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1 Introduction

N = 8 supergravity [1] is undoubtedly a highly distinguished field theory due to its high

degree of symmetry and the remarkable structure of its amplitudes that has emerged in

recent work, see e.g. [2, 3]. The continuous E7(7) symmetry underlying the classical field

equations has important consequences for the structure of the counterterms [4–8]. The

field content of maximal supergravity is the unique N = 8 supermultiplet

helicity −2 −3
2 −1 −1

2 0 +1
2 +1 +3

2 +2

d.o.f. 1 8 28 56 70 56 28 8 1
. (1.1)

On the other hand, the mutual couplings of the various fields are not uniquely determined,

as supersymmetry allows for the introduction of particular (non-)abelian charges and the

realization of different (non-)abelian gauge groups. After the original version of the theory

with abelian gauge fields [1] the first maximal gauged supergravity was constructed in [9]

with the 28 vector fields gauging a compact SO(8) subgroup of E7(7). Non-compact versions

of this theory have been constructed and classified in [10–13] and later been extended to

other non-semisimple gauge groups in [14, 15]. A general formalism for describing the

gauging of subgroups in terms of an ‘embedding tensor’ has been established in [16, 17].

This constant tensor describes the embedding of the gauge group into the global E7(7)

symmetry of the ungauged theory, and parametrizes all the couplings of the gauged theory.

The aim of this paper is the construction of all possible gaugings (and thus all possible

couplings) of N = 8 supergravity, which in particular include a gauging of the global scaling

symmetry of the theory. Their gauge groups are embedded in the product E7(7) × R of

the Cremmer-Julia group E7(7) with the one-parameter scaling symmetry of the theory

that generalizes the Weyl rescaling of general relativity and has been dubbed a ‘trombone’

symmetry of supergravity [18]. Supergravity theories that include a gauging of their scaling

symmetry have first been constructed in ten dimensions by a generalized Scherk-Schwarz

reduction from eleven dimensions [19, 20]. Lower dimensional examples of such theories

include [21] and [22, 23]. As a generic feature, these theories are invariant under local

rescaling of the fields (including the metric) with appropriate weights upon a compensating

gauge transformation on the matter fields. They do not possess an action (since they result

from the gauging of an on-shell symmetry) and typically support de Sitter geometries rather

than Minkowski or AdS vacua. A systematic account to the construction of these theories

has been put forward in [24]. Based on the algebraic structure of the duality groups of the

ungauged theories, the representation content and the algebraic consistency constraints for

the corresponding embedding tensor have been determined for the maximal supergravities.

In [25, 26], these structures have been shown to be naturally embedded in the framework

of the very-extended infinite-dimensional Kac-Moody algebra E11 [27, 28].

The general analysis reveals that four-dimensional N = 8 supergravity admits an

embedding tensor transforming in the representation 56 + 912 of E7(7), subject to a set

of bilinear algebraic consistency constraints. Gaugings defined by an embedding tensor in

the irreducible 912 representation describe gauge groups that entirely reside within E7(7)

and have been constructed in [16, 17]. Additional non-vanishing components in the 56
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representation on the other hand define gaugings that include the trombone generator, i.e.

theories in which local scaling invariance is part of the gauge group. These are the theories

to be constructed in this paper. While the analysis of [24] has been purely algebraic and

based on the structure of non-abelian deformations of the underlying tensor gauge algebras,

it is the aim of this paper to explicitly realize these theories by constructing the full set

of supersymmetric field equations. Thereby we derive the most general couplings that are

compatible with N = 8 supersymmetry in four dimensions. In particular, we confirm that

the algebraic consistency constraints derived in [24] for the embedding tensor are indeed

sufficient to ensure supersymmetry of the field equations.

This paper is organized as follows. In section 2, we analyze the general structure of

the gauge groups induced by an embedding tensor in the 56 + 912 representation. We ex-

plicitly construct the gauge group generators in terms of the embedding tensor and discuss

the system of bilinear algebraic consistency constraints that the embedding tensor must

satisfy. In case the gauge group includes the trombone generator, this system of constraints

drastically reduces upon decomposing the embedding tensor into its E6(6) irreducible com-

ponents, and we present a number of explicit solutions. We compute the Cartan-Killing

metric of the gauge group and show that gaugings involving the local scaling symmetry

are generically dyonic, i.e. genuinely involve electric and magnetic vector fields.

In section 3, we review the structure of the scalar target space E7(7)/SU(8) and de-

fine the T tensor in terms of which the couplings of the gauged theory are expressed.

Subsequently, in section 4, we determine the modified supersymmetry transformations by

verifying the closure of their algebra on the bosonic fields of the theory. Based on these

results, in section 5, we obtain the modified field equations of the gauged N = 8 super-

gravity by starting from an ansatz for the fermionic field equations and calculating their

transformation under supersymmetry. This allows to uniquely determine the full set of

field equations in lowest order of the fermions. As a particular feature of these theories,

we find that gauging of the trombone generator leads to an additional positive contribu-

tion to the effective cosmological constant. In section 5.4, we determine the conditions for

extremality, i.e. for solutions of the field equations with constant scalar and gauge fields

and give explicit formulas for the mass matrices by linearizing the field equations around

these solutions. Finally, in section 6, we present a simple example of a theory with local

scaling symmetry that has its higher-dimensional origin as a generalized Scherk-Schwarz

reduction from five dimensions upon twisting the field with a linear combination of an

E6(6) generator and the five-dimensional trombone symmetry. We show that this theory

admits a de Sitter solution with constant scalar fields and determine its mass spectrum

which seems to indicate that the solution is not stable. We conclude with an outlook on

the role and the applications of these theories.

2 Structure of gauge groups

Before explicitly constructing the full supersymmetric field equations, in this section we

will present and analyze the structure of the possible gauge algebras that can be realized

as local symmetry in maximally supersymmetric supergravity in four dimensions. Recall,
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that the global symmetry group of the ungauged maximally supersymmetric theory is given

by [1]

G = E7(7) × R , (2.1)

where the second factor corresponds to the scaling (or trombone) symmetry of the equations

of motion, under which the fields transform as

δgµν = 2 gµν , δAM
µ = AM

µ , δφi = 0 ,

δψµ = 1
2 ψµ , δχ = − 1

2 χ . (2.2)

Here, the first line refers to the bosonic fields of spin 2, 1, and 0, while the second line

gives the transformations of the spin 3/2 gravitinos and the spin 1/2 matter fermions,

respectively. The E7(7) factor in (2.1) in contrast only acts on vector and scalar fields, with

its generators tα closing into the algebra

[tα, tβ] = fαβ
γ tγ . (2.3)

The 28 electric vector fields AΛ
µ combine with their magnetic duals AµΛ into the funda-

mental 56-dimensional representation AMµ of E7(7) while the 70 scalar fields transform in

a non-linear representation parametrizing the coset space E7(7)/SU(8) . General gaugings

will also require the introduction of two-form tensor fields Bµν α transforming in the adjoint

133-dimensional representation of E7(7).

2.1 Gauge group generators

In this paper, we will construct the most general supersymmetric theories in which a

subgroup of (2.1) is gauged. Extending previous work [17], we will consider those theories

in which the gauge groups include the scaling symmetry, i.e. the second factor in (2.1).

Let us denote by t0 the generator of the scaling symmetry R, and by Aµ ≡ ϑMAM
µ

the linear combination of vector fields that will be used to gauge this symmetry upon

introduction of covariant derivatives. As this symmetry also acts in the gravitational

sector by scaling the metric, its gauging necessitates a modification of the spin connection

ωµ
ab and the Riemann tensor Rµν

ab according to [24]

ω̂µ
ab = ωµ

ab + 2 eµ
[a eb] νAν ,

R̂µν
ab ≡ 2 ∂[µ ω̂ν]

ab + 2 ω̂[µ
ac ω̂ν]c

b

= Rµν
ab − 4 e[µ

[a∇(ω)ν]Ab] + 4 e[µ
[aAν]Ab] − 2 e[µ

aeν]
bAλAλ , (2.4)

which are invariant under the joint transformation

δgµν = 2λ(x) gµν , δAµ = ∂µλ(x) . (2.5)

Besides, they satisfy the generalized Bianchi identities

R̂[µνρ]
a = F[µν eρ]

a . (2.6)
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The most general gauging combines this symmetry with some subgroup of the E7(7)

factor of (2.1). As shown in [16, 17] and [24] for the cases without and with the trombone

factor, respectively, the parametrization of the general gauge group generators XM allows

for 56 + 912 parameters spanning the ‘embedding tensor’ ϑM and ΘM
α, according to

XM ≡ ϑM t0 +
(
ΘM

α + 8ϑN (tα)M
N
)
tα , (2.7)

with covariant derivatives given by Dµ ≡ ∂µ − AM
µ XM .1 Here, (tα)M

N are the E7(7)

generators (2.3) in the fundamental representation,2 and the matrix ΘM
α is constrained

by the relations

ΘM
α(tα)N

M = 0 , ΘM
α = −2(tβ t

α)M
N ΘN

β , (2.8)

i.e. transforms in the 912 representation of E7(7). In absence of ϑM , it describes the

gaugings whose gauge group entirely resides within the E7(7). The relative factors in (2.7)

are chosen such that the tensor ZKMN ≡ (X(M )N)
K factors according to

ZKMN ≡ (X(M )N)
K = − 1

2(tα)MN

(
ΘKα − 16(tα)KLϑL

)
≡ (tα)MN Z

Kα , (2.9)

and thus projects onto the 133 representation in its indices (MN). This will be a central

identity in the construction. For convenience, we also define the projection of the gauge

group generators onto the E7(7) factor of (2.1) as

X̌M ≡
(
ΘM

α + 8ϑN (tα)M
N
)
tα , (2.10)

The gauged theory is invariant under the local symmetry

δΛ~φ = ΛMXM · ~φ ≡
(
ΘM

α + 8ϑN (tα)M
N
)
~Kα(φ) ,

δΛAM
µ = DµΛ

M ≡ ∂µΛ
M + AK

µ (XK)N
M ΛN , (2.11)

where ~Kα(φ) represent the E7(7) Killing vector fields on the scalar target space, and the

gauge group generators are given by evaluating (2.7) in the appropriate representation, i.e.

