimensional lattice: Cell center (grey dot); membrane points
(green crosses); Area occupied by a cell (blue circle); Potential locations for jumping (light red dots)

enable the derivation of a corresponding partial differential equation for the total cell
density (Painter and Hillen 2018). However, this approach fails to capture any spatial
heterogeneity with respect to an internal cell state. In contrast, other models such
as those presented in Merchant et al. (2018), Merchant and Feng (2020) employ a
polygon shape to represent the cell and track internal cell states at multiple boundary
locations as well as within the cell.While thesemodels capturemore of the complexity
of internal cell processes, deriving an equation for the total cell density from these
models using standard techniques is challenging, necessitating the use of large scale
simulations to gain insight.

In our approachweaim to combine the advantages of usingpoint particlemodels and
spatially extended models. To achieve this, we track the center of each cell, which acts
as a point particle, and incorporate additional spatial detail through the implementation
of a surroundingmembrane composedof adjacent grid points for every cell (as depicted
in Fig. 1). By doing so, we are able to retain information on the internal cell states,
while still having the potential to derive continuous equations for the cell densities.

The key model assumptions are as follows:

• Domain: Our model assumes that the cells migrate on a two-dimensional discrete
lattice, characterized by a fixed grid size. In certain simulationswewill also impose
spatial constraints to mimic the effects of surrounding tissue or chemorepellents.
Specifically, the confinement is represented as a corridor with walls on three sides
that are “soft", allowing cells to cross them and exit the corridor. However, this
action incurs a negative impact on the internal variable that drives the directional
bias of the cell. Thus, cells are biased to migrate away from regions outside the
corridor, to account for the constraints imposed by the surrounding tissue (Szabó
et al. 2016).

• Number of cells: A population of N cells is considered and cells are placed on
the grid with the position of their midpoints at one of the lattice points. We do
not consider any cell division or cell death, therefore the number of cells remains
constant.

• Shape of cells: Each cell is characterised by the midpoint, representing the central
cell position, and four adjacent points, mimicking the cell membrane, see Fig. 1.
We assume that the cells do not undergo any growth or division, thus the distance
between the membrane point and the cell position is consistently equal to the grid
size, and the shape of the cell remains constant.
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• Movement of cells:Cells undergo a biased randomwalkwith a fixed velocity on the
lattice, meaning they move a distance h (grid size) per time step. The direction of
movement is biased by the differences in the internal state variable along one axis,
resulting in a tendency for the cells tomove in directionswith higher concentrations
of the internal state. We allow the cells to overlap either partially or entirely, as
our model does not account for all the spatial dimensions present in reality. Hence,
the occurrence of cells with the same location should be interpreted as cells that
are stacked on top of one another rather than cells occupying the same physical
space. We do not allow for cell rotation in our model.

• Internal state variable:We consider the intracellular molecule Rac1 as the internal
state variable that regulates cellmotility. The support ofRac1 for each cell is limited
to the directly adjacent grid points of the central cell position and changes over
time. The directional bias is influenced by the difference of the internal state value
along one axis, where a higher difference in Rac1 leads to a higher probability
in moving in the direction where more Rac1 is present. The internal variable is
subject to the following extracellular mechanisms:

– Increase by chemoattractant Sdf1:We assume that the chemoattractant’s profile
is constant in time and independent of the cell population. Furthermore, the
profile should be non-negative and continuous. We consider different profiles
for different simulation scenarios.

– Increase by co-attraction molecule C3a:
The process of co-attraction between cells is governed by the chemoattractant
molecule C3a, which is synthesized and released by each cell. We assume that
these processes occur at a faster time scale than those related to the polarization
of the cell or cell movement. Accordingly, we consider each cell to have its
own stationaryC3a-profile, which is radially symmetric and non-negative, and
decreases with distance from the cell, e.g. as proposed by Carmona-Fontaine
et al. (2011). Note that although the individual C3a profile does not change
in time due to any production, diffusion or degradation, the total C3a profile
changes in time due to the movement of the cells.We assume that an individual
cell can sense C3a released by neighbouring cells if the cells centers have a
distance less than R, where C3a surrounding different cells are treated in an
additive way. In other words, the concentration of C3a around an individual
cell is positive only within a radius R around the cell midpoint.

– Decrease due to contact inhibition of motion:
Upon contact with neighbouring cells, the local Rac1 concentration decreases
at the point of contact. As “contact" we consider the overlapping of one or
more center or membrane points occupied by a cell, see Fig. 2c.

– Natural inactivation:
We assume that Rac1 is naturally inactivated at a fixed rate.

– Decrease upon contact with spatial constraints:
The spatial confinement representing surrounding tissue is implemented as a
chemorepellent that decreases the local Rac1 activity. Consequently, the cells
are discouraged from leaving the corridor due to the negative impact of the
confinement on their internal variable.
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Fig. 2 Schematic of the four mechanisms incorporated in the model, each displayed individually in the
absence of the others. Area occupied by one cell is displayed with a color gradient to emphasis the Rac1
polarization, Blue arrows indicate most probable direction of movement. Influences of a Chemoattractant,
b Co-attractive C3a profiles (blue circles), c Contact inhibition of locomotion and d spatial constraints on
the internal Rac1 states

2.1 Model formulation

Let x = (x1, x2) ∈ hZ2 be a point on the two-dimensional discrete lattice with grid
size h and letA(x) := {x ± he1, x ± he2} and A0(x) := {x} ∪A(x) denote the set of
all adjacent grid points to x, excluding and including x, respectively. Here, e j denotes
the j-th unit vector. As for the biological interpretation of these two sets, the former
can be seen as the discretized membrane of the cell centered at x and the latter is then
the area occupied by the whole cell.

