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Abstract: Innovation diffusion is fundamental for societal growth and development, and
understanding how to unlock it is key toward devising policies encouraging the adoption of new
practices, e.g., sustainable innovations. Here, we propose a mathematical model to investigate
such a problem. Specifically, we consider a coordination game —which is a standard game-
theoretic model used to study innovation diffusion— and we embed it on an activity-driven
network. Within this model, we integrate three policies to incentivize the adoption of the
innovation: i) providing a direct advantage for adopting it, ii) making people sensitive to
emerging trends at the population level, and iii) increasing the visibility of adopters of the
innovation, respectively. We provide analytical insights to shed light on the effect of the joint
use of these three policies on unlocking innovation diffusion, supported by numerical simulations.
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1. INTRODUCTION

Innovation diffusion is the phenomenon in which a novel
product, idea, or behavior is introduced in a population,
successfully replacing the status quo (Rogers, 2003; Peyton
Young, 2011; Acemoglu et al., 2011; Liu et al., 2012; Fag-
nani and Zino, 2017; Zhong et al., 2022). Hence, designing
effective interventions to unlock such a phenomenon is key
for its broad range of potential applications (Riehl et al.,
2018), including assisting public authorities to incentivize
sustainable practices (Otto et al., 2020).

Mathematical models have provided powerful tools to
study innovation diffusion. In the past few decades, game-
theoretic models based on the paradigm of network co-
ordination games have increased in popularity, thanks
to their ability to realistically capture human decision-
making that occurs during innovation diffusion (Montanari
and Saberi, 2010; Peyton Young, 2011). These models have
subsequently been employed to study the key problem
of controlling the network in order to favor innovation
diffusion. Most of the literature focus on individual-level
interventions, i.e., understanding where adopters of the
innovation should be initially placed to incentivize diffu-
sion (Como et al., 2021). However, interventions at such
granularity cannot be implemented in many real-world
scenarios, calling for the study of different policies.

Here, we fill in this gap by embedding a coordination
game on a time-varying network, and incorporating three
distinct control actions mirroring real-world intervention
policies. First, we consider the intuitive use of incentives
to increase the attractiveness of adopting the innovation
over the status quo by increasing a certain entry of the
payoff matrix of the coordination game. Second, we con-

sider strategies based on making people aware of emerging
trends, which is a recent intervention strategy examined
in the empirical social psychology literature (Mortensen
et al., 2019); this is modeled by adding an additional trend-
seeking term to the dynamics, following Zino et al. (2022).
Third, we consider interventions that make adopters of
the innovation more visible, e.g., through the distribution
of stickers (Hamann et al., 2015); this is modeled by a pa-
rameter that increases the probability that people interact
with adopters of the innovation, inspired by Alessandretti
et al. (2017). To the best of our knowledge, the first action
has been studied in the literature (Montanari and Saberi,
2010; Peyton Young, 2011) and the second one has been
recently addressed (Zino et al., 2022); the effect of the
third action and its interplay with the other two is still to
be investigated.

From the analysis of the stochastic model, we establish
necessary and sufficient conditions to guarantee that inno-
vation diffusion occurs with probability converging to 1 as
the network size grows. In particular, we show a thresh-
old behavior: if the fraction of initial adopters exceeds a
threshold that depends on the control actions, innovation
diffusion is guaranteed. Finally, we present a case study to
discuss the interplay between the control actions.

Notation

We denote the set of nonnegative and strictly positive
integer numbers by N and N, respectively. A vector x
is denoted with bold font, with ¢th entry z;. The all-
0 and all-1 (column) vectors are denoted by 0 and 1,
respectively (with the appropriate dimension determined
in the context). Given a stochastic event E, we denote
its probability by P[E]. Given a family of events E,,
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parametrized by n € Ny, we say that F,, occurs with high
probability (w.h.p.) if there exists a constant K > 0 such
that P[E,] > 1 — K/n, for all n € Ny.

2. MODEL AND PROBLEM FORMULATION
2.1 Coordination game on time-varying networks

We consider a population of n € N individuals, denoted
by the set V = {1,...,n}. At each discrete time-step
t € N, each individual ¢ € V can choose whether to
adopt the status gquo (denoted by 0) or the innovation
(denoted by 1). We denote by z;(t) € {0,1} the action
adopted by individual ¢ € V at time ¢ € N, and each
individual is able to revise this decision for the following
time-step ¢t + 1. The actions of all the individuals in the
population at time t are gathered in the n-dimensional
action state vector wg) € {0,1}™. We further define the
variable z(t) := 2 (t) "1, which is the fraction of adopters
of the innovation at time ¢ € N.

