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Planning interventions in a controlled pandemic: the
COVID-19 case

Franco Galante, Chiara Ravazzi, Member, IEEE, Michele Garetto, Member, IEEE, Emilio Leonardi, Senior
Member, IEEE

Abstract—Restrictions on social and economic activities, as well
as vaccinations, have been a key intervention in containing the
COVID-19 epidemic. Our work focuses on better understanding
the options available to policymakers under the conditions and
uncertainties created by the onset of a new pandemic. More
precisely, we focus on two control strategies. The first aims to
control the rate of new infections to prevent congestion of the
health care system. The latter directly controls hospitalizations
and intensive care units (ICUs) occupation. By a first-order
analysis, we show that, on the one hand, due to the difficulty in
contact tracing and the lack of accurate information, controlling
the transmission rate may be difficult, leading to instability. On
the other hand, although hospitalizations and ICUs are easily
accessible and less noisy than the rate of new infections, a delay
is introduced in the control loop, which may endanger system
stability. Our framework allows assessing the impact on economic
and social costs of the above strategies in a scenario enriched by:
i) population heterogeneity in terms of mortality rate and risk
exposure, ii) closed-loop control of the epidemiological curve, and
iii) progressive vaccination of individu

Index Terms—Control strategies analysis, stability analysis,
delay differential equations, population heterogeneity modeling,
closed-loop control system.

I. INTRODUCTION

Throughout the recent COVID-19 pandemic, governments
worldwide faced the challenge of developing effective strate-
gies to contain the virus while minimizing its economic and
societal impact. As new waves of infection emerge, swift
implementation of regulations becomes imperative to curtail
human mobility and activities that facilitate virus transmission.
From the pandemic onset, it was evident [1] that governments
would face a delicate balance between reducing COVID-19
fatalities and mitigating the economic fallout caused by the
spread of the virus. While individuals prioritize preserving
life, governments must take action to manage the inevitable
economic downturn.

Once the epidemiological curve starts to decline, policy-
makers in democratic nations often face pressure from var-
ious stakeholders to ease restrictions and resume suspended
activities. Striking an equilibrium becomes desirable to ensure
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both economic and social well-being, where the spread of
the virus is effectively controlled with minimal limitations,
as emphasized in [2].

About a year into the COVID-19 pandemic, several vaccines
against the virus started to become available. However, the
availability of these vaccines was initially limited, and their ef-
fectiveness in preventing infection not yet fully understood. In
light of these uncertainties, developing strategies to prioritize
vaccine distribution became challenging. The interested reader
can refer to [3] for insights and analysis on the complexities
of developing effective vaccine prioritization strategies in such
uncertain times.

In this study, our objective is to enhance our comprehension
of the choices that policymakers have at their disposal during
conditions of a pandemic emergency. We aim to explore in-
depth different strategies, measures and approaches that poli-
cymakers can consider and implement to effectively respond
to the challenges posed by a pandemic aiming at safeguarding
public health, minimizing the impact on society, and ensuring
the well-being of individuals.

A. Modeling epidemic spread
The introduction of the SIR model in [4] marked a signifi-

cant milestone in utilizing mathematical models to understand
disease dynamics and forecast the spread of epidemics. SIR-
like models divide the population into compartments based on
disease status, defining transitions among them. We refer to
the Supplemental Material [5] for an overview. Many of these
models assume homogeneous populations, disregarding the
intrinsic heterogeneity of society. The authors of [6] provide a
more accurate description, where they introduce age-specific
contact patterns.

Historically, the focus of studies in the field of epidemiology
has primarily been on understanding the phenomenological
aspects of epidemics. These studies aimed to assess the
accuracy of different models in predicting the evolution of
epidemics and identifying easily interpretable parameters that
capture the qualitative behavior of infectious diseases. One
such parameter of significant interest has been the basic
reproduction number, which characterizes the conditions under
which an infection outbreak can occur. There is a growing
recognition of the need to proactively design simple and
effective control measures to combat and mitigate the spread of
infectious diseases in the possibility of future pandemics. We
refer the readers to [7], which offers an overview of various
mathematical models for epidemic processes, encompassing
traditional group models with no assumed graph structures,
network-based models, stability analysis, parameter estimation
methods, and simulation models.



B. Control via non-pharmaceutical interventions

In this paper, we assume a central planner perspective,
where the government can impose control measures on the
population for the overall benefit of public health. Several
papers published in the 1970s, such as [8]–[12], focused
on studying optimal control problems in the context of the
classical SIR model. Building upon these foundations, sub-
sequent works like [13] and [14] expanded on the research
and extended the models. These studies specifically addressed
the challenge of minimizing the size of an epidemic outbreak
and the cost of interventions. The control mechanisms ex-
plored in these models included regulating social distancing
levels and implementing measures like isolation. These control
strategies were also subject to rate constraints, ensuring the
rate remained below a specified threshold. Papers on optimal
control problems [15], [16] consider the minimization of a
composite function taking into account the epidemic cost,
related to the size of the outbreak or number of deaths, and the
economic cost. The control perspective has been widely em-
braced in recent literature regarding the COVID-19 pandemic.
Consequently, there has been considerable discussion about the
effects of lockdown measures on healthcare, society, and the
economy. The problem of minimizing the cost of a lockdown
under the only constraint of maintaining the infection below
a certain threshold to cope with ICU congestion problems is
also considered in [17].

C. Control via vaccination

The paper [18] focuses on the optimal control of vaccination
dynamics during an influenza epidemic. It provides insights
into the design of vaccination strategies to effectively control
the spread of the disease, considering factors such as limited
vaccine supply and variations in transmission and severity
across different groups. In [19], optimal vaccination and treat-
ment strategies are studied in a multi-group epidemic model.
The analysis explores the trade-offs between vaccination cov-
erage and treatment allocation to maximize overall disease
control, considering the interactions between different pop-
ulation groups. Finally, [20] explores the optimal timing and
allocation of vaccinations based on age groups to maximize
the effectiveness of the vaccination campaign and minimize the
spread of infectious diseases. The research conducted in [21]
and [22] contributes to the field by addressing the challenge
of resource allocation for vaccination efforts in the context of
epidemic control. By utilizing optimization techniques, these
studies provide insights into the most effective strategies for
targeting specific nodes in a contact network or groups within
a population, considering both the budgetary constraints and
the dynamics of disease transmission.

D. Main contribution

This paper investigates a novel class of compartmental
models that draw inspiration from the features of the COVID-
19 epidemic. We enhance previous models by incorporating: i)
variability in mortality rate and risk exposure among different
population segments, ii) closed-loop control mechanisms to

regulate the epidemiological curve, and iii) progressive vacci-
nation campaigns. More precisely, differently from previous
works on the subject (see [23], [24], [25], [26], [27], [28],
[29]), our modeling framework explicitly represents the het-
erogeneity of risk exposure across population segments.

Our study takes a different perspective than the optimal con-
trol approach. We deliberately examine simple control strate-
gies to provide practical insights and guidelines for decision-
makers who may not have access to sophisticated optimization
techniques or detailed knowledge of the underlying epidemic
mathematical laws (e.g., parameters).

Optimal control approaches in epidemiology have certain
drawbacks worth mentioning. These approaches often lack
closed-form analytical solutions, requiring numerical methods
for their implementation [30], [31]. While numerical solutions
can provide valuable insights, they can be challenging to
interpret and translate into practical control measures. This
lack of interpretability hampers the ability to univocally un-
derstand the implications and consequences of the obtained
optimal control strategies. Another drawback is that optimal
control solutions may strongly depend on parameters, leading
to abrupt changes in the optimal interventions. These “phase
transitions” can make implementing and managing the control
measures in practice difficult. Minor changes in the parameters
or system conditions may result in significant shifts in the
optimal strategies. Furthermore, optimal control approaches
often rely on detailed and precise knowledge of the system
dynamics, including accurate parameter values and functional
forms of the underlying equations. In real-world scenarios,
such detailed information may be unavailable or subject to sig-
nificant uncertainties. In the same spirit as [32], we will mainly
focus on two control feedback strategies based on controlling
the rate of new infections or maintaining the occupation of
healthcare facilities below a given level, and we evaluate the
economic cost of non-pharmaceutical interventions and the
social cost in terms of number of deaths. For the sake of
simplicity and analytical tractability, we consider an “ideal”
scenario in which the system operates near the equilibrium
point, where the effective reproduction number equals one
(we provide local stability results). This regimen appears to
be a desirable condition whereby the number of infected
individuals, and thus those requiring intensive treatment, is
maintained at a sustainable level, even over long periods, while
applying minimal durable mobility restrictions.

It is worth noting that while it can be expected that some
individuals will naturally reduce their interactions out of fear
of illness, our model does not explicitly incorporate this
behavior as explored in [33] and [34]. Additionally, we do not
consider the concept of “cost of anarchy” as explored in [35].

Finally, we compare simple vaccination policies based on
different assigned priorities and intervals between the first and
second dose administration. It appears that in the literature,
no works explicitly address the combined aspects of rate/ICU
occupation control in feedback and vaccination prioritization,
exploring them separately. The absence of research specifically
addressing the integration of non-pharmaceutical control in
feedback and vaccination prioritization highlights a significant
gap in the literature, particularly noteworthy given the cur-

2



rent context of the COVID-19 pandemic, where vaccination
campaigns have been implemented alongside other control
measures. Our paper aims to fill, at least in part, this gap.

E. Outline of the paper

Section II presents an in-depth examination of the pro-
posed extended SIR model in the absence of public interven-
tion. Section III discusses two control measures to limit the
spread of the epidemic: non-pharmaceutical, e.g., lockdown
measures, and pharmaceutical interventions, i.e., vaccination
prioritization. The impact of controlling the infection rate
or exerting control on hospitalizations and ICU occupancy
through mobility reduction measures are explored in Sections
IV and Section V, respectively. In Section VI, we support
our modeling choices by comparing the performance of our
simple control strategies with optimal control. We perform
extensive simulations and a thorough discussion for a reference
scenario inspired by the COVID-19 pandemic in Section VII.
Section VIII concludes the article. We provide a Supplemental
Material [5] where there is a more comprehensive exposition
of the model, and we include details on the data-driven
derivation of the fr,p distributions and the choice of parameters
of the reference scenario.

II. BASE MODEL

We start by describing a base version of our compart-
mental model to describe the spread of a disease in a non-
homogeneous population of size N in the absence of any
intervention (either pharmaceutical or non-pharmaceutical).

Socio-demographic groups are described by the joint distri-
bution fr,p related to the risk exposure r (which corresponds
to the individuals’ contact rate) and the death probability p of
the individuals.