Consider a number of N individual cells located on the lattice and let Pi (tn) denote
the position of the i-th cell at time tn ∈ τN with initial position Pi (0) = xi0, for
i = 1, ..., N . Furthermore, let P(t) = {Pi (t) : i = 1, ..., N } be the set of all cell
positions at time t . We assume that each cell leaves its position within a time interval
[tn, tn+1) with probability 1.

The position at time tn of the i-th cell can be written as the sum of all jumps that
were made up until that time,

Pi (tn) = xi0 +
n∑

k=1

Y i
k , (1)
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where Y i
n ∈ {±he j } j=1,2 denotes the outcome of the decision the i-th cell makes

for the direction of movement in the time interval [tn−1, tn).
Let Ci (x, t) denote the internal state variable of the i-th cell at (x, t) for t ≥ 0.

Note, that in comparison to the evolution of a cell position discrete in time, the time
variable here is continuous. Biologically, this variable represents the concentration of
the intracellular molecule Rac1 at the cell membrane. The temporal change in this
variable is twofold:

1. Every discrete time step, when a jump occurs, the cell midpoint and membrane
points change. Hence, the support of Ci (x, t) changes every discrete time step.
The support of Ci (x, t), i.e. the points where Ci (x, t) �= 0, is restricted to the
adjacent grid points to the central cell position, i.e. supp

(
Ci (x, t)

) = A(Pi (tk))
for tk ≤ t < tk+1.

2. Between two discrete jumps, i.e. for tk ≤ t < tk+1, the internal state will be subject
to changes described by the following ordinary differential equation

d

dt
Ci (x, t) =

{
λ1Si1(x) + λ2Si2(x, tk) − B(x, tk)Ci (x, t) for x ∈ A(Pi (tk)),

0 else ,

(2)

where B(x, tk) = λ3Si3(x, tk) + λ4 + λ5b(x) and λ1, λ2 represent the activation
rate of Rac1 by a chemoattractive and a co-attractive cue, respectively, λ3 and λ5
are the deactivation rates of Rac1 by contact inhibition of locomotion and spatial
constraints, respectively, and λ4 is the natural deactivation rate of Rac1. The rates
λ j , for j = 1, . . . , 5, are positive constants. The system is completed by initial
conditions

Ci (x, tk) =
{
Ci (x − Y i

k , tk) for x ∈ A(Pi (tk)),

0 else,
(3)

where x−Y i
k is the previous location of this membrane point. For t = 0 we define

Ci (x, 0) =
{
C0 > 0 for x ∈ A(xi0),
0 else.

In (2), S1(x) ≥ 0 is the profile of the outer chemoattractant Sdf1which we assume
to be constant in time, Si2(x, tk) is the cumulative co-attractive profile for the i-
th cell, sensing all the neighbours that are located within a radius R of the i-th
cell, i.e. P j (tk) ∈ P(tk)\Pi (tk) such that ‖P j (tk) − x‖ < R for x ∈ A(Pi (tk))
and j = 1, . . . , N , and where ‖ · ‖ denotes the Euclidian norm. The individual
co-attraction profiles are given by

Si2(x, tk) =
∑

P j (tk )∈P(tk )\Pi (tk )
‖P j (tk)−x‖<R

M exp

(
− 1

w
‖P j (tk) − x‖

)
, (4)
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with parameters M and w, and Si3(x, tk) acts as a counter of overlapping cells

Si3(x, tk) =
∑

j≤Ncells
j �=i

1A0(P j (tk ))(x).

Finally, b(x) describes potential spatial obstacles or constraints. We have that
b(x) = 0 wherever cells should be able to move freely and b(x) > 0 at locations
of spatial constraints, e.g. where the walls of a corridor are located.

Let T i
x→y denote the probability of the i-th cell jumping from position x to position

y. We assume that the cells move with constant speed h/τ , which in particular means
that remaining at the same position and jumps of size larger than h are impossible
and that a cell leaves its position with probability 1 within one discrete time step τ .
Formally this means

T i
x→y = 0 for all y /∈ A(x) and

∑

y∈A(x)

T i
x→y = 1.

The probability of the i-th cell jumping from a position x at time tk to an adjacent
position y at time tk+1 will be assumed to have the form

T i
x→y = T̂ i

x→y
∑

y∈A(x) T̂ i
x→y

,

with

T̂ i
x→y =T̂

(
Ci (y, tk+1) − Ci (x − (y − x), tk+1)

)

=α + βg
(
Ci (y, tk+1) − Ci (x − (y − x), tk+1)

)
,

where g is an increasing (g′(·) > 0) and bounded (limx→±∞ g(x) = ±c) function
and positive constants c, α, β, such that α > βc to ensure T i

x→y > 0. The function g
represents the bias coming from the internal state variable of the cell. The boundedness
assumption on g ensures positivity of the probabilities and is biologically reasonable.
We choose an increasing function to represent the assumption that a higher difference
in the internal state variable leads to an increased polarity and with that an increased
probability of moving into a beneficial direction. We will compare two bias functions
g(·):
1. Symmetric bias function:We assume that g(·) is an odd function, i.e. that g(−x) =

−g(x). Due to the oddness of the function the positive bias in one direction equals
the negative bias in the opposite direction. This leads to a normalization constant
4α in the two spatial dimensions,

T i
x→y = T̂ i

x→y

4α
.