(XK)N
M ≡ −ϑKδMN +

(
ΘK

α + 8ϑL (tα)K
L
)

(tα)N
M . (2.12)

Finally, covariant field strengths are defined by

HM
µν ≡ 2∂[µAM

ν] + (XN )P
M AN

[µAP
ν] + ZMαBµν α , (2.13)

with a Stückelberg-type coupling to the two-forms Bµν α and the (constant) intertwining

tensor ZMα defined in (2.9). They transform covariantly under the gauge transforma-

tions (2.11) provided the two-forms transform as

δΛBµν α = −2(tα)MN

(
ΛMHN

µν −AM
[µ δAN

ν]

)
. (2.14)

1For transparency we have suppressed explicit coupling constants, which can at any stage be reintroduced

by rescaling ϑM → gϑM , ΘM
α
→ gΘM

α .
2We raise and lower adjoint indices with the invariant metric καβ ≡ Tr [tαtβ]. Fundamental indices

are raised and lowered with the symplectic matrix ΩMN using north-west south-east conventions: XM =

ΩMN XN , etc.
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Moreover, the covariant field strengths (2.13) are invariant under the tensor gauge trans-

formations3

δΞBµν α = 2D[µΞν]α + 2(tα)MN AM
[µ δAN

ν] ,

δΞAM
µ = −ZMα Ξµα . (2.15)

The covariant field strengths (2.13) satisfy the generalized Bianchi identities

D[µHM
νρ] = 1

3Z
MαHµνρ α , (2.16)

with the covariant non-abelian field strength Hµνρα of the two-form tensor fields, given by:

Hµνρα = 3D[µBνρ]α + 6 tαPQA
P
[µ

(
∂νA

Q
ρ] +

1

3
XRS

QARν A
S
ρ]

)
, (2.17)

where

D[µBνρ]α = ∂[µBνρ]α + 2 tαPQZ
QβAP[µBνρ]β . (2.18)

2.2 Consistency constraints

The previous construction leads to a consistent (closed) gauge algebra, if the irreducible

components ϑM , ΘM
α satisfy the following system of quadratic constraints [24]

ϑM ΘMα !≡ 16 (tα)MN ϑM ϑN , (2.19)

(tγ)[M
P ΘN ]

γ ϑP
!≡ 0 , (2.20)

ΘM
αΘMβ !≡ 8ϑM ΘN

[α tβ]MN − 4 fαβγ ϑM ΘMγ , (2.21)

transforming in the 133, the 1539 and the 133+8645, of E7(7), respectively. For ϑM = 0

they consistently reduce to the quadratic conditions of [17]. As we will show in the following,

any solution to the constraints (2.19)–(2.21), will define a viable maximally supersymmetric

gauged supergravity.

It is straightforward to show that (2.19)–(2.21) imply several direct consequences for

the gauge group generators, such as the closure of the gauge algebra according to

[XM ,XN ] = −XMN
K XK , (2.22)

and orthogonality between gauge group generators and the intertwining tensor Z

XMN
K ZMα = 0 = ϑM ZMα . (2.23)

The reason for the fact that the gauge transformations consistently close into an algebra

when properly extended to the two-form tensor fields even in presence of the gauging of the

scaling symmetry is the underlying structure of a hierarchy of non-abelian tensor gauge

transformations [29, 30] which is not based on the existence of an action. The relative

factors in (2.7) and the identity (2.9) are central in this construction. What we will show

explicitly in this paper is that the non-abelian deformations defined in the previous section

are precisely the ones that are moreover compatible with maximal supersymmetry of the

field equations.

3W.r.t. reference [17] we have rescaled the two-form fields and associated tensors as Bµνα → −Bµνα,

Ξµα → −Ξµα, ZMα
→ −ZMα.
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2.3 Solution to the quadratic constraints

In general, it is a hard task to construct solutions to the quadratic constraints of gauged

supergravity. However, it turns out that in presence of the trombone (i.e. non-vanishing

ϑM ), the system (2.19)–(2.21) can be reduced to a much simpler one in terms of a reduced

number of components. The strategy for solving the quadratic constraints follows the case

of pure trombone gaugings [24] by decomposing all objects with respect to the E6(6) ×
SO(1, 1) subgroup of E7(7). Explicitly, this means that the adjoint representation branches

as

tα → (to, ta, tm, t
m) ,

according to 133 → 10 + 780 + 27−2 + 2̄7+2 , (2.24)

while the fundamental representation breaks into

ϑM → (ϑ•, ϑm, ϑ
m, ϑ•) ,

according to 56 → 1+3 + 27+1 + 2̄7−1 + 1−3 , (2.25)

and the embedding tensor ΘM
α decomposes into

ΘM
α →

(
ξa+, ξm, ξ

mn, ξmn, ξ
m, ξa−

)
,

according to 912 → 78+3 + 27+1 + 351
+1

+ 351−1 + 2̄7−1 + 78−3 , (2.26)

with its explicit (56 × 133) matrix form given in (B.2) in the appendix. We use indices

a, b, · · · = 1, . . . , 78 and m,n, · · · = 1, . . . , 27 to label the adjoint and the fundamental

representation of E6(6), respectively.

In appendix B we derive an important result: for non-vanishing ϑM and up to E7(7)

rotations, the general solution to the system (2.19)–(2.21) is parametrized by a real constant

κ, an E6(6) matrix Ξm
n ≡ Ξa(ta)m

n and two real tensors ζm, ζ [mn], as follows

(ϑ•, ϑn, ϑ
n, ϑ•) = (κ, 0, κζn, 0) ,

(
ξa+, ξm, ξ

mn, ξmn, ξ
m, ξa−

)
=
(
Ξa, 0, ζmn,Ξ[m

kdn]klζ
l,−4

3κζ
m, 0

)
, (2.27)

where dkmn denotes the totally symmetric E6(6) invariant tensor. The tensors ζm, ζ [mn]

must be real eigenvectors under the action of Ξ according to

δΞζ
m ≡ −Ξn

mζn
!≡ 4

3κζ
m ,

δΞζ
mn ≡ 2Ξk

[mζn]k !≡ 2
3κζ

mn , (2.28)

which furthermore must satisfy the following set of polynomial constraints:

ζkζ ldmkl
!≡ 0 , (2.29)

ζkζmndkml
!≡ 0 , (2.30)

ζ [kζmn] !≡ 0 , (2.31)
(
ta · (Ξ + 4

3κI) · (Ξ − 2
3κI)

)
n
m ζn

!≡ −1
2ζ
mkζ lndklp(ta)n

p . (2.32)

– 7 –



J
H
E
P
0
4
(
2
0
1
1
)
0
7
9

As we show in appendix B, this system of equations is equivalent to the original system

of constraints (2.19)–(2.21). In contrast to the original system, solutions to (2.28)–(2.32)

may easily be constructed.

A simple solution to the system (2.28)–(2.32) is given by setting ζm = 0 = ζmn . This

leaves a non-trivial embedding tensor (2.27) parametrized by κ and an E6(6) generator Ξ.

This solution satisfies a stronger version of the quadratic constraints: left and right hand

sides of equations (2.19)–(2.21) vanish separately. In the limit κ→ 0 in which ϑM vanishes,

this solution corresponds to the known gaugings induced by a Scherk-Schwarz reduction [31]

from five dimensions parametrized by the choice of an E6(6) generator [14]. For non-

vanishing κ, the higher-dimensional origin of these theories is a generalized Scherk-Schwarz

reduction from five dimensions in which the fields are twisted by a linear combination

of the E6(6) generator Ξ and the five-dimensional trombone symmetry. The form of the

generators (2.7) shows that even for vanishing Ξ = 0, switching on κ corresponds to gauging

a linear combination of the four-dimensional trombone generator t0 and a subset of E7(7)

generators. More complicated solutions of the constraints involve non-vanishing zero-modes

ζm, ζmn. While we defer the complete solution of the constraint system (2.28)–(2.32) to a

separate publication, a typical example of such a solution will be discussed in section 2.5.

2.4 Invariants of the trombone

We can classify the inequivalent gaugings according to the E7(7)-invariants constructed

out of the embedding tensor. In particular, the quadratic constraints can be regarded as

conditions on the E7(7)-orbits of the embedding tensor. In terms of ϑM and ΘM
α, several

E7(7)-invariants can be constructed of which the simplest is the quartic invariant I4(ϑ)

depending only on the trombone component ϑM according to

I4(ϑ) ≡ −2 (tα)MN (tα)PQ ϑM ϑN ϑP ϑQ

= −(ϑ• ϑ
• + ϑm ϑ

m)2 + 10dmnp d
mrsϑrϑs ϑ

n ϑp

−20
3 ϑ

• dmnp ϑmϑnϑp + 2
3 ϑ• dmnp ϑ

mϑnϑp . (2.33)

The different orbits of the 56-dimensional fundamental representation of E7(7) are charac-

terized via this invariant as [32]:

(i) I4(ϑ) > 0: the orbit is
E7(7)

E6(2)
;

(ii) I4(ϑ) < 0: the orbit is
E7(7)

E6(6)
;

(iii) I4(ϑ) = 0, ∂I4(ϑ)
∂ϑM

6= 0: the orbit is
E7(7)

F4(4)⋉T26
;

(iv) I4(ϑ) = 0, ∂I4(ϑ)
∂ϑM

= 0, tαMNϑ
M ϑN 6= 0: the orbit is

E7(7)

SO(6,5)⋉(T32×T1) ;

(v) tαMNϑ
M ϑN = 0: the orbit is

E7(7)

E6(6)⋉T27
.

Inserting the solution (2.27) obtained in the previous section into (2.33), we find

I4(ϑ) =
2

3
κ4 dmnp ζ

mζnζp . (2.34)
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From (2.29) it follows that I4(ϑ) = 0 = ∂I4(ϑ)
∂ϑM

. Since tαMNϑ
MϑN has a non-vanishing

component (tm)•n ϑ•ϑ
n ∝ κ2 ζm, we conclude that ϑM belongs to the orbit (iv) of the

above classification if ζk is non-vanishing, and otherwise to the orbit (v).

In both cases the gauge group Gg will then be a subgroup of the stability group of the

corresponding orbit inside R
+ × E7(7). In case (iv), for instance, we should have

Gg ⊂
[
R

+ × SO(6, 5)
]

⋉ (T32 × T1) , (2.35)

where R
+ is a suitable combination of the trombone symmetry and the O(1, 1)7 symmetry

inside E7(7).

2.5 An explicit example

Here we present an example of a solution of the constraints (2.28)–(2.32). The quadratic

condition (2.29) on ζm:

dmnp ζ
n ζp = 0 , (2.36)

can be viewed as a kind of “E6(6)-pure spinor” constraint. It defines an orbit of the 27 with

stability group SO(5, 5) ⋉ T16 (see [32]). This means that there exists an SO(5, 5) ⊂ E6(6)

with respect to which ζm is a singlet. If we decompose the adjoint and the fundamental

representations of E6(6) with respect to O(1, 1) × SO(5, 5) ⊂ E6(6) we find:

78 → 10 + 450 + 16+3
c + 16−3

s ,

27 → 1−4 + 10+2 + 16−1
c . (2.37)

The stabilizer of ζm is thus generated by the 450 +16−3
s , while ζm corresponds to the 1−4.

We denote by h the O(1, 1) generator, such that δh ζ
m = −4 ζm. Eqs. (2.28), on the other

hand, imply that δΞ ζ
m = −Ξn

m ζn = 4
3 κ ζ

m. Since ζm is a simultaneous eigenvector of

both Ξ and h, we must have δ[Ξ,h] ζ
m = 0, namely that Ξ cannot have a component along

the 16+3
c :

Ξ ∈ 10 + 450 + 16−3
s . (2.38)

We conclude that Ξ consists of a component proportional to h plus an element Ξ0 in the

algebra of the little group of ζm:

Ξ = −1

3
k h + Ξ0 , δΞ0ζ

m = 0 . (2.39)

Let us consider the case in which Ξ0 is a semisimple element of so(5, 5) and thus can be

taken as an element of its Cartan subalgebra. One can show that in this case, taking

ζmn = ζ [mηn], with ηm in the 16−1
c , all the constraints are satisfied. In particular the two

sides of eq. (2.32) are separately zero. As we shall show in appendix B.2, this equation

in particular implies that Ξ0 should commute with an SO(4, 4) subgroup of SO(5, 5). The

resulting gauge algebra gg is 21-dimensional and of the form:

gg = o(1, 1) ⊕ so(2, 1) ⊕ l(2κ) ⊕ l(4κ) ,

dim(l(2κ)) = 16 , dim(l(4κ)) = 1 , (2.40)
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the gradings referring to the O(1, 1)-generator. We can understand the embedding of

the gauge group into the stability group [R+ × SO(6, 5)] ⋉ (T32 × T1) of the ϑM -orbit by

decomposing SO(6, 5) with respect to SO(2, 1) × SO(4, 4). Then the generators of R
+ ×

SO(2, 1) provide the zero-grading part of the gauge algebra (2.40). The gauge generators

can be written in a manifestly SO(2, 1) × SO(4, 4)-covariant way. Let A,B = 1, 2 denote

the SO(2, 1)-doublet indices while I, J = 1, . . . , 8 label the 8s of SO(4, 4). Then let Tx,

x = 0, 1, 2, 3, be the o(1, 1) + so(2, 1) generators, l(2κ) = Span(TAI) and l(4κ) = Span(T ).

