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Distributed Learning with Memory:
Optimizing Model Usage across Training Tasks

F. Malandrino*t, C. F. Chiasserinit*
*CNR-IEIIT, Italy — TCNIT, Italy — ¥Politecnico di Torino, Italy

Abstract—As the relevance of distributed learning to vehicular
services grows, it becomes more important to perform such
learning in the most effective possible manner. In this paper,
we investigate the benefits stemming from a learning controller
considering multiple learning tasks at the same time. Our
performance evaluation shows that this new paradigm, which
also enables model reusage across learning tasks, yields up to
60% savings on model training costs.

I. INTRODUCTION AND SCENARIO

As the communication and computation capabilities of
both vehicles and the infrastructure supporting them grow,
applications of machine learning (ML) to vehicular services
multiply. At the same time, most of such ML is distributed,
i.e., carried out by multiple mobile or fixed nodes, as ex-
emplified in Fig. 1. The problem of optimizing a single
distributed learning task has been widely studied in the
literature, and many effective and efficient solutions thereto
have been proposed. In particular, a significant body of work
focuses on the federated learning (FL) paradigm and tackles
the twin problems of (i) selecting the nodes to involve in
the learning process, and (ii) incentivizing their cooperation.
For node selection, reputation mechanisms are often used:
the system tracks (through, e.g., a blockchain) which nodes
provide the cooperation they promise, and excludes those that
do not.

Most existing works, however, share the assumptions that:

« there is only one controller/broker, and
o each learning task can be considered in isolation.

In this work, we aim to go beyond the current assumptions,
and optimize distributed learning tasks where (i) multiple
brokers compete against each other, and (ii) multiple models
can be used — and, crucially, re-used — across different
learning tasks. We underline that, in our scenario and system
model, the learning coordinator also acts as a broker. In fact,
in addition to the tasks associated with distributed learning
(e.g., collecting and averaging the local models in the case
of FL), it is also in charge of:

« identifying the nodes to involve in the learning itself,
and
« negotiating their compensation.

Also, contrary to traditional scenarios, all participants are
rational, i.e., driven by their own profit: learning nodes
participate only if they are awarded what they see as fair
compensation, and the broker seeks to maximize its profit.
The ego-learner, coordinator, and helpers interact as sum-
marized in Fig. 1. The process is initiated by the ego-learner
(step 1), which provides the learning coordinator with basic
statistics about its local data, e.g., number of features and
learning domain, along with the target accuracy [™ and the
maximum learning time T™. Based upon such information,
the coordinator determines the best model to use (step 2),
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Fig. 1. Main steps of the learning process we envision, highlighting how the
learning coordinator acts as a learning broker, in charge of choosing the best
model to use (steps 2-3) and nodes (step 4), negotiating prices (steps 5-8),
and storing already-trained models for future usage (step 11).

performs model compression or adaptation as needed (step 3),
and selects the helpers to call for (step 4). Then, it agrees with
the helpers on the resources they are going to contribute and
their compensation (steps 5-6). Indeed, helpers will cooperate
only if they are offered a sufficient compensation for the
resources they devolve to the training. After the price is ac-
cepted by the ego-learner (steps 7-8), the training itself takes
place following any distributed learning technique, possibly
including model compression and/or domain adaptation [1]
steps, as needed. Once training is over, the resulting model
is returned to the ego-learner (step 10) and, crucially, stored
by the coordinator for future use (step 11).

There are three main ways the coordinator can reuse an
existing model for a new learning task, as per step 2 in Fig. 1:

« if the task and domain (e.g., recognizing license plates)
are the same as that of an already-trained model, then
that model can be fine-tuned [2], [3] and reused;

o if the task is the same but the domain is different (e.g.,
license plates from different countries), then domain
adaptation techniques [1] can be applied in step 7;

o if both the task and the domain are different, some
training can anyway be salvaged, e.g., the coefficients
of early convolutional layers [4].

The key observation is the same in all cases: the coordinator
can leverage past training to perform the learning task in a
shorter time and/or with fewer resources, hence, at a lower
cost.