123



   32 Page 10 of 32 V. Freingruber et al.

Fig. 3 (Left) Different gain functions, α1 = 0.6, α2 = 0.1, β1 = β2 = 1/π . (Right) Initial non-
dimensionalized configuration in two spacial dimensions. The blue dots mark the initial positions of the
10 cells, the mean position is marked with a red dot. The boundary of the corridor is depicted by red lines
located at x1 = 20, x2 = 0, x2 = 10. Note, that only some simulations were conducted in the domain with
boundaries, in other cases there was no spatial constraint

Note that the probability of moving vertically or horizontally is equal to 1/2 due
to that choice. This also means that the maximal probability of jumping into any
direction is 1/2 in this case.

2. Asymmetric bias function: In case a cell is confined on three of its sides, the
symmetric bias function might yield unsuitably weighted probabilities since the
probability of moving into two of those confined sides is still 1/2. Hence, we also
consider an asymmetric bias function that only adds to the probability if there is a
positive benefit of moving into a certain direction, see Fig. 3 (left panel).

3 Simulation setup

The initial setup: A number of Ncells = 10 cells are initially placed as in Fig. 3 (right
panel). The initial configuration aims to represent a densely organised cell cluster
that has just undergone epithelial to mesenchymal transition, where cells are still
maintaining cell-cell contacts at t = 0 but will be able to move independently in the
next instant. The pseudo-code can be found in Sect. B.

We will differentiate between several main simulation set-ups:

• Two different bias functions g(·):
1. Symmetric bias function: We use an odd function

g1(·) = arctan(·)

and positive constants α1, β1 such that T̂ i
x→y = α1 + β1g1(d) > 0, where

d = Ci (y, tk+1) − Ci (x − (y − x), tk+1). The choice of this function inher-
ently represents the assumption that there can be both, negative and positive,
directional bias.
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2. Asymmetric bias function: We use

g2(d) =
{
0 for d ≤ 0,

arctan(d) + π
2 for d > 0,

and positive constants α2, β2 such that T̂ i
x→y = α2 + β2g2(d) > 0, see Fig. 3

(left panel).

Note that we will chose a different value for α1 and α2 in both these cases,
see Table 2, as the value of α1 in the symmetric case has to be sufficiently large to
ensure positivity of the probability.

• With or without spatial confinement: In cases with spatial confinement, the domain
within which cells are free to move is a corridor displayed in Fig. 3 (right panel).
The area outside the corridor, with boundary marked by red lines, mimics the pres-
ence of chemorepellents or spatial constraints. Note that the cells are technically
able to move across the boundary since the presence of corridor walls makes it
only less likely but not impossible for them to move there. For these simulations
we will use the following corridor function b(x):

b(x) =

⎧
⎪⎨

⎪⎩

−x1 + 20, for x1 < 20,

x2 − 10, for x2 > 10,

−x2, for x2 < 0,

in Eq.(2). The above ensures that movement away from the corridor becomesmore
difficult as the cell to corridor distance increases, e.g. due to increasing presence
of a chemorepelling substance such as Versican in the tissue. This assumption is
not based on any biological observations and purely practical, ensuring that the
cells move back into the corridor with higher probability.

• With or without co-attraction, contact inhibition of locomotion and natural
inactivation of Rac1: In cases without one or more of these mechanisms, the
corresponding rate in the ODE (2) is set to 0. We distinguish between different
cases with different combinations for (in-)active mechanisms, see Table 1. As a
benchmark scenario we will consider the case without CIL, co-attraction, natural
inactivation and spatial confinement, i.e. the chemoattractant is the only active
component for these simulations. This case can be regarded as the chemotaxis of
individual cells without any cell-cell interactions.

• With different chemotaxis settings:

1. Without a chemoattractive profile.
2. With a constant-in time chemoattractive profile

Si1(x) = f1(x), with f1(x) = x1 + 100

100
.

3. With a chemoattractive profile that can only be sensed by a cell if the cell
is already sufficiently polarized due to cell-cell interactions, i.e. if sufficient
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Table 1 Table of cases
considered in numerical
simulations: co-attraction
(COA), contact inhibition of
locomotion (CIL), natural
inactivation (NI), spatial
constraints (SC)

Case COA CIL NI SC

Benchmark (BM) – – – –

A – – – +

B – – + +

C – + + +

D + – + +

E + + + +

F + + – +

Rac1 is present (Theveneau et al. 2010). This switch is modelled with a Hill
function that is dependent on the local Rac1 concentration

Si1(x) = f2(x), where f2(x) = Ci (x, t)n

Ci (x, t)n + Kn
f1(x),

where K is the threshold for sufficient cell-cell interaction to sense the chemoat-
tractant Sdf1 and n ≥ 1.

• A strong and weak chemotaxis regime: This will be done by a modulation of
parameter λ1 in Eq. (2).

3.1 Parametrization of themathematical model

We follow Woods et al. (2014) and assume that cells have a fixed diameter of 40µm
and choose the grid size accordingly so that h = 1 ≡ 20µm. NCCs migrate with an
average speed of approximately 3µm/min, on the faster end in a solitary state and
slower when they are part of a cluster (Woods et al. 2014). For this reason, we chose
the time step τ = 1 ≡ 7min so that we obtain a constant speed of 20µm/7min ≈
2.86µm/min. The system is non-dimensionalized in time and space in a way such
that h = 1, τ = 1. The rates λi , i = 1, . . . , 5, are non-dimensionalized with the
non-dimensionalization parameter λ̃ = 4 · 102s ≈ 7 · 60s. In reality cells slow down
upon contact with other cells and then take some time to regain their regular speed. In
this model we do not consider any variation in speed, for simplicity.

