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Abstract—Real systems, as Unmanned Aerial Vehicles (UAVs),
are usually subject to environmental disturbances, which could
compromise the mission accomplishment. For this reason, the
main idea proposed in this research is the design of a robust
controller, as autopilot control system candidate for a fixed-
wing UAV. In detail, the inner loop of the autopilot system
is designed with a tube-based robust model predictive control
(TRMPC) scheme, able to handle additive noise. Moreover, the
navigation outer loop is regulated by a proportional-integral-
derivative controller. The proposed TRMPC is composed of two
parts: (i) a linear nominal dynamics, evaluated online with an
optimization problem, and (ii) a linear error dynamics, which
includes a feedback gain matrix, evaluated offline. The key
aspects of the proposed methodology are: (i) offline evaluation
of the feedback gain matrix, and (ii) robustness to random,
bounded disturbances. Moreover, a path-following algorithm is
designated for the guidance task, which provides the reference
heading angle as input to the control algorithm. Software-in-the-
loop and processor-in-the-loop simulations have been performed
to validate the proposed approach. The obtained performance
have been evaluated in terms of tracking capabilities and
computational load, assessing the real-time implementability
compliance with the XMOS development board, selected as
continuation of previous works.

I. INTRODUCTION

In the last decades, autonomous Unmanned Aerial
Vehicles (UAVs) have been able to execute inspection,
surveillance and search-and-rescue missions, guaranteeing
trajectory tracking and stability performance, thanks to
tailored control schemes. Moreover, depending on the
required task, these platforms, either fixed-wing UAVs
(FW-UAVs) or multi-rotor systems, have proven themselves
as suitable tools for testing advanced control techniques,
even when real-time implementability is a strict requirement.
Most of the off-the-shelf autopilots [1] incorporate control
algorithms to meet the requirements of flight maneuvers and
mission accomplishment. However, due to the complexity
and the limited computational capability, most of them are
based on Proportional Integral Derivative (PID) control
algorithms. On the other hand, this category of controllers
lacks of adaptivity with respect to unmodeled dynamics and
external disturbance sources.

In real-case applications, mini-UAVs are usually subject
to environmental disturbances, e.g. wind turbulence or wind
gust. Hence, an increasing effort has been posed in designing
robust controllers, which would allow to properly perform
the desired mission even in the presence of disturbance
sources. The proposed robust approaches range from PID
[2], [3] and H∞ [4], [5] approaches to adaptive control
techniques as in [6], [7]. Another example is proposed
in [8] where a L1 adaptive scheme has been designed
for a mini-UAV autopilot, which has shown an inherent
robustness to external and internal parameters variation.
Even if all these strategies could guarantee robustness to
bounded modeled disturbances if properly designed, they
are not able to explicitly tackle with mission and system
constraints unlike Model Predictive Control (MPC) schemes.
For this reason, MPC has become widely used in many
application domains, including path-following missions
of FW-UAVs. For example, a two-loops algorithm was
presented in [9], where an explicit MPC for pitch and roll
control was combined with an L1 navigation loop for the
altitude. In this work, the benefits of exploiting a more
advanced control technique as MPC have been demonstrated
comparing the proposed approach with a classical PID
controller. In [10], a tracking nonlinear MPC has been
designed for the lateral-directional dynamics control of
a FW-UAV in the presence of wind disturbances. In this
case, the internal loop control for the attitude is provided
by a PD controller. Another example is presented in [11],
in which different receding horizon methods for trajectory
tracking, i.e. slow dynamics, are proposed. In a similar way,
an MPC scheme based on the theory of minimum-peak
performance is proposed in [12], ensuring a maximum
deviation from the reference trajectory. In [13], two different
Robust MPC (RMPC) schemes are proposed for the control
of UAV translational dynamics and the main focus is on
their robustness to additive disturbance without investigating
the corresponding computational burden.

The focus of this work is the preliminary validation of
a computationally-efficient robust MPC-based controller,



the so-called Tube-based Robust MPC (TRMPC), to
control a FW-UAV when atmospheric disturbances are
acting on the aircraft. This predictive control technique
has been proposed in [14] and [15] and it has been
selected in this work due to its capability to guarantee
robustness to persistence disturbance with a computational
demand lower than other RMPC approaches. Indeed, while
providing robustness to bounded disturbance, it maintains
the computational efficiency of a classical MPC scheme
thanks to its two-layer algorithm logic, as discussed in
[15]. The main idea behind this control scheme consists
of controlling the correspondent nominal, undisturbed
system, subject to tightened constraints, to guarantee all
possible real trajectories, each one characterized by a
different realization of a disturbance sequence, to robustly
in a time-varying sequences of sets, also known as tube.
Hence, we first evaluate offline the tightened constraint sets
and the feedback gain matrix that quadratically stabilizes
the closed-loop system. In particular, a structured model
uncertainties have been considered to address the robustness
and stability of the system exploiting the well-known Edge
Theorem to evaluate the stabilizing matrix. Then, we solve
online a classical finite-horizon optimal receding problem
considering the undisturbed nominal dynamics, obtaining
the optimal nominal trajectory that will represent the center
of the tube itself. Going into the details of the control
strategy, the aforementioned TRMPC has been designed for
the inner-loop dynamics, i.e. pitch, roll and airspeed, as well
as for the altitude outer-loop, while a PID controller has
been implemented for the control of the heading angle.

The work proposed in this paper represents the extension
of [16], where the TRMPC has been preliminary tested
considering both linear and nonlinear models and compared
with a L1 strategy, already proposed in [17]. In particular,
in [16], we focused on the control performance of the
selected strategies and their capability to track simple step
reference signals in the presence of additive noise. Moreover,
to validate the robustness of TRMPC, the same control
strategy has been applied to different aircraft configurations
(different mass and inertia) and flight conditions (relative
airspeed). Last, the simulation computational load has been
assessed exploiting the Real-Time Pacer MATLAB/Simulink
Toolbox (version 1.0.0.1). On the other hand, in this work,
the TRMPC scheme has been exploited in a more wide
and realistic scenario and it has been combined with the
guidance algorithm proposed in [18] to control longitudinal
and lateral-directional dynamics of a FW-UAVs while
performing a classical patrolling mission over a selected
area. Indeed, the FW-UAV is called to follow a butterfly
pattern and the TRMPC shall guarantee the required
trajectory and attitude tracking performance. Moreover,
extensive and detailed analyses have been dedicated to study
the effect of disturbance entity and prediction horizon on
controller performance and related computational burden.

It is important to highlight that this work represent a
continuation of previous works of the same research group,
e.g. see [3], [17], [19], where the main goal is to assess the
performance and computational load of different advanced
control techniques at the same conditions. Hence, to be
coherent with previous works and to obtain comparable data,
the same mission, vehicle, and validation equipment, i.e.
the microcontroller, has been considered also in this work.
Further details can be found in Section 2 and Section 3.
The effectiveness of the proposed robust approach has been
already experimentally validated for a space rendezvous
mission on an experimental testbed, as described in [20]. In
that experimental campaign, the spacecraft dynamics was
running at 0.01 s while the TRMPC controller was updated
every 3 s to comply with the mission requirements and
platform computational constraints1. The major differences
of the application studied in this paper with respect to the
space one can be summarized as follows: i) larger design
space, i.e. 9 state variables and 3 control inputs; ii) faster
dynamics characterizing UAVs with respect the orbital and
attitude dynamics of spacecraft; iii) smaller control sample
time, i.e. the controller is updated every 0.1 s; and iv) lower
computational capabilities of the target development board,
i.e. only 64 Kbytes of RAM and 8 Kbytes of OTP memory.