We consider six epidemiological states: let Sr,p(t), Ir,p(t),
Mr,p(t), Hr,p(t), Tr,p(t), and Dr,p(t) denote the number of
individuals characterized by (r, p) who at time t are suscepti-
ble, infected, immune, hospitalized, under intensive treatment
and dead, respectively.

The system presented here can be derived from stochas-
tic processes, as in [36]. Thus there exists an underlying
individual-based model in which all the states have a prob-
abilistic and statistical interpretation. In particular, the amount
of time spent by an individual in the infected, hospitalized,
intensive therapy, the immune compartment is exponentially
distributed with mean values 1/γ, 1/ϕ, 1/τ , 1/µ, respec-
tively. We utilize a set of ordinary differential equations to
describe the system dynamics. Figure 1 visually depicts the
transitions between different compartments and illustrates the
flow of individuals within the system. The transitions between
different states in the epidemiological model can be described
as follows:

• Susceptible to Infected: Susceptible individuals (S) be-
come Infected (I) when they come in contact with
infected individuals. The corresponding transition rate
depends on the contact rate (risk exposure r) and the
number of infected individuals in the population.

• Infected to Immune: Infected individuals (I) can recover
from the disease and acquire immunity, transitioning to
the iMmune state (M). The recovery rate governs the
transition and depends on the average infection duration
before recovery.

• Infected to Hospitalized: Some Infected individuals (I)
may develop severe symptoms and require Hospitaliza-
tion (H).Various factors influence the corresponding tran-
sition rate, such as the healthcare capacity, the proportion
of infected individuals needing hospital care, and also
disease severity linked to the fragility of individuals.

• Hospitalized to Under Intensive Treatment: Hospitalized
individuals (H) who require intensive care Treatment
may be transferred to the intensive therapy state (T).
The corresponding rate depends on factors such as the
availability of intensive care units and the duration of
hospitalization before the transfer to ICU.

• Under Intensive Treatment to Deceased: Unfortunately,
some infected individuals under intensive Treatment (T)
may succumb to the disease and move to the Deceased
state (D).

It is important to note that the specific transition rates
between states are governed by the model’s parameters, which
can be estimated based on empirical data or derived from
previous studies. These transition dynamics capture the pro-
gression of the disease within the population and are crucial
for understanding the spread and impact of the epidemic. In
the supplemental material (sec. I-C-1), we show how direct
transitions I → D and H → D can be added to the model.

More precisely, the following set of ordinary differential
equations describes the system dynamics:

Ṡr,p(t) = −σ(t)

∑
r′,p′

r′Ir′,p′(t)

 rSr,p(t)∑
r′,p′ r′Nfr′,p′

+ µM(t)

İr,p(t) = σ(t)

∑
r′,p′

r′Ir′,p′(t)

 rSr,p(t)∑
r′,p′ r′Nfr′,p′

− γIr,p(t)

Ḣr,p(t) = γpIHr,p Ir,p(t)− ϕHr,p(t)

Ṫr,p(t) = ϕpHT
r,p Hr,p(t)− τTr,p(t)

Ḋr,p(t) = τpTD
r,p (t)Tr,p(t)

Ṁr,p(t) = γ(1− pIHr,p )Ir,p(t) + ϕ(1− pHT
r,p )Hr,p(t)

+ τ(1− pTD
r,p (t))Tr,p(t)− µM(t)

(1)

where σ(t) ≥ 0 represents all exogenous (uncontrolled) factors
changing the infection strength (e.g., seasonal effects). In this
paper, we will assume for simplicity that σ(t) = σ is constant.

The total (uncontrolled) rate of new infections is equal to:

λU (t) = σ(t)

(∑
r,p

rIr,p(t)

) ∑
r,p rSr,p(t)∑
r,p rNfr,p

.

The total number of susceptible people is S(t) =
∑

r,p Sr,p(t).
Similarly, we introduce the total number of people in the other
compartments: I(t), H(t), T (t), M(t), D(t). Probabilities
pIHr,p , pHT

r,p and pTD
r,p (t) denote the probability that an individual
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Sr,p

Population class r,p

Population class r',p'

Figure 1. Schematic representation of the proposed model.

of type (r, p) moves between the two compartments indicated
in the superscript. We make probability pTD

r,p (t) depend on
T (t), i.e., on the instantaneous total number of people in ICUs
since the death probability dramatically increases when ICUs
are saturated. Denoted with T̂ the number of available ICUs,
when T (t) ≤ T̂ , the overall death probability of an infected
person is assumed to be equal to p:

pIHr,p · pHT
r,p · p̂TD

r,p = p if T (t) ≤ T̂ , (2)

where p̂TD
r,p is the probability to transit from state T to state

D in ‘normal’ conditions, i.e., when T (t) ≤ T̂ . Therefore,
pTD
r,p (t) = p̂TD

r,p as long as T (t) ≤ T̂ .
When T (t) > T̂ , we assume that the death probability of

people who cannot receive treatment is increased by a factor
θ, hence pTD

r,p (t) is dynamically adjusted as follows:

pTD
r,p (t) = p̂TD

r,p

T̂

T (t)
+ min{1, θ · p̂TD

r,p }T (t)− T̂

T (t)
. (3)

We consider the case in which individuals might lose
immunity with rate µ, thus becoming susceptible again. It
should be noticed that the mass preservation Ṡr,p(t)+İr,p(t)+
Ṁr,p(t)+ Ḣr,p(t)+ Ṫr,p(t)+ Ḋr,p(t) = 0 holds for all t ≥ 0.

References as [36]–[40] explore SIR-like models with vari-
ous extensions, including population heterogeneity, additional
compartments, and considerations of specific epidemics like
COVID-19. They provide insights into such extended SIR
models’ dynamics and control measures. Unlike [41], our
model does not distinguish between infected individuals who
remain undetected and those who are detected, nor does it
consider this distinction for those who recover. Nonetheless,
our proposed model introduces several innovative features that
are summarized in the following three remarks.

Remark 1 (Heterogeneity of population in terms of fatal-
ity rate and risk exposure). At the country level, there are
substantial differences in population characteristics, including
age distribution, general state of health, and frequency of
interpersonal interactions. These differences in population
contact patterns can potentially influence disease transmission
and accelerate the outbreak. Unique distributions, denoted as
fr,p, for different countries were derived from data on contact
patterns and case fatality rates. For more information on

how these distributions were determined and to see several
examples (e.g. Italy, China), see Supplemental Material [5].

The continuous model used in this study can be interpreted
as a mean field approximation of an epidemic model that
operates over a dynamic network [43]–[45]. According to
this interpretation, the risk exposure parameter represents the
average number of contacts (per time unit) an individual
experiences with others over a fixed time window. Therefore it
can be seen as the degree of the corresponding node within a
network, in which nodes represent individuals, and the edges
represent the contacts between them. Note that pairs of indi-
viduals establishing contacts are randomly selected, as for the
configuration model. This approach allows us to understand
the dynamics of epidemics in terms of the interactions between
individuals in a network setting.

Remark 2 (Quadratic dependence on the risk exposure r).
Note that individuals with large r, i.e., pronounced social
attitudes, represent at the same time the component of the
population with the highest risk of infection and the highest
chance of transmitting the disease. Therefore, the “impact”
of every individual to the spread of the infection depends
quadratically on r.

Remark 3 (Edge-perspective analysis). Defining Ĩ(t) =∑
r,p rIr,p(t) as the number of infected contacts, multiplying

the first and second equation in (1) by r and summing
over r and p, we obtain ˙̃

I(t) = γ (R(t)− 1) Ĩ(t) where

R(t) =
σ
∑

r,p r2Sr,p(t)

γ
∑

r,p rNfr,p
.

At early stages of epidemic, we can approximate Sr,p(t) ≈
Nfr,p (see Remark 4), obtaining: ˙̃

I(t) = γ (R0 − 1) Ĩ(t)
where we define the related basic reproduction number
R0 = σ

γE[r
2]/E[r]. As it is clear from the system of equation

describing the evolution of the state variables, an edge-
perspective analysis provides a fundamental tool to study the
dynamics as a natural generalization of the SIR model.

The system of equations (1) can be greatly simplified when
Sr,p(t) ≈ Nfr,p, and this is instrumental for our subsequent
analysis. Indeed:

Remark 4. Observe that whenever we can find a time interval
[0, T ] in which we have Sr,p(t)

Nfr,p
≈ 1 ∀r, p, t ∈ [0, T ] , then

Eq. (1) can be dramatically simplified (i.e., linearized) by
replacing Sr,p(t) with Nfr,p on the r.h.s. In particular, in such
a case we can set: λU (t) ≈ λU (t) := σ(t)

(∑
r,p rIr,p(t)

)
.

Now, since by construction we have Sr,p(t) ≤ Nfr,p
∀t, r, pλU (t) ≤ λU (t) ∀t and Sr,p(0) = Nfr,p ∀r, p, denoted
with E[r] =

∑
r,p rfr,p the average risk exposure, from Eq. (1)

we get

Sr,p(t) =Nfr,p −
∫ t

0

λU (τ)
rSr,p(τ)

NE[r]
dτ +

∫ t

0

µM(τ)dτ

≥Nfr,p

[
1−

∫ t

0

λU (τ)
r

NE[r]
dτ

]
+

∫ t

0

µM(τ)dτ

Therefore, as long as it holds:

max
r

∫ t

0

λU (τ)
r

NE[r]
dτ ≪ 1
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we can approximate Sr,p with Nfr,p for every (r, p). Lastly, ob-
serve that

∫ t

0
λU (τ)

r
NE[r]dτ is an upper bound to the fraction of

individuals in class (r, p) who got infected in [0, t).

To check numerically the limits of the validity of approx-
imation Sr,p(t)

Nfr,p
≈ 1, we consider our reference scenario (see

Table IV in [5]) related to the Italian population with N = 60
million, letting the epidemic evolve uncontrolled. In Fig. 2
we compare the exact solution of Eq. (1) (thick line) with
the approximate solution in which Sr,p(t) remains fixed and
equal to Nfr,p (thin lines). As expected, I(t), M(t), D(t)
grow exponentially in the approximate solution (note the log
vertical scale), matching the exact solution over an initial time
window in which the total number of infected, roughly equal
to the total number of individuals M(t) who have recovered,
is comparatively small with respect to the total population N
(say smaller than 5%). Indeed, when M(t) becomes large, the
number S(t) of susceptible starts to drop (roughly after 100
days, with R0 = 2, or after 200 days, with R0 = 1.5), and
the two solutions deviate from each other. Indeed, in the exact
system the epidemic eventually dies out due to herd immunity.
Allowing uncontrolled spread of the virus is not sustainable
and, in the case of COVID-19, has not been considered a viable
option by any developed country. Therefore, this regime is not
of interest, the rate of new infections should be controlled and
this makes our assumption reasonable.
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Figure 2. Evolution of S(t), I(t), M(t), D(t) in an uncontrolled scenario
with R0 = 2 (left plot), or R0 = 1.5 (right plot). Comparison between
exact solution (thick lines) according to Eq. (1), and approximate solution
with Sr,p(t) = Nfr,p (thin lines).

