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Abstract: Bio-acoustic signal analysis often reduces to feature analysis on the
frequency structure in a lower dimensional space. This approach usually treats the
time-frequency bins of spectrograms as independent features or extracts common
statistics from waveforms. It is known to entail human perceptual bias that is
induced by the neglect of the relative relationship between the spectral shape of
vocalization and time as well as the dependence on domain knowledge of animals’
behaviours. In light of this, we propose a Nearest Neighbour Gaussian Process
(NNGP) model to account for the time varying components in the latent spectral
structure of bio-acoustic data.

Keywords: NNGP; Time-frequency data; Latent spectral structure; Time-
varying e↵ects; Bio-acoustics

1 Motivation & Data

In comparative bio-acoustic studies, one area of interest is to understand

the acoustic structures of non-human primates in order to provide insights

on the evolution of the communication mechanism of our closest relatives.

The most common practices are feature engineering methods, which in-

volves selecting a set of basis-features for quantitative comparison. The

identification of meaningful features in the vocal repertoire relies on biolo-

gists to observe and interpret the behavioural contexts in which the animals

emit the signals. These interpretations are costly to acquire, inaccurate due

to human subjectivity and di�cult to generalize for cross-species compar-

ison. Furthermore, feature selection always ignores the time-varying e↵ect

This paper was published as a part of the proceedings of the 36th Inter-
national Workshop on Statistical Modelling (IWSM), Trieste, Italy, 18–22 July
2022. The copyright remains with the author(s). Permission to reproduce or ex-
tract any parts of this abstract should be requested from the author(s).
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of observed vocalizations on the latent acoustic structure. The aim of this

project is to propose a NNGP model that accounts for time in bio-acoustic

analysis. The dataset that will be available for model implementation are

vocal signals of lemurs that were recorded in Madagascar.

The data format is equivalent to the published data in (Valente, D. et al.

2019). Each recorded signal is represented by a spectrogram and lasts for a

unique duration of time that is measured in seconds. We refer to Figure 1

for a time-frequency representation of 3 signals of di↵erent durations. Fur-

thermore, each signal is categorized by a call-type label and a species label,

which are characterized by the behaviour of the lemur during emission and

the species to which the lemur belongs to, respectively. As an example,

Table 1 lists the number of recorded signals of 3 di↵erent species/call-type

groups of signals. The group labels are given by biologists.

FIGURE 1. Spectrograms of 3 observed signals with di↵erent durations

TABLE 1. Number of recorded signals of 3 di↵erent species/call-type categories

species call-type # signals

Indri indri (II) Clacson (CL) 622

Indri indri (II) Grunt (GR) 1145

Indri indri (II) Hum (HU) 418
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2 NNGP Hierarchical Model

Let G denote the total number of observed signals of one species/call-type

category. Denote each g-th observed signal by zg where g 2 {1, 2, ..., G} .

Let t⇤g be its respective duration. Each zg is a Gaussian field : zg =

{ zg(t, h) : (t, h) 2 Ug } where (t, h) is a location in the observed spatial

domain Ug = Tg⇥Hg , Tg = [0, t⇤g] is the time-axis andHg is the frequency-

axis. Each domain Ug is unique. Let wR = { w(t, h) : (t, h) 2 R } be

a latent Gaussian field of zero mean over R = T ⇥H : T = [0, 1] that

needs to be inferred from the data zg. This latent field wR is the inherent

acoustic structure of a given set of signals of the same species/call-type

category that has factored in the e↵ects of each unique Ug. The model is :

zg(t, h) = µg + yg(t, h) + ✏g(t, h)

= µg + w(↵g + �g t, h) + ✏g(t, h)

where yg(t, h) = w(↵g +�g t, h) is a point value evaluated at the location

(↵g + �g t, h) 2 R; ↵g, �g are the time-distortion parameters i.i.d. 8 g :

↵g + �g t 2 T = [0, 1] 8 t 2 Tg = [0, t⇤g]; µg is the scalar mean i.i.d 8 g;
and; ✏g(t, h) ⇠ N(0, ⌧2g ) is the random noise i.i.d. 8 g, t, h .

Let C(·) be the covariance kernel of that is specified by :

C((t1, h1), (t2, h2)) = �2e�(  t|t1�t2| +  h|h1�h2| )

+ �2
ce

� cdc(t1,t2,�)

8 (t1, h1), (t2, h2) 2 R. The first component of C(·) describes how the acous-

tic structure changes across the time-frequency grid R. The second com-

ponent addresses the circular nature of time-frequency data. The distance

function dc(t1, t2, �) is the periodic distance between two time points on T

such that dc(t1, t2, �) 2 [0, �/2] 8 t1, t2 2 T . The parameters of C(·) that

need to be inferred are the time and frequency decay :  t,  h ; the period-

icity and its decay : �,  c ; and ; the variances : �, �c . Write⌃ as the exact

covariance matrix given by the kernel C(·) and ✓ = { t,  h,  c, �, �, �c}.
The hierarchical model is :

zg | µg, yg, ⌧
2
g ⇠ GP( µg + yg , ⌧2g )

yg | ✓, ↵g, �g ⇠ GP(0,⌃)

wR | ✓ ⇠ GP(0,⌃)

We refer to Figure 2 for a graphical representation of the relationship be-

tween wR, yg and zg. The relative relationship between the times given

by data and the spectral shape of wR is described by the time-distortion
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FIGURE 2. (From left to right) Spectrogram of wR, yg and zg respectively

parameters : ↵g, �g, which map the data points in Ug onto the latent

domain R. Since yg evaluates spatial locations in R, it is thus specified

by the same distribution of wR. The data zg can be marginalized over

yg = { w(↵g + �g t, h) : (t, h) 2 Ug }. The marginal distribution of zg

over yg is completely specified by the scalar mean µg, the noise ⌧2g , the
time-distortion parameters ↵g, �g and the kernel parameters ✓. Let kg be

the number of data points zg(t, h) 2 zg , the g-th observation. Define Dg

as the diagonal matrix of dimension kg⇥kg with ⌧2g as the diagonal entries.

The marginal distribution is :
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Since inverting the high-dimensional exact covariance matrix ⌃ is too com-

putationally expensive, we resort to the approximated NNGP instead of the

exact GP. The idea of NNGP is that for Gaussian processes, if the covari-

ance kernel is monotonic with respect to the distance between two spatial

points, then only the data at neighbouring locations is needed for inference.

Define the neighbour set N (t, h) as the set of m points that are “closest”

to the point (t, h) such that the points in N (t, h) have the maximum cor-

relation with point (t, h) given by C(·).

Let n denotes the total number of points in wR and (ti, hi) 2 R 8 i =

606



Yip et al.

1, 2, ..., n. The density of wR that is expressed in terms of the full condi-

tional densities can then be approximated in terms of the neighbour sets

N (t, h). Write z = { z1, z2, ..., zg } . The marginal distribution of z
specified above can also be approximated similarly.

P(wR) = w(t1, h1)

nY

i=2

P
�
w(ti, hi) | {w(tj , hj) : tj  ti , hj  hi}

�

⇡ w(t1, h1)

nY

i=2

P
�
w(ti, hi) | wN (ti,hi)

�

P(z) = z1(t1, h1)

GY

g=1

kgY

i=1

P
�
zg(ti, hi) | {zg0(tj , hj) : g0  g , ↵g0 + �g0 tj  ↵g + �g ti , hj  hi}

�

⇡ z1(t1, h1)

GY

g=1

kgY

i=1

P
�
zg(ti, hi) | zN (↵g+�gti,hi)

�
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