To properly evaluate the reliability of the proposed
guidance and control scheme, the classical multi-step
software verification & validation approach for model-based
design has been followed. As described in [21], the first step
consists in performing Software-In-the-Loop (SIL) testing,
i.e. executing the controller algorithm for non-real-time
execution on the same host platform that is used by the
modeling environment. The next step involves the so-called
Processor-In-the-Loop (PIL) testing, during which the
model does a single calculation iteration. Then, inputs
are calculated and passed to a PIL block, which passes
the model inputs to the code running on the embedded
microprocessor. In particular, the code executes on the actual
embedded processor, using the embedded cross-compiler.
Once the target processor computes the output data, they
are passed back to model using the same PIL block.
The two aforementioned testing phases are preliminary to
the following phase, i.e. the Hardware-In-the-Loop (HIL)
testing, which will serve as a final lab test phase before
flight tests, in this particular case. Hence, in this work
both SIL and PIL simulations have been performed, unlike
what was done in [16]. In the latter case, PIL simulations
have been executed exploiting a commercial development
board, which features are similar to those of the autopilot
equipped on-board the targeted FW-UAV, i.e. the mini-UAV

1The on-board computational capabilities were provided by a PC-104
form-factor on-board computer, based on an Intel Atom 1.6 GHz 32-bit
processor, with 2 GB of RAM and an 8 GB solid-state drive. The real-time
operating system was a Ubuntu 10.04, 32-bit server-edition with a Linux
kernel 2.6.33.



MH850 developed at the Department of Mechanical and
Aerospace Engineering of Politecnico di Torino ( [8], [17]).
The effectiveness of the TRMPC algorithm is validated in
the presence of a fixed-direction wind turbulence and the
implementability is tested evaluating the computational cost
with respect to the limited capabilities of the development
board, also considering the effect of varying disturbance and
prediction horizon on the computational load.

The paper is organized as follows. The nonlinear and
linearized aircraft models used for the UAV motion prop-
agation and the controller design, respectively, are described
in Section II, together with the SIL and PIL simulation
environments, the guidance algorithm and the battery model.
In Section III, the TRMPC algorithm is presented from
a theoretical point-of-view. Then, SIL and PIL simulation
results are described in details in Section IV considering a
butterfly path, providing a thorough overview of the guidance
and control scheme effectiveness and their real-time imple-
mentability and computational load. Finally, conclusions are
drawn in Section V.

II. AIRCRAFT MODEL AND SIMULATION ENVIRONMENT
DESCRIPTION

The aircraft considered in this work is the tailless fixed-
wing mini-UAV MH850, developed at the Department of
Mechanical and Aerospace Engineering of Politecnico di
Torino ( [8], [17]) (see Figure 1). With a mass of about 1 kg
and a wingspan of about 85 cm, this UAV is able to fly for
45 minutes at a cruise speed of 13.5 m/s. The numerically-
derived database comprehensive of all aerodynamic deriva-
tives is thoroughly described in [22] and [23].

Fig. 1. The MH850 mini-UAV.

A. Nonlinear Aircraft Model

The nonlinear model considered for the aircraft dynamics
is based on a set of nine equations, written in a body
reference frame, as reported in [24]. In particular, the total
airspeed V = [u v w] can be decomposed in the longitudinal,

lateral and vertical components along the three body axes,
respectively, as

u̇ =
FX

mUAV
− qw + rv − g sinϑ, (1a)

v̇ =
FY

mUAV
+ pw − ru+ g cosϑ sinφ, (1b)

ẇ =
FZ

mUAV
− pv + qu+ g cosϑ cosφ, (1c)

with mUAV the aircraft mass, [FX FY FZ ]T the forces acting
on the system, g the gravity acceleration, ϑ the pitch angle,
and φ the roll angle. The angular speed components [p q r]T

can be written as

ṗ = (c1r + c2p)q + c3L+ c4N, (2a)

q̇ = c5pr − c6(p2 − r2) + c7M, (2b)
ṙ = (c8p− c2r)q + c4L+ c9N, (2c)

where [L M N ]T are the roll, pitch and yaw moments, re-
spectively, Ji are the moments of inertia with i = x, y, z, xz,
and the ci coefficients formulation is reported in Table I.
Furthermore, the aircraft attitude, expressed in terms of Euler

TABLE I
FORMULATION OF ANGULAR RATE COEFFICIENTS IN (2)

.

Parameter Value

Γ JxJz − J2
xz

c1
(Jy−Jz)Jz−J2

xz
Γ

c2
(Jx−Jy+Jz)Jxz

Γ

c3
Jz
Γ

c4
Jxz
Γ

c5
Jz−Jx
Jy

c6
Jxz
Jy

c7 Jy

c8
(Jx−Jy)Jx+J2

xz
Γ

c9
Jx
Γ

angles [φ ϑ ψ]T , is defined by the following kinematic
equations

φ̇ = p+ q sinφ tanϑ+ r cosφ tanϑ, (3a)

ϑ̇ = q cosφ− r sinφ, (3b)

ψ̇ =
q sinφ

cosϑ
+
r cosφ

cosϑ
. (3c)

The position vector [x y h]T is defined in the vehicle-carried
vertical reference frame or North-East-Down (NED) frame,
as in [24].

B. Linearized Aircraft Model

Starting from the nonlinear model previously introduced,
a linearized system of equations in the body axes can be
considered for the design of the robust controller, following
the guidelines provided in [25], both for straight line flight
and WPs transitions at non-zero turn rate. Moreover, the



equations of motion linearization procedure results in the
decoupling of the longitudinal and lateral-directional planes
and each of them can be modeled with standard continuous
time-invariant state space representation

ẋ(t) = Ax(t) +Bu(t), (4)

where x(t) is the state vector and u(t) is the control signal.
The state and input matrices, A and B respectively, are built
according to [26] considering that the equilibrium state of
(11) is zero, and the aerodynamic derivatives in the matrices
are obtained by a validated software based on the extended
lifting-line theory. Reference flight conditions for the model
are speed U0 = 13.5 m/s, altitude h0 = 100 m, angle of
attack α0 ' w

V = 5.18 deg and θ0 = 5.18 deg. The elements
of the matrices are defined in the Appendix VI.

The state variables in the longitudinal plane are the longi-
tudinal component of the total airspeed u, the angle of attack
α, the pitch angle θ, the pitch rate q, and the altitude h; the
controls are the throttle ∆T acting on u and the elevator
deflection δe acting on θ. The resulting state space elements
are

xlong(t) = [u, α, θ, q, h]
T ∈ Rnlong ,

ulong(t) = [∆T, δe]
T ∈ Rmlong ,

Along ∈ Rnlong×nlong ,
Blong ∈ Rnlong×mlong

(5)

with nlong = 5 and mlong = 2. The short period mode
has natural frequency ωSP = 16.6 rad/s and damping ζSP =
0.49, while phugoid mode has natural frequency ωPH = 0.91
rad/s and damping ζPH = 0.045.

The lateral-directional states are the lateral component of
the total airspeed v, the roll rate p, the yaw rate r and the roll
angle φ. the only control is the aileron deflection δa acting
on φ. The lateral-directional state space elements are

xlat(t) = [v, p, r, φ]
T ∈ Rnlat ,

ulat(t) =
[
δa
]
∈ Rmlat ,

Alat ∈ Rnlat×nlat ,
Blat ∈ Rnlat×mlat

(6)

with nlat = 4 and mlat = 1. The state matrix Alat has one
real and negative eigenvalue corresponding to a stable roll
mode, one real and positive eigenvalue showing a slightly
unstable spiral mode, and a couple of complex conjugate
eigenvalues for the Dutch Roll characterized natural fre-
quency ωDR = 5.9 rad/s and damping ζDR = 0.12. The
decoupled linear system can be rewritten considering the two
decoupled planes, as follow.