The relevant commutation relations between the gauge generators are:

[Tx, TAI ] = −(Tx)A
B TBI , [TAI , TBJ ] = ǫAB CIJ T , (2.41)

where CIJ is the symmetric invariant matrix in the product 8s × 8s. In other words, with

respect to SO(1, 1) × SO(2, 1) × SO(4, 4) the generators {Tx} are in the (3,1)0, {TAI} in

the (2,8s)
2κ while {T} is in the (1,1)4κ. In terms of the E7(7)-branching with respect to

the E6(6)-subgroup, the TAI consists of 8 generators from the 27 and 8 from the 78, while

T originates from the 27. This structure does not change either in the limit ζmn → 0, or

in the limit ζm → 0. In the latter case the gl(2) algebra of SO(1, 1) × SO(2, 1) contracts

to a non-semisimple algebra of the form o(1, 1) + H3, where H3 is a three-dimensional

Heisenberg algebra spanned by nilpotent generators. Only if both the zero-modes vanish

(ζmn → 0, ζm → 0) the TAI generators which do not vanish become abelian, the last

commutator in (2.41) becomes trivial and we retrieve the first example mentioned at the

end of section 2.3, which will be discussed in section 6.

2.6 Cartan-Killing metric of the gauge group

In the previous sections we have been discussing the general solution to the quadratic

constraints and worked out the corresponding gauge groups in certain examples. With

the general solution given in section 2.3, the gauge group generators may be reconstructed

from (2.12), putting together (B.1), (B.2) and (2.27). The explicit form of the generators

{XM} = {X•,Xm,X
m,X•} in terms of the parameters κ, Ξa, ζm, and ζmn is given in (C.1)

in the appendix. Via (2.22) these generators also encode the structure constants of the

gauge algebra. We can compute the Cartan-Killing metric of the gauge group as gMN ≡
Tr(XM XN ). Its non-vanishing components are

g•• = 64κ2 + 2ΞaΞa ,

g•
m = (96κ2 − 2ΞaΞa) ζ

m ,

g•m = −6Ξl
ndnmkζ

kl ,

gmn = (64κ2 + 2ΞaΞa) ζ
mζn ,

gmn = −6 ζklζpqdmkpdnlq

+2
3 (80κ2 − 3ΞaΞa) dmnk ζ

k + 24 dkl(m (Ξ2)n)
kζ l . (2.42)

For ζm = 0 = ζmn this shows that the semisimple part of the gauge algebra is one-

dimensional in accordance with its origin as a Scherk-Schwarz reduction from five dimen-

sions. If ζmn = 0 but ζm is non-vanishing, a contraction of equation (2.32) implies that
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ΞaΞa = 32κ2, and the Cartan-Killing form accordingly reduces to

g•• = 128κ2 ,

g•
m = 32κ2 ζm ,

gmn = 128κ2 ζmζn ,

gmn = −32
3 κ

2 dmnk ζ
k + 24 dkl(m (Ξ2)n)

kζ l . (2.43)

2.7 Electric/magnetic gaugings

So far, we have discussed the structure of the gauge algebra by studying deformations that

involve vector fields from the entire 56-dimensional fundamental representation of E7(7). It

is well known [1], that only half of these vector fields are dynamical electric vector fields

while the other half is given by their magnetic duals. Accordingly, only the former half

appears in the action of the ungauged theory. Nevertheless, the connections of a general

gauging may contain magnetic vector fields that are related by their first order duality

equations to the electric fields of the theory. In [33] it has been shown how to elevate this

construction to the level of an action by introducing additional auxiliary two-form tensor

fields (which in turn are the magnetic duals to the scalar fields of the theory). The magnetic

vector fields then do not possess a standard kinetic term but rather couple via a topological

BF term to the two-form tensor fields. On the other hand, all standard gaugings of the

theory [17] satisfy a symplectic locality condition that ensures the existence of a symplectic

frame in which all the vector fields involved in the gauging live in the electric sector. In

this sense even in presence of magnetic charges these theories remain electric gaugings in

disguise which is in accordance with general results on the gauging of electric/magnetic

duality [34, 35]. We shall see that this is no longer the case for the gaugings considered in

this paper, related to the fact that these theories do no longer admit an action.

For the solution of the consistency constraints of the embedding tensor discussed at the

end of section 2.3, the left and right hand sides of equations (2.19)–(2.21) vanish separately.

The gauge group generators thus satisfy the symplectic locality condition ΩMNXMXN = 0.

I.e. as for the standard gaugings we can choose a symplectic frame {XM} → {XΛ,XΛ} such

that allXΛ are identically zero. Indeed, in this case the explicit form of the generators (C.1)

shows that X• = 0 = Xk . Accordingly, the gauging only involves electric vector fields

{AΛ
µ} = {Aµ • ,Ak

µ}. On the other hand, in the generic case the components ζm, ζmn in

the embedding tensor are non-vanishing, such as in the example worked out in section 2.5.

Then, equation (2.21) implies that ΩMNXMXN 6= 0, i.e. there is no symplectic frame

in which the gauging involves only electric vector fields. We conclude that the general

gaugings including the trombone generator are necessarily and genuinely dyonic!

3 Scalar coset space and the T -tensor

In this section, we discuss the structure of the scalar sector of the theory, discuss its inter-

play with the gauging defined in the previous section, and define the relevant scalar field

dependent tensors (T -tensors) that enter in the field equations of the gauged supergravity.
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3.1 Coset space E7(7)/SU(8)

The scalar fields of N = 8 supergravity can be parametrized in terms of the 56-dimensional

complex vectors VMij = (VΛ
ij,VΣ ij) and their complex conjugate VM ij = (VΛ ij,VΣ

ij),

which together constitute a 56 × 56 matrix V,

VMN =
(
VMij ,VMkl

)
=




VΛ

ij VΛ kl

VΣ ij VΣ
kl



 . (3.1)

Indices M,N, · · · = 1, . . . , 56, label the fundamental representation of E7(7), indices

i, j, · · · = 1, . . . , 8 denote the fundamental complex 8 of SU(8).4

The underlined indices M,N, · · · = 1, . . . , 56, are a collective label for the 28 + 2̄8

of SU(8) . The matrix VMN transforms under rigid E7(7) from the left and under local

SU(8) from the right. Strictly speaking, it does not constitute an element of E7(7), but

it is equal to a constant matrix (to account for the different bases adopted on both sides)

times a space-time dependent element of E7(7). We refer to [9, 17] for further details. In

particular, the scalar matrix satisfies the properties

VMij VN ij − VM ij VNij = iΩMN ,

ΩMN VMij VN kl = i δijkl ,

ΩMN VMij VNkl = 0 , (3.2)

reflecting the fact that E7(7) is embedded into Sp(56). The covariant scalar currents Qµi
j

and Pµijkl are defined by

∂µVMij −APµXPM
N VNij ≡ −Qµk

[i VMj]k + Pµijkl VMkl , (3.3)

with gauge group generators from (2.12), and satisfy

Qµ
i
j = −Qµ j

i , Qµi
i = 0 , Pµijkl = 1

24 ε
ijklmnpq Pµmnpq , (3.4)

as a consequence of VMN being related to an E7(7) element by multiplication with a constant

matrix. The integrability conditions of (3.3) yield the Cartan-Maurer equations,

F(Q)µν i
j ≡ 2∂[µQν]i

j + Q[µi
kQν]k

j = 4
3 P[µ

jklmPν]iklm − 2
3 iHM

µν (X̌M )PQ VP ikVQjk

D[µPν]ijkl = −1
2 iHM

µν (X̌M )PQ VP ijVQkl , (3.5)

with the SU(8) covariant derivative Dµ and the covariant field strength HM
µν from (2.13).

Note that its part carrying the two-forms Bµν α drops from (3.5) due to the orthogonality

relation (2.23).

4Earlier, in section 2.3 we have used indices m,n, . . . in a different context labeling the 27 dimensional

fundamental representation of E6(6). We hope that this does not lead to extra confusion.
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3.2 The T -tensor

Following [9, 17] we define the T -tensor as the gauge group generator (2.12) dressed

with the scalar vielbein

(Tij)
klmn ≡ 1

2 (V−1)ij
M (V−1)klN (XM )N

K VKmn , etc. . (3.6)

The various components of this tensor will show up in the modified field equations of the

gauged theory and parametrize the new couplings. The linear constraints (2.8) satisfied

by the embedding tensor can be made explicit by parametrizing the T -tensor in terms of

the irreducible SU(8) tensors Aij , Ai
jkl, Bij, transforming in the 36, 420, and the 28,

respectively,5 according to

(Tij)kl
mn = 1

2δ
[m
[k A

n]
l]ij + δmn[i[kAl]j] − 1

6(8 δmn[i[kBl]j] + δmnkl Bij) − 1
2δ
mn
kl Bij ,

(Tij)
rs
pq = −1

2δ
[r
[pA

s]
q]ij − δrs[i[pAq]j] +

1
6(8 δrs[i[pBq]j] + δrspqBij) − 1

2δ
rs
pqBij ,

(Tij)kl pq = 1
24ǫklpqrstuδ

r
[iAj]

stu + 1
12ǫklpqijtuB

tu ,

(Tij)
rs mn = δ

[r
[iAj]

smn] + 2δ
[rs
ij B

mn] . (3.7)

The tensors Aij , Ai
jkl together with their complex conjugates fill the 912 representa-

tion ΘM
α of the embedding tensor and carry the structure of the standard gaugings. The

tensor Bij is related to the new components ϑM of the embedding tensor according to

ϑM = VMijBij + VM ijB
ij , (3.8)

and contains all the new contributions due to the gauging of the trombone generator.

Together, the tensors A and B will describe the scalar couplings of the gauged theory.

From their definition (3.7) and (3.6) one derives the differential relations

DµA
ij = 1

3A
(i
klmPµj)klm , (3.9)

DµAi
jkl = 2AimPµmjkl + 3Pµmn[jkAl]imn + Pµmnp[jδki Al]mnp , (3.10)

DµBij = −Pµ ijklBkl , (3.11)

where again Dµ refers to the SU(8) covariant derivative with the composite connection

Qµ i
j from (3.3).