The corridors, through which NCCs migrate, vary in width depending on the exact
type of the NCC as well as on the species (Szabó et al. 2016). Generally, larger clusters
migrate through wider tubes (Szabó et al. 2016). We follow Woods et al. (2014) and
chose the width of the corridor to be 200µm, which corresponds to 5 cell diameters.
The number of cells in a group of interacting NCCs also depends on the specific
NCC type and species, for computational reasons we simulated a cluster comprised
of 10 cells.

For the co-attractive profile we assume a steady state distribution at every time
step since the diffusion of C3a acts on much faster timescales than the cell migration.
According to Woods et al. (2014) this steady state distribution can be described by
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a Bessel function, and approximated by a decaying exponential with an approximate
half maximum length of 110µm. Adapting to our model, this leads to the choice of
d = 8 in Eq. (4). The maximum co-attractive strength and the rates of Rac1 activation
and deactivation were adapted from Merchant et al. (2018).

3.2 Statistics for numerical simulation results

To describe the two-dimensional simulation results, each simulation setup was ran
Nsim = 100 times. To quantify the migrated distance we use the mean x1 position

Mx1(tk) := 1

Nsim

1

Ncells

∑

j≤Nsim

∑

i≤Ncells

xi1, j ,

evaluated at a given time t . To quantify the dispersion of clusters we will use the mean
root-mean-squared-deviation of the clusters

MRMSD(tk) := 1

Nsim

∑

j≤Nsim

√√√√ 1

Ncells

∑

i≤Ncells

‖x̄ j (tk) − Pi
j (tk)‖2,

where Pi
j (tk) is the position of the i-th cell in the j-th simulation at time tk , x̄ j (tk) is the

mean position of the cluster in the j-th simulation at time tk and Ncells is the number
of cells used for one simulation. While other measures can be conceived, we utilise
these for their relative simplicity. In Fig. 4 the simulation results are summarized by
plotting the measure for migrated distance Mx1(t) − Mx1(0) against the measure for
dispersal MRMSD(t) − MRMSD(0).

4 Results

We provide a summary figure of the simulation results in Fig. 4, where the output of
each simulation is represented in terms of (migrated distance, cluster dispersal) after
350min; points positioned further to the right indicate highermigrated distances, while
points positioned higher up the axis indicate greater dispersal of the initial cluster.
Simulation scenarios A-F are described in Table 1, and g1 and g2 are the two different
bias functions used. Figure5 illustrates typical model output for some representative
simulations. Figures6, 7, 8 provide more detailed statistics of certain scenarios. In
Figs. 10, 11 and 12 we display the temporal evolution of the key measures presented
in the summary plot Fig. 4. More detailed descriptions follow below.

4.1 Spatial confinement promotes collective cell migration

All simulations were conducted with and without spatial constraints, with the results
consistently indicating that confinement facilitates directedmigration. The spatial con-
straints were implemented as triggering a decrease in Rac1, i.e. as an inhibition of cell
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Fig. 4 Summary of simulation results: migration distance Mx1 (350min) − Mx1 (0) vs. dispersion
MRMSD(350min) − MRMSD(0) of the clusters

movement factor. In the absence of spatial constraints or a dominant chemoattrac-
tive cue, the initially dense cell clusters dispersed in the majority of cases. Therefore,
spatial constraints appear to be not only advantageous but also necessary for main-
taining a certain degree of cohesiveness within the migrating cluster, considering the
other assumptions we made on the system, especially the assumptions made on the
co-attractive strength, see Fig. 6.

4.2 Asymmetric gain function allows for a strong cell polarity and increases
migration distance

We conducted simulations with two different bias functions, g1 and g2, to investigate
different abilities tomaintain stable cell polarizations.When considering g1, the polar-
ization alternates on average every other time step between pointing in a horizontal
or vertical direction, whereas g2 allows for a strong polarization, potentially guiding
the cell down the most favorable path. Based on these assumptions, we expected bet-
ter guided movement with g2 as the probability of moving in the most advantageous
direction can exceed 1/2.
This expectation was confirmed in all simulation experiments, as shown in Figs. 6,
7, and 8, where cell clusters migrated further when g2 was used, sometimes by a
considerable margin. The most crucial distinction between using an asymmetric and
symmetric gain function is evident in cases ‘A’ and ‘B’, where interactive mechanisms
are inactive, and the chemotactic cue is the only factor influencing the bias. The
asymmetric function allows the bias to dominate the probability of moving in the
direction of the chemotactic cue, see Fig. 5a, while the usage of g1 leads to less directed
movement, see Figs. 7 and 8.
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Fig. 5 Individual realizations of simulations with S1(x) = f1(x), spatial confinement and gain function
g2. Initial conditions and positions at t = 350min are displayed by grey and black dots, respectively. The
trajectory of an individual cell is visualized by a purple line. Note that the dimensions are stretched in the
vertical direction, which assists visualisation of individual cell positions and tracks
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Fig. 6 Mean x1-position at t = 350 min in different scenarios with or without co-attraction (CoA), contact
inhibition of locomotion (CIL), natural Rac1 inactivation (NI) and spatial constraints (SC) in the absence
of a chemoattractive substance

4.3 In the absence of a chemoattractant

Prior studies have presented in silico findings regarding experiments that exclude
chemoattractive cues, solely focusing on the impact of cell-cell interactions and poten-
tial spatial restrictions (Carmona-Fontaine et al. 2011; Szabó et al. 2016). Our present
study employs analogous experiments to assess the consistency of our model with
regards to these circumstances.