ẋlong(t) = Alongxlong(t) + Blongulong(t), (7a)
ẋlat(t) = Alatxlat(t) + Blatulat(t). (7b)

It is important to highlight that the discretization of the
previous continuous-time system dynamics has been obtained
exploiting a zero-order hold methodology, where the equilib-
rium state of (11) is implicitly considered to be zero.

C. Simulation Environment and Processor-in-the-Loop

Autonomous flight of the MH850 aircraft is guaranteed
by a custom-made autopilot [8] , with an open architecture
re-programmable in flight. The vehicle is equipped with sev-
eral sensors, including GPS, barometric sensor, differential
pressure sensor and three-axis gyros and accelerometers.

The development of a system containing embedded soft-
ware involves many test activities at different stages in the
development process. First, a reliable simulation environment
shall be developed, verified and validated via SIL simu-
lations, in which the embedded software is tested within
a simulated environment model but without any hardware.
Hence, the SIL multi-rate simulator represented in Fig. 2
has been realized in a MATLAB/Simulink environment to
perform preliminary validation of the flight software run-
ning over an Intel Core i7 − 7500U with a CPU @2.70
GHz, a RAM of 16 GB and a 512 GB solid-state drive.
According to the considered scenario, the WPs coordinates
block provides the main features of the selected path in
terms of WP identification number (IDWP ), North-East (NE)
coordinates (NWP , EWP ) and altitude (hWP ). These data,
together with the UAV current NE position and heading
angle ψ, represent the input for the guidance algorithm
that supplies as main outputs the reference velocity Vref ,
altitude href , and heading angle ψref . Further details about
the guidance algorithm can be found in Section II-D. As
previously anticipated, a PID controller is then exploited to
control the heading angle, providing the reference roll angle
φref as output. Once defined all the reference signals, it is
possible to observe from Fig. 2 that a so-called rate transition
block, which allows to handle transfer of data between ports
operating at different rates as in this specific case. Indeed,
if the system dynamics and the guidance algorithm works
at 100 Hz, the TRMPC algorithm is updated with a 10 Hz
frequency. Thus, the system is fed with the same constant
control output for ten consecutive steps, until the control
algorithms is run again initialized with new initial conditions
in terms of reference signals and current UAV state (xlongk ,
xlatk ). As highlighted in Fig. 2, the longitudinal TRMPC
receives in input the reference velocity and altitude and
provides as control output the throttle ∆T and the elevator
deflection δe whereas the lateral-directional TRMPC receives
the reference roll angle to supply the system with the optimal
aileron deflection δa at each time step k. Further details about
the selected control scheme can be found in Section III. Then,
the three control outputs are reconditioned to 100 Hz to be
fed to the continuous-time nonlinear aircraft model described
in Section II-A. Once integrated the nine nonlinear equations,
the continuous time longitudinal and lateral-directional states,
(u, α, θ, q, h) and (v, p, r, φ) respectively, are converted into
an output signal with a discrete sample time by a zero-order
hold block before being fed again to the MPC controller
blocks. Moreover, the total airspeed V and the resulting
Direction Cosine Matrix (DCM) are provided at the flight
data block, in order to obtain the updated UAV coordinates



Fig. 2. SIL multi-rate software simulator architecture: (i) black lines @100
Hz; and (ii) red lines @10 Hz.

and attitude, first converting the body cruise speed V into the
NED frame, i.e. VNED = DCM · V , and then integrating.

The next verification and validation phase consists in
performing PIL simulations, cross-compiling and executing
the code, which in this case is the control algorithm, on a
target processor, following the classical step-by-step proce-
dure described by the V-model for Software Development
Life Cycle. Hence, to validate the real-time effectiveness of
the proposed controller scheme, PIL simulations 2 have been
performed.

In particular, the XMOS XK-1A low-cost commercial
board, produced by XMOS Ltd (www.xmos.com), repre-
sented in Fig. 3, has been exploited. This board was selected
because its features and capabilities, e.g. flash memory of
128 Kb and a CPU clock of 20 MHz, are similar to the
MH850 customized autopilot [8], the desired flight mode
can be easily implemented, and the board can be connected

2Processor-In-the-Loop (PIL) is a test technique that allows designers to
evaluate a controller, running in a dedicated processor, of a plant which
runs in an offline simulation platform, according to the definition provided
in [27].

Fig. 3. XMOS development board.

to a laptop via USB. The XMOS board is characterized
by the XS1-L1 multi-core multi-thread processor, able to
perform several real-time tasks, is easy to program (XC
language comparable to C language), and includes some
additional commands for the management of ports and
pins [28]. Moreover, if a new autopilot is selected, only
variation on the communication protocols are necessary. As
in [9], a PX4 could be used instead of XMOS board but
it was not considered in this case since the performance
of the MH850 autopilot are quite different with respect to
the ones of a PX4 board. Moreover, the main idea is to
compare the performance of the selected controller in the
same hardware used for other control laws, see [3], [16].
In detail, different MPC controllers have been compared in
[19], again exploiting the XMOS board for PIL validation.
As previously stated, the main goal of this research is to
demonstrate the effectiveness of the proposed approach in
terms of on-board implementation and computational cost,
using the same hardware, previously tested with different
control laws.

To perform PIL simulations and to validate the compu-
tational compatibility among the proposed control scheme
and the selected development board, the SIL simulator has
been slightly modified, as represented in Fig. 4. First, it is
important to observe that the software is running over two
different hardware. In particular,the nonlinear dynamics, the
guidance algorithm and the PID controller run over a Intel
Core i7− 7500U PC whereas the two TRMPC schemes are
compiled over the XMOS board, which is connected with the
laptop via USB. A dedicated communication protocol allows
to send the input signal, i.e. the reference velocity, altitude
and roll angle and the current UAV states, from the PC to
the board and, once solved the optimization problem, the
control output are sent back to the laptop via USB cable. Of



Fig. 4. PIL multi-rate hardware/software architecture: (i) black lines @100
Hz; and (ii) red lines @10 Hz.

course, this external communication introduces some delays3

that could compromise the controller performance, as shown
in Section IV.

As previously anticipated, the main goal of this work was
not only to analyze the effectiveness of the proposed control
scheme but also to estimate the computational load required
to online solve the optimization problem and the compatibil-
ity with the selected development board, and consequently
with the MH850 autopilot for future Hardware-In-the-Loop
(HIL) validation. Hence, a dedicated block for evaluating
the computational load has been added in both SIL and PIL
simulators to preliminary estimate the average and maximum
execution time and to compare it with the time allocated
to online solve the optimization problem, i.e. 0.1 s. Further
details can be found in Section IV.

D. Guidance Algorithm

A simplified guidance algorithm, which is computationally
efficient and waypoint-based, is proposed, starting from the
work [18]. A given set of waypoints is considered, in terms

3These communication delays could be also considered as additional
disturbance source to be considered during the controller design but in this
paper they have not been taken into account since it was out-of-topic.

of North (N) and East (E) coordinates. The altitude of each
waypoint is the same and fixed during the flight, so a 2D
path visualization is considered in the next sections. Some
implementation aspects are included:

1) a trajectory smoother, to render the assigned trajectory
feasible from a kinematic point-of-view in terms of
both speed and turn rate constraint.

2) A cross-track error (CTE) εr is included as perfor-
mance index for the aerial mapping capabilities of the
guidance algorithm.