III. EPIDEMIC CONTROL

To mitigate the epidemic, several interventions are possible:
(a) investments in the public health system, e.g., increasing
the available number of ICUs T̂ and hospitalization facilities
Ĥ , (b) non-pharmaceutical interventions, i.e., public health
measures preventing and/or controlling virus transmission (sec.
III-A); (c) vaccination that aims to reduce both the transmis-
sion and clinical severity of the disease (sec. III-B).

Our analysis will focus on quantifying the cost and the
impact of different control strategies that jointly exploit non-
pharmaceutical interventions and vaccination. In this section,
first we formalize the control problems in their most general
formulation and then we introduce our simple strategies.
Indeed, our goal is not to develop a mathematical theory
of optimal control for epidemics but to provide a practical
framework that informs public policy in controlling the spread

of epidemics. We intend to offer decision-makers a means to
compare and evaluate a set of feasible controls, allowing them
to make informed choices based on the outcomes and trade-
offs associated with different control strategies.

A. Control via non-pharmaceutical interventions

Non-pharmaceutical interventions are measures aimed at
controlling the virus by managing certain behaviors in the
population, such as using PPE (e.g. masks), implementing
lockdowns, promoting telework, to name a few. In our frame-
work, we do not model the effects of social distancing and
other countermeasures at a microscopic (class-specific) level.
Instead, we summarize their effects by a single control pa-
rameter ρ(t) that scales down the overall rate of potential
(uncontrolled) new infections.

Specifically, we include the control in the model described
by Eq. (1) by setting the actual intensity of new infections λ(t)
equal to λU (t)

ρ(t) , leading to an effective reproduction number:

Rρ(t) =
σ

ρ(t)γ

∑
r,p r

2Sr,p(t)∑
r,p Nrfr,p

.

In this scenario, we will distinguish two main contributions
to the cost: the social and the economic cost. It is crucial
to note that the distinction between social and economic
costs is not always clear-cut. Lockdown measures, while
aimed at minimizing the social cost of the pandemic in terms
of reducing deaths, have economic repercussions. Similarly,
the economic cost of the pandemic, such as job losses and
reduced economic activity, has social implications. Moreover,
for technical reasons in some cases we add a third component
related to healthcare stress to the cost. Accordingly we define:

(a) the social cost, evaluated in terms of the cumulative
number of deaths as defined [46];

(b) the stress on the healthcare system induced by the
disease’s severity;

(c) the economic cost C = C(ρ), since widespread lock-
downs cause a massive negative impact on the economy.

In Figure 3 we show some examples of economic costs as a
function of the control parameter ρ. The economic costs are
assumed monotone increasing with C(1) = 0. In the optimal

1 10
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Control ρ

E
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C
(ρ
)

10(1− 1/ρ)2

0.9(ρ− 1)

0.1(ρ− 1)2

Figure 3. Examples of economic costs as a function of control parameter

control formulation (see [2] and reference therein) a terminal
cost is generally defined by taking a linear combination of the
above costs and the policymaker aims at solving the following
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optimization problem:

ρ⋆(tmax) = argmin
ρ:[0,tmax]→[1,∞)

κ1
D(tmax)

N
+

+

∫ tmax

0

[
κ2

(
T (t)

N

)ζ

+ κ3C(ρ(t))

]
dt

s.t. dynamics in Eq. (1) (4)

where the exponent ζ is typically assumed greater than 1,
while κ1, κ2, κ3 ≥ 0 are the parameters that weigh the social,
the healthcare stress and the economic costs in the objective
function, according to how much one values one over the
others.

Similarly to [32], we consider two simple control strategies:

Rate Control (Control on New Infections). The rate of new
infections is tightly controlled and kept at a certain desired
level λC . The main goal is to avoid congestion in the sanitary
system by controlling the circulation of the virus.

HT Control (Control on Hospitalizations and intensive
Therapy occupancy). It directly uses the current level
of hospitalization/intensive-therapy occupancy as a control
signal. Such a signal is readily available and less noisy than
the rate of new infections. However, it may introduce a delay
in the control loop, which may endanger system stability.

B. Control via vaccination prioritization

1) Modeling the effect of vaccinations: In addition to non-
pharmaceutical interventions, vaccination campaigns are a
critical measure to contain the virus. Here, we incorporate the
effect of vaccinations in our proposed model.

Vaccines are assumed to guarantee partial protection. Ac-
cording to classification in [47], we consider two efficacy
descriptors: reduction in the probability of becoming in-
fected (vaccine efficacy on susceptibility) and reduction in
the pathogenicity (vaccine efficacy to prevent or diminish
symptoms). For simplicity, we neglect the vaccine response
transient, and we consider a single type of vaccine adminis-
tered in two doses separated by a fixed interval of ∆ days.
We assume that the administration rate of either dose is
fixed, equal to ξ, so the entire population can be potentially
vaccinated (with two doses) after Tv days. Hence we set
ξ = N/(Tv − ∆). Let VE1,VE2 be the vaccine efficacy on
susceptibility after one or two doses, respectively. Moreover,
we assume that mortality is reduced by a factor qpost after a
single dose of vaccine.

We assume that N novax people refuse vaccination uniformly
distributed over the population. Their state evolution is still
described by equations (1). Let Snovax

r,p (t) be the number of
no-vax people in class (r, p) who are still susceptible at time t.

We describe the dynamics assuming individuals do not
return to the susceptible state after infection or vaccination.
This extension is not difficult, but we omit it for brevity.

Vaccinations require the addition of a few more compart-
ments: Let V 1m

r,p (t) be the number of people in class (r, p) who
have received just the first dose, which is already effective
against the virus, i.e., they can no longer be infected. Let

V 1s
r,p(t) be the number of people in class (r, p) still susceptible

after receiving just the first dose. Let V 2m
r,p (t) be the number

of people in class (r, p) who have received both doses and are
immune. At last, let V 2s

r,p(t) be the number of people in class
(r, p) who have received both doses but are still susceptible.
Due to strict prioritization among classes, a given class (r, p)
receives the first dose at full rate ξ only within a specific time
window: [T min

r,p , T max
r,p ] (to be specified later):

ξ(1)r,p (t) =


0 t < T min

r,p

ξ T min
r,p ≤ t < T max

r,p

0 t ≥ T max
r,p

Let V 1
r,p(t) =

∫ t

t−∆
ξ
(1)
r,p (t)dt be the number of people in

class (r, p) who have received just the first dose of vaccine at
time t. The second dose of vaccine is administered at a rate

ξ(2)r,p (t) =
V 1s
r,p(t) + V 1m

r,p (t)

V 1
r,p(t)

ξ(1)r,p (t−∆)

only to individuals who have received the first dose and have
not been infected in the meanwhile. At last, let

Ŝ(t) =
∑

r,p r(Sr,p(t) + V 1s
r,p(t) + V 2s

r,p(t) + Snovax
r,p (t))

be the total number of susceptible edges at time t. Note that
λ(t) = σ

ρ(t)

(∑
r,p rIr,p(t)

)
Ŝ(t)
E[r]N . Since people who receive

at least one dose are less likely to die, we need to keep track
of them, hence vaccinated people who get infected traverse a
separate chain of compartments Ivr,p(t), H

v
r,p(t), T

v
r,p(t) with

respect to those who do not receive any dose (see Figure 11
in the Supplemental Material [5]). Dynamics governing the
evolution of Hv

r,p(t), T
v
r,p(t) are analogous to those in (1) with

the only difference that pTD
r,p (t) is replaced by pTD

r,p (t)/qpost.
The complete system of differential equations is an extension
of (1), it is omitted here for brevity and reported in sec. V
of [5] The vaccination window for each class is computed
based on the class priority: T (1),max

r,p = inf{t : Sr,p(t) = 0};
T (1),min
r,p = max(r′,p′)∈HP (r,p){T max

r′,p′ }, where HP (r, p) is the
set of classes with higher priority than (r, p).

As final consideration, we emphasize that the rate ξ is
typically limited by the capacity of both the vaccine produc-
tion and distribution infrastructure. However, to increase the
effectiveness of the vaccination campaign, the vaccination rate
must always be as high as possible under the above conditions.

2) Vaccine prioritization: The vaccination policy involves
assigning a priority to each (r, p) class therefore determining
which classes should be given priority.

Remark 5. Any possible prioritization (permutation) π(r,p)

of classes (r, p) corresponds to a different vaccination policy,
The optimal control problem defined in Eq. (4) can be easily
extended to take into considerations vaccinations as follows:

(ρ⋆(tmax), π
∗
(r,p)) = argmin

ρ:[0,tmax]→[1,∞)
π(r,p)

κ1
D(tmax)

N
+

+

∫ tmax

0

[
κ2

(
T (t)

N

)ζ

+ κ3C(ρ(t))

]
dt

s.t. dynamics in (9), Supplemental Material. (5)
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Again, we consider two simple vaccination policies the Most
Vulnerable First (MVF) and the Most Social First (MSF):

MVF Policy (Most Vulnerable First). The MVF policy aims
to protect the most clinically vulnerable people, with the goal
of minimizing the number of deaths. It prioritizes classes with
a higher value of p. For the same p, classes with higher r are
vaccinated first.

MSF Policy (Most Social First). The MSF policy prioritizes
people with a high contact rate, aiming to minimize the force
of infection. Classes with a higher value of r are prioritized.
For the same r, classes with higher p are vaccinated first.

The MSF policy is similar in spirit to the degree-based
vaccination policy in contact networks [48], which targets
the high-degree nodes first before moving on to lower-degree
nodes. The interval ∆ is another design parameter: prolonging
the interval between doses, say from 3 to 12 weeks, might
be a sensible choice under limited vaccine supplies, de facto
minimizing hospitalization and deaths, especially when the
efficacy of the first dose is sufficiently high.

IV. CONTROL ON NEW INFECTIONS

In this section, we show that if function C(·) is convex, we
can devise a simple strategy to minimize the overall economic
cost. As already observed, a key role in the epidemic dynamics
is played by Ĩ(t), which, roughly speaking, represents the
number of potentially infected contacts (see Remark 3). Thus,
a sensible strategy is to control such a quantity. In our
derivations, we assume that Sr,p(t) ≈ Nfr,p, see Remark 4.