For the supersymmetry algebra it will also be useful to compute the tensor ZMKL

upon dressing with (V−1)kj
K(V−1)ijL:

ZMkj
ij =−3

2
(V−1 inMAnk + V−1

kl
MAni) +

3

4
(V−1mnMAikmn + V−1

mn
MAk

imn)

+4(V−1 inMBnk + V−1
kl
MBni) +

1

2
δik(V−1mnMBmn + V−1

mn
MBmn) . (3.12)

Dressing the quadratic constraints (2.19)–(2.21) (or alternatively (2.22)) with the scalar

vielbein (3.1) induces a plethora of relations bilinear in the tensors A, B. In appendix D,

5I.e. Aij = A(ij), Ai
jkl = Ai

[jkl], Ai
ikl = 0, Bij = B[ij], and complex conjugates (Aij)∗ = Aij , etc.
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we have collected a number of such identities which are important in the subsequent cal-

culations. Here, we only give two examples of such identities. A linear combination of

the constraints (D.1) transforming in the 63 of SU(8) shows that the traceless part of the

hermitean tensor defined by

Πi
j ≡ 6AikAjk − 1

3A
i
mnkAj

mnk + 4
3

(
Aj

imnBmn +AijmnB
mn
)
− 256

9 BikBjk ,

vanishes

Πi
j = 1

8δ
i
j Πk

k . (3.13)

Another useful identity is given by the self-duality equation

Πijkl = 1
24ǫijklmnpq Πmnpq ,

for Πijkl ≡ Am[ijkAl]m − 3
4A

m
p[ijA

p
kl]m + 2Am[ijkBl]m − 8B[ijBkl] , (3.14)

which is obtained as a linear combination of the constraints (D.3) transforming in the

70 of SU(8).

3.3 Vector fields

As mentioned above, only half of the 56 vector fields AM
µ enter the Lagrangian of the

ungauged theory. This corresponds to selecting a symplectic frame, such that the vector

fields split according to {AM
µ } → {AΛ

µ ,AµΛ} into electric and magnetic fields. Accordingly,

we define the electric field strengths HΛ
µν via (2.13) as the curvature of AΛ

µ while their

magnetic duals are defined as functions of the electric vector fields according to

G+
µν Λ ≡ NΛΣ H+ Σ

µν + fermions , (3.15)

with the complex matrix NΛΣ defined by VΣ ij NΛΣ ≡ −VΛ
ij , and where the superscript ±

refers to the (anti-)selfdual part of the field strength. The fermionic part of (3.15) is

explicitly given in [1, 9, 17]. We define the full symplectic vector GMµν ≡ (HΛ
µν ,Gµν Λ) , which

will in particular enter the fermionic field equations and supersymmetry transformation

rules. By construction, it allows the decomposition

GMµν = (V−1)ij MG+
µν ij + (V−1)ij

MG− ij
µν + fermions , (3.16)

into its selfdual and anti-selfdual part. In contrast, we introduce the field strengths Hij
µν

and Hµν ij as the dressed version

HM
µν = (V−1)ij MHµν ij + (V−1)ij

MH ij
µν , (3.17)

of the covariant non-abelian field strengths introduced in (2.13), that combine electric and

magnetic vector fields. Note that HΛ
µν = GΛ

µν is identically satisfied, whereas Hµν Λ = Gµν Λ

describes the first order duality relation between electric and magnetic vector fields.
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4 Supersymmetry algebra

Before deriving the full set of supersymmetric equations of motion, we establish the super-

symmetry transformation rules by verifying the supersymmetry algebra. Under supersym-

metry, the bosonic fields transform as

δǫeµ
a = ǭiγaψµi + ǭiγ

aψµ
i ,

δǫVMij = 2
√

2VMkl

(
ǭ[iχjkl] + 1

24ε
ijklmnpq ǭmχnpq

)
,

δǫAM
µ = −iΩMNVNij

(
ǭk γµ χijk + 2

√
2 ǭi ψµj

)
+ c.c. ,

δǫBµν α = 2
3

√
2 (tα)

PQ
(
VP ijVQkl ǭ[i γµν χjkl] + 2

√
2VP jkVQik ǭi γ[µ ψν]

j + c.c.
)

+ 2(tα)MN AM
[µ δAN

ν] . (4.1)

while the transformation of the fermions is given by

δǫψ
i
µ = 2Dµǫ

i +

√
2

4
G−
ρσ
ijγρσγµǫj +

√
2Aijγµǫj − 2

√
2Bijγµǫj ,

δǫχ
ijk = −2

√
2Pµijklγµǫl +

3

2
G−
µν

[ijγµνǫk] − 2Al
ijkǫl − 4B[ijǫk] , (4.2)

up to higher order fermion terms. Except for the respective last terms in the fermionic

transformation rules (carrying the tensor Bij), these supersymmetry transformations are

known from [9, 17]. The structure of the new terms follows from the SU(8) representation

content, their factors are determined from the closure of the supersymmetry algebra. This

algebra is given by

[δ(ǫ1), δ(ǫ2)] = ξµD̂µ+δLor(Ω
ab)+δsusy(ǫ3)+δSU(8)(Λ

i
j)+δgauge(Λ

M )+δgauge(Ξµα) . (4.3)

The first term refers to a covariantized general coordinate transformation with diffeomor-

phism parameter

ξµ = 2 ǭ2
iγµǫ1 i + 2 ǭ2 iγ

µǫ1
i , (4.4)

and including terms of order g induced by the gauging. The last two terms refer to gauge

transformations (2.11), (2.14) and (2.15), with parameters

ΛN = −4i
√

2 ΩNP (VPmnǭ2mǫ1n − VP mnǭ
m
2 ǫ

n
1 ) ,

Ξµα = −8
3(tα)

PQ VP ikVQjk
(
ǭ2
iγµǫ1j + ǭ2jγµǫ1

i
)
, (4.5)

respectively. Up to the contributions from the new terms in the supersymmetry transfor-

mation rules, the supersymmetry algebra has been verified in [9, 17]. In presence of Bij ,

Bij , the commutator (4.3) evaluated on the vielbein acquires the additional terms

[δǫ1 , δǫ2 ] eµ
a = . . . − 4

√
2 (Bmnǭ2mǫ1n +Bmnǭ

m
2 ǫ

n
1 ) eµ

a . (4.6)
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These precisely reproduce the action of a scaling gauge transformation with parameter (4.5)

on the vielbein

δΛeµ
a = ΛMϑM t0 · eµa (4.7)

= −4i
√

2 ΩMNϑM (VNmnǭ2mǫ1n − VN mnǭ
m
2 ǫ

n
1 ) eµ

a

= −4
√

2 (Bmnǭ2 mǫ1 n +Bmnǭ
m
2 ǫ

n
1 ) eµ

a ,

where we have used (3.2) and (3.8). Similarly, one may check that the terms carrying the

scalar tensors (3.7) in the supersymmetry commutator on the scalar fields combine into

V−1 ij M [δǫ1 , δǫ2 ]VMkl = . . . − 8
√

2
(
Tmnijkl ǭ2mǫ1n + Tmn

ijkl ǭm2 ǫ
n
1

)

= . . . + V−1 ij M ΛN (XN )M
K VKkl , etc.

and consistently reproduce the action of a gauge transformation with parameter (4.5). In

checking the supersymmetry algebra on the vielbein and the scalar fields, we have fixed all

the new factors in the supersymmetry transformation rules (4.2). As a consistency check,

one may further verify that the algebra also closes on the vector and the tensor gauge fields.

5 Equations of motion

5.1 Einstein equations

Having established the supersymmetry algebra, we can now determine the deformed equa-

tions of motion by requiring covariance under the new supersymmetry transformation rules.

As there is no longer an action underlying the gauged theory, we have to work directly on

the level of the equations of motion. This derivation of the supersymmetric field equations

is based on reference [36]. We will start from the gravitino equations of motion for which

we use the following ansatz

0 = (Eψ)µi ≡ −e−1εµνρσγνDρψσ i −
√

2
6 γ

νγµχjklPν jkli −
√

2
4 G+ ρσ

ijγ
[µγρσγ

ν]ψν
j

+ 1
8G− ρσjkγρσγ

µχjki +
√

2Aijγ
µνψν

j + 1
6Ai

jklγµχjkl

+ λ
√

2Bijγ
µνψν

j + ζ Bklγµχikl . (5.1)

Except for the last two terms, these are the equations obtained from variation of the

Lagrangian [9, 17] of the gauged theory. While the SU(8) structure of these two additional

terms is fully determined by the representation content, we will in the following determine

their unknown coefficients λ and ζ by compatibility with supersymmetry.

E.g. vanishing of the Dµǫ terms in the supersymmetry variation of (5.1) imposes

2
√

2Bij
(
λγµν − e−1εµνρσγρσ

)
Dνǫ

j = 0 , (5.2)

from which we deduce λ = −2. Vanishing of the terms linear in BG±ǫ further determines

ζ = −5/3, but we will for the moment keep the parameters in the formulas so as to allow

for further consistency checks.

– 16 –



J
H
E
P
0
4
(
2
0
1
1
)
0
7
9

Let us concentrate on the part of the supersymmetry variation of (5.1) which is bilinear

in the scalar tensors A, B which originate from variation of its last four terms. We obtain

{
6AikA

jk − 1

3
Ai

klmAjklm + 12AikB
jk + 6λBikA

jk (5.3)

− 2

3
Ai

jlmBlm − 2ζAj iklB
kl +

(
12λ+

8ζ

3

)
BikB

jk − 4ζ

3
δjiBklB

kl

}
× γµǫj .

Only the (ij)-trace of the braced expression can be absorbed into a modification of the

Einstein equations. In particular its anti-hermitean part must vanish. Indeed, this follows

from the first of the bilinear constraint relations (D.1) provided that λ = 2ζ + 4
3 , which

is satisfied for our above choice of constants. With this value for λ, the expression (5.3)

reduces to its hermitean part

{
6AikA

jk − 1

3
Ai

klmAjklm + (10 + 6ζ)(AikB
jk +BikA

jk) (5.4)

−
(

1
3 + ζ

)
(Ai

jlmBlm +Aj iklB
kl) +

(
16 +

80ζ

3

)
BikB

jk − 4ζ

3
δjiBklB

kl

}
× γµǫj .

Finally, we observe that with the above value ζ = −5/3 all coefficients precisely reproduce

the linear combination appearing in the quadratic constraint (3.13), such that the full

expression reduces to its trace part

{
3

4
AklA

kl − 1

24
An

jklAnjkl −
4

3
BklB

kl

}
× γµǫi , (5.5)

which can be absorbed into the modified Einstein equations. Another important ingredient

in the calculation is the evaluation of the commutator

γµνρ [Dν ,Dρ] ǫi = γµνρ
(

1
2F(Q)νρ i

j ǫj − 1
4R̂νρ

abγab ǫi − 1
2ϑMHM

νρ ǫi

)

=
(

1
2g
µνR̂ − R̂(µν)

)
γνǫi + ϑM

(
H−µνM − 3H+µνM

)
γνǫi

+1
2γ

µνρ F(Q)νρ i
jǫj , (5.6)

with the modified Riemann tensor and the curvature of the SU(8) connection from (2.4)

and (3.5), respectively

Putting all this together, a somewhat lengthy calculation shows that the full super-

symmetry variation of the Rarita-Schwinger equation (5.1) eventually takes the form

δǫ(Eψ)µi = (EEinstein)
µν γνǫi − 2

√
2 (Evector)

µ
ij ǫ

j , (5.7)

where (EEinstein)µν and (Evector)
µ
ij denote the modified Einstein and the vector field equa-

tions of motion, respectively. In bringing the supersymmetry variation into this form, we

have in particular made use of the equations

XM

(
GMµν −HM

µν

)
= 0 = ϑM

(
GMµν −HM

µν

)
. (5.8)
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For a purely electric gauging, these equations are identically satisfied. In presence of mag-

netic charges, these equations represent the first order duality equations between electric

and magnetic vector fields. The second order field equations obtained in (5.7) read

(EEinstein)µν = R̂(µν) − 1
2g
µνR̂ + 1

6 P
(µ
ijklPν)ijkl − 1

12g
µν Pρ

ijklPijkl
ρ − G+

ρ
(µ
jk Gν)ρ− jk

+gµν
(

3
4AklA

kl − 1
24An

jklAnjkl − 4
3BklB

kl
)
. (5.9)

and

(Evector)
µ
ij = DνG+νµ

ij + Pν ijkl G− νµ kl − 1
3

(
A[i

nklPµ
j]nkl + 4BklPµ

ijkl

)
. (5.10)

The modified Einstein equations show that the presence of the tensor Bij induces a positive

contribution to the effective cosmological constant. This is a typical feature of the theories

with trombone gauging [19–24, 37].