At each time-step, each individual ¢ € V observes the
actions of a fixed number of social contacts k € N, with
k > 2, selected according to a mechanisms inspired by
discrete-time activity-driven networks (Perra et al., 2012).
Specifically, each social contact is selected uniformly at
random from the entire population, independent of the
others, i.e.,

afj (t) :=P[j is the £th contact of i at time t] = % (1)
We call this set of contacted individuals the neighbors of
individual ¢ at time ¢, denoted by N;(t). Such a mechanism
generates a directed time-varying (multi-)graph of interac-
tions G(t) = (V,E(t)), where (i,7) € £(t) < j € N;(¢)
(possibly, with multiple occurrences). Then, each individ-
ual ¢ € V makes their decision according to a 2-action
network coordination game on G(t).

Specifically, i € V engages in k symmetric 2-player coordi-
nation games with each of their & neighbors j € N;(t),
where multiple occurrences of the same individuals are
treated as distinct games. The payoff that individual i
receives for choosing action s € {0,1} against j € N;(¢)
depends on s and on the action of j, z;(t) € {0,1}, and is
represented thought the payoff matrix

s=1s=0

sZolo 1) @

Briefly, i receives a unit reward if ¢ and their peer co-
ordinate on the same action, and no payoff if they fail
at coordinating. Hence, the overall payoff that an agent
i would receive for selecting action s € {0,1} when the
system is in state x(t) = x at time ¢ can be expressed
through the following payoff function:

fi(s@,00) = > [ =) (1-a;(0) +s2;0)]. (3)

JEN;(t)

At each time step t € N, each agent revise their state
according to a deterministic best-response dynamics for
the payoff functions in Eq. (3). Specifically, we assume
that agent ¢ € V revises their strategy to

ween= {0 n g0 2 fomet),
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i.e., each agent chooses to adopt the action that maximizes
their payoff. If the two actions are equivalent, then the
agent favors the status quo, consistent with the literature
on status-quo bias.

2.2 Control actions to incentivize innovation diffusion

We present three control actions that can be implemented
to incentivize innovation diffusion, each one captured by a
scalar parameter, quantifying the effort placed in it.

Make the innovation more advantageous We introduce
a parameter u, > 0 that represents the advantage of the
innovation with respect to the status quo. This adjusts
the payoffs for the game, so that the payoff matrix for
each coordination game becomes

s=1s=0

o B I

yielding the following expression that replaces Eq. (3):

fi(s,z,G(t)) := Z {(1—5)(1—3@@))+(1+ua)sxj(t)}.
JEN(t)
(6)

Note that u, = 0 coincide with the baseline case discussed
in the previous section, while u, > 0 implies the innovation
provides a superior payoff, capturing the implementation
of policies that favor the adoption of the innovation, e.g.,
through tax reliefs.

Make people sensitive to emerging trends  We introduce
a parameter u; € [0,1) that represents the sensitivity of
individuals to emerging trends in the population, which
has been identified in several recent experimental studies
as an intervention method for incentivizing the adoption of
innovation (Mortensen et al., 2019), ultimately ensuring its
diffusion in social groups (Ye et al., 2021). Following (Zino
et al., 2022), we assume that, at each time step, every
individual, independently of the others, replaces with
probability u; the revision protocol in Eq. (4) with the
following update rule:

1 if z(t) > z(t — 1),

zi(t+1) = { 0 if z(t) < z(t —1), (7)

x;(t) if z(t) = 2(t — 1).
In other words, individual ¢ € V follows the trend by
updating their action to the one that has increased in
adopters over the previous time step. We assume that the
individual does not revise their action in the absence of
any trend. If u; = 0, individuals always use Eq. (4).

Increase visibility of adopters of the innovation ~ We in-
troduce a parameter u, > 0 that represents the increase
in visibility of the adopters of the innovation. Inspired
by activity-driven networks with attractiveness (Alessan-
dretti et al., 2017), we modify the network formation pro-
cess, assuming that an individual has a higher probability
of observing an adopter of the innovation. Specifically, we
replace Eq. (1) with

At if () =1
¢y ) nQdzy Wi )
a;:(t) = . 8

z]( ) { ni(l-ﬁ—l,Z(t)) lf Z‘](t) = 0, ( )

where u,, = 0 is baseline case discussed in the previous
section. The parameter u, thus captures the implemen-
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tation of policies to increase the visibility of adopters of
the innovation, such as using stickers to show others their
commitment to the innovation (Hamann et al., 2015).

2.8 Problem Formulation

We initialize the system from x(0) = 0. Then, a fraction
¢ € (0,1] of initial adopters of the innovation are intro-
duced in the population. Hence, we randomly select (n
individuals, for which we set x;(1) = 1, while the rest of
the population has z;(1) = 0.