This assumption allows for simplifications in the mathemati-
cal modeling and analysis. Indeed, given the definition of Ĩ(t),
multiplying the second equation in Eq. (1) by r and summing
over r and p, we get:

˙̃
I(t) = γ

(
σ

ρ(t)γ

∑
r,p r2Sr,p(t)∑
r,p Nrfr,p

− 1

)
Ĩ(t).

under the assumption Sr,p(t) ≈ Nfr,p, and defining Rρ(t) =
R0

ρ(t) , we obtain the equation:

˙̃
I(t) = γ

(
R0

ρ(t)
− 1

)
Ĩ(t) = γ (Rρ(t)− 1) Ĩ(t). (6)

A. Minimizing the economic cost in a fixed window

Fixing a target value Ĩ⋆ for Ĩ(t), to be met within a prefixed
a time horizon tmax, Proposition 1 establishes optimality
conditions.

Proposition 1. Let C(ρ) be a monotone increasing and convex
function in ρ ∈ [1,+∞] and assume Sr,p(t) ≈ Nfr,p. Among
all trajectories, such that Ĩ(tmax) =

∑
r,p rIr,p(tmax) = Ĩ⋆,

the one that minimizes the overall economic cost in [0, tmax],
is the one corresponding to:

Rρ(t) = 1 +
1

γ
log
(
Ĩ⋆/Ĩ(0)

)
∀t ∈ [0, tmax],

and,

ρ(t) =
σ

γ

E[r2]
E[r]

[
1 +

1

γtmax
log
(
Ĩ⋆/Ĩ(0)

)]−1

∀t ∈ [0, tmax].

Proof: Consider Eq. (6) and note that the unique solution
of the associated Cauchy problem with initial condition Ĩ(0) is
given by: Ĩ(t) = Ĩ(0) exp

(
γ
∫ t

0
(Rρ(τ)− 1) dτ

)
. Imposing

the constraint Ĩ(tmax) = Ĩ⋆ leads to:

1

tmax

∫ tmax

0

Rρ(τ)dτ = 1 +
1

γ tmax
log
(
Ĩ⋆/Ĩ(0)

)
. (7)

Now, focusing on a generic trajectory satisfying Eq. (7),
we have: 1

tmax

∫ tmax

0
C(ρ(τ))dτ = 1

tmax

∫ tmax

0
χ(Rρ(τ))dτ

with χ = C ◦ ρ, and ρ(Rρ) = σE[r2]
γE[r]Rρ(t) . Since C is a

monotonic increasing and convex function in ρ ∈ [1,+∞]
then χ is a convex function over its domain, and by
Jensen inequality, we conclude 1

tmax

∫ tmax

0
χ(Rρ(τ))dτ ≥

χ
(

1
tmax

∫ tmax

0
Rρ(τ)dτ

)
Therefore, from Eq. (7) the choice

given by ρ(t) = σE[r2]
γE[r]

[
1 + 1

γtmax
log
(
Ĩ⋆/Ĩ(0)

)]−1

, ∀t ∈
[0, tmax] minimizes the cost.

Observe that the economic cost of previously defined op-
timal policy monotonically decreases while increasing the
target Ĩ⋆.

Corollary 1. Under the assumptions that C(ρ) is a monotone
increasing and convex function and Sr,p(t) ≈ Nfr,p, among
all control strategies that maintain the number of infected less
than or equal the initial value Ĩ(0), the overall economic cost
is minimized when Rρ(t) is kept equal to 1.

Proof: From Proposition 1 we have that among all strate-
gies guaranteeing Ĩ(tmax) = Ĩ(0), the one forcing Rρ(t) = 1
is cost-optimal. The proof is completed by observing that such
a strategy guarantees Ĩ(t) ≤ Ĩ(0) for every t ∈ [0, tmax].

Remark 6. Rρ(t) = 1 can be achieved by controlling the
rate of new infections and maintaining it equal to the target
λC = γĨ(0)E[r]/E[r2]. The resulting control function is
ρ(t) = λU (t− ε)/λC = λ(t − ϵ)ρ(t − ε)/λC , where ε is
an arbitrarily small positive constant.

In conclusion, given an initial condition Ĩ(0), a maximum
allowable number of infected contacts Ĩ⋆ and a time horizon
tmax, if the goal is to keep Ĩ(t) ≤ Ĩ⋆ ∀t ∈ [t⋆, tmax),
with t⋆ as small as possible, the following strategy appears
to be the natural answer: if Ĩ⋆ > Ĩ(0), set Rρ(t) = 1 +

1
γtmax

log
(
Ĩ⋆/Ĩ(0)

)
,∀t ∈ [0, tmax]. This strategy, indeed,

minimizes the economic cost in [0, tmax], among all strategies
that guarantee Ĩ(t) ≤ Ĩ⋆,∀t ∈ [0, tmax], (i.e., t⋆ = 0). If,
instead, Ĩ⋆ < Ĩ(0), we can not guarantee t⋆ = 0, and therefore
to minimize t⋆ it is necessary to minimize Rρ(t) in [0, t⋆)
and then to set Rρ(t) = 1,∀t ∈ [t⋆, tmax]. Indeed, this is
the strategy that minimizes the economic cost in [0, tmax],
among all strategies minimizing t⋆. Previous arguments can
be formalized in the following proposition.

Proposition 2. Given Ĩ(0), Ĩ⋆ and tmax, whenever our goal
is to keep Ĩ(t) ≤ Ĩ⋆,∀t ∈ [t⋆, tmax), with t⋆ as small as
possible, the strategy described above is cost-optimal.

It is worth remarking that the optimality criteria depend
on various factors, including the dynamics of the system,
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the objective function, and the constraints. In the context of
our study, the choice of time horizon tmax plays a crucial
role. If tmax is set too low, it might limit the effectiveness
of the control measures. We emphasize that the selection of
tmax should be carefully considered based on the specific
context and dynamics of the epidemic under investigation.
The parameter Ĩ⋆, instead, represents the maximum admissible
number of infected over the considered time horizon tmax and
is indissolubly related to the transmission rate λ. It represents
the number of infected it is possible to sustain (in a country, for
example). This again showcases the tradeoffs between social
cost (in terms of deaths) and economic cost (the entity of
restriction measures), small values of Ĩ⋆ would result in a
small number of deaths but also in a high economic cost. Our
analysis will provide insights for a fixed value of Ĩ⋆, chosen
by the decision maker according to the tradeoff between social
and economic cost and the acceptable number of infected by
the overall healthcare infrastructure. We acknowledge that this
choice could potentially be optimized to minimize the cost,
and while we do not explicitly optimize it in our study, we
will discuss the implications of different target numbers and
their impact on the control measures (see sec. IV-C).

B. Rate Control with feedback delay

Policymakers cannot instantaneously react to changes in
the rate of new infections due to several reasons: i) new
infections are discovered by tests performed several days after
infection, and high-risk individuals are more likely to undergo
testing [49], ii) new regulations take time to be introduced and
become effective, iii) decisions are based on trends obtained
by averaging epidemiological curves, iv) the actual process
of new infections in unknown (think of asymptomatic but
infectious people). Consequently, the measured process is a
delayed, noisy subsample of the actual process. Therefore, we
consider the case in which the actual, instantaneous effective-
ness of mobility restrictions, modeled by ρ(t), is given by:
ρ(t) = max

{
1,

∫
fd(τ)λU (t−τ) dτ

λC

}
where fd(·) is a feedback

delay distribution.
One of our main results is that the system becomes unstable

if the feedback delay is too large with respect to 1/γ (the
average time in the infectious state). To simplify the analytical
derivations, we start with the case of deterministic feedback
delay of constant duration d (days). Then we extend the result
to a delay distribution fd.

Theorem 1 (Stability analysis with constant delay). Assume

ρ(t) = max

{
1,

λU (t− d)

λC

}
= max

{
1,

λ(t− d)ρ(t− d)

λC

}
and Sr,p(t) ≈ Nfr,p. If the delay d < π

2 γ then the system is
locally stable, otherwise the system is unstable.

Proof: Since under the assumption Sr,p(t) ≈ Nfr,p, the
equation governing the evolution of the number of infected
edges under delayed rate control becomes:

˙̃
I(t) =

Ĩ(t)

Ĩ(t− d)
λC

E[r2]
E[r]

− γĨ(t) (8)

System stability can be analyzed by considering small
perturbations around the equilibrium point Ĩ∗ = λC

γ
E[r2]
E[r] :

Ĩ(t) = Ĩ∗ + η(t), with η(t) ≪ Ĩ∗. Exploiting the approxi-
mation 1

1+x ∼ 1− x, when x ≈ 0, from (8) we obtain:

˙̃
I(t) = γĨ∗

1 + η(t)

Ĩ∗

1 + η(t−d)

Ĩ∗

− γ(Ĩ∗ + η(t)) ≈ −γη(t− d)

where we have discarded the second-order term η(t)η(t− d).
We end up with the simple differential equation with delay:

η̇(t) = −γ η(t− d) (9)

Taking the Laplace transform L{η(t)} we obtain L{η(t)} =
η(0)

s+γe−sd . Equation (9) admits solutions of the form η(t) =

Aebt cos(ωt+ θ) under the conditions:{
b = −γe−bd cos(ωd)

ω = γe−bd sin(ωd)
(10)

While A and θ can take any value, i.e., can be used to match
desired values of η(0) and η′(0), b and ω are uniquely de-
termined by the feedback delay d. Besides the trivial solution
b = ω = 0, there exists a stationary solution b = 0, ω = γ for
the special case d = π

2γ . If d < π
2γ , from the first constraint

we have that b < 0, corresponding to dumped oscillations. For
π
2γ < d < 3π

2γ , we have instead amplifying oscillations (b > 0).
Therefore, d = π

2γ is the critical value for stability.
The analysis can be extended to a delay distribution fd.

Theorem 2 (Stability analysis with delay distribution). As-
sume that ρ(t) = max

{
1,
∫
fd(τ)λU (t− τ) dτ/λC

}
and

Sr,p(t) ≈ Nfr,p. Let Z = {z ∈ C : z + γ Fd(z) = 0}, where
Fd(z) is the Laplace transform of the delay distribution. Then,
if Re(z) < 0 ∀z ∈ Z , the system is locally stable.

Proof: Repeating the same approximations as before for
small variations around the equilibrium Ĩ∗, we obtain the
differential equation with delay distribution:

η̇(t) = −γ

∫
fd(τ)η(t− τ) dτ (11)

Taking the Laplace transform, we get H(s) =
η(0)/(s+ γ Fd(s)). Note that when fd(τ) = δ(τ − d),
we obtain the case with constant delay. We evince that we
need the set of zeros Z = {z ∈ C : z + γ Fd(z) = 0} to lie
in the left half-plane to ensure stability.

In the following corollaries, whose proof is given in [5] we
explore two interesting cases of feedback delay distributions.

Corollary 2 (Exponential delay distribution). If fd(τ) =
u(τ)δe−δ(τ), then the system is always (locally) stable.