3) A look-ahead distance is included. This means that the
UAV minimum distance from the following waypoint
is defined including a proximity distance, a pre-defined
value representing the condition discerning two consec-
utive waypoints.

The main features of the proposed algorithm can be evaluated
from the following two figures.

(a) Guidance phases

(b) CTE and reference distances

Fig. 5. Guidance algorithm scheme.

According to these assumptions, the guidance profile can
be divided into three phases, as presented in [18]. The first
phase, identified in Fig. 5(a) by the red-dotted line before
the point A, is the waypoint approach. The aircraft is flying
with fixed velocity at a pre-defined altitude. The waypoint is
assumed reached when the vehicle flies into the imaginary
circle centered in the waypoint WPn. The radius of that circle
is set equal to to 20 m, i.e. the defined proximity distance
according to the MH850 dynamic constraints.

The second phase is identified by the red dotted A-B curve
in Fig. 5(a). In this phase, the FW-UAV turns around the
waypoint with velocity profile compliant with the turn rate
constraint, function of the speed of the UAV and of the
bank angle. It starts when the distance between the UAV and



the waypoint is less or equal to the proximity distance. We
assume that this phase ends when |ψUAV − ψWP | < ∆ψ,
with ψUAV current heading position of the UAV, ψWP is
the heading angle of the segment that connects the UAV and
the next waypoint WPn+1. Finally, we assume ∆ψ = 5
deg. Then, the segment B-C represents the last phase in
Fig. 5(a). The straight flight begins at the end of the last
turn and finishes once reached the next turn circle, following
the CTE performance index requirement. The performance
index requirement is evaluated as follows

εr =
|EUAV −mNUAV − (En −mNn)√

m2 + 1
, (8)

where the FW-UAV real position PUAV is considered in
terms of East and North coordinates, i.e. EUAV and NUAV
respectively, while the segment connecting two waypoints in
terms of previous waypoint WPn(En, Nn) and next waypoint
WPn+1(En+1, Nn+1). The coefficient m is equal to

m =
En+1 − En
Nn+1 −Nn

. (9)

To avoid continuous corrections of the trajectory, a no correc-
tion zone is defined, in which the corrections on the heading
angle are considered only when the UAV cross-track error
is larger than an assigned value (i.e. maximum acceptable
CTE). This region is defined including a major base (a
in Figure 5(a)) and a minor base (b in Figure 5(a)). The
maximum acceptable CTE εmax is variable and decreases

εmax =
dref (a2 −

b
2 )

ds
, (10)

where dref =
√

(Nn+1 −Nref )2 + (En+1 − Eref )2 is
the reference distance, ds is the length of the segment
WPn+1WPn. Nref and Eref are the coordinates of a
reference point, that are evaluated from the reference heading
angle ψref . If εr > εmax, a new heading angle is evaluated,
as the heading angle of the segment between the UAV
position and the next waypoint.

III. TUBE-BASED MODEL PREDICTIVE CONTROL

For the control algorithm design, let us consider the
following discrete time-invariant state-space system in which
persistent disturbances wk are included

xk+1 = Adxk + Bduk + wk, (11)

where xk and uk represent the discrete-time state vector and
the control signal at time k, respectively. 4

Let us assume that the system is required to satisfy hard
constraints on both state and input

xk ∈ X, uk ∈ U, (12)

4With respect to the continuous time-invariant dynamics equations intro-
duced in previous Section, xk ∈ R11 and uk ∈ R3. Splitting the aircraft
dynamics into the longitudinal and lateral-directional planes, the discrete-
time systems considered have the following dimensions: (i) longitudinal:
xklong ∈ R5 and uklong ∈ R2; and (ii) lateral-directional: xklong ∈ R4

and uklong ∈ R.

where X ⊂ Rn and U ⊂ Rm are compact and convex
polytopes. For the definition of the disturbance, wk is consid-
ered as a realization of a stochastic process, an independent
and identically distributed (i.i.d.) zero-mean random variable,
with a convex and bounded support W ⊂ Rn containing the
origin.

Fig. 6. Outer-bounding tube representation at the k-th time step over a
prediction horizon of N.

The TRMPC approach is based on the concept of tube
of state trajectories, each one representing an admissible
disturbance sequence w over the observed time-window. The
center of this tube corresponds to the nominal undisturbed
trajectory, which dynamics is defined as

zk+1 = Adzk + Bdvk, (13)

where zk and vk are the discrete-time nominal state and input,
respectively. Fig. 6 provides a representation of the outer-
bounding tube at the k-th time step centered on the nominal
trajectory at each i-th step over a N prediction horizon.

The TRMPC allows to steer the uncertain trajectories to
the nominal one, controlling the ”center” of this tube via a
classical MPC approach. In order to ensure the robustness
of the algorithm, the constraint set imposed on the nominal
system are tightened with respect to the initial ones in
Eq. (12), following the guidelines provided in [15]. Then,
exploiting the following time-varying feedback control law
related to the i-th step ahead k

ui|k = vi|k +K(xi|k − zi|k), (14)

where K is defined such that AK = Ad + BdK is robustly
stable, the closed-loop dynamics can be rewritten as follows

xi+1|k = (Ad + BdK)xi|k + Bdvi|k + wi|k. (15)

Moreover, to stabilize the system with respect to paramet-
ric uncertainty q, ascribable for example to discrepancies
between the mathematical model and the actual dynamics,
neglected non-linearities and manufacturing process, a Linear
Matrix Inequality (LMI) approach applied to the definition of



the closed-loop system Schur stability. Given any xk ∈ XN ,
where XN defines the terminal state constraint set, it exists
a P ∈ Rn×n, P � 0 such that

(Ad + BdK)TP (Ad + BdK) +Q+KTRK − P � 0,
(16)

and the feedback gain matrix K quadratically stabilizes the
system (15) with respect to the parametric uncertainty q. Q ∈
Rn×n, Q � 0, and R ∈ Rm×m, R � 0 are diagonal positive
definite matrices. As proposed in [29], the LMI approach is
applied to the well-known Edge Theorem, which guarantees
the robust stability of a polytope of polynomials if and only
if all exposed edge polynomial are stable. Let us assume that
the uncertain vector q = [q1, ..., ql] is bounded in the hyper-
rectangle Bq defined as

Bq :=
{

q ∈ Rl | qj ∈ [q−j , q
+
j ], j = 1, ..., l

}
. (17)

and, consequently, let us define the following edge-uncertain
system matrices A−d = Ad(q−), A+

d = Ad(q+), B−d =
Bd(q−), and B+

d = Bd(q+). Then, solving the following
LMIs system allows to obtain the feedback gain matrix K
that satisfies
Q+KTRK + (A+

d + B+
dK)T P̃ (A+

d + B+
dK)− P̃ � 0,

Q+KTRK + (A+
d + B−d K)T P̃ (A+

d + B−d K)− P̃ � 0,

Q+KTRK + (A−d + B+
dK)T P̃ (A−d + B+

dK)− P̃ � 0,

Q+KTRK + (A−d + B−d K)T P̃ (A−d + B−d K)− P̃ � 0,
(18)

and stabilizes the system (11) with respect to q ∈ Bq.
Since the system dynamics includes an unknown but

bounded disturbance wi|k, it is possible to split the state xi|k
as

xi|k = zi|k + ei|k, (19)

where ei|k represents the deviation of the actual state xi|k
with respect to the nominal one zi|k i step ahead time k. Thus,
substituting (19) into (15), the error dynamics is described
by

ei+1|k = (Ad + BdK)ei|k + wi|k. (20)

As anticipated before, tightened constraint sets shall con-
sidered for the nominal system, properly designed starting
from an outer approximation of the minimal Robust Positive
Invariant (mRPI) set for (20)

SK(∞)
.
=

∞∑
j=0

AjKW, (21)

in compliance with the guidelines provided in [15] and
according to the following Definitions.