In the absence of all cell-cell and cell-environment interaction mechanisms, cells
move randomly without any preferential direction, and hence the unnormalized rate
of movement in either direction is equal to αi + βi gi (0), resulting in a normalized
probability of 1/4 for all cells. This scenario serves as the base case (BM), and the
results remain the same for both gain functions, as shown in Fig. 6. Mechanisms are
added one at a time to demonstrate their influence. The addition of spatial constraints
promotes cell migration down the corridor, as demonstrated in case ‘A’ in Fig. 6. The
natural inactivation rate of Rac1 reduces the ‘memory time’ of previous interactions,
causing cells to migrate slightly less far when natural inactivation (NI) is active, see
case ‘B’ in Fig. 6. The inclusion of co-attraction encourages cells to cluster densely,
preventing collective or individualmigration, see ‘C’ in Fig. 6.However, the addition of
CIL promotes the dispersal of individual cells while still maintaining a certain level of
cohesiveness within the cluster, see case ‘E’ in Fig. 6. Omitting the natural inactivation
of Rac1 slightly increases the migrated distance, see case ‘F’ in Fig. 6, which is similar
to the effect observed in case ‘B’ compared to case ‘A’. When the deactivation rate
is set to zero, the Rac1 level retains information regarding previous encounters with
neighboring cells or the environment. All of the above observations hold true for both
g1 and g2.When the co-attractionmechanism is inactive, the system behavior becomes
strongly dependent on the form of gain function used. The gain function g2 allows
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Fig. 7 Mean x1-position at t = 350 min with chemoattractive profile S1(x) = f1(x) and small λ1 in
different scenarios with or without co-attraction (CoA), contact inhibition of locomotion (CIL), natural
Rac1 inactivation (NI) and spatial constraints (SC)

for strong singular cell polarity, and consequently, cells actively disperse, resulting
in an increased migration distance on average but with a large standard deviation. In
contrast, the symmetric gain function g1 restricts cell polarity and hence results in
less drastic dispersal. In summary, in the absence of a chemoattractant cells migrate
farthest when both co-attraction and contact inhibition of locomotion are active.
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Fig. 8 Mean x1-position at t = 350 min with chemoattractive profile S1(x) = f1(x) and large λ1 in
different scenarios with or without co-attraction (CoA), contact inhibition of locomotion (CIL), natural
Rac1 inactivation (NI) and spatial constraints (SC)

4.4 Low rate of Rac1 up-regulation by chemoattractant Sdf1

Unsurprisingly, introduction of a chemoattractive cue leads to enhanced migration
along the corridor compared to the absence of a chemoattractant, see Fig. 7. Note that
the chemoattractive profile is constant in the second spatial dimension and, hence, any
movement in the second spatial dimension is due to other mechanisms or randomness;
we note further that the vertical axis scale differs between Figs. 7 and 6. As before, an
absence of CIL while co-attraction is active results in high clustering of cells but with
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the prevention of efficient migration, see case ‘C’ in Figs. 7, and 5b. This observation
does not depend on the gain function or chemoattractive profile used.

As previously mentioned, the gain function g2 generates a strong cell polarity and,
hence, the bias leading the cells up the gradient of the chemical cue is compara-
bly strong in the absence of other competing interaction mechanisms, see cases ‘A’
and ‘B’ in Fig. 7a. This observation holds even when the Rac1 activation rate by the
chemoattractive profile is dependent on the active Rac1 concentration itself, and the
Rac1 activating co-attraction is switched off, see ‘A’ and ‘B’ in Fig. 7b. In these cases
almost every movement is up the chemical gradient, similar to the case in Fig. 5a.

The gain function g1 does not create such a drastic cell polarization and, hence, the
average migration down the corridor in the absence of any interaction mechanisms
other than the chemical cue is not as efficient here, see ‘A’ and ‘B’ in Fig. 7a. For both
gain functions g1 and g2, adding the co-attraction adds a competing mechanism to
the chemical cue and as a result the clusters migrate less far, see cases ‘E’ and ‘F’ in
Fig. 7a.

The most interesting result in this setting is obtained from using the gain function
g1 and the Hill-type response to the chemoattractive profile. Here, the cells perform
best when both the co-attraction and co-repulsion mechanism are active, see cases ‘E’
and ‘F’ in Fig. 7b. Both cases ‘E’ and ‘F’ perform similarly, although the clusters move
marginally further if there is no natural inactivation. An example of one realization of
case ‘E’ is shown in Fig. 5c.

4.5 Higher rate of Rac1 up-regulation by chemoattractant Sdf1

When theRac1 activation rate by the chemoattractant is increased further, themigration
distance increases significantly in case ‘C’ but only marginally in cases ‘E’ and ‘F’,
see Fig. 8a. In cases ‘A’ and ‘B’ the migratory distance did increase only when g1
was used as it was already at its maximum in the g2 case, see Fig. 8a. In case ‘C’
co-attraction and strong chemotaxis together manage to move the tight cluster further
down the corridor, see Figs. 8a and 8b.

When the Hill-type response to the chemoattractant, i.e. S1(x) = f2(x), and the
symmetric gain function g1 are used, the combined effect of CIL and co-attraction
causes again a stronger migration, compared to cases ‘A’ and ‘B’, but is now similar
to when co-attraction only was used, see Fig. 8b.

A summary of the simulation results is given in Fig. 4, and to give the reader a better
overview, the dispersion and displacement behaviours are summarized separately in
more detail in Table 3.