We observe that the model proposed is parsimonious, as it
is fully characterized by five parameters: i) the number of
social contacts established by each individual k € N_; ii)
the fraction of initial adopters ¢ € (0, 1); iii) the advantage
of the innovation with respect to the status quo u, > 0; iv)
the sensitivity of individuals to trends u; € [0,1); and v)
the increase in visibility of adopters of the innovation with
respect to the status quo u, > 0. The first two parameters
k and ( are characteristics of the uncontrolled dynamics,
while u,, us, and u,, instead, are each associated with one
of the three control actions, and their magnitude quantifies
the effort placed in that specific control action.

We consider large-scale populations (n — o0), and we
introduce the following definition.

Definition 1. (Innovation diffusion). For any positive con-
stant € > 0, let us define two random times:

Sne :=1inf{t € Ny : 2(t) > (1 —e)n}, (9a)

F,c:=inf{t e Ny : 2(t) <en}, (9b)
i.e., the time at which the fraction of adopters of the
innovation becomes greater than 1 — ¢ and less than e,
respectively. We say that innovation diffusion is guaran-
teed if S, . < Fy, . w.h.p., for any 0 < e < min{¢,1 —¢}.

Briefly, innovation diffusion is guaranteed if the fraction
of adopters converges arbitrarily close to the all-1 consen-
sus and does not converge arbitrarily close to the all-0
consensus. In the following, we will show that the system
converges almost surely to one of these two configurations.
Hence, the asymptotic behavior of the system is ultimately
determined by understanding which model parameters,
control actions, and initial conditions guarantee innovation
diffusion in the sense of Definition 1.

In this paper, we cast the problem as determining the
fraction of initial adopters ¢ needed to guarantee innova-
tion diffusion, assuming that the number of social contacts
k and the three control actions wu,, us, u, are given.
Specifically, we will prove that the model is characterized
by a threshold ¢} (uq,us, u,) such that innovation diffu-
sion is guaranteed if and only if (iff) ¢ > (f(ua,us, uy),
analytically characterizing such a threshold as a function
of the control actions (i.e., u,, u;, and w,). This will
help build our understanding of how to optimally devise
such interventions in order to reduce the fraction of initial
adopters ¢ needed to unlock innovation diffusion.

3. GENERAL PROPERTIES OF THE MODEL

Before analyzing the problem formulated in Section 2.3,
we discuss some general properties of the game and the
network. First, we characterize the Nash equilibria of the

Lorenzo Zino et al. / [FAC PapersOnLine 56-2 (2023) 41864191

game, which given the stochastic nature of the network,
should be understood with the following definition.

Definition 2. A (pure strategy) Nash equilibrium is a
state vector * = [z1,...,7,] € {0,1}" such that
fi(zi,z,G(t)) > fi(1 — x5,2,G(t)), for all i € V and all
possible realizations of G(t).

The game has two Nash equilibria, characterized in the
following proposition.

Proposition 3. For any u, > 0, the network game with
payoff in Eq. (6) on the network G Eq. (8) has two (pure
strategy) Nash equilibria: 0 and 1. That is, the pure
configurations in which the entire population coordinate
on action 0 or 1, respectively.

Proof. Observe that 1 is a Nash equilibrium. In fact,
fl(]-v]-ag(t)) = k(]' + ua) > fl(oa]-ag(t)) = Oa for any
realization of G(t). A similar argument applies to O.
Finally, we show that any other state vector cannot be
a Nash equilibrium. Assume that ¢ {0,1} is a Nash
equilibrium. Then, there exists ¢,5 € V such that z; = 0
and z; = 1. For any wu, > 0, the network G(¢) has at
least |k/2]| + 1 instances of the link (7, j) with probability
greater than 1/nl*/2141 which implies that @ cannot be
a Nash equilibrium, since f;(1,2,G(t)) > (|k/2] +1)(1 +
ua) > fi(0,2,G(t)) = ([k/2] =1)(1 + uq). O

The dynamics described in Section 2 induce a stochastic
process x(t) on the state space {0,1}". In general, the
process is non-Markovian, since Eq. (7) does not depend
on just the state of the system at time ¢. Nonetheless,
we can introduce an extended state space by defining
an additional one-dimensional variable y(t), taking values
on {O,%,...,l}, with the following update rule: y(t +
1) = Lax(t) 1. The process &(t) := (x(t), y(t)) is a Markov
chain. In fact, we can rewrite the condition z(t) > z(t — 1)
in Eq. (7) as 2a(t)"1 > y(t). This observation allows us
to prove the following.

Proposition 4. The process x(t) converges almost surely
in finite time to one of the two Nash equilibria 0 or 1.