Corollary 3 (Shifted exponential delay distribution). Let
fd(τ) = u(τ − d)δe−δ(τ−d). For any given δ > 0, there exists
a critical delay d∗ = 1

γ f(δ), such that the system is (locally)
stable if d < d∗, otherwise the system is unstable. As δ grows
from 0 to ∞, d∗ grows from 1/γ to π/(2γ).

The shifted exponential distribution can represent a system
where: i) an exponentially weighted moving average (with
parameter δ) is used to estimate the current trend of the
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epidemiological curve, ii) some fixed delay d is introduced
before the control becomes effective. Our results suggest that
system stability is crucially tied (by a factor between 1 and
π/2 that depends on δ) to the mean sojourn time 1/γ in the
infectious state. If d is too large with respect to 1/γ, the control
based on the force of infection is prone to instability.

In a finite population system, as time goes on, we can no
longer assume that Sr,p(t) ≈ Nfr,p, since the number of
initially susceptible individuals is progressively reduced by the
number of people who get infected (see (1)). Moreover, Sr,p(t)
can vary because of vaccinations and the finite duration of
immunity. Nevertheless, we can still apply the above results
by resorting to a time-scale separation approach, i.e., by
assuming that Sr,p(t), though not equal to Nfr,p, are almost
constant at the time scale over which we analyze stability.

Remark 7. The assumption of a constant number of suscepti-
ble individuals is fairly accurate when dealing with dynamics
of a large population over a relatively small window of time. In
such a case, the rate of infection spread may have a minimal
impact on the overall number of susceptible individuals in
relative terms (mathematical considerations as in Remark 4
apply). We emphasize that the rate of newly infected people
should be sufficiently small to ensure that the total number of
infected/recovered people in the considered window is negli-
gible with respect to the number of susceptible individuals.

Indeed, recall from Remark 3 that the evolution of the total
number of infected edges can be written as:

˙̃
I(t) = γ

(
R(t)

ρ(t)
− 1

)
Ĩ(t) (12)

where R(t) =
σ
∑

r,p r2Sr,p(t)

γ
∑

r,p rNfr,p
is the basic reproduction in the

general case. This equation is formally identical to (6) upon
substituting R0 with R(t). Since our stability results do not
depend on R0, they apply also to a system in which R(t)
can be considered approximately constant at the time scale at
which we analyze the system stability (i.e., time scale of 1/γ).

C. Sensitivity Analysis - The impact of λ
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Figure 4. Parametric curves of economic cost vs social cost, as we vary λ,
with θ ∈ {1, 10}.

Fig. 4 reports both the economic cost and number of deaths
observed over a time horizon tmax = 1 year as a function
of the control parameter λ. We refer the reader to Table IV

of the Supplemental Material [5] for a detailed description
of all the infection-parameters. When controlling the infection
rate, the suppression strategy, i.e., minimizing infection rate λ,
appears to be the most reasonable choice since it minimizes
the number of deaths incurring an almost constant economic
cost for, e.g., all values of λ < 10000. Indeed note that, once
the system is stabilized around a fixed infection rate1 λ∗, the
economic cost is the same for any λ∗, as long as S(t) ≈ N .

In the case of COVID-19, some countries, e.g., China,
have adopted the suppression strategy, which is particularly
effective when restrictions can be geographically localized
to small areas with limited impact on the national economy.
Of course, this cannot be a solution in the long term unless
the virus is totally eradicated or conditions change, e.g., herd
immunity is reached through vaccinations. Indeed, note that all
results discussed so far refer to a fixed time horizon tmax = 1
year.
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Figure 5. Parametric curves of economic cost vs social cost, as we vary λ,
for different time horizons tmax; θ = 1.

To understand how the optimal strategy might change as
we increase the time horizon tmax, it is convenient to look at
the plot in Fig. 5, showing parametric curves of economic
cost vs. social cost, as we vary λ, for tmax = 1, 2, 4, 8
years. These results have been obtained by running the multi-
class model with the parameter θ, representing the increase of
mortality due to ICU saturation, equal to 1, putting us in the
most favorable conditions (i.e., in the presence of unlimited
healthcare facilities) to decide to abandon the suppression
strategy. Clearly, under the suppression strategy, the economic
cost increases linearly with time, so for tmax large enough,
this strategy becomes necessarily suboptimal2.

Interestingly, curves shown in Fig. 5 can be split into two
convex parts connected at the point where the population
reaches natural herd immunity (the knee). The consequences
of this behavior on the multi-objective function (4), for κ2 = 0
and κ3 = 1, which is linear with respect to trade-off factor
κ1, are illustrated in Fig. 6 for the case tmax = 4 years.
We observe that all points between B and C are not Pareto-
efficient, hence cannot be optimal solutions for the opti-
mization problem (4). The optimal strategy exhibits a phase
transition with respect to κ1: for small values of κ1 (social cost

1Further, note that with proper control, the cost incurred during the transient
phase necessary to bring the system to operate at a given λ is negligible with
respect to the long-term accumulated cost.

2It should be noticed, however, that a finite population model like ours is
not adequate to describe a system running for more than, say, a few years.
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Figure 6. Pareto frontier of the multi-objective function (4) in the case
tmax = 4 years; θ = 1.

much more important than economic cost), the best strategy
is total suppression (point A), whereas for large κ1 we end
up operating beyond the herd immunity knee. Intermediate
solutions between A and B also exist, but only for a very
small, particular range of κ1 values.
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Figure 7. Economic and social costs as a function of controlled rate λ, for
fixed tmax = 4 years and different values of α.

The particular value of κ1 at which the phase transition
occurs, in addition to the time horizon tmax, depends crucially
on the exponent α, as one can intuitively understand from Fig.
7, which shows economic and social costs as a function of the
controlled rate λ, for fixed tmax = 4 years, and different values
of the exponent in the economic cost α = 1, 2, 3: while the
social cost is the same for all α, the economic cost depends
dramatically on α. Note that α = 1 is the extreme case for
the validity of Proposition 1.

Proper values of α to be used in the model are difficult
to set. However, the general conclusion remains the same:
unless one considers considerably long (but unlikely to be
significant) time horizons, the best option always appears to
be the minimization of λ. With the parameters of COVID-
19, and in particular, for the delta variant, the opposite ‘let
it rip’ strategy in which one tries to achieve the natural herd
immunity (while still controlling λ to avoid ICU saturation)
produces an unreasonable social cost in terms of deaths. Some
countries (like the UK) initially considered this option at
the onset of the pandemic but quickly switched back to the
suppression strategy after a few months.

Another reason why the ’let it rip’ strategy considered so
far is perilous is that it relies on the assumption that recovered
people are immune forever, i.e., recovery rate µ = 0. In

the case of COVID-19, natural immunity is progressively lost
over time, so reinfections are possible about six months after
recovery. Even assuming that reinfected people are much less
likely to develop a severe form of the disease, we expect a
significantly higher social cost when µ > 0. This observation
is confirmed by results in Fig. 8, showing economic and social
costs for tmax = 4 years, mortality reduction after the first
exposure qpost = 10, and different values of the average
sojourn time in the immune state, equal to 6 months (as
estimated for COVID-19), 1 year, 2 years, in addition to the
optimistic hypothesis µ = 0.
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reinfection is reduced by qpost = 10.

Note that at the beginning of the pandemic, the decision of
which strategy to adopt was daunting because nobody knew
the characteristics of the novel virus and whether effective
vaccines could be developed, and after how much time. It was
also unknown when and which mutations of the original virus
would have replaced the original strain. In later sections, we
will bring into the picture these two fundamental factors that
have steered the pandemic’s evolution after the first year.

V. CONTROL ON HOSPITALIZATIONS AND INTENSIVE
THERAPY OCCUPANCY

Recall that, according to the HT strategy, the control vari-
able ρ(t) is directly related to the instantaneous numbers H(t)
and T (t) of patients who are currently hospitalized or under
intensive treatment, respectively. Many countries have widely
adopted this strategy, being particularly simple to implement.

A. Stability analysis

We assume that Hospitals and ICUs have a maximum capac-
ity Ĥ and T̂ , correspondingly. A maximum level of restrictions
ρmax is applied whenever either H(t) exceeds Hmax (with
Hmax ≤ Ĥ), or T (t) exceeds Tmax (Tmax ≤ T̂ ). When
H(t) < Hmax and T (t) < Tmax, we assume that two control
functions ρH : R+ → [1,∞) and ρT : R+ → [1,∞) provide
two different levels of restrictions, the larger (i.e. stricter) of
which is actually applied: ρ := max{ρH ◦H, ρT ◦ T}.

Assumption 1. Let ρH ∈ C1[0, Hmax], ρT ∈ C1[0, Tmax]
such that ρH(0) = ρT (0) = 1, ρH(Hmax) =
ρT (Tmax) = ρmax, with infx∈(0,Hmax) ρ̇H(x) > 0 and
infx∈(0,Tmax) ρ̇T (x) > 0.
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To analyze the system stability under the above type of
control, we first assume Sr,p(t) ≈ Nfr,p. We will later extend
the analysis to the general case through a time-scale separation
approach. Under the assumption Sr,p(t) ≈ Nfr,p we have that
the total number of infected ‘edges’ is governed by Eq. (6).

Proposition 3 (Stationary solutions). Under the assumption
Sr,p(t) ≈ Nfr,p and Assumption 1 the stationary solutions
satisfy:

H∗ =
γ

ϕ
Ĩ∗

E[r pIHr,p ]
E[r2]

, T ∗ =
γ

τ
Ĩ∗

E[r pIHr,p pHT
r,p ]

E[r2]
. (13)

Proof: From the definition we have Ir,p(t) = Ĩ(t)
rfr,p
E[r2] ,

I(t) = Ĩ(t) E[r]
E[r2] . It should be noted that at equilibrium

necessarily ρ∗(t) = R0 for all t and, by monotonicity of ρH
and ρT , we have one of the following cases:

• H∗ = ρ−1
H (R0), and T ∗ ≤ ρ−1

T (R0);
• T ∗ = ρ−1

T (R0), H
∗ ≤ ρ−1

H (R0).

Hence,

Ĩ∗ = min

(
ρ−1
H (R0)

ϕ

γ

E[r2]
E[r pIHr,p ]

, ρ−1
T (R0)

τ

γ

E[r2]
E[r pIHr,p pHT

r,p ]

)
.

Now, from (1), we obtain detailed equilibrium points:

I∗r,p = Ĩ∗
rfr,p
E[r2]

, H∗
r,p =

γ

ϕ
I∗r,p p

IH
r,p , T

∗
r,p =

ϕ

τ
H∗

r,p p
HT
r,p

Therefore, summing over (r, p), we get corresponding equi-
libria for the total number of people hospitalized or under
intensive therapy as given by Eq. (13).