5 Derivation of approximating PDE system

An objective when formulating (1) was to strike a balance between complexity and
simplicity: i.e. allow each cell to be governed by a “tractable level” of intracellular
heterogeneity. To demonstrate this, we provide a proof of concept analysis in which
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Table 3 Table of cases and results with respect to (a) displacement: no significant (n.s.) displacement
(Mx1 (t) − Mx1 (0) ≤ 50µm), small displacement (50µm < Mx1 (t) − Mx1 (0) ≤ 100µm), moder-
ate (mod.) displacement (100µm < Mx1 (t) − Mx1 (0) ≤ 400µm), strong displacement (400µm <

Mx1 (t) − Mx1 (0)), and (b) dispersion: no significant dispersion (MRMSD(t) − MRMSD(0) ≤ 50µm),
small dispersion (50µm < MRMSD(t)−MRMSD(0) ≤ 150µm),moderate (mod.) dispersion (150µm <

MRMSD(t) − MRMSD(0) ≤ 250µm), strong disersion (250µm < MRMSD(t) − MRMSD(0))

S1 S1 = 0 S1(x) = f1(x) S1 = f2(x)
g g1 g2 g1 g2 g1 g2

λ1 0 0 Small Large Small Large Small Large Small Large

Displacement

BM n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

A n.s. Small Mod. Strong Strong Strong n.s. n.s. Strong Strong

B n.s. Small Mod. Strong Strong Strong n.s. n.s. Strong Strong

C n.s. n.s. n.s. Mod. n.s. Mod. n.s. Mod. n.s. Mod.

D n.s. Mod. Mod. Mod. Mod. Mod. n.s. n.s. Mod. Mod.

E Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod.

F Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod.

Dispersion

BM Small Small Small Small Small Small Small Small Small Small

A Small Small Small Small n.s. n.s. Small Small n.s. n.s.

B Small Small Small Small n.s. n.s. Small Small n.s. n.s.

C n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

D Small Strong Mod. Mod. Mod. Mod. Small Small Strong Strong

E Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod.

F Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod. Mod.

we derive the governing continuous PDE system for the evolving cluster distribution.
The subsequent exploration and analysis of the derived system is left for future study.

While we are interested in finding the position of the i-th cell at time t , for a contin-
uous description of the process it is natural to consider the probability distribution of
the i-th cell’s location at time t . In a completely unbiased setting in two dimensions,
the probability of jumping in either of the four directions would be 1/4 and in the
continuous limit we would obtain a pure diffusion equation for the time evolution of
the cells. In our setting we assume that the probability of jumping in a direction is
biased by an internal state variable Ci (x, t) that is non-zero on the cell membrane for
x ∈ A(Pi (t)).

Let pi (x, t) denote the probability of the i-th cell being located at position x at time
t ≥ 0. Initially, we have pi (xi0, 0) = 1 and pi (x, 0) = 0 for all x �= xi0. The change
in probability of the i-th cell being located at x at time t + τ is then

pi (x, t + τ) − pi (x, t) =
∑

y∈A(x)

T i
y→x p

i (y, t) − T i
x→y p

i (x, t), (5)
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Fig. 9 Left: Initial position of cellmidpoint (red) andmembrane points (green)with associated probabilities.
Right: After one step in a purely random walk, cell midpoint positions (red) and membrane points (green)
with associated probabilities

where T i
x→y is the probability of the i-th cell jumping from its current position x to an

adjacent position y ∈ A(x) within a time interval [t, t + τ), as defined in Sect. 2. In
Stevens and Othmer (1997) different dependencies of the transition rates on the bias
inducing variable are discussed and corresponding PDEs are derived.

When following the individual trajectory, the position of the centre of a cell and
the associated membrane points is clearly defined by Pi (t) and A(Pi (t)). In the
continuous description, while the support of the probability pi (x, t) will initially be
just a point, the support of both the centre of the cell and the membrane points will
disperse, see Fig. 9. In Fig. 9 the probability distributions of a single cell (red dots) and
its membrane (green dots) are displayed at times t = 0 and t = τ . The green point in
themiddle of the right hand side of Fig. 9 holdsmembrane information associated with
all the four adjacent potential cell locations. Therefore, in order for themaster equation
formulation to make sense we have to specify the cell midpoint and membrane points
associated with it.

Let Hi
y(P

i (t), t) := Ci (y, t) denote the value of the internal state variable at (y, t)
associated with the midpoint Pi (t) of the cell. Then

T i
x→y = T

(
Hi
y(x, t) − Hi

x−(y−x)(x, t)
)

,

where the first argument of Hi is the cell centre and the subscript y is the considered
membrane point, and the distance ‖x − y‖ = h. Assuming that τ and h are small,
using in (5) the Taylor series expansion about (x, t), and taking the limit as h, τ → 0
such that limh,τ→0(h2/τ) =: D is positive and finite, yields

∂

∂t
pi (x, t) = D∇ ·

[
T (0)∇ pi (x, t) − 4T ′(0)pi (x, t)∇Hi (x, t)

]
,

pi (x, 0) = δ(x − xi0).
(6)
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Note, that assumption limh,τ→0(h2/τ) < ∞ implies h/τ → ∞, hence the effective
speed is infinitely large and the solution pi (x, t) of (6) is non-zero at positions that
are very far away from the starting position after a very short amount of time. Hence,
the PDE is not necessarily a good approximation of the biased random walk for small
t unless one ignores very small densities.