II. SYSTEM MODEL AND PROBLEM FORMULATION

Model elements. The main system components are as
follows:

« learning nodes in N, which includes the ego-learner;

« datasets in D, owned by the nodes;

o models in M, also including modified and compressed

model versions.

Parameters. Each node n € AN is associated with a
quantity of resources p(n), denoting its capabilities (e.g.,
energy, computational). Similarly, models are associated with
a complexity level x.(u), indicating the quantity of resources
needed to train one epoch of that model. We are also given
size o(u) of model 1 and bandwidth 3(n) characterizing the
communication link between node n and the coordinator. It
follows that the communication latency incurred by node n
when transmitting/receiving an updated version of model u
is % Finally, Xavg(st) is the quantity of resources' needed
to average instances of model y at the coordinator.

Learning process. Given a model ¢ € M and a set
of datasets D C D, we define as A.(k,u,D) the global
change in the loss function achieved by training model u
over datasets D at the k-th epoch. Notice that training aims at
minimizing the loss, hence, \; will be negative if the training
does progress.

Compressing model p € M into model /' € M changes
the loss by A.(D, u, u'), with D C D being the datasets being
used. Similarly, performing domain adaptation, i.e., moving
from model p trained on datasets D C D to model i to use
with datasets D’ changes the loss by A, (D, D’, 1, u’). Both A
and )\, are typically positive, as both model compression and
domain adaptation may result — in the short term — in an
increase of the loss.

Finally, we are given the quantity of computational
resources consumed by model compression and do-
main adaptation, denoted, respectively, by (D, p, i)
and x,(D,D’, i, u’). All these values are input information
to our problem, and, as discussed later, estimating them is an
orthogonal problem to the one we tackle.

Decisions and their effects. The coordinator has to make
the following decisions:

o for each node n € N, whether or not to involve it
in the learning at epoch k, expressed through binary
variable y(k,n) € {0,1};

« for the nodes that are chosen, for how many resources
they are asked, expressed through real variable z(k, n) >
y(k,n)p(n);

o the number K of epochs to run;

« the model (or model version) p+ € M, to use for training;

« possibly, a model p( that needs to be adapted and/or
compressed before the training starts;

o the amount 2¢(k) of coordinator resources to commit at
epoch k;

« the price p(n) to offer to each node so as to guarantee
its cooperation.

Choosing a previously-trained model, g # p, permits to
kickstart training. Although model adaptation and pruning
may come at a cost in terms of computational resources [5],
the resulting loss will often be substantially better than the
one yielded by a new, untrained model [1], [5], [6].

'Due to the way averaging is implemented, this quantity is actually
independent of the number of such instances.

Assuming, without loss of generality, that synchronous
learning is adopted, and indicating as D the datasets of the
selected nodes, the time taken by local learning and data

transmission in epoch k is given by:
(Xr(ka M(k)’p> + U(M)) 7 (1
z(k,n) B(n)
i.e., the combined computation and communication time of
the slowest selected node.

To compute the total epoch duration, we must combine (1)
with the additional operations taking place at the coordinator,
ie., (i) averaging, (ii) compression (if needed), and (iii)
domain adaptation (if applicable). More formally,
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The first and last terms of (2) can only be incurred at
epoch k=1; also, they reduce to zero if (respectively)
@prev (u)=D, i.e., the chosen model has been trained over the
same dataset (hence, no adaptation is necessary) or po=,
hence, no compression is necessary. Combining the two
contributions in (1) and (2), we can obtain the total duration

of epoch k as:

Concerning the loss I(k), it can be computed recursively
by accounting for all A\-contributions:

(k) = I(k — 1) + Ae(k, u(k), D)+
]lkzl)\a(,[)prev(/i)a ,D7 Hy /1,) + ]lk:1)‘0(,D7 Ho, ;U’) (4)

Similarly to (3), the last two terms in (4) reduce to zero if
no compression or adaptation is performed.