5.2 Scalar field equations

We start from the following ansatz for the equations of motion for the spin-1/2 fermion

fields χijk

0 = (Eχ)ijk ≡ −1
6γ

µDµχijk −
√

2
6 γ

νγµψν
lPµ ijkl + 1

8γργµνψ
ρ
[kG+µν

ij]

+
√

2
288ǫijklmnpqγ

µνχlmnG−
µν
pq − 1

6A
l
ijkγ

µψµ l + 2Aijk, lmnχ
lmn

−1
3γ

µψµ[kBij] +
√

2
36 ǫijklmnpqχ

lmnBpq , (5.11)

with the scalar tensor

Aijk,lmn = 1
144

√
2 ǫijkpqr[lmAn]

pqr . (5.12)

Again, up to the last two terms whose structure is determined by SU(8), equations (5.11)

follow from varying the Lagrangian of [9, 17]. The new coefficients are fixed by compatibility

with supersymmetry and follow as in the last section by imposing the vanishing of the linear

terms of the form BDǫ and BPǫ in the supersymmetry variation of (5.11).

Again we first focus on the part of the supersymmetry variation of (Eχ)ijk which is

bilinear in the scalar tensors A, B and find

−
√

2

3

{
2ArijkAlr + 4ArijkBlr + 4B[ijAk]l − 8B[ijBk]l −

1

9
ǫijklrmnpAq

rmnBpq

+
1

12
ǫijkrmnpqAl

pqs
(
As

rmn + 8
3δ
r
sB

mn
)

+
1

3
ǫijklmnpqB

mnBpq

}
× ǫl . (5.13)

Upon adding a proper linear combination of the two quadratic constraints (D.4) in the

378, this expression reduces to

−
√

2

3

{
2Ar [ijkAl]r + 4Ar [ijkBl]r − 8B[ijBkl]

+
1

16
ǫijklmnpq

(
Ar

pqsAs
mnr + 16

3 B
mnBpq

)}
× ǫl , (5.14)
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which is manifestly antisymmetric in [ijkl] . Finally, the combination of quadratic con-

straints (3.14) can be used to simplify this expression to the manifestly self-dual expression

−
√

2

3

{
Cijkl + 1

24ǫijklmnpqCmnpq
}

× ǫl , (5.15)

with the tensor

Cijkl = Am[ijkAl]m + 3
4A

m
n[ijA

n
kl]m + 2Am[ijkBl]m . (5.16)

This expression will be part of the modified scalar field equations. After some more calcu-

lation, and using the first order field equations (5.8), the full supersymmetry variation of

the fermionic field equation (Eχ)ijk eventually takes the form

δǫ(Eχ)ijk =
√

2
3 (Escalars)ijkl ǫ

l − γµ (Evector)
µ
[ij ǫk] . (5.17)

with the vector field equations from (5.10) and the full scalar field equations given by

(Escalars)ijkl = DµPµ ijkl − 3
2G+

µν [ijG
+µν

kl] − 1
16ǫijklpqrsG−µν pqG−

µν
rs

−Cijkl − 1
24ǫijklpqrs Cpqrs . (5.18)

We note that the term bilinear in the tensor Bij has dropped out from the scalar field

equations. Also this is a characteristic feature for theories with trombone gauging.6 As

a consequence, for pure trombone gaugings (ΘM
α = 0, implying that Aij = 0 = Ai

jkl)

a simple solution to the bosonic field equations is given by a de Sitter geometry with all

scalar and vector fields vanishing. We shall discuss this solution in more detail below.

Let us finally note, that due to the presence of the mixed term Am[ijkBl]m the scalar field

equations (5.18) cannot be integrated up to a scalar potential.

5.3 Yang-Mills equations

The vector field equations of motion (5.10) can be rewritten equivalently as

VMij D[µ Gνρ]M = −1
9eεµνρσ

{
A[i

nklPσ j]nkl + 4BklPσ ijkl
}
, (5.19)

or

D[µ Gνρ]M = 1
9eεµνρσZ

Mα(tα)
KLVKijVLklPσ

ijkl , (5.20)

with the tensor ZMα from (2.9). Since in the derivation of the field equations we have

also come across the first order duality equations (5.8) for the vector fields, an immediate

question is the compatibility of these equations with the second order field equations. Upon

contracting equation (5.20) with ϑM or XM , its r.h.s. vanishes by virtue of (2.23) while

on the l.h.s. the first order duality equations (5.8) allow to replace GMνρ by the covariant

field strength HM
νρ. Then also the l.h.s. vanishes by virtue of the Bianchi identity (2.16)

6Let us correct a misprint in reference [24]: the last term in equation (4.44) of that reference is in fact

absent in accordance with the equation obtained by dimensional reduction of (5.18).
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and (2.23). Both sets of equations are thus compatible. As another consistency check, we

observe that upon applying the operator εµνρτDτ , the l.h.s. of (5.20) reduces to

− 1
2ε
µνρτ GKµνGLρτ XKL

M = −ZMα (tα)KL
(
G+ K
µν G+µν L + G− K

µν G−µν L) , (5.21)

whereas the r.h.s. contains the scalar field equation (5.18). This provides a number of

important non-trivial consistency checks on the set of bosonic field equations that we have

obtained from supersymmetry variation, but not derived from an action.

5.4 Maximally symmetric solutions and mass matrices

According to (5.18), a solution to the field equations with constant scalar and vanishing

vector fields requires the anti-selfduality condition

Cijkl + 1
24εijklpqrs Cpqrs = 0 , (5.22)

for the scalar field dependent tensor Cijkl from (5.16). For the standard gaugings, this is

precisely the condition for an extremal point of the scalar potential [9]. In presence of the

local scaling symmetry, however, we recall that the scalar field equations can in general

not be integrated up to a scalar potential. Any solution to (5.22) yields a solution to the

field equations with maximally symmetric four-dimensional spacetime and cosmological

constant

Λ = −3
4AklA

kl + 1
24An

jklAnjkl +
4
3BklB

kl . (5.23)

The spectrum of the theory around this solution can be obtained by linearizing the field

equations. Using (D.2), linearization of the scalar field equations (5.18) around a solution

of (5.22) yields to lowest order

2φijkl = Mijkl
mnpq φmnpq + O(φ2) , (5.24)

with self-dual scalar fields φijkl = 1
24εijklpqrs φ

pqrs and the scalar mass matrix Mijkl
mnpq

whose symmetric part is given by

Mijkl
mnpq φijklφmnpq = 6

(
Am

ijkAlijn− 1
4Ai

jklAijmn−AmiklBin−AkimnBil
)
φmnpqφklpq

+
(

5
24 Ai

jklAijkl − 1
2AijA

ij
)
φmnpqφmnpq

−2
3 Ai

jklAmnpq φ
inpqφjklm , (5.25)

while its antisymmetric part reads

Mijkl
mnpq φijkl[1 φ2]mnpq = 8

3

(
BrsAi

rsm −BrsAmrs[i
)
φijkl[1 φ2]mjkl

−4 (Ai
mnpBjk −AmijkB

np)φijkl[1 φ2]mnpl . (5.26)

The calculation of (5.25), (5.26) makes use of identities for self-dual tensors, such as those

given in [38] as well as of the quadratic constraints derived in appendix D. For Bij = 0,
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the mass matrix consistently reduces to the expression given in [39] and its antisymmetric

part vanishes.

For the vector field equations (5.10) we find the linearized form

2Aµ ij = 2
3

(
A[i

nkl − 4δn[iB
kl
)

(T pq)j]nklAµ pq + 2
3

(
A[i

nkl − 4δn[iB
kl
)

(Tpq)j]nklA pq
µ ,

from which using (3.6), (3.7) we read off the vector mass matrix

Mvec =

(
Mij

kl Mijkl

Mijkl Mij
kl

)
, (5.27)

with

Mij
kl = −1

6A[i
npqδ

[k
j]A

l]
npq + 1

2A[i
pq[kAl]j]pq + 2

3δ
[k
[i Aj]

l]pqBpq − 2
3A[i

nklBj]n

−4
3δ

[k
[i A

l]
j]pqB

pq + 4
3A

[k
nijB

l]n − 8
9δ
kl
ijB

pqBpq − 8
9B

klBij + 32
9 B

n[kδ
l]
[iBj]n ,

Mijkl = 1
36A[i

pqrǫj]pqrmns[kAl]
mns − 1

18ǫklmnpqr[iAj]
pqrBmn

+1
9ǫijpqrmn[kAl]

pqrBmn − 2
9ǫijklmnpqB

mnBpq . (5.28)

Finally, the gravitino and fermion mass matrices are directly read off from (5.1)

and (5.11), respectively and take the form

Mψ
ij =

√
2
(
Aij − 2Bij

)
,

Mχ
ijk,lmn = 1

12

√
2
(
ǫijkpqr[lmAn]

pqr + 2ǫijklmnpqBpq

)
, (5.29)

where the first matrix carries the information about the breaking of supersymmetry and

the latter matrix has to be evaluated after projecting out the fermions that are eaten by

the massive gravitinos.

6 Example: de Sitter geometry and mass spectrum

We have in the previous section derived the full set of fermionic and bosonic field equations

of the gauging in presence of the trombone generator and shown that they transform into

each other under supersymmetry. In absence of an action, these equations capture the

full dynamics of the theory. As a simple example and application of the construction,

in this section we analyze in more detail the gauging discussed at the end of section 2.3,

parametrized by κ and Ξa . In particular, we show that this theory admits a de Sitter

solution with constant scalar fields and work out its mass spectrum by linearizing the

equations of motion around the vacuum solution. In the absence of the trombone gauging,

i.e. for κ = 0, the theory is characterized by an E6(6) generator Ξa and corresponds to the

Scherk-Schwarz reduction from five dimensions first analyzed in [40, 41] and revisited in

the context of four-dimensional gaugings in [14].