Definition 1 (Robust Positive Invariant set): Given the set
S ⊆ X is said to be the Robust Positive Invariant (RPI) set
if, for all e0 ∈ S and for any wk ∈W, the condition ek ∈ S
holds ∀k ∈ N≥0 [30].

Definition 2 (minimal Robust Positive Invariant set): The
minimal Robust Positive Invariant (mRPI) set under (20) is
the RPI set contained in every closed RPI set of (20) [14].

At this point, it is important to highlight that the set
in (21) is the mRPI set for (20) because only additive
disturbance has been considered affecting the system
dynamics as in (11). Indeed, parametric uncertainty has been
considered only for evaluating the feedback gain matrix
K that quadratically stabilizes the closed-loop disturbed
dynamics but no uncertainty has been included in the control
design.

Hence, if the time-invariant control law (14) is employed
and the nominal system (13) satisfies the tightened constraint
sets

zi|k ∈ Z ⊆ X	 SK(∞),

vi|k ∈ V ⊆ U	KSK(∞).
(22)

the initial constraints xi|k ∈ X and ui|k ∈ U are robustly
satisfied at each time step k. This assertion makes sens only
if the disturbance set W is sufficiently small to ensure that
the following Assumption holds, as supposed in the sequel.

Assumption 1 (Restricted Disturbances for Constraint Sat-
isfaction): SK(∞) ⊆ X and KSK(∞) ⊆ U [15].

To easily compute the tightened constraint sets to be
enforced in the optimization problem, the approach proposed
in [15] has been followed and here briefly recalled.

Starting from the definition of the state constraint set and
considering the state decomposition in (19) with where ei|k ∈
SK(∞), it follows that Hxxi|k ≤ hx if

Hxzi|k ≤ hx − Φ∞, (23)

with Φ∞ = max
ei|k

{
Hxei|k | ei|k ∈ SK(∞)

}
. Thus,

Ẑ =
{
zi|k ∈ Rn | Hxzi|k ≤ hx − Φ∞

}
(24)

represents a suitable constraint set for the nominal state zi|k
in order to obtain an inner approximation Z of Ẑ, where Ẑ =
X 	 SK(∞). To evaluate Φ∞, it is possible to compute an
upper bound of this set solving a simple linear programming.
Indeed, if it holds that

ATKwk ∈ βW, ∀wk ∈W, (25)

with β ∈ (0, 1), then it follows that Φ∞ ≤ (1 − β)−1ΦT
where

ΦT = max
wi|k

Hx

T−1∑
j=0

AjKW, wi|k ∈W

 , (26)

is the solution of a linear programming problem. Hence, it is
possible to obtain an upper bound of Φ∞ properly selecting



β as close as desired to 1. Then, the constraint set Z can be
defined by

Z .
=
{
z`|k ∈ Rn | Hxz`|k ≤ hx − (1− β)−1ΦT

}
⊆ Ẑ.

(27)
Analogously, the constraint set on the control input V can be
approximated as

V .
=
{
vi|k ∈ Rm | Huvi|k ≤ hu − (1− β)−1KΦT

}
⊆ V̂.

(28)
starting from the initial control input constraint set U and
being V̂ = U 	 KSK(∞). Further details on the design
process of the tightened constraint sets can be found in [15]
and [29].

Then, the finite horizon optimal quadratic cost can be
defined for the nominal dynamics in terms of nominal state
zi|k and nominal control input vi|k as

JN (zk, vk) =

N−1∑
i=0

(zTi|kQzi|k + vTi|kRvi|k) + zTN |kP zN |k,

(29)
where vk represents the control sequence over a N -step
prediction horizon. P ∈ Rn×n is the solution of the discrete
Algebraic Riccati equation [31]. Thus, the nominal finite
horizon optimal control problem can be stated as follows

min
vk

JN (zk, vk) (30a)

s.t. zi+1|k = Adzi|k + Bdvi|k, z0|k = xk,
zi|k ∈ Z, i ∈ [1, N − 1],

vi|k ∈ V, i ∈ [0, N − 1],

zN |k ∈ ZN ,

(30b)

with ZN ⊆ XN	SK(∞). The first control action v∗0|k of the
optimal sequence v∗k, solution of (30), represents the optimal
control applied to the nominal system while the correspon-
dent control on the uncertain system is defined according
to (14). The final TRMPC algorithm can be summarized
as shown in Algorithm 1. It is important to clarify that, as
already shown in Section II-C, the step 9 of Algorithm 1 is
only valid in theory while in the case study presented in this
paper, the control action is directly applied to the true model
of the UAV instead of the simplified model used for control
design.

IV. SIMULATION RESULTS

The guidance and TRMPC control algorithms described
in the previous Sections have been applied to control a
FW-UAV, whose system nonlinear and linearized dynamics
are reported in Section II and Section VI, respectively.
As previously introduced, the TRMPC scheme has been
exploited to control both longitudinal and lateral-directional
dynamics, following the reference signals in terms of airspeed
uref , altitude href and roll angle φref provided by the
guidance algorithm. In particular, the TRMPC provides the
control actions in terms of throttle , and aileron and elevator

Algorithm 1 TRMPC Algorithm
1: procedure
2: Offline: Evaluate the feedback gain matrix K and the

nominal constraint sets Z (27) and V (28).
3: Online: Initialization: for k = 0, set z0|k = xk = x0.
4: At current time k, evaluate xk, zk.
5: for i = 0 : N − 1 do
6: Solve (30)
7: end for
8: Get v∗0 and extract the first control action v∗0 .
9: Evaluate uk according to (14).

10: Evaluate zk+1 applying v∗0 on (13) and xk+1 applying
uk on (11).

11: end procedure

deflections, δa and δe respectively, while a PID controller is
used for the heading angle ψ to obtain φref with respect to
ψref , function of the identified waypoints, as described in
Section II-D.

In this Section, first SIL results are provided to validate
the efficacy of the proposed guidance and control approach
in a simulation environment, selecting a pre-defined but-
terfly path (see Fig. 7) as test case. On the other hand,

Fig. 7. Reference butterfly path.

the real-time implementability of the control algorithm has
been demonstrated via PIL simulations, exploiting: (i) a
MATLAB/Simulink simulator running over an Intel Core
i7 − 7500U with a CPU @2.70 GHz, a RAM of 16 GB
and a 512 GB solid-state drive, for the nonlinear system
dynamics and the guidance algorithm; and (ii) the XMOS
board, described in Section II-C and connected to the laptop
via USB, for running the controller. Moreover, it is important
to highlight that the quadratic programming solver quad-
wright proposed in [32], based on the optimization algorithm
proposed in [33], has been selected to solve the online



optimization problem since it was developed with a focus
on efficient memory use, ease of implementation, and high
speed convergence. Indeed, as shown in [32] and also proved
in [34], the quadwright solver results the most performing
when dealing with high-dimension problems, low-memory
boards and fast dynamics. Thus, the high-efficiency solver
allows to have computational loads similar among SIL and
PIL simulations, as shown later (see Fig. 25 and Fig. 26),
despite the significant difference among the computational
capabilities among the SIL hardware and the XMOS board.