Pricing and cooperation. To determine whether they are
offered a sufficient price for the resources they should devolve
to the training, nodes will weight:

e the cost of their computing resources and bandwidth,

against

« the price they receive from the broker, plus the value

they see in training the selected model (e.g., to have it
ready for future local use).
These two quantities can be expressed as:

K

[z(k, n)rr(n) +y(n, k)rr(n)o(u(k))],  (5)
k=1

7(n) = p(n) + maxy(k, n)v(n, u(k), (k). (6)

It is clear that rational nodes will cooperate only if the
latter outweighs the former. In (5), kg and Kt represent the
cost — e.g., monetary or energetic — assigned by node n
to its computing and bandwidth resources (resp.). In (6),
v(n, u(k),l(k)) represents the value that node n sees at epoch
k in training (and storing) model n until loss .

Concerning the broker, its objective is to maximize its
profit, i.e., the difference between the price asked to the ego-
learner (Fig. 1, step 6a) and the price it has to pay to the
helpers (i.e., >, p(n)), plus its own costs. It follows that
the broker will seek to solve the problem of minimizing the
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Fig. 2. The main steps of our solution concept. Ellipses enclose the decisions
that affect the aspect of the learning process reported in the associated label.

aforementioned quantity, subject to learning quality and time
target, and to the fact that all helpers cooperate.

Objective and constraints. The problem solved by the
broker can be summarized as follows:

min Zn p(n) + Kserver Z?:l xc(k) (7

z,y, K,p
St. I(K) < M ®)
e T(k) <T™ ©)

k(n) —~v(n) <0 VneN. (10)
In other words, the broker seeks to minimize the price to pay
to other nodes plus the cost of its own resources (7), subject
to the fact that the target learning quality (8) is achieved by
the target time (9), and that all nodes required to cooperate
will do so (10).

Multiple servers: the need to look ahead. As it can be
inferred from (7), the above problem is myopic, i.e., it only
considers the current learning task. However, this neglects
the fact that the same model may be reused in multiple
learning tasks, and model selection decisions need to account
for that. This is especially relevant when multiple brokers are
present. Indeed, as mentioned earlier, such brokers compete
against each other and seek to maximize their profit. They
cannot increase the price asked from the ego-learner, as doing
so would drive them out of the market [7], hence, their
best strategy is to reduce costs. Look-ahead decisions allow
exactly for that, by exploiting the availability of partially-
trained model instances, which can be adapted to the new
ego-learner with little effort [1], [6].

To express and implement look-ahead decisions, we need
to define a set of jobs

J = {(tg,n”, T )Y,

where each job J € J is a 4-uple including:

o the time ¢ at which the job is requested;

o the ego-learner n’/ where it originates;

o the maximum learning time T™;

o the maximum acceptable value of final loss value (M.

Given the above, and adding superscripts J to the decision
variables and costs, we can rewrite objective (7) as:

KJ
. ; i
. PP <n>+ﬂserverl;X (k), an

Jeg n

i.e., the broker’s goal becomes the minimization of its total
cost, over — in principle — all jobs, including future ones.
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Fig. 3. First learning job: accuracy as a function of time for different datasets
(line color) and model architectures (line style).

III. THE HARDEST-FIRST SOLUTION STRATEGY

Solving our problem directly, e.g., through a solver, is
prohibitively complex; specifically, it is possible to prove that:
Property 1: The problem of minimizing (7) subject to
constraints (8)—(10) is NP-hard.
The proof, based upon a reduction from the generalized
assignment problem (GAP) is skipped in the interest of space.

As a consequence, our solution concept is predicated upon

(i) decoupling the main decisions to make; (ii) making them
sequentially, while (iii) accounting for their mutual influence.
Specifically, the main decisions to make concern (i) the
models to choose, (ii) the data sources to leverage, and (iii)
the additional nodes to enroll, along with the resources they
should allocate. Decisions are made through nested loops: as
shown in Fig. 2, we arrange the loops so that different aspects
of the learning process stay, insofar as possible, constant
throughout the iterations. Specifically,

« model selection is the only decision influencing the cost
of future jobs (11), hence, that decision is made in the
outermost loop;

o models and datasets, determine the number of epochs
needed to reach the target learning quality [, hence,
datasets selection is made in the middle loop;

« all decisions influence epoch duration and cost, hence,
node selection decisions are made in the inner loop.