Theorem 3 (Stability analysis). Let ρH and ρT satisfy As-
sumption 1 and H∗ and T ∗ be stationary solutions as given
in Proposition 3. If at least one of the following conditions is
satisfied:

• ρH(H∗) > ρT (T
∗)

• ρT (T
∗) ≥ ρH(H∗) and ϕ+ τ ≥ T∗ρ̇T (T∗)γ

R0

then the system is locally stable.

Proof: Let us consider small perturbations around the
equilibrium point Ĩ∗: Ĩ(t) = Ĩ∗ + η̃(t) with η̃(t) ≪ Ĩ∗.

We will assume that 0 < H∗ < Hmax, and 0 < T ∗ <
Tmax. From Assumption 1, by denoting with α∗

H = ρ̇(H∗)
and α∗

T = ρ̇(T ∗) we have the following cases.

1) If ρH(H∗) > ρT (T
∗) by continuity we get that ρ(t) =

ρH(H(t)) > ρT (T (t)) and assuming initial conditions
H(0) = H∗, T (0) = T ∗, after some algebra we get the
Laplace transform of η(t):

L{η(t)} =
η(0)(s+ ϕ)

s(s+ ϕ) +
H∗α∗

Hϕγ

R0

(14)

In this case, the system is always stable for any value
of parameters ϕ, γ,R0, since the real part of the poles
of (14) is always negative. As we increase the amplitude
of coefficient H∗α∗

Hϕγ
R0

, the real part of the dominating
pole moves from 0 to −ϕ.

2) If ρT (T
∗) > ρH(H∗) then, by continuity, we have

ρ(t) = ρT (T (t)) > ρH(H(t)) and, by first order
analysis and computing the Laplace transform, we get

L{η(t)} =
η(0)(s+ ϕ)(s+ τ)

s(s+ ϕ)(s+ τ) +
T∗α∗

T τϕγ

R0

The system may be unstable since we obtain in the
denominator a third-order equation whose complex so-
lutions can fall in the positive half-plane. In particular,
the system is stable when:

ϕ+ τ ≥ T ∗α∗
T γ

R0
(15)

while it becomes unstable otherwise. Indeed, pure imag-
inary solutions s = iω are roots of the above third order
equation when ω =

√
τϕ, while relation (15) is satisfied

with equality.

Theorem 3 provides conditions guaranteeing the local sta-
bility of the system.

In particular, it is worth remarking that once Hmax ≤ Ĥ
has been fixed, condition ρH(H∗) > ρT (T

∗) can always be
achieved by arranging a sufficiently large number of available
intensive therapy facilities. Indeed, even when R0 is not
perfectly known, it is sufficient to guarantee:

ρ−1
H (y)

ϕ

γ

E[r2]
E[r pIHr,p ]

< ρ−1
T (y)

τ

γ

E[r2]
E[r pIHr,p pHT

r,p ]

for every ρmin < y < ρmax, i.e. ρ−1
T (y)

ρ−1
H (y)

> ϕ
τ

E[r pIH
r,p pHT

r,p ]

E[r pIH
r,p ]

.

Observe that the above constraint can be met if

Tmax >
ϕ

τ

E[r pIHr,p pHT
r,p ]

E[r pIHr,p ]
Hmax (16)

by adopting controllers that satisfy the relationship:
ρH(xHmax) ≥ ρT (xTmax) ∀ 0 ≤ x ≤ 1.

When the number of intensive therapies is, instead, under-
dimensioned, we have ρH(H∗) > ρT (T

∗), and the system
stability essentially depends on the average time spent in
hospitals and ICU, through the sum ϕ+ τ of transitions rates
out of compartments H , T (both are equally important).

Assuming that Sr,p(t) are almost constant on the time scale
over which stability is studied, the analysis can be extended by
replacing the basic reproduction number R0 with the effective
reproduction number R(t).Indeed, by doing so, the evolution
of the total number of infected edges (12) becomes formally
identical to (6).

B. Sensitivity Analysis - The impact of Hmax and Tmax

In the same settings as in sec. IV-C, we start analyzing the
impact of the maximum tollerable levels of hospitalized and
ICU patients Hmax and Tmax on the system dynamics. Both
the implemented controllers are linear.

In all the cases we have set the capacities as Ĥ = 50000
and Tmax = T̂ . The choice Tmax = T̂ is justified by our
previous analysis, according to which the maximization of
ratio Tmax/Hmax favors system local stability around the equi-
librium point. Note that our choice of parameters guarantees
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local stability also in cases in which the tightest control at the
equilibrium point is exerted by intensive therapies occupancy
Finally note that, since in our scenario ϕ

τ

E[r pIH
r,p pHT

r,p ]

E[r pIH
r,p ]

= 0.331,
we should enforce Tmax/Hmax > 0.331 to guarantee that
at the equilibrium point, the tighter control is exerted by
hospitalizations.

Figure 9 reports some result. First, we have fixed Tmax =
10000 and we let Hmax vary. In particular we have chosen:
Hmax = 20000 (top left plot), Hmax = 30000 (top right plot),
Hmax = 50000 (bottom left plot).

Only the first choice for Hmax satisfies condition Eq. (16).
Note that by reducing Hmax, we significantly reduce os-
cillations since the control on hospitalization becomes re-
active. Periods in which the tightest control is exerted by
hospitalizations/intensive therapy occupancy are highlighted
in the figures. In no cases saturation of intensive treatment
facilities is observed. Table I complements the previous figure
by reporting economic costs (with economic cost exponent
α = 1, 2, 3) and deaths for all scenarios. In general, more
conservative choices of Hmax lead to significant reductions in
the number of deaths, and in some cases also in the economic
cost, as an effect of the reduction of oscillations.

We have also tested, reporting results in Table I), situations
in which Tmax/Hmax is kept fixed equal to two (so to
guarantee the satisfaction of condition Eq. (16), while Tmax

is set respectively to 5000, 10000 and 20000. Note that we
obtain different trade-offs between economic cost and number
of deaths. In general, by increasing Tmax, we reduce the
economic cost and increase the number of deaths. Evolution
of metrics for the case Tmax = 5000, Hmax = 10000 is shown
in Figure 9 (bottom right plot). In this case, contrarily to the
case Tmax = 10000 and Hmax = 20000, intensive therapy
control exerts the tightest control for a given short period.

At last, Table I reports results for the case Tmax = 10000,
Hmax = 10000. Observe that the performance of this last
case is almost indistinguishable from the case Tmax = 5000,
Hmax = 10000 (which requires just half of the intensive
therapy facilities) both in terms of deaths and economic cost.

In conclusion, in our scenario keeping the ratio
Tmax/Hmax ≈ 2 appears to be the best choice, as it
guarantees that the tightest control is essentially always
exerted by hospitalizations in dynamic conditions. Then Tmax

(and consequently Hmax) should be chosen instead to achieve
the desired trade-off between deaths and economic cost (as
previously observed, deaths are more sensitive to parameters
than economic costs). In our analysis, we have neglected
the costs related to the creation/maintenance of sanitary
facilities (which are typically small with respect to general
economic costs due to restrictions) to limit the number of
free parameters. However, extending the model to include
such costs would be relatively immediate.

VI. A COMPARATIVE ANALYSIS WITH OPTIMAL CONTROL

In this section, we perform a comparative analysis of the
proposed model against optimal control and homogeneous
models to assess its effectiveness and advantages in addressing
the research problem.

Table I
COSTS AND DEATHS [k ≡ 103]

Tmax Hmax cost (α = 1) cost (α = 2) cost (α = 3) deaths
5k 10k 2.03k 13.0 k 102 k 13.2 k

10k 10k 2.03k 13.0 k 101 k 13.2 k
10k 20k 1.94k 11.1 k 71.3 k 25.3 k
10k 30k 1.92k 10.9 k 66.6 k 35.9 k
10k 50k 2.12k 14.6 k 115 k 42.2 k
20k 40k 1.88k 10.2 k 59.3 k 49.0 k
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Figure 9. Evolution of I(t),T (t) (left y axes) and ρ(t) (right y axes), for
different combinations of Tmax = T̂ and Hmax, and fixed Ĥ = 100000.
The rectangles at the bottom of the plots indicate periods in which ρ(t) is
determined by T (t).

In this section, we compare the Rate and HT controllers
with optimal control during the first phase of the pandemic in
which vaccines are still unavailable. All experiments refer to
the single-class version of the model in Eq. (1).

In [50], various government intervention strategies are com-
pared against a specific percentage of the deceased popula-
tion while employing different control policies. We replicate
similar experiments and present the numerical solutions ob-
tained via the optimal control approach within a time horizon
tmax = 365 days. We fix κ1 = 200, κ3 = 20, and ζ = 4, and
we let κ2 to vary from 105 to 108.

The considered economic cost corresponds to the teal curve
depicted in Figure 3. Such cost has been chosen non-convex,
on purpose, to put the Rate control strategy in the most
challenging conditions (indeed Proposition 1 and 2 do not
hold). Observe that, with our choice of parameters, the first
term of the objective function in Eq. (4) is typically small
with respect to the third, and therefore the choice of κ2 be-
comes fundamental to determine the proper trade-off between
economic cost and death/ICU occupancy, where the last two
metrics are highly correlated, since by tightly controlling ICU
occupancy, we exert tight control on the deaths and vice versa.

As discussed in the Supplemental Material [5], the average
sojourn time in state I has been set equal to 8 days and that
in states H and T to 16 days. Therefore γ = 1/8, ϕ = τ =
1/16. The transition probabilities between compartments I, H,
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Figure 10. (a) Economic cost and control effort via optimal control (b) Percentage of threatened and deceased individuals via optimal control implementation.
(c) Comparison of optimal control and Rate control strategies
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Figure 11. (a) Comparison of different control strategies: (a) Overall costs and economic costs; (b) Control function. (c) Percentage of threatened and
deceased individuals.

T, and D, satisfying constraint (2), are set for simplicity as
follows: pIH = pHT = p̂TD = p1/3 with overall mortality
rate p = 0.01. The assumed value for the basic reproduction
number has been fixed to R0 = 3, as reported in [51], and the
healthcare capacity parameter to 3.33 · 10−3.