As a first step, we calculate for this theory the value of the tensors Aij , Ai
jkl and Bij at

the origin, i.e. for all scalar fields vanishing. Since at the origin, the group E6(6) is broken
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down to its maximally compact subgroup, the values of these tensors will be expressed

in terms of the USp(8) building blocks (κ, ξij , ξijkl), transforming in the 1, 36, and 42 of

USp(8), respectively, of which the latter two compose the E6(6) generator Ξa. The indices

i, j, · · · = 1, . . . 8, here label the fundamental representation of USp(8). Explicitly, these

tensors satisfy the relations

ξij = ξji , ξijkl = ξ[ijkl] , ξijklωkl = 0 , (6.1)

with the USp(8)-invariant symplectic matrix ωij, and the reality properties

(ξij)∗ = ξij = ωikωjlξ
kl , etc. (6.2)

At the origin, the scalar tensors Aij, Ai
jkl and Bij take the form

Aij = 1√
2
ξij , Ai

jkl = − 3√
2
ωimξ

m[jωkl] + ωimξ
mjkl , Bij = 1√

2
κωij . (6.3)

The condition for extremality (5.22) coming from the scalar field equations splits into the

equations

κ ξijkl =
√

2ωmnξ
m[iξjkl]n , ξijklξijkl = 0 . (6.4)

Obviously, even for non-vanishing parameter κ these equations leave no other solution

than ξijkl = 0, i.e. induce a Scherk-Schwarz gauging with a compact generator of E6(6) .

On the other hand this shows that choosing ξijkl = 0 suffices to guarantee that the scalar

field equations (5.18) are solved by setting all scalar fields to zero. For the cosmological

constant (5.23), we obtain

Λ = 3
8ξ
ijklξijkl +

16
3 κ

2 = 16
3 κ

2 , (6.5)

i.e. the Einstein field equations (5.9) are solved by a Minkowski space for the standard

gaugings and by a de Sitter geometry for non-vanishing κ.

The fermionic mass spectrum for this solution is obtained by linearizing the fermionic

field equations (5.1), (5.11) around the de Sitter background with the mass matrices given

by (5.29). For the eight gravitino masses we obtain

mgrav : ±
√
m2
i + 4κ2 , i = 1, . . . , 4 , (6.6)

where we have denoted by imi the eigenvalues of the anti-hermitean matrix ξi
j . For non-

vanishing κ thus all supersymmetries are broken, as is required by the de Sitter geometry

and 8 Goldstinos are found among the spin-1/2 fermions. For vanishing κ on the other

hand, supersymmetry is broken according to the number of non-vanishing eigenvalues of

ξi
j , in accordance with the results of [40, 41].

The remaining fermion masses are given by

mferm : ±
√
m2
i + 4κ2 , ±

√
(mi ±mj ±mk)2 + 4κ2 , (i < j < k) . (6.7)
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We find that the effect of the additional trombone gauging is a shift in all the fermion

masses. Likewise, we may calculate the scalar mass matrix (5.25), (5.26), with (6.3) and

obtain

Mijkl
mnpq = P42

(
ξrsξ

s
r δ

mnpq
ijkl − 24ξ[m[i ξ

n
j δ

pq]
kl] + 32κ ξ[m[i δ

npq]
jkl]

)
P42 , (6.8)

where P42 refers to the projector onto the 42 scalars in the decomposition

70 −→ 1 + 27 + 42 , (6.9)

of SU(8) under USp(8), i.e. all other scalars come with zero mass. In (6.8), the last term

lives entirely in the antisymmetric part of the mass matrix. In terms of the eigenvalues of

ξmn, diagonalization of (6.8) leads to the following spectrum

0 || 30 ×
(mi ±mj)

2 + 4iκ|mi ±mj| || i < j

(mi ±mj)
2 − 4iκ|mi ±mj| || i < j

(m1 ±m2 ±m3 ±m4)
2 + 4iκ|m1 ±m2 ±m3 ±m4| ||

(m1 ±m2 ±m3 ±m4)
2 − 4iκ|m1 ±m2 ±m3 ±m4| || , (6.10)

for the masses of the scalar fields. For vanishing κ, we precisely reproduce the mass

spectrum of [40]. Upon switching on κ, all non-vanishing mass-eigenvalues degenerate

according to m2 → m2 ± 4iκm . The fact that most of the mass eigenvalues come out to

be imaginary is due to the antisymmetric contributions to the mass matrix. Finally, the

vector mass matrix (5.27) takes the form

Mij
kl = −ξ[k[iξ

l]
j] + ξ[knδ

l]
[i ξ

n
j] + 4κδ

[k
[i ξ

l]
j] − 16

9 κ
2δklij − 4

9κ
2 ωijω

kl ,

Mijkl = ξi[kξl]j − 1
2ωi[kξ

n
l]ξjn + 1

2ωj[kξ
n
l]ξin − 2κωi[kξl]j + 2κωj[kξl]i

−8
9κ

2ωijωkl − 16
9 κ

2ωi[kωl]j . (6.11)

In terms of the eigenvalues of the matrix ξmn, we find the following mass spectrum

0 || 28 ×
(mi ±mj)

2 + 4iκ|mi ±mj| − 32
9 κ

2 || i < j

(mi ±mj)
2 − 4iκ|mi ±mj| − 32

9 κ
2 || i < j

−32
9 κ

2 || 3 ×
−32

3 κ
2 || 1 × . (6.12)

For non-vanishing κ thus all 28 vector fields become massive. The associated massless

Goldstone bosons can be identified in the scalar spectrum (6.10) which provides a strong

consistency check of the result. The matrix (6.11) has half-maximal rank in accordance

with the fact that this gauging is purely electric and involves only 28 of the vector fields.

To summarize, we have shown that for the theory discussed at the end of section 2.3,

a de Sitter geometry with constant scalar and vector fields provides a solution to the full
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set of field equations. While the a non-vanishing κ in the fermionic sector simply induces a

shift in all the fermion masses, we find that in the bosonic sector, most of the modes have

imaginary mass square eigenvalues. This is due to the fact that the equations of motion

do not descend from an action and may be a sign of an instability of this solution in de

Sitter space. Actually the imaginary shift in the mass squared of the bosonic fluctuations

reminds of the Breit-Wigner formula7 for the propagator of an unstable particle, which has

a characteristic imaginary shift in the pole proportional to the particle decay width Γ:

1

p2 −m2 + imΓ
. (6.13)

From this point of view our results seem to suggest that the bosonic fluctuations “die off” at

some characteristic time δt ∼ mΓ/E proportional to the trombone parameter κ. It would

be interesting to understand the implications of this feature for the stability properties of

the background.

A particular limit of this theory is the case of a ‘pure trombone gauging’, i.e. ξmn = 0

with vanishing mass parameters mi . It follows from the above formulas, that in this case

all scalar fields remain massless while all vector fields appear with negative mass squared,

again a sign of an instability of the solution. It will be interesting to analyze in more

detail, if this instability is a generic feature of the theories with local scaling invariance or

if some classes of theories among the more complicated gaugings constructed in this paper

eventually admit stable vacuum solutions.

7 Conclusions

In this paper, we have derived the most general couplings of four-dimensional supergravity

with a maximal number of supercharges. With a gauge group embedded in the E7(7) × R

global symmetry group of the Cremmer-Julia theory, the gauge generators are parametrized

in terms of an embedding tensor, carrying 56 + 912 parameters, subject to a set of bilinear

algebraic consistency constraints. After suitable parametrization, we find that the lat-

ter reduces to the system (2.29)–(2.32) which allows to construct simple solutions. The

standard gaugings whose gauge group is a subgroup of E7(7) correspond to an embedding

tensor in the irreducible 912 representation. Additional non-vanishing components in the

56 representation define theories in which local scaling invariance R (the so-called trombone

symmetry) is part of the gauge group.

We have determined the general form of the gauge groups and worked out the full

set of modified field equations of these gauged N = 8 supergravities. As a particular

feature of these theories, we have found that a gauging of the trombone generator leads

to an additional positive contribution to the effective cosmological constant. Moreover,

it turns out that gaugings with local scaling symmetry are generically dyonic, i.e. involve

simultaneously electric and magnetic vector fields. We have analyzed in detail the simplest

example of such a theory which has its higher-dimensional origin as a generalized Scherk-

Schwarz reduction from five dimensions. We have shown that this theory admits a de Sitter

7We are grateful to Riccardo D’Auria for pointing out this analogy.
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solution with constant scalar fields and determined its mass spectrum indicating that the

solution is not stable.

While in this paper we have analyzed only a single example within the new class

of theories, which describes a one-parameter deformation of the known Scherk-Schwarz

gaugings from five dimensions, it would be highly interesting to generalize this analysis

to other examples and to perform a systematic study of the possibilities of deformations

of the known gaugings. In particular, starting from a theory with supersymmetric AdS

vacuum, the additional positive contribution to the effective cosmological constant may

lift the space-time geometry to Minkowski or de Sitter upon inclusion of the trombone

generator. In this context it would be important to investigate if the instabilities that we

have found in the bosonic spectrum of our example are due to the simple structure of that

example or if they persist to more complex situations and represent a generic feature of

these theories.

Another interesting aspect for further study is the dyonic structure of the constructed

gaugings. Whereas the appearance of magnetic vector fields is not new and has shown up in

previously constructed gaugings in four dimensions [17, 33], in the standard theories there

is always a symplectic frame in which all magnetic vector fields drop from the action and

the field equations. This frame can be reached in a systematic way by integrating out the

two-forms from the action. In contrast, we have found that for the gaugings constructed

in this paper there is in general no symplectic frame in which all gauge fields would be

electric. These gaugings are of genuinely dyonic nature. This does not contradict the no-go

results on the gauging of electric/magnetic dualities [34, 35], as the resulting theories do

no longer admit an action. It would be highly interesting to study the structure of such

dyonic theories in more detail.

It is certainly remarkable that maximal supersymmetry in four dimensions not only

admits the standard gaugings with gauge groups inside E7(7), described by an embedding

tensor in the 912 representation [9, 16, 17], but moreover allows for yet another non-trivial

deformation of the field equations described by 56 additional components of the embedding

tensor. On the other hand, this may be viewed as another sign of the underlying symmetry

structure of extended supergravity theories: upon dimensional reduction to two dimen-

sions, the global symmetry group of maximal ungauged supergravity is the affine group

E9(9) [42] while its gaugings are parametrized by an embedding tensor Θ2−dim transform-

ing in the basic representation of that group [43]. This infinite-dimensional highest-weight

representation thus captures all deformation parameters of the two-dimensional theory.

Decomposition w.r.t. the finite-dimensional subgroup E7(7) × SL(2) gives rise to its lowest

level components

Θ2−dim −→

+1 (1, 2)

+2 (56, 2)

+3 (133, 2) + (1, 2)

+4 (912, 1) + (56, 1) + (56, 3)

. . . . . .

, (7.1)

from which the higher-dimensional origin of these theories may be inferred. E.g. the theories
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described by parameters in the first two rows correspond to torus reductions from four to

two dimensions, in which the KK vector field and the two-dimensional vector fields acquire

non-vanishing flux components along the two-torus, with the corresponding deformation

parameters transforming in the (1, 2) and the (56, 2), respectively. Parameters in the third

row describe Scherk-Schwarz reduction from four to two dimensions, including twists with

the four-dimensional trombone generator. The (912, 1) in the fourth row corresponds to

theories obtained by dimensional reduction from the standard gaugings in four dimensions,

while the (56, 1) describes the dimensional reduction of the theories with local scaling

symmetry constructed in this paper. This shows that after dimensional reduction both the

standard gaugings as well as trombone gaugings and combinations of the two are described

on equivalent footing by parameters residing within a single irreducible representation of

the affine global symmetry group. In this sense, the new gaugings constructed in this paper

may be viewed as obtained by E9(9) rotation from the standard gaugings in four dimensions.