The master equation for internal state variable at the membrane point y correspond-
ing to the cell centered at x is

Hi
y(x, t + τ) − Hi

y(x, t) = F(S1(x), Si2(x, t), S
i
3(x), H

i
y(x, t))

+
∑

z∈A(x)

Tz→x(H
i
x(z, t) − Hi

2z−x(z, t))

Hi
y−(x−z)(z, t) − Hi

y(x, t),

where F represents the change of Rac1 in a time interval [t, t + τ) defined by the
mechanisms described in Sect. 2. The Taylor expansion around (x, t), combined with
the limit as h, τ → 0, yields

∂

∂t
Hi (x, t) = λ1S

i
1(x) + λ2 S̃

i
2(x, t) −

(
λ3 S̃

i
3(x, t) + λ4 + λ5b(x)

)
Hi (x, t)

+D∇ ·
[
T (0)∇Hi (x, t) − 4T ′(0)Hi (x, t)∇Hi (x, t)

]
,

Hi (x, 0) = C0δ0(xi0 − x),

where S̃i2(x, t) and S̃i3(x, t) are smooth interpolations of the functions Si2(x, t) and
Si3(x, t).

Equation (6), togetherwith the equation for Hi , provides the continuous description
for the dynamics of the probability pi (x, t) for a cell to be at position x at time t , when
initially located at xi0. The interactions between cells in a domain are included in S̃i2
and S̃i3 and the impact of the environment is modeled by Si1.

While this represents a complicated and coupled system of equations, analysis and
numerical simulations for continuous equations may still be more efficient than the
discrete model. This lies out of scope of the present article, where the primary aimwas
an analysis of the underlying random walk model and to provide a ‘proof of concept’
for the continuous derivation. For further comment, we refer to the discussion.

6 Discussion

In this paper we have formulated a random walk model for collective cell movement
dynamics, motivated by instances of NCC migration during embryonic development.
NCCs achievemigration in a variety ofways – from individuals to coordinated clusters,
according to cell type and species – and a wide variety of guiding factors have been
proposed (Szabó and Mayor 2018): extracellular chemoattractant gradients, ligand-
mediated co-attraction between cells, contact-induced cell-to-cell repulsion (contact
inhibition of locomotion), and confinement that results from inhibiting cues in the
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surrounding extracellular matrix. Motivated by populations of cranial Xenopus NCC
cells that migrate as a collective group (Theveneau et al. 2010), we have incorporated
these different factors into a random walk model and explored the extent to which
different combinations of guiding factors induce migration in a targeted direction,
while maintaining a relatively compact configuration.

Themodel includes a simplistic descriptionof intracellular signalling,whereby each
cell is associated with a set of evolution equations for the levels of membrane-localised
Rac1 activation that determine themovement probability into different directions; each
evolution equation is positively or negatively regulated according to local guidance
cues. This level of detail allows certain subtleties to be incorporated, such as, for
example, the suggestion that the chemoattractant only stabilizes and reinforces the
existing Rac1 protrusions created by cell-cell contacts in cranial NCC in Xenopus
(Theveneau et al. 2010). In the light of such findings, the model setting that includes
a Hill-type response to the chemoattractive profile is perhaps more realistic, as it
assumes the chemoattractive cue could only be sensed at a membrane location if Rac1
is sufficiently activated at that point.

The inclusion of intracellular signalling also allows persistence of polarity, where
the cell maintains a preferred direction of motion over long time intervals, to emerge
naturally. First, slowing the rate of Rac1 inactivation will act to maintain a high
Rac1 level in a certain direction, potentially long after the initial polarising event.
Coupled to an asymmetric bias function that curbs switching the axis of movement
direction, persistent straight line movements can arise. Thus, according to the length
of memory encoded by Rac1 inactivation, model dynamics can switch between an
uncorrelated and correlated random walk. Note that while the asymmetric bias func-
tion allows strong bias, it is potentially unsuitable for cases where weak individual
migration towards a chemical attractor is observed. The symmetric bias function
instead introduces more randomness, and subsequently requires more cell-cell and
cell-environment interactions for efficient collective migration.

In scenarios where cell polarity is less persistent, the combination of CIL and
co-attraction, along with the Hill-like Rac1 activation rate by the chemoattractant,
performs better than the other scenarios. Co-attraction is the only included cell-cell
interaction that can lead to clustering, while CIL is the sole cell-cell interaction that
promotes stronger dispersion. Despite this, scenarios inwhich CIL is included perform
better than cases without CIL, suggesting that it might play an important role in
promoting robust directed migration. We note that when the chemoattractive cue is
relatively strong or, alternatively, when the response rate to the chemoattractant is
relatively large, cell-cell interactions become less relevant. Effectively, chemotactic
behaviour dominates the dynamics.

Despite our inclusion of some detail at the intracellular level, there are many further
aspects that can be considered to refine the model if needed. One potential direction
wouldbe to, in addition to theRac1dynamics, also consider theRhoA evolution, similar
to Merchant et al. (2018), Merchant and Feng (2020). Another alternative would be
to incorporate the degradation of the chemoattractant by cells, similar to McLennan
et al. (2012), McLennan et al. (2015a), McLennan et al. (2015b). This mechanism,
in combination with the Hill-like switch for sensing the chemoattractant, might lead
to emergent leader-follower behavior since only the outer cells of the cluster would
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be able to sense the chemoattractant, similar to findings in McLennan et al. (2012),
McLennan et al. (2015a), McLennan et al. (2015b). If the decision is dependent on
the absolute Rac1 level, outer cells would become more confident in their direction,
and the other cells would follow due to the co-attraction mechanism.