In Figure 10(a), the economic cost (in blue) and the control
(in red) are shown as a function of time. For lower values of the
parameter (κ2 ∈ [105, 106]), the control measures are moderate
and remain relatively constant for a brief period of approxi-
mately 50 days. After this initial phase, the control is tighter,
reaching its maximum level of restriction. During this period,
stringent measures are implemented to contain the epidemic
effectively. Subsequently, as the situation improves or specific
goals are achieved, the control is gradually relaxed, allowing
for a more lenient approach to managing the epidemic. This
sequential pattern of moderate-tightened-relaxed control mea-
sures aims to strike a balance between mitigating the spread
of the disease and minimizing the socioeconomic impact on
the population. The stringent initial intervention effectively
disrupts the early exponential growth of the epidemic, leading
to a dampened peak number of infections. In both previous
cases at the end of the observation window, i.e., for t ≈ tmax,
the population reaches herd immunity. As we increase the
value of κ2, as expected, the control becomes more stringent
and is kept constant for most of the time (around 350 days). At
the same time, the healthcare system experiences less stress,
and the number of deaths decreases at the expense of higher
economic costs. Notably, when setting κ2 above 2 · 107, we

can confidently guarantee that the peak number of patients
requiring intensive care remains below around 30000 (see
Figure 10(b) where blue curves refer to ICU occupancy and
red curves to cumulative deaths). This behavior highlights
the importance of appropriately calibrating control parameters
to achieve optimal outcomes in managing the epidemic and
preventing overwhelming pressure on the healthcare infras-
tructure. Observe that at the end of the observation window,
i.e., for t ≈ tmax, the control is always completely released,
i.e., ρ(tmax) = 1. This effect is a by-product of the optimal
control approach, which does not account for what happens
when t > tmax. Indeed, as t approaches tmax, releasing the
control leads to an instantaneous reduction of the economic
cost, while, due to the delay, the resulting increase in ICUs
and deaths is negligible (as it will take place after tmax ).

The analysis in Figure 10(c) highlights the trade-offs be-
tween economic cost and human lives achieved by optimal
control and Rate control, respectively. The curves have been
obtained by varying parameter κ2 ∈ [105, 108] for optimal
control, λ ∈ [1000, 700000] for Rate control. We have
disregarded the healthcare stress cost, using the total number
of deaths as a proxy of it. It should be noted that the optimal
control strategy proves to be the most effective, outperforming
the rate control strategy. However, if we fix the number
of deaths, for example, to 0.2% (i.e., 100000 deaths), the
rate control strategy exhibits only a slightly worse economic
cost. The difference between the economic cost curves of the
two strategies is not substantial, with a modest 7% increase
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obtained by the rate control strategy. Despite the increase in
economic costs resulting from the rate control strategy, the
difference is relatively small, indicating that both strategies
remain competitive in managing the epidemic.

It is worth remarking that approximately the same value
of the overall objective function in Eq. (4), which takes
into account economic cost, deaths, and healthcare stress in
the optimal control strategy, can be achieved through fairly
different approaches. Figure 11 provides a comparison among
the optimal control strategy with κ2 = 2 · 107, the Rate
control with λ = 120000, and the linear HT control with
ρH(H) = min

(
15, H0

H0−H

)
and ρT (T ) = min

(
15, T0

T0−T

)
,

with and H0 = 480000 and T0 = 300000. While the overall
cost for the three strategies is approximately the same, the
different components of the cost are significantly different.
For what concerns the economic cost, the optimal control
strategy appears to be the least favorable, resulting in the
highest economic burden compared to the other strategies
(the economic cost for the optimal control strategy is hardly
distinguishable from the overall cost). On the other hand,
the rate control strategy is the most efficient in minimizing
economic costs, offering a more economically sustainable
approach. The HT control strategy falls in an intermediate
position, achieving a balance between cost-effectiveness and
epidemic management. Regarding the number of deaths, the
optimal control strategy demonstrates its strength, resulting in
the lowest fatality rate among the three strategies. It effectively
minimizes the loss of life during the epidemic. Conversely,
the rate control strategy shows the highest number of deaths,
indicating that this approach is less effective in preventing
fatalities. The HT control strategy lies in between, offering
an intermediate level of protection against the loss of life
compared to the other two strategies. In conclusion, adopting
the overall cost as the unique driver for the choice of ρ(t)
turns out to be not particularly appealing to decision-makers
because it does not allow them to exert direct control on the
different components of the cost.

VII. EXPERIMENTS IN A COMPREHENSIVE SCENARIO

Our numerical results are obtained in a reference scenario
roughly inspired by the actual evolution of COVID-19 in Italy
during a period of 3 years, starting from the onset of the virus
at the beginning of 2020. During this period, the dynamics of
COVID-19 in Italy (and similarly in other European countries)
have been characterized by three main phases, each spanning
about one year:

1) first phase: in this phase the most dangerous strains
of the virus, e.g., the alpha and delta mutations, prop-
agated in the absence of pharmaceutical interventions
(vaccines), causing the majority of all deaths attributed
to COVID-19.

2) second phase: since the beginning of 2021, vaccines
started to be massively distributed to the population,
and almost all individuals (excluding no-vax people)
completed the vaccination cycle (by receiving one or
two doses) by the end of the second year.

3) third phase: since the beginning of 2022, with the onset
of the omicron variant, less dangerous but more virulent

strains became prevalent, substituting the initial strains.
Vaccines originally developed for the alpha and delta
mutations also protected people against the omicron
variant, though with reduced efficacy.

To capture the above dynamics, we made some simplifying
approximations to limit the model complexity: we assume that
a single variant (strain 1), with basic reproduction number
R1

0 = 6, propagates during the first 2 phases, after which
a new variant (strain 2) appears with higher R2

0 = 12 and
reduced mortality (by factor q21 with respect to the mortality
of strain 1, for each class of people).

The parameters of our reference scenario are summarized
in Table IV of the Supplemental Material [5]. Although our
model and parameters can only roughly describe the actual
dynamics of COVID-19 in Italy, they provide a realistic
scenario in which different virus mitigation strategies can
be compared, offering valuable insights. Of course, in our
model for the reference scenario, we stratify the population
using the fr,p distribution computed for Italy, as explained in
[5]. Transition probabilities between compartments I ,H ,T ,D
satisfying constraint (2) are set for simplicity as follows:
pIHr,p = pHT

r,p = p̂TD
r,p = p1/3.

Strain 1 starts at time 0 with 1 initially infected individual.
Similarly, strain 2 starts at time t2 with 1 initially infected
individual. We consider the economic cost function: C(ρ) =
(ρ − 1)α which satisfies the assumptions of Proposition 1
for α ≥ 1, and allows us to explore the impact of costs
caused by more substantial non-pharmaceutical interventions
by varying the single parameter α. We emphasize that the
resulting scenario is not specific to Italy: similar assumptions
and parameters could describe equally well, at a high level, the
dynamics of COVID-19 in other mid-size European countries
or a single US state with a comparable population size. At
last, while each of the first two phases lasted approximately
one year, in our analysis to have a complete view of the
potential impact of different control approaches, we have also
considered cases in which no effective treatments have been
available for several years. When the epidemic spread out at
the beginning of 2020, and the first decisions had to be made,
no one could predict how long it would have taken to have
effective vaccines/treatments available. In the following, for
the sake of simplicity, we neglect the term associated with
the healthcare system stress by taking into consideration only
social (deaths) and economic costs, this corresponds to set
κ2 = 0.

In the following two subsections we first examine the inter-
play between mobility restrictions, enforced through our two
Rate and HT controls, and vaccination prioritization schemes
(MSF and MVF) hence considering the first two years of our
reference scenario. Then, we consider the complete three-years
comprehensive scenario.

A. Mobility restrictions and vaccinations

We first consider the ‘first’ and ‘second phase’ of our
reference scenario, considering the joint impact of vaccination
policies and control strategies during the first two years of
the pandemic. Recall from Sec. III-B that we focus on two
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extreme vaccine prioritization policies: Most Vulnerable First
(MVF) and Most Social First (MSF).

We will consider a single type of vaccine to be administered
in two doses separated by a variable interval of ∆ days. In this
way, we can address an issue raised in some countries, e.g.,
the UK, when vaccines started to be available for mass dis-
tribution, i.e., whether it is better to follow the recommended
protocol (∆ = 21 days) or to give one dose to the largest
possible population, before administering the second dose. The
latter policy, which aims at partially immunizing a vast portion
of the population, corresponds to choosing ∆ = 135 days.
In our investigation, we assume the vaccination rate to be
constant and such that the entire population can receive two
doses after 9 months (270 days).

No vaccine is available during the first year (first phase).
To better compare our two control strategies, we initially start
the system at the equilibrium point (I∗, H∗, T ∗), disregarding
the transient needed to reach such equilibrium.3 Under the
HT strategy, we assume that control is always determined
by the occupation of regular hospitals, rather than ICU, by
adequately setting the ratio Tmax/Hmax. Moreover, note that
the parameters of the HT strategy can be tuned to achieve the
desired number I∗ of infected people at the beginning of the
pandemic. This allows us to compare the trade-offs achievable
by our two control policies.

Given the current understanding of COVID-19 vaccines, one
limitation of the approach is the uncertainty surrounding the
specific efficacy of different vaccines and their effectiveness
against emerging variants. Vaccine efficacy can vary depending
on age, underlying health conditions, and individual immune
response. Additionally, the duration of vaccine-induced pro-
tection and the potential for waning immunity over time
are still being studied. As a result, the parameters related
to vaccine prioritization, such as the efficacy rates and the
duration of protection, are subject to a range of values rather
than precise estimates. The lack of comprehensive knowledge
about these parameters restricts the ability to determine an
optimal vaccination strategy with certainty. Therefore, the
study may need to consider a range of plausible values for
vaccine-related parameters and perform sensitivity analyses to
assess the robustness of the results under different scenarios.
Given the considerations above, we introduce variability in
the efficacy ratio between the first and second doses of the
vaccine. Specifically, we examine two different values for this
ratio, denoted as VE1/VE2, namely 0.3 and 0.6. Meanwhile,
we keep the efficacy of the second dose fixed at VE2 = 0.9.
By incorporating this range of values for the efficacy ratio, we
account for the uncertainty surrounding the relative effective-
ness of the two vaccine doses.

The achievable trade-offs between economic cost and num-
ber of deaths, measured at the end of the second year, are
shown in plots (a),(b),(c), and (d) of Fig. 12, for the four
combinations arising from the two considered control policies
and the two considered efficacy ratios (see plot titles). Each
plot contains four curves related to the four combinations of

3A comprehensive analysis of the complete scenario also comprising the
initial transient will be presented later in Sec. VII-B.

vaccination policies (MSF vs. MVF, ∆ = 21 vs. ∆ = 135).
Several observations are in order. First, the MSF policy

(green and blue curves) generally outperforms MVF (red and
purple curves). This fact is not trivial and depends crucially
on the extent of the negative correlation between r and p in
the population distribution fr,p. Note that the MSF policy
is hardly implementable in practice. Indeed, only the MVF
policy has been deployed in many countries, by simple age
prioritization, except for special categories of workers (e.g.,
healthcare workers) who have also received the vaccine in
advance due to their exposition to the virus.