For the selected case study, the following initial flight
conditions have been set: (i) V0 = 13.5 m/s, (ii) h0 = 100
m, (iii) α0 = 5.18 deg, (iv) γ = 0 deg, i.e. θ0 = 5.18
deg. For the definition of the guidance parameters, the turn
radius is evaluated equal to R = 22 m and a maximum
bank angle φ = 40 deg is considered. The major base of the
isosceles trapezoid of Figure 5(a) (segment a) is set equal to
70 m. Instead the minor base (segment b) corresponds to the
diameter of the circle around the waypoint and it is set equal
to 40 m. These parameters are used for the definition of the
maximum cross-track error of Eq. (10).

The MPC parameters have been set uniformly within
all the scenarios as well as the sample times: (i) system
dynamics 0.01 s; (ii) TRMPC sample time = 0.1 s. The
other MPC parameters are reported in Table II. Moreover,
the robustly stabilizing matrices Klong and Klat have been
evaluated offline, exploiting typical robust tools, and their
values are reported in Table II.

TABLE II
TRMPC PARAMETERS.

Parameter Value

Nlong 15

Nlat 30

diag(Qlong) [106, 4× 101, 4× 101, 4× 101, 105]

diag(Rlong) [4× 102, 3× 10−6]

Klong

[
−9.6439 2.3128 0.9501 0.0752 − 2.8072

0.0115 − 1.5403 2.0980 0.0399 0.6683

]
diag(Qlat) [101, 101, 101, 104]

Rlat 104

Klat [0.0462 − 0.2879 − 0.0321 − 0.3576]

A fixed-direction wind turbulence, modeled as random
noise with uniform distribution and maximum intensity of
±1 m/s, represented a bounded persistent disturbance affect-
ing the FW-UAV dynamics. Moreover, additional external
noises have been included as affecting the other states, in
analogy to those exploited in [19], and their values are
reported in Table III.

On the other hand, the uncertainties considered exclusively
for the offline evaluation of the feedback gain matrix K
include a ±15% variation of the following parameters, in
addition to those parametric uncertainties ascribable to ne-
glected nonlinearities: (i) cruise speed, envisioning flexibility
to different flight conditions; (ii) vehicle mass, considering

TABLE III
ADDITIVE DISTURBANCES CONSIDERED.

LONG.
disturbance

Disturbance
value

LAT.-DIR.
disturbance

Disturbance
value

du [m/s] 1 dv [m/s] 1

dα [rad] 10−2 dp [rad/s] 10−2

dθ [rad] 10−2 dr [rad/s] 10−2

dq [rad/s] 10−2 dφ [rad] 10−2

dh [m] 10−1

the possibility to exploit the same controller for slightly
different vehicles belonging to the same fleet; (iii) FW-UAV
inertia, due to manufacturing process. Hence, the following
uncertainty sources have been included: (i) qV for the cruise
speed; (ii) qm and qI for the UAV mass and inertia, respec-
tively; and (iii) qNL due to neglected nonlinearities. Thus,
the hyper-rectangle Bq is defined as

Bq :=

q =


qV
qm
qI

qNL

 ∈ R4 | q ∈


−2.025, 2.025
−0.15, 0.15

−0.0033, 0.0033
−0.05, 0.05


 ,

(31)
considering a ±5% of uncertainty due to neglected nonlin-
earities. Thus, the state matrices Along and Alat have the
following form

Along = Along0 +AVlongq +Amlongq +AIlongq + qNLAlong0 ,
(32a)

Alat = Alat0 +AVlatq +Amlatq +AIlatq + qNLAlat0 ,
(32b)

where the Aεlongq and Aεlatq are the uncertain matrices related
to cruise speed (ε = V ), mass (ε = m), and inertia (ε = I)
while Along0 and Alat0 coincides with those nominal in (33)
and (34), respectively (see also Appendix).

TABLE IV
INITIAL AND NOMINAL STATE AND INPUT CONSTRAINT BOUNDARIES

FOR THE LONGITUDINAL DYNAMICS.

Variable
Initial

MIN value
Initial

MAX Value
Tightened
MIN value

Tightened
MAX value

u [m/s] 12 15 12.33 14.67

α [rad] 0.0698 0.1396 0.0865 0.1229

θ [rad] 0.0698 0.1396 0.0865 0.1229

q [rad/s] −10 10 −9.9833 9.9833

h [m] 99 101 99.17 100.83

∆T [-] 0 1 0.1 0.83

δe [rad] −0.3491 0.3491 −0.3157 0.3157

In compliance with the assumption made in Section III
about the definition of X and U as convex polytopes, the state
and input constraints related to the specific case under anal-
ysis have been defined as linear inequalities in which each
parameter is bounded among its minimum and maximum



admissible values, e.g. ηmin ≤ η ≤ ηmax. Consequently,
the tightened constraint sets Z and V result to be convex
polytope as well. The aforementioned ranges are reported in
Table IV for the longitudinal variables and in Table V for
the lateral-directional variables. Both initial and tightened

TABLE V
INITIAL AND NOMINAL STATE AND INPUT CONSTRAINT BOUNDARIES

FOR THE LATERAL-DIRECTIONAL DYNAMICS.

Variable
Initial

MIN value
Initial

MAX Value
Tightened
MIN value

Tightened
MAX value

v [m/s] −1 1 −0.873 0.873

p [rad/s] −10 10 −9.9833 9.9833

r [rad/s] −10 10 −9.9833 9.9833

φ [rad] −2π 2π −6.27 6.27

δa [rad] −0.3491 0.3491 −0.3324 0.3324

polytopes have been exemplifying represented in terms of
airspeed components (u, v) and altitude h in Fig. 8 and in
terms of control inputs (∆T, δe, δa) in Fig. 9.

Fig. 8. Initial and tightened constraint set for airspeed components u and
v and altitude h.

Fig. 9. Initial and tightened constraint set for control inputs, i.e. throttle
∆T , elevator deflection δe and aileron deflection δa.

Fig. 10. Wind turbulence profile in the body reference frame.

A. Software- and Processor-In-the-Loop Results

As anticipated before, a butterfly path, defined by four
waypoints plus a central one and envisioned for patrolling
tasks over an area of interest, such as industrial warehouses
and criminal neighborhood, has been analyzed to preliminary
assess the effectiveness of the proposed guidance and control
scheme here proposed and to preliminary validate their real-
time implementability with SIL and PIL simulations.

The first step consisted in performing 5 different runs and
the main results are shown in Fig. 11-Fig. 17. Starting from
the velocity component u and v and the altitude represented
in Fig. 11, it is possible to observe that the controller is
able to track the reference signals uref = 13.5 m/s and
href = 100 m while guaranteeing constraint satisfaction also
in the presence of a wind turbulence (see Fig. 10 for the wind
turbulence profile).
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Fig. 11. SIL velocity components and altitude.

Indeed, the aircraft velocity is always within the given
boundary (see Table IV) even if the the effect of disturbance
can still be observed, mainly when the UAV is flying against
wind. On the other hand, the lateral-directional component
of the velocity and the altitude result less affected by the
wind turbulence and they linger significantly close to their
target values. In particular, the v component remain close to
zero while the altitude averagely stays about 0.5 m far from
the reference because of the persistent −z wind turbulence
component.
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Fig. 12. Zoom-in on SIL velocity components and altitude.
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Fig. 13. SIL roll angle, heading angle and angle of attack.
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Fig. 14. Zoom-in on SIL roll angle, heading angle and angle of attack.

Fig. 13 provides an overview of the TRMPC capabilities
for tracking the roll angle reference signal φref provided by
the PID controller, which in turn is in charge of following
the heading angle reference signal ψref fed by the guidance
algorithm. In either cases, the tracking capabilities of both
controllers are validated. In particular, even if the roll refer-
ence signal results quite noisy, the lateral-directional TRMPC
is able to follow it mainly during turns (see ±45 deg peaks in
Fig. 13). Correspondingly, the angle of attack remains rather
constant, with the exception of the turning phases, and in
analogy to the altitude, it departs from the initial value of
5.18 deg because of the wind effect.