The individual decisions can then be made following high-
performance, well-tested approaches, as described next.
Model selection. Inspired by [8], which remarks that the com-
plexity of DNN models grows more slowly than the learning
performance they yield, we aim at finding the smallest model
(i.e., the one with the fewest parameters) among those that
yield the required learning quality. Thanks to the fact that
we have to select one model, we can scour the set M very
efficiently following a bisection, Newton-based approach [9].
Data source selection. Our key observation is that adding
data sources has two effects on the overall learning process.
First, it improves the learning quality (e.g., accuracy), which
is proportional to the logarithm of the quantity of data [10].
At the same time, it increases the duration of each individual
epoch, which is proportional to the total quantity of data [11].
It follows that a greedy hill-climbing approach [12], choosing
the minimum amount of data needed for a feasible solution,
yields a provably quasi-optimal solution — namely, within 1 —
1 from the optimum.

Node and resource allocation. Once model and dataset have
been chosen, selecting the nodes to use and the resource
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Fig. 4. Second learning job: accuracy as a function of time for different model selection strategies and model architectures (line style), when the second

job uses dataset under (left), mid (middle), over (right).

to devote to the learning process is akin to solving a VNF
chaining problem [13]. Hence, any of the efficient and
effective solution strategies developed for VNF chaining can
be leveraged. Many powerful approaches are based upon the
generalized assignment problem (GAP); among those, we
follow the one in [13] for our performance evaluation.

IV. NUMERICAL RESULTS

The goal of our performance evaluation is to show how
accounting for multiple learning tasks — as allowed by our
framework — yields significant cost savings. To this end, we
consider a very relevant task for vehicular scenarios, i.e.,
image recognition, and perform a set of experiments using the
CIFAR10 dataset and two DNN architectures belonging to the
family of LeNet, namely, LeNet4 and LeNet5, having (resp.)
four and five layers. We subdivide the CIFAR10 dataset in
three sub-datasets, called: under (classes 1-5), mid (classes 3—
7), and over (classes 6—10). We consider two learning jobs:
in the first one, no pre-trained model is available (hence, a
new model is trained from scratch); conversely, the second
job can exploit the models trained during the first job (if
that is beneficial). Throughout the performance evaluation,
we use the learning time as a proxy for cost; this is consistent
with the fact that, in all cloud environments, (virtual) machine
utilization is assessed (and billed) by time.

Fig. 3 shows the evolution of accuracy over time for
different datasets and model architectures. It is important to
remark that time is a very good proxy for the total training
cost. For some datasets, the simpler LeNet4 architecture
yields a better time/accuracy than the more complex LeNet5;
this is due to the fact that individual training epochs under
simpler architectures are shorter, hence, more epochs can be
performed in the same time.

We now move to the second job. Each plot in Fig. 4 shows
the time evolution of the accuracy given the dataset used for
that job; within each plot, the line style denotes the DNN
architecture used in that job. Lines of different colors denote
the model selection strategy used by the broker:

e un-trained: use a new model;

 pre-trained: use a model trained over the same dataset;

e cross-trained: use a model trained over a different

dataset.

We notice that the pre-trained strategy always yields the
best performance: this makes intuitive sense, as that means
effectively avoiding the training process altogether. More
interestingly, there is no consistently better strategy between
un-trained and cross-trained; in many cases, a model trained
for a different dataset may yield better performance than a

new, untrained one. In some cases (see, e.g., the right plot),
choosing the cross-trained strategy allows using the simpler
LeNet4 architecture in lieu of the more complex (hence,
computationally more onerous) LeNet5.

V. CONCLUSION

We made the key observation that distributed learning
approaches should be optimized over multiple learning jobs,
accounting for reuse opportunities when making model selec-
tion decisions. We thus envisioned an entity, called learning
broker, in charge of making joint decisions about (i) the
datasets to use, (ii) the models to train, and (iii) the nodes and
resources to leverage. Multiple brokers compete with each
other to maximize their own profit, hence, they seek to min-
imize the costs of the learning jobs. In view of the problem
complexity, we proposed an iterative solution strategy, where
each decision is made separately while also accounting for
their mutual interaction. Our performance evaluation shows
that cost savings exceeding 60% are possible when multiple
subsequent learning jobs are optimized jointly, validating our
motivation and solution strategy.
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