Second, as expected, the efficacy ratio of 0.6 leads to better
outcomes than the efficacy ratio of 0.3. In particular, delaying
the distribution of the second dose (∆ = 135) is not advisable
if the first dose is relatively ineffective (efficacy ratio 0.3).

Third, the impact of different control strategies is fairly
small, with rate control slightly outperforming HT control.
The best possible trade-offs, i.e., the lowest possible curves,
are generated by the rate control, MSF, and a properly tuned
∆ (note the crossing between blue and green curves on plot
Fig. 12(c)).

The effect of the two control strategies, combined with
different vaccination policies, can be better understood by
looking at temporal dynamics shown in Fig. 13 for rate and
HT control. In both cases, we assume an initial number of
infected people I∗ = 32, 000 (corresponding to λC = 4, 000)
while restricting ourselves to an efficacy ratio of 0.6.

The evolution of D(t), I(t), T (t), ρ(t) in Fig. 13 is shown
by curves of different colors, respectively red, green, blue,
and black. Thick (thin) lines correspond to MVF (MSF). Solid
(dashed) lines correspond to ∆ = 21 (∆ = 135). Let us start
with the simpler case of rate control in Fig. 13. Here, I(t)
is maintained constant through the entire period of two years.
When vaccinations start (day 365), two extreme behavior for
ρ(t) arise, as expected, by MSF with ∆ = 21 (thin dashed
black line) and MVF with ∆ = 21 (thick dashed black line),
with the other curves (related to ∆ = 135) lying in between
these two. MSF with ∆ = 21 allows us to release social
restrictions more quickly, lowering the economic cost at the
expense of more deaths. The case of HT control in Fig. 13
is more complex, since here I(t) is not constant and, in fact,
decreases drastically during the second year thanks to the self-
adaptive nature of HT control.

The fact that better trade-offs are achieved by the not self-
adaptive rate control at the end of the second year may appear
counter-intuitive. Note, however, that such better trade-offs are
only possible under a carefully tuned MSF policy, and they are
thus hardly achievable in practice. At last, observe that in a
more realistic setting, one might not arbitrarily choose the rate
of new infections. For example, if one cannot operate below
λC = 4, 000, from Fig. 13, the best option would likely be
MVF, which produces significantly fewer deaths at the expense
of a tolerable and largely justifiable increase of the economic
cost. Interestingly, in this case, ∆ = 135 would produce a
significantly lower penalty in the economic cost with respect
to ∆ = 21 while generating an almost identical number of
deaths.
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Figure 12. Impact of vaccination policies and control strategies on deaths and economic cost. All individuals are vaccinated in 270 days.
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Figure 13. Evolution of I(t), D(t), T (t), ρ(t) in the case of Rate control
(left) and HT control (right), efficacy ratio 0.6, and different vaccination
policies (different line styles of the same colour).

B. Control in a comprehensive scenario

At last, we consider a scenario encompassing all three
epidemic phases, spanning over three years, as described in
sec. VII. The MVF-∆ = 21 vaccination policy was chosen in
light of the fact that many countries have largely adopted this
policy. The ratio between the first and second doses’ efficacy
has been set to 0.6.

Figure 14(a) and Figure 14(b) report the evolution of the
metrics, respectively, for the case in which the control is on
the rate of new infected (λC = 4, 000) and the HT (with
Tmax = 20000 and Hmax = 40000). Parameters have been
set so that the two controls operate around approximately the
same operational point during the first year.

Rate control appears more reactive in the early phase
of the epidemic. As already observed, due to its intrinsic
delay in the control ring, HT control exhibits some initial
oscillations, which are not observable when rate control is
applied. Therefore, it should not be surprising that rate control
leads to better performance indices at the end of the first year,
as shown in Table II. Note that costs are expressed in arbitrary
units, while deaths are expressed in thousands. However, when
the second variant starts spreading, the rate-control strategy
may overreact, forcing the system to work in over-restricted
conditions for quite a long time (note that at the end of the
three-year period, rate-control is far from being completely
relieved). Instead, HT control can automatically adjust its
operational point as an effect of the mutated environmental
conditions, i.e., a smaller intrinsic lethality index of the variant
and a significant fraction of vaccinated individuals who are
protected against severe outcomes.

We remark that these strategies, which tightly and precisely

Table II
COMPARISON OF CONTROL STRATEGIES IN A COMPREHENSIVE

SCENARIO: ECOMOMIC COSTS AND DEATHS

1st year three years
Cost Deaths Cost Deaths

α 1 2 3 1 2 3
rate 1.68 8.18 39.9 41.1 3.35 13.5 58.0 70.5
HT 1.76 9.22 50.2 45.8 3.19 13.4 64.6 78.8
IHT 2.02 15.5 146 40.6 3.71 22.1 187 68.7

control either the infection rate or the hospitalization/ICU
occupancy, are hardly implementable. However, they provide
valuable insights. To shed light on more practical controls, we
examine an implementable rough version of the HT control,
denoted as Imperfect HT (IHT). Figure 14(c) shows the
evolution of the epidemic when the IHT strategy is adopted.
In this case, the control dynamically selects the current
alert level from the following finite set green, white, yellow,
orange, red, purple. A different set of non-pharmaceutical
restrictions corresponds to every alert level, determining a
corresponding value of ρ(t) ∈ {1, 2, 3, 5, 12, 15} (note that
intermediate values of ρ(t) corresponding to different alert
levels, do not need to be perfectly known). Every week a
simple threshold mechanism is implemented to establish the
current alert level for the following week, with normalized
thresholds (with respect to Hmax or Tmax) set respectively to
{0.01, 0.1, 0.2, 0.4, 1.0}. Any alert level must be maintained
for at least three weeks before it can be decreased. Despite
the behavior of IHT does not significantly deviate from HT, a
high extra economic cost is paid for the effect of unavoidable
oscillations between consecutive alert levels, especially for
large values of α.

VIII. CONCLUSIONS

Our research draws on lessons learned from the COVID-19
pandemic. It takes a comprehensive approach to addressing
the challenges of effectively planning and implementing in-
terventions in large communities, such as those the size of a
country. The overarching goal is to strike a balance between
minimizing economic costs and reducing fatalities, a critical
endeavor in pandemic management.

At the heart of our study lies a sophisticated multi-class
model. This model is designed to account for the complex
relationship between mortality rates and variations in risk ex-
posure among different population segments. It also accounts
for the intriguing negative correlation that often exists between
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(a) Rate Control, λC = 4000. (b) HT control: Tmax = T̂ = 20000; (c) Imperfect HT control.
Hmax = 40000, Ĥ = 100000.

Figure 14. Evolution of I(t), H(t), T (t) (left y axes) and ρ(t) (right y axes) in the comprehensive scenario.

an individual’s age and their level of risk exposure to the virus.
Importantly, this correlation is not uniform across countries,
and our model is pioneering in its ability to incorporate this
variation trough a data-driven approach. By doing so, our
model provides a more realistic and holistic representation of
epidemic evolution that accounts for these intricate dynamics.

Through our analysis, we have uncovered a critical aspect
of epidemic control. We have found that strategies employed
to control outbreaks, whether based on monitoring infection
rates or assessing the burden on the healthcare system, can
be subject to significant instability. This instability is particu-
larly evident when we move from idealized scenarios to the
complexity of the real world, characterized by uncertainty and
influenced by various parameters not always readily accessible.

It is important to underline that there is no one-size-fits-
all approach when it comes to epidemic control. What is ap-
propriate and effective depends on the specific context, goals,
and resources available. Our research recognizes this and does
not claim to offer a universally superior solution. Instead, it
takes a pragmatic perspective. We prioritize simplicity and
ease of implementation, recognizing the practical challenges
that decision-makers often face. Our goal is to provide a toolkit
of strategies that can be considered alongside more complex
models and provide policy-makers with a range of options.

Consistent with real-world responses to the COVID-19
pandemic, our research provides insights into the practical
effectiveness of rate control and hospitalization strategies.
We also conduct a comparative analysis of vaccination poli-
cies, looking at different approaches and variations in dosing
intervals, inspired by the experiences of countries such as
the United Kingdom and Italy. This comparative approach
allows us to explore the potential impact of different vaccina-
tion strategies in different epidemiological contexts, providing
valuable guidance to policy-makers.

In summary, our research aims to provide a comprehensive,
data-driven, and practical approach to epidemic control. It
recognizes the complexities and challenges faced in real-
world, country-sized communities and aims to bridge the gap
between theoretical modeling and actual policy implementa-
tion, ultimately contributing to more effective and realistic
strategies for managing pandemics.
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[7] P. E. Paré, C. L. Beck, and T. Basar, “Modeling, estimation, and analysis
of epidemics over networks: An overview,” Annual Reviews in Control,
vol. 50, pp. 345–360, 2020.

[8] H. M. Taylor, “Some models in epidemic control,” Mathematical
Biosciences, vol. 3, pp. 383–398, 1968.

[9] A. Abakuks, “An optimal isolation policy for an epidemic,” Journal of
Applied Probability, vol. 10, no. 2, pp. 247–262, 1973.

[10] R. Morton and K. H. Wickwire, “On the optimal control of a
deterministic epidemic,” Advances in Applied Probability, vol. 6, no. 4,
pp. 622–635, 1974.

[11] K. Wickwire, “Optimal isolation policies for deterministic and stochastic
epidemics,” Mathematical Biosciences, vol. 26(3) pp. 325–346, 1975.

[12] S. P. Sethi and P. W. Staats, “Optimal control of some simple
deterministic epidemic models,” The Journal of the Operational
Research Society, vol. 29, no. 2, pp. 129–136, February 1978.

[13] E. Hansen and T. Day, “Optimal control of epidemics with limited
resources,” Journal of Mathematical Biology, vol. 62, pp. 423–451,
2011.

[14] T. Kruse and P. Strack, “Optimal Control of an Epidemic through
Social Distancing,” Cowles Foundation for Research in Economics,
Yale University, Cowles Foundation Discussion Papers 2229, Apr.
2020.

[15] H. Behncke, “Optimal control of deterministic epidemics,” Optimal
Control Applications and Methods, vol. 21, pp. 269 – 285, 11 2000.

[16] L. Bolzoni, E. Bonacini, C. Soresina, and M. Groppi, “Time-optimal
control strategies in sir epidemic models,” Mathematical Biosciences,
vol. 292, pp. 86–96, 2017.

[17] J. R. Birge, O. Candogan, and Y. Feng, “Controlling epidemic spread:
Reducing economic losses with targeted closures,” Management Science,
vol. 68, no. 5, pp. 3175–3195, 2022.

[18] T. Britton, M. Deijfen, and A. N. Lagerås, “Optimal control of vaccina-
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