The TRMPC (and PID) tracking capabilities are also
confirmed by Fig. 15 where the tracking errors are depicted
with respect to longitudinal airspeed, altitude, and roll and
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Fig. 15. SIL tracking errors for longitudinal velocity, altitude, and roll and
heading angles.

heading angles5. In particular, the UAV airspeed and altitude
deviations reflect the wind turbulence entity, i.e. it is in the
order of about 1 m/s and 0.5 m, respectively. On the other
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Fig. 16. SIL throttle and elevator and aileron deflections: (i) real (1st
column); (ii) nominal (2nd column); and (iii) error component (3rd column).

hand, the effectiveness of the TRMPC and PID schemes for
the attitude tracking is highlighted in the bottom subplots,
where on one side the roll angle deviations are due to
the noisy reference signal while the heading angle tracking
is mainly affected during turn phases because of the PID
response rate.

From the control input point-of-view, Fig. 16 provides an
overview of the control demand during the entire maneuver,
also highlighting the differences among the real applied
control (first column), the optimal nominal control (second
column), and the K(x− z) control input component, which
is representative of the discrepancies among the current state
and the undisturbed one.

The last plot related to the SIL testing, i.e. Fig. 17, shows
the UAV trajectories for all 5 runs, highlighting the capability
of TRMPC to allow the aircraft to follow the given butterfly
path while remaining in the coloured corridors defined by
the guidance algorithm. It is possible to observe also that,

5The tracking errors have been reported only for the first 100 s of
simulation to better highlight their profiles, which remains pretty constant
for the entire mission



Fig. 17. SIL trajectories.

because of the presence of a wind turbulence, the trajectories
do not result too smooth and they are all different due to the
random nature of the disturbance itself.
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Fig. 18. PIL velocity components and altitude.
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Fig. 19. Zoom-in on PIL velocity components and altitude.

On the other hand, Fig. 18-Fig. 24 represent the main
outputs obtained during PIL testing. It is possible to observe
the significant adherence among SIL and PIL results, thus

highlighting the reliability of the simulation environment and
the effectiveness of the control scheme also exploiting less
performing hardware, i.e. XMOS board, than the SIL one for
running the controllers.
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Fig. 20. PIL roll angle, heading angle and angle of attack.
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Fig. 21. Zoom-in on PIL roll angle, heading angle and angle of attack.
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Fig. 22. PIL tracking errors for longitudinal velocity, altitude, and roll and
heading angles.

Also for the 5 PIL trajectories, represented in Fig. 24, it is
possible to observe the effect of random wind turbulence on
the UAV profiles, which do not compromise the effectiveness
of the TRMPC, confirmed by the fact that not only the
aircraft always remains within the pre-defined boundaries but
all mission and control constraints are satisfied, as shown in
previous pictures.
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Fig. 23. PIL throttle and elevator and aileron deflections: (i) real (1st
column); (ii) nominal (2nd column); and (iii) error component (3rd column).

Fig. 24. PIL trajectories.

To preliminary assess the real-time compatibility of the
proposed guidance and control approach with the capabilities
of the target hardware, i.e. the XMOS development board and
for analogy the MH850 autopilot, the execution time required
by both longitudinal and lateral-directional TRMPC schemes
have been evaluated during SIL and PIL simulations. The
execution time has been evaluated within the control routine
exploiting the tic/toc MATLAB function, which allows to
estimate the elapsed time that occurs to execute a certain
amount of operations 6.

Fig. 25 and Fig. 26 depict the execution time for all 5
SIL and PIL runs, respectively, over the entire simulation
time. The results that the execution/wall time is much lower
than the controller rate, i.e. 0.1 s. Table VI provides the
average execution time values for both longitudinal (LONG)

6See also Mathworks tic and toc reference pages at mathworks.com/
help/matlab/ref/tic.html and mathworks.com/help/matlab/ref/toc.html, re-
spectively
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Fig. 25. SIL execution time [s].

and lateral-directional (LAT-DIR) controllers.
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Fig. 26. PIL execution time [s].

Moreover, the random distribution of the over-rate peaks
in both SIL and PIL simulations highlights that straight-
line flight and turning phase have similar computational
demand. However, it shall be highlighted that because the
same linearized model has been exploited for both flight
conditions, the performance of the controller could also be
affected by this second issue during turns since the tracking
task results more challenging than during straight-line flight
and the impact of neglected nonlinearities is more relevant.
On the other hand, it is possible to notice that a slightly
higher computation load characterizes the PIL simulations
and this behavior could be ascribed to the communication
delay observed during PIL simulations. Indeed, with respect
to SIL testing, the presence of an external microcontroller,
over which the TRMPC is running and connected to the main
simulator hardware by a USB cable, introduces some external
delays that could affect the results and the computational
compatibility.

Last, the effects of varying disturbance magnitude and
prediction horizon over both computational load and com-
munication delay have been investigated. In particular, the
following test cases have been considered, with the other



TABLE VI
PIL AVERAGE/MAXIMUM EXECUTION TIME.

PIL ID
LONG Average

Execution Time [s]
LAT-DIR Average

Execution Time [s]

#1 0.0092 0.0036

#2 0.0099 0.0034

#3 0.0098 0.0035

#4 0.0098 0.0035

#5 0.0099 0.0034

parameters considered fixed: (i) half the wind turbulence
intensity, i.e. Vw = 0.5 m/s; (ii) double the wind turbulence
intensity, i.e. Vw = 2 m/s; (iii) a third the prediction horizons,
i.e. Nlong = 5 and Nlat = 10; and (iv) double the prediction
horizons, i.e. Nlong = 30 and Nlat = 60.
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Fig. 27. Effects of varying disturbance and prediction horizon on PIL
execution time and XMOS communication delay.

The results shown in Fig. 27 highlights that either in-
creasing or decreasing the wind intensity does not affect the
computational cost of the algorithm but only the tightened
constraint sets definition. Instead, the variation of prediction
horizon significantly impact on the computational load re-
quired to solve online the optimization problem, as shown
in the last two columns of Fig. 27 related to the execution
time texec. On the other hand, the results related to the
communication delay tdelay confirm that this disturbance is
independent from the controller design and the simulation
setup but is simply inherited from the USB cable connection
and it should disappear once HIL testing on the real MH850
autopilot will be performed, once the entire system will be
simulated on the same hardware7.

V. CONCLUSIONS

In this paper a Tube-based Robust Model Predictive
Control (TRMPC) is proposed to control both the longi-
tudinal and lateral-directional dynamics of a Fixed-Wing

7It is important to point out that different communication delays with
respect to the one here considered could be observed exploiting different
hardware or performing HIL simulations.

Unmanned Aerial Vehicle (FW-UAV) envisioning path-
tracking mission. The proposed control strategy, combined
with a waypoint-based guidance algorithm and a classical
Proportional-Integral-Derivative (PID) control for the head-
ing angle, has been validated via Software-In-the-Loop (SIL)
and Processor-In-the-Loop (PIL) simulations, considering
a butterfly-like path, which resembles a typical patrolling
pattern. The results have shown that the TRMPC allows to
robustly satisfy the mission tracking constraints during both
SIL and PIL testing even in the presence of a wind turbulence
disturbance. Moreover, the simulations have highlighted a
significant adherence among SIL and PIL results, validating
also the reliability of the simulation environment.