Moreover, the infinite tail of higher level parameters in (7.1) still advocates the tempting

possibility of discovering yet other maximally supersymmetric couplings in four dimensions

which must however be of genuinely different nature than the present constructions.
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A Some algebra

A.1 Useful E7 relations

We denote by (tα)M
N the E7(7) generators in the fundamental representation, i.e. the index

α runs over 1, . . . , 133 and M,N = 1, . . . , 56 . We raise and lower adjoint indices with the

invariant metric καβ ≡ Tr [tαtβ], which is a rescaled Cartan-Killing metric. Fundamental

indices are raised and lowered with the symplectic matrix ΩMN using north-west south-east

conventions: XM = ΩMNXN , etc. . We note the following two useful algebraic identities:

(tα)M
K(tα)N

L = 1
24δ

K
Mδ

L
N + 1

12δ
L
M δ

K
N + (tα)MN (tα)KL − 1

24ΩMN ΩKL , (A.1)

and

(tα)KL(tα)MN = 1
12ΩK(MΩN)L + CKLMN , (A.2)

with the quartic E7 invariant CKLMN ≡ (tα)(KL(tα)MN) .

A.2 Breaking E7(7) to SU(8)

Upon breaking E7(7) to its maximal compact subgroup SU(8), the fundamental and the

adjoint representation break according to

56 → 28 + 28 , 133 → 63 + 70 , (A.3)
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respectively. We label the fundamental representation of SU(8) by indices i, j, · · · = 1, . . . 8 .

Then, the E7(7) generators (tα)M
N break according to

(ti
j)mn

kl = −δj[m δkln]i − 1
8δ
j
i δ

kl
mn = −(ti

j)klmn ,

(tijkl)mnpq = 1
24 ǫijklmnpq , (tijkl)

mnpq = δmnpqijkl , (A.4)

and the rescaled Cartan-Killing metric καβ ≡ Tr [tαtβ] breaks into

κm
n, p

q = 3
(
δqmδ

n
p − 1

8δ
n
mδ

q
p

)
, κijkl,mnpq = 1

12ǫijklmnpq . (A.5)

A.3 Breaking E7(7) to E6(6) × SO(1, 1)

Upon breaking E7(7) to its maximal subgroup E6 × SO(1, 1), its lowest dimensional repre-

sentations decompose according to

56 → 1+3 + 27+1 + 2̄7−1 + 1−3 ,

133 → 10 + 780 + 27−2 + 2̄7+2 ,

912 → 78+3 + 78−3 + 27+1 + 2̄7−1 + 351−1 + ¯351+1 ,

1539 → 10 + 780 + 6500 + 27−2 + 27+4 + 2̄7+2 + 2̄7−4 + 351+2 + ¯351−2 ,

8645 → 2 · 780 + 6500 + 29250 + 27−2 + 2̄7+2 + 351+2 + 351−4 + ¯351−2 + ¯351+4

+1728−2 + ¯1728+2 , (A.6)

with the superscript indicating the SO(1, 1) charge. We use the explicit notation

56 : XM → (X•, Xm, X
m, X•) ,

133 : Xα → (Xo, Xa, Xm, X
m) , (A.7)

with indices m = 1, . . . , 27 and a = 1, . . . , 78 labeling the fundamental and the adjoint

representation of E6(6), respectively. The symplectic matrix ΩMN and the rescaled Cartan-

Killing metric καβ break according to

ΩMN → (Ω•
• = 1, Ωm

n = δnm, Ω•
• = −1, Ωm

n = −δmn ) , (A.8)

and

καβ → (κoo = 72 , κab = 2ηab , κm
n = 12δnm) . (A.9)

The E7(7) generators (tα)M
N decompose as

(to)•
• = 3 , (to)m

n = δnm , (to)
m
n = −δmn , (to)

•
• = −3 ,

(ta)m
n = −(ta)

n
m ,

(tm)•
n = −(tm)n• = δnm , (tm)•n = −(tm)n

• = −δmn ,

(tm)nk = dmnk , (tm)nk = 10 dmnk . (A.10)
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and the decomposition of the structure constants fαβ
γ can be read off from the algebra

[to, tm] = 2tm , [to, t
m] = −2tm ,

[ta, tm] = −tamntn , [ta, t
m] = tan

mtn ,

[tm, t
n] =

1

3
δnm to − 6(ta)m

n ta . (A.11)

Here, dmnk denotes the totally symmetric tensor of E6(6), and tam
n denotes the E6(6)

generators in the adjoint representation. Adjoint indices are raised and lowered with the

rescaled Cartan-Killing metric ηab ≡ Tr [tatb] .

A.4 Useful E6 relations

We denote by dmnk and dmnk the totally symmetric tensors of E6(6) in the fundamental 27

and 27, respectively. We choose a relative normalization such that

dmnpdmnq = δpq . (A.12)

In the following, we give a list of useful algebraic relations that be be shown by various

contractions and/or by using an explicit realization of the E6(6) generators:

dmrs d
spt dtnu d

urq = 1
10 δ(mn)

(pq) − 2
5 dmnr d

pqr , (A.13)

dmps d
sqt dtru d

upv dvqw d
wrn = − 3

10 δm
n , (A.14)

(ta)m
k(ta)n

l = 1
18 δ

k
mδ

l
n + 1

6 δ
l
mδ

k
n − 5

3 dmnp d
klp , (A.15)

(ta)r
p(tb)s

q dmrsdnpq = − 1
30 ηabδ

m
n + 2

5(t(atb))n
m , (A.16)

(tatb)r
q dmrsdnqs = 1

30 ηabδ
m
n − 1

5(tatb)n
m + 3

10 (tbta)n
m , (A.17)

dpqrd
p(kldm)qs = 1

30d
klmδsr + 1

10d
s(klδm)

r . (A.18)

These play a key role in reducing the the E7(7) system of constraints (2.19)–(2.21) for the

embedding tensor to the system (2.29)–(2.32) for its E6(6) components.

B Solution of the quadratic constraints

Our strategy for solving the quadratic constraints for the embedding tensor follows the

analysis of [24] for the pure trombone gaugings. We make use of the fact that under

breaking to E6(6) the tensor ϑM contains a singlet which (if invertible) allows to explicitly

solve all the quadratic equations. Decomposing under E6(6) according to (A.6), we label

the components ϑM and ΘM
α of the embedding tensor according to

ϑM → (ϑ•, ϑm, ϑ
m, ϑ•) . (B.1)

and

ΘM
α =




0 ξa

+ ξn 0

− 1
3
ξm

3
2
tam

nξn + 3tap
qdrqmξpr 1

2
dmnpξp + ξmn −tam

nξa
+

− 1
3
ξm 3

2
tan

mξn − 30tap
qdrpmξqr −tan

mξa
−

−5dmnpξp + ξmn

0 ξa
−

0 ξn



 , (B.2)
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respectively, in terms of various E6(6) tensors. The relative coefficients among the various

terms within ΘM
α are determined by the fact that ΘM

α is constrained to live in the 912

representation of E7(7), i.e. satisfies the relations (2.8).

B.1 Determining the components of the embedding tensor

To solve the quadratic constraints in a systematic way, we start from the equation with the

highest SO(1, 1) grading. From (A.6) is follows that this is a 27+4 representation inside

1539, which thus corresponds to evaluating equations (2.20) for MN = m•. Explicitly,

this leads to

0 ≡ ξmϑ• + tam
nξa+ϑn . (B.3)

Without loss of generality we may assume ϑ• to be non-vanishing (which can always be

achieved by change of basis in case ϑM is not identically zero) and from (B.3) express

ξm (one of the 27+1 components of the embedding tensor) in terms of the unconstrained

parameters (ϑ•, ϑm, ξ
a
+) transforming in the 1+3 + 27+1 + 78+3 . For convenience, we

parametrize the latter as

ϑ• ≡ κ , ϑm ≡ κλm , ξa+ ≡ Ξa , (B.4)

and solve equation (B.3) as

ξm = −Ξatam
nλn ≡ − δΞλm . (B.5)

By similar computations, the remaining parts of the embedding tensor can be determined

from other components of the constraint equations. Evaluating equation (2.21) for αβ = mn

(the ¯351+4 equation) yields

0 ≡ ϑ• ξ
mn − 3Ξa tak

[m ξn]k − 10 ξa+ tap
[m dn]pq (ϑq + 3

2ξq) , (B.6)

which upon plugging in (B.5) reduces to

O2/3 · ξmn ≡ 10 Ξa tak
[m dn]kl O2/3 · λl , (B.7)

where we have defined the operator

O2/3 ≡ δΞ − 2
3κ . (B.8)

As the same operator appears on both sides of equation (B.7), the general solution for the

component ξmn can be given in polynomial form as

ξmn = 10 Ξatak
[m dn]kl λl + ζmn , (B.9)

where ζmn denotes a (real) zero mode of the operator O2/3. It corresponds to an eigenvector

of the action of the e6(6) generator defined by Ξa with the particular real eigenvalue 2
3κ .

In particular, such zero-modes only exist for non-compact choice of Ξa and some very

particular values of κ .
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Going down the grading, the next constraint equations live in the 2̄7+2, of which

there are four different ones. The relevant ones are obtained from (2.19) for α = m and

from (2.20) for MN = m
•, respectively, leading to

(
ξm + 8

3ϑ
m
)
ϑ• + Ξa tan

m ϑn = ξmnϑn + 5 dmpqϑp
(
ξq + 8

3ϑq
)
,

ξmϑ• − Ξa tan
m ϑn = ξmnϑn − 15 dmpqϑp ξq . (B.10)

Using the explicit form of (B.5), (B.9), these two equations determine the components ξm

and ϑm in terms of the free parameters according to

ϑm = 5κdmkl λkλl + κζm ,

ξm = 5Ξatan
m dnkl λkλl + ζmnλn − 4

3κζ
m , (B.11)

up to the constant vector ζm which is a zero mode of the operator O4/3 ≡ δΞ − 4
3κ .

Again, such zero modes exist only for very particular values of κ . Next, we evaluate the

constraint (2.20) for MN = mn (the equation transforming in the 351+2) to obtain

0 ≡ 1
2ξ[mϑn] − 5 dmkpd

prqdqln ξ
klϑr + ta[m

kdn]pk Ξaϑp − ξmnϑ• , (B.12)

which uniquely determines the 351−1 component ξmn of the embedding tensor. Explicitly,

after some computation and using the relations obtained above, we find

ξmn = 2Ξata[m
k λn]λk − 5Ξata[m

pdn]pqd
qkl λkλl

−5 dmkpd
prqdqln ζ

klλr + ta[m
kdn]pk Ξaζp . (B.13)

The singlet equation 10 from evaluating (2.19) for α = o yields

4
3ϑ•ϑ

• = 1
3 (ξmϑm − ξmϑ

m) − 4
9 ϑ

mϑm , (B.14)

which allows to express the singlet 1−3 component ϑ• in terms of the other fields

ϑ• = −5
3 κd

klm λkλlλm − κζmλm . (B.15)

Evaluating (2.19) for α = a finally yields

0 = 3
2t
a
m
n(ξmϑn − ξnϑ

m) − 3tap
q(drqnξ

prϑn + 10drpnξqrϑn)

+ξa−ϑ• − Ξaϑ• + 16tam
nϑmϑn . (B.16)

which yields the 78−3 component ξa−

ξa− = 30 ξb+(tbt
a)n

m dnkl λmλkλl − 5
3 Ξa dklm λmλkλl

+Ξaλkζ
k − 6Ξb(tatb)k

lλlζ
k − 8κ tak

lλlζ
k

−6tam
lλkλlζ

km + 15tan
qdklpdmpqλkλlζ

mn . (B.17)

We have thus determined all the components of the embedding tensor (B.1), (B.2) in terms

of the parameters κ, λm, Ξa, ζm, ζmn, of which the latter two are particular eigenvectors
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under the E6(6) action of Ξ . In the following, we need to check that this solution indeed

satisfies all the constraint equations (2.19)–(2.21). In particular, the remaining constraint

equations may impose further restriction on these tensors. E.g. evaluating equation (2.19))

for α = m implies that

dmklζ
kζ l = 0 , (B.18)

i.e. ζk is not only zero mode of O4/3 but also satifies a ‘pure-spinor type’ condition of E6(6) .