It is noted that a number of other agent-based models have been developed to
describe NCC (and other) cell migration processes. Single site lattice models of cellu-
lar automaton type (for examples, Binder et al. 2012;Mort et al. 2016) offer a relatively
simple and computationally efficient framework: a cell occupies a lattice site and prob-
abilistically moves (or proliferates) into an adjacent site according to a set of rules
based on the neighbourhood state, e.g. occupancy and interactions with the nearest
neighbours. A particular advantage of these models lies in an established framework
that allows scaling to a continuous partial differential equation for the density distri-
bution, permitting further analysis, e.g. Simpson et al. (2007). A disadvantage lies in
their relatively course scale. Other NCCmodels include finer structure, such as vertex-
based approaches where cells form evolving polygonal objects (Merchant et al. 2018)
or Cellular Potts Model approaches where a cell occupies a connected set of lattice
sites (Szabó et al. 2016). These models also have their disadvantages, in particular
reliance on simulation instead of analytical insight. To walk a middle path, the model
here has assumed that each cell spans 5 lattice sites to form a “+” configuration, where
the centre represents the cell centre and ODEs are associated to each neighbouring site
to describe the internal dynamics. By retaining the underlying framework of a biased
random walk on a lattice, the possibility of course-scaling to a continuous model is
saved and we have shown how this can be done, at least in principal. Notably, the
resulting PDE for the evolving probability distribution for a cell’s position echoes the
taxis-type equation obtained for position-jump random walk models in the presence
of a chemical signal (Stevens and Othmer 1997), where the directional bias is propor-
tional to the gradient of a continuous approximation to the internal state variable. The
equation for this internal state variable is also represented by a diffusion-advection
type equation, where the transport terms for the internal state variable now arise due
to the translocation of membrane positions each time a cell moves.

Further analysis of the continuous problem is certainly a point for future effort, but
the intricacy of the derived system (coupled systems of diffusion-advection) demands
a dedicated study. In particular, we note that the equation for the internal state vari-
able contains “self-gradient-following” terms that could potentially result in negative
diffusion and a loss of regularity. Other points to consider for this study would be the
state space for the internal variable. The simplest option, which was performed here,
involved collapsing the internal state space variable to the central point of the cell:
effectively, the distinct spatial structure contained within the four membrane locations
is lost, merged into a single PDE for the internal variable. An alternative and interesting
option would be to derive four separate internal state PDEs, each corresponding to a
different membrane location. While the model will inevitably become more complex,
such an approach could allow the spatial structure at the cellular scale to be retained
at the macroscopic or continuous scale.

123



   32 Page 26 of 32 V. Freingruber et al.

Acknowledgements VFwas supported by the EPSRC Centre for Doctoral Training in Mathematical Mod-
elling, Analysis and Computation (MAC-MIGS) funded by the UK Engineering and Physical Sciences
Research Council (grant EP/S023291/1), Heriot Watt University and the University of Edinburgh. KJP is a
member of INdAM-GNFM and acknowledges departmental funding through the ‘MIUR-Dipartimento di
Eccellenza’ programme. LJS was supported by Chancellor’s Fellowship at the University of Edinburgh.

Author Contributions All authors contributed to study conception and design. VF developed the model,
implemented and performed numerical simulations, and performed the analysis. The first draft was written
by VF and all authors commented on sequential versions of the manuscript. All authors gave final approval
for publication and agree to be held accountable for the work performed therein.

Code availability The code for numerical simulations is available upon request.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Supplementary result plots

See Figs. 10, 11 and 12.
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Fig. 10 Migration distanceMx1 (t)−Mx1 (0) vs. dispersionMRMSD(t)−MRMSD(0) in the casewithout a
chemoattractant, i.e. S1(x) = 0, with the two different gain functions g1 (a) and g2 (b) for 0 ≤ t ≤ 350min
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Fig. 11 Mean migration distance vs. dispersion for S1(x) = f1(x), different bias functions g1 (a, c), g2 (b,
d) and activation rates of Rac1 by the chemoattractant, small λ1 (a, b), large λ1 (c, d) for 0 ≤ t ≤ 350min
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Fig. 12 Mean migration distance vs. dispersion for S1(x) = f2(x), different bias functions g1 (a, c), g2
(b,d) and activation rates ofRac1 by the chemoattractant, small λ1 (a, b), large λ1 (c, d) for 0 ≤ t ≤ 350min

123



   32 Page 30 of 32 V. Freingruber et al.

Appendix B: Algorithm layout

Algorithm 1 Biased random walk of N cells
Require: End time 0 < T ∈ N

Require: Domain D = [x1,min, x1,max(T )] × [x2,min, x2,max] ⊂ hZ2

Require: Spatial constraints on hZ2 \ D
Require: Chemoattractive profile S1(x1, x2) ≥ 0
Require: Initial positions Pi (0) ∈ D for i ≤ N
Require: Initial Rac1 setup

Ci (x, 0) =
{
c0 for x ∈ A(Pi (0)),

0 else.

1: for t = 0, . . . , T do
2: for i = 1, . . . , N do
3: for j = 1, . . . N ∨ j �= i do
4: if ‖Pi (t) − P j (t)‖ ≤ R then
5: Update co-attractive profile S2(x, t)
6: end if
7: if A(Pi (t)) ∩ A(P j (t)) �= then
8: Update repelling profile Si3(x, t)
9: end if
10: Update Ci (x, t + 1) according to ODE
11: end for
12: end for
13: for i = 1, . . . , N do
14: Update location Pi (t + 1) according to updated Rac1 Ci (x, t + 1)
15: end for
16: end for
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