Real-time implementability has been preliminary validated
analysing the execution time required by the controller tasks
and comparing it with the time allocated for solving the
optimal control problem. Furthermore, the effects of increas-
ing/decreasing values of both disturbances and prediction
horizon on the computational load have been investigated,
and the results highlighted that enlarging the prediction
horizon implies a higher computational demand, unlike in-
creasing the disturbance magnitude. Last, communication
delays, introduced by the USB cable that connects the
simulator hardware (i.e. laptop) with the XMOS development
board, were noted but without significantly compromising the
controller performance. Furthermore, it was shown that this
delay is intrinsic to the PIL architecture since it was not
affected by changes on neither disturbance magnitude nor
prediction horizon.

Once validated the efficacy and real-time implementability
of the proposed control scheme via Hardware-In-the-Loop
(HIL) up to system level and flight tests, envisioning sim-
pler scenarios, future investigations will mainly focus on
two directions. On one side, more challenging applications
involving significant changes in the UAV dynamics will
be considered, e.g. involving issues related to damaged
airframe, icing or payload change that otherwise require gain
scheduling. On the other hand, envisioning the emerging
need to provide the same capabilities exploiting multiple
simpler, lighter and cheaper vehicles instead of heavier, more
expensive and complicated ones, we will focus on the control
of a fleet of similar UAVs, devoted to autonomously and
coordinately cooperate to fulfill a common task whether in
the military or civilian fields, e.g. patrolling or harvesting
scenarios. The main idea is to implement the same robust
controller on each vehicle of the fleet, extending the approach
proposed to explicitly include also parametric uncertainties
that could rise from manufacturing processes and that make
each vehicle unique. In this way, the fleet management will
require the design of only two different controllers: (i) a low-
level controller for the single-vehicle task, equally applied
on each vehicle; and (ii) a high-level controller for the
distributed trajectory generation strategy, i.e. a fleet formation
controller. Eventually, a more performing microcontroller
will be selected and equipped on the MH850, in line with the



actual hardware equipped on board mini-UAV, e.g. with a i5
or i7 microprocessor, and a second verification and validation
campaign will be performed.

VI. APPENDIX: STATE-SPACE MATRIX EVALUATION

If a complete system is considered, i.e. no decoupling
between the longitudinal and lateral-directional planes is
considered, the state vector for the system studied in Sub-
section II-D is defined as x = [u v α p q r φ θ ψ h]T .
As detailed in Section II-A, the linearized system, here
considered, decouple the longitudinal and lateral-directional
plane. The state variables in the longitudinal plane are the
longitudinal component of the total airspeed u, the angle of
attack α, the pitch angle θ, the pitch rate q, and the altitude h.
The controls are the throttle ∆T acting on u and the elevator
deflection δe acting on θ. The resulting state space elements
are

xlon(t) = [u, α, θ, q, h]
T ∈ Rnlon ,

ulon(t) = [∆T, δe]
T ∈ Rmlon ,

Along ∈ Rnlong×nlong ,
Blong ∈ Rnlong×mlong

(33)

with nlon = 5 and mlon = 2. The state matrix in the
logitudinal plane can be defined as follows

Along =


Xu Xα −g cos θ0 0 0
Zu

U0−Zα̇
Zα

U0−Zα̇
−g sin θ0
U0−Zα̇

Zq+U0
U0−Zα̇

0

0 0 1 0 0

Mu+
Mα̇Zu
U0−Zα̇

Mα+
Mα̇Zα
U0−Zα̇

−g sin θ0Mα̇
U0−Zα̇

Mq+
Mα̇(Zq+U0)

U0−Zα̇
0

0 −U0 U0 0 0

 .
The aerodynamic derivatives are defined as function of

the flight conditions and of the aircraft mass, of the airfoil
parameters, of the propeller.

In the analyzed case, dimensional aerodynamic derivatives
are considered, so we have

Xu = ρSU0

2m (−3CDe − CDu)

Xw = ρSU0

2m (CLe − CDα)

Zu = ρSU0

2m (−2CLe − CLu)

Zw = ρSU0

2m (−CLα − CDe)
Zq = ρSU0c

4m (−CLq )
Mu = ρSU0c

2Jy
(Cmu)

Mw = ρSU0c
2Jy

(Cmα)

Mq = ρSU0c
2

4Jy
(Cmq )

CXu = CTu = −3CDe−CDu , CLeq = 2W/S
ρV 2 = 0.392 rad−1

is the lift coefficient in equilibrium (W = mg is the weight of
the UAV, ρ is the air density), CDeq = CD0+kC2

Leq = 0.029
rad−1 and CDα = 2kCLαCLeq = 0.469 rad−1 are function
of CLeq , CTu = −3CDeq Moreover, Xα = XwU0 and Zα =
ZwU0. Usually, Zα̇ = 0 and Mα̇ = 0. Finally, Cmu, CDu
and CLu are zero for UAVs (i.e. subsonic aircraft) since no
aeroelastic effects are considered. The other derivatives are
defined in Table VII.

For the lateral-directional plane, the states are the lateral
component of the total airspeed v, the roll rate p, the yaw
rate r and the roll angle φ. the only control is the aileron
deflection δa acting on φ. The lateral-directional state space
elements are

xlat(t) = [v, p, r, φ]
T ∈ Rnlat ,

ulat(t) =
[
δa
]
∈ Rmlat ,

Alat ∈ Rnlat×nlat ,
Blat ∈ Rnlat×mlat

(34)

with nlat = 4 and mlat = 1.

Alat =

[
Yv Yp Yr−U0 0
Lv Lp Lr 0
Nv Np Nr 0
0 1 0 0

]
.

The dimensional derivatives are defined as

Yv = ρSU0

2m (CYβ )

Yp = ρSU0b
4m (CYp)

Yr = ρSU0b
4m (CYr )

Lv = ρSU0b
2JX

(Clβ )

Lp = ρSU0b
2

4JX
(Clp)

Lr = ρSU0b
2

4JX
(Clr )

Nv = ρSU0b
2Jz

(Cnβ )

Np = ρSU0b
2

4Jz
(Cnp)

Nr = ρSU0b
2

4Jz
(Cnr )

The control matrices can be written in the following way.

Blong =


1 0

0
Zδe

U0−Zα̇
0 0

0 Mδe +
Mα̇Zδe
U0−Zα̇

 ,
where Zδe =

ρSU2
0

2m (−CLδe ) and Mδe =
ρSU2

0 c
2Iy

(Cmδe ). For
the lateral-directional plane, the only control input is the
aileron deflection δa

Blat =


Yδa
Lδa
Nδa

0

 ,
where Yδa =

ρSU2
0

2m (−CYδa ), Lδa =
ρSU2

0

2Jx
(Clδa ) and Nδa =

ρSU2
0

2Jz
(Cnδa ). The other derivatives are defined in Table VII.

For the uncertain matrices in (32), their formulation can
be derived explicitly introducing the bounds of uncertain
parameters q±V , q±m and q±I into the dimensional aerodynamic
derivatives, thus obtaining the corresponding uncertain ma-
trices to be exploited for LMI system.



TABLE VII
AERODYNAMIC DERIVATIVES OF THE FW-UAV.

Parameter [rad−1] Value

CLα 3.186

Cmα −0.524

CLα̇ 0

Cmα̇ 0

Cmq −1.375

CYβ 0

CYp −0.031

CYr 0.069

Clp −0.1192

Cnp 0.0122

Clβ −0.201

Cnβ 0.031

Clr 0.024

Cnr −0.021

CLδe −0.895

Cmδe −0.695

CYδa 0

Clδa 0.153

Cnδa 0.012
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