In the following, we evaluate all the remaining constraint equations.

B.2 Evaluating the remaining equations

We can now check all the remaining equations upon using the solution obtained above.

To this end, let us first calculate the invariant I4(ϑ) from (2.33) quartic in the trombone

parameters ϑM for the explicit solution (B.4), (B.11), (B.15). As a result, we obtain

I4(ϑ) =
2

3
κ4 dmnp ζ

mζnζp , (B.19)

i.e. the quartic invariant does not depend on the parameters λm . This shows that all λm
can be set to zero by an E7(7) transformation and therefore do not induce inequivalent

gaugings. For simplicity, we will thus in the following set λm = 0 . The solution found

in the previous section then reduces to the solution (2.27) given in the main text. In this

section we will evaluate all remaining constraint equations for this solution. The calculation

is rather tedious and has been performed using mathematica and cadabra [44, 45]. As a

result, we find that all remaining constraint equations of the system (2.19)–(2.21) are

satisfied provided, the parameters ζk, ζmn obey the following set of identities

ζkζ ldmkl = 0 , (B.20)

ζkζmndkml = 0 , (B.21)

ζ [kζmn] = 0 , (B.22)
(
ta ·
(
Ξ + 4

3κI
)
·
(
Ξ − 2

3κI
))
n
m ζn = −1

2ζ
mkζ lndklp(ta)n

p , (B.23)

with the matrix Ξ given by Ξm
n ≡ Ξa(ta)m

n and ‘·’ denoting the matrix product. The third

equation comes from the constraint (2.21) evaluated for [αβ] = [ab]; the fourth equation

comes from the same constraint evaluated for [αβ] = am. We have explicitly verified that

all other constraints are satisfied as a consequence of the ansatz and the relations (B.23).

In particular, the constraint obtained from (2.21) evaluated for [αβ] = a
m follows after

some computation from the fourth equation of (B.23) and the other constraints.

The fourth equation of (B.23) is linear in ζn. In particular, contracting this equation

with (ta)m
q implies

(32κ2 − ΞaΞa) ζ
m = 15

2 ζ
klζrsdkrpdlsqd

pqm , (B.24)

i.e. for ΞaΞa 6= 32κ2, we can express ζm as a bilinear in ζkl . Note that this is consistent,

as the r.h.s. of (B.24) is indeed eigenvector of Ξ associated to an eigenvalue which is twice
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the one of ζkl . Still, plugging this expression for ξm into the four equations (B.23) will

lead to a set of nontrivial constraints polynomial in ζmn .

As illustrated in section 2.5, the “E6(6)-pure spinor” constraint (B.20) on ζm singles

out an O(1, 1) × SO(5, 5) subgroup of E6(6) in which SO(5, 5) is part of the little group of

its solution. In particular ζm coincides with the singlet 1−4 in the branching (2.37) of the

27 relative to this O(1, 1)×SO(5, 5), and Ξ should have the form in eq. (2.39). Let us first

consider the simple case in which Ξ0 is a semisimple element of so(5, 5) and thus can be

considered as an element of its Cartan subalgebra. Let us also consider the case in which

the two sides of eq. (2.32) are separately zero. The constraint (B.23) is then satisfied if Ξ0

commutes with an so(4, 4) subalgebra of so(5, 5) and if its norm is Tr(Ξ0 ·Ξ0) = 24κ2. The

last requirement is easily understood by observing that Ξ0 and Ξ1 are mutually orthogonal

and that Tr(Ξ1 · Ξ1) = 8κ2, since (B.23) implies that Tr(Ξ · Ξ) = 32κ2. This fixes the

normalization of Ξ0. We can branch the relevant E6(6) representations with respect to its

SO(1, 1)2 × SO(4, 4) subgroup, where the SO(1, 1)2 factor is generated by Ξ1 + Ξ0. The 27

then branches as follows:

27 → 1( 4
3
,0) + 1(− 2

3
,2) + 1(− 2

3
,−2) + 8

(− 2
3
,0)

v + 8
( 1
3
,1)

s + 8
( 1
3
,−1)

c ,

78 → (28 + 1 + 1)(0,0) + 8(1,−1)
s + 8(1,1)

c + 8(−1,1)
s + 8(−1,−1)

c + 8(0,2)
v + 8(0,−2)

v ,

where the gradings are the eigenvalues of Ξ1/κ, Ξ0/κ. The “pure spinor” ζm corresponds to

the 1( 4
3
,0) representation. Consider now the vector ζ ·ta ≡ (ζm tam

n). The constraint (B.23)

reads:

(
δΞ +

2

3
κ

)(
δΞ − 4

3
κ

)
ζ · ta = 0 . (B.25)

Let us analyze the relevant cases:

• If ta ∈ so(5, 5)+ so(1, 1), ζ · ta is still in the 1( 4
3
,0) and is thus annihilated by δΞ − 4

3 κ;

• If ta ∈ 8
(1,−1)
s + 8

(1,1)
c , ζ · ta = 0 and the constraint is satisfied;

• If ta ∈ 8
(−1,1)
s + 8

(−1,−1)
c , ζ · ta ∈ 8

( 1
3
,1)

s + 8
( 1
3
,−1)

c . The component in 8
( 1
3
,1)

s is a

zero-mode of δΞ − 4
3 κ, while the second component is a zero mode of δΞ + 2

3 κ and

the constraint is still satisfied;

Consider now the case in which Ξ0 has a nilpotent component Ξn in 16−3
s , so that Ξ has a

semisimple and a nilpotent component Ξ = Ξss +Ξn. The constraint (B.23) is still satisfied

provided the following condition holds: [Ξss,Ξn] = 2κΞn.

C Gauge group generators in E6 components

Here, we give the gauge group generators (XM )N
K for the general solution (2.27) of

the quadratic constraints as obtained from (2.12), (B.1), (B.2), and (2.27). They are
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parametrized by κ, Ξa, ζm, and ζmn, which are subject to the identities (B.23).

X• =




0 0 0 0

0 Ξm
n − 2

3
κδn

m 0 0

0 0 −Ξn
m − 4

3
κδm

n 0

0 0 0 −2κ



 ,

Xk =




0 −Ξk

n + 2
3
κδn

k
0 0

Ξ[k
pζqdm]pq

1
2
ζnpdkpm + 5ζpqdkprdqsmdrsn 2

3
κdkmn − Ξk

pdpmn 0

0 10Ξ[k
pζqdr]pqd

rmn 5ζpqdnprdkqsd
rsm − 1

2
ζmpdkpn Ξk

m − 2
3
κδm

k

0 0 −Ξ[k
pζqdn]pq 0



 ,

Xk =




0 ζkn 0 0

0 Xk
m

n ζkpdpmn 0

0 0 Xk m
n ζmk

0 0 0 −2κ ζm



 ,

X• =




0 −2κζn 0 0

0 0 −2κζpdpmn 0

0 0 0 2κζm

0 0 0 0



 , (C.1)

where

Xk
m
n = 2Ξm

[kζn] − 4
3κζ

kδnm − 2
3κζ

nδkm + 20
3 κζ

pdpqmd
qkn − 10Ξp

kζqdmqrd
rpn ,

Xkm
n = 2Ξn

[mζk] + 4
3κδ

[k
n ζ

m] − 20
3 κζ

pdpqnd
qkm + 10Ξp

kζqdnqrd
rpm .

Via (2.22) these generators also encode the structure constants of the gauge algebra.

D T -identities

Upon dressing the quadratic constraints (2.19)–(2.21) with the scalar vielbein and using

the definitions (3.6), (3.7), one obtains a large number of SU(8) identities bilinear in the

tensors A and B. Here we collect those identities that are important for the calculations

in the main text. Working out all quadratic constraints that transform in the 63 of SU(8),

we find the following relations

1539 : 0 = 6AikBjk − 6BikAjk +Aj
imnBmn −AijmnB

mn , (D.1)

133 : 0 = 2AikBjk + 2BikAjk −Aj
imnBmn −AijmnB

mn + 32
3 B

ikBjk − 1
8δ
i
j trace ,

133 : 0 = 12AikAjk −AimnkAj
mnk + 3AkmnjAk

mni

+12
(
2AikBjk + 2BikAjk −Aj

imnBmn −AijmnB
mn
)

− 1
8δ
i
j trace ,

8645 : 0 = −240AikAjk + 11AimnkAj
mnk + 21AkmnjAk

mni

−12
(
10AikBjk + 10BikAjk +Aj

imnBmn +AijmnB
mn
)

− 1
8δ
i
j trace ,

descending from the various irreducible E7(7) contributions of (2.19)–(2.21) as indicated.

The E7(7) origin of these constraints can also be confirmed by calculating the action of the

quadratic Casimir operator upon using the E7(7) transformation properties

δAij = 1
3A

(i
klmΣj)klm ,

δAi
jkl = 2AimΣmjkl + 3Σmn[jkAl]imn + Σmnp[jδki A

l]
mnp ,

δBij = −ΣijklBkl , (D.2)

with Σijkl satisfying Σijkl = 1
24ǫ

ijklmnpqΣmnpq .
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Similarly, we can deduce we can deduce two constraints in the 70 of SU(8):

133 : 0 = Am[jklBn]m + 4B[jkBln] − 1
24ǫjklnmqrs (Ap

mqrBsp + 4BmqBrs)

133 : 0 = 4Am[jklAn]m − 3Amp[jkA
p
ln]m + 16Am[jklBn]m

− 1
24ǫjklnmpqr

(
4As

mpqArs − 3At
umpAu

qrt + 16Au
mpqBru

)
, (D.3)

and two constraints in the 378 of SU(8):

1539 : 0 = 4Aj[kBln] +Amj[klBn]m +AmklnBjm (D.4)

−1
9ǫrsmpqnklAj

mpqBrs + 1
18ǫmjqrsnklAp

qrsBmp ,

8645 : 0 = −18AmnklAjm − 54Amj[klAn]m + 60Aj[kBln] − 9Amj[klBn]m − 9AmklnBjm

+ǫmpqrsnklAj
urs
(
Au

mpq − 1
3δ
m
u B

pq
)
− 3

4ǫjnklpmrsAu
rst
(
At

mup − 2
9δ
m
t B

up
)
.

If the components ΘM
α, ϑM are chosen such as to satisfy the quadratic con-

straints (2.19)–(2.21), the relations (D.1)–(D.4) among the scalar tensors A, B, follow

as an immediate consequence. For Bij = 0, all these identities consistently reduce to the

quadratic identities given in [9, 17].
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