Proof. Let us consider the process &(t). First, we observe
that if @ is not a Nash equilibrium, then (x,y) cannot
be a steady state of the process, independently of y,
because of Eq. (4). Hence, steady states are in the form
(1,y) and (0,y). At this stage, we observe that, from
any configuration (1,y) with y < 1, one necessarily
reaches (1,1), while (1,1) can be easily verified that is
an absorbing state. A similar argument shows that (0,0)
is the only other absorbing state of the system. Finally,
we observe that from any configuration there is a path
with nonzero probability to reach at least one of the
absorbing states. In fact, from (x(t),y(t)) = (x,y) with
x ¢ {0,1}, one can reach (x(t+1),y(t+1)) = (1,2 1) if
all neighborhoods N;(t), i € V, have a majority of agents
playing 1 and all agents revise their action using Eq. (4).
This occurs with nonzero probability (with an argument
similar to the one used in the proof of Prop. 3). Then, from
(1,2 1), the absorbing state (1, 1) is reached in one step,
as observed before. A similar argument can be applied
concerning the absorbing state (0, 0). Hence, Markov chain
theory yields the proof (Levin et al., 2006). O
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We can explicitly write the transition probabilities of x(t),
which are reported in the following.

Proposition 5. Let us define
k

m 3 <§>(1+uq,)zzz(lz)kf.

¢= L2+kua J +1

Hk’,ua,uv (Z) =

- (10
Then, for all ¢ € V, the transition probabilities p?,(t) :
Plx;(t + 1) = b| 2;(t) = a] are equal to
Po1(t) = weXz(ty>=(t—1) + (1 = we) iy, (2), (11a)
Pio(t) = wXa@y<z—1)+ (1 — ue) (1 = My, u, (2)), (11b)
where the indicator function x,)s.¢—1) assumes value 1
if the event “z(t) > z(t — 1)” occurs and 0 otherwise.

=

Proof. First, observe that individual ¢ with z;(t) = 0
switches to action 1 iff one of the following two disjoint
events occurs: i) ¢ follows Eq. (7) (which occurs with
probability u;) and z(t) > z(t — 1) or ii) ¢ follows Eq. (4)
(which occurs with probability 1 —w,) and f;(1,®,G(t)) >
fi (07 x, g(t)). For the latter event to occur, it is necessary
and sufficient that at least |k/(2+u,)| + 1 of the k
neighbors of 4 at time ¢ have state 1 (Zino et al., 2021).
Each neighbor is sampled independently of the others and
the probability that the generic /th neighbor of i has state
1 at time t is equal to

dn= Y an =G0

Porr il 1+ uyz(t)

We observe that such a probability is independent of
¢ and ¢ and depends on ¢ only through z(t), so we
denote it as ¢/(t) = q(z(t)). Hence, the number of 1
among the neighbors of ¢ at time ¢ follows a Binomial
distribution with k trials with success probability ¢(z(t)),
which yields the expression in Eq. (10). Finally, the sum of
the probability of the two disjoint events yields Eq. (11a).
The other transition probability in Eq. (11b) is obtained
following a similar argument. O

(12)

We conclude this section with the generalization of a result
from Zino et al. (2021), in which Hoeffding’s inequal-
ity (Hoeffding, 1963) is used to establish a bound on z(t+1)
given z(t). We sketch the proof, while details are omitted
due to space constraints.

Lemma 6. The following hold true:

(i) if z(t) > 2(t — 1) and (1 — w) g0y, (2) +ue > 2,
then there exists a positive constant § > 0 such that
Plz(t+ 1) < z(t)|F:] < exp{—0n}, where F; is the
natural filtration of the process x(t) at time ¢;

(ii) if 2(t) < 2(t — 1) and (1 — w)Hg 4, v, (2) < 2, then
there exists a positive constant § > 0 such that
Plz(t+1) > 2(t)|F:] < exp{—on}.

Proof. First, we observe that the number of adopters of
1 at time t 4+ 1 is equal to the sum of the number of
individuals who follow Eq. (7), which we denote as N¢(¢),
and the number of the remaining n — N;(¢) individuals
who choose 1 according to Eq. (11). Hence, we write
2t +1) = LN(t) + %Z?;th(t) be(t), where N¢(t) is a
binomial r.v. with n trials and success probability u;; and
bi(t),...,bn, @) (t) is a sequence of n— Ny(t) i.i.d. Bernoulli
r.v.s, each one with the mean equal to Iy, ., (2(t)).
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We condition on Ni(t) and use the law of total proba-
bility to compute P[z(t + 1) < z(t)] = >0 _ P[Ny(¢)
mlPpm + & 320" be(t) < 2] < P[LNe(t) < we — Vo] +
Bt S b (1) < Mg, ((8)) — V)
where the inequality is obtained by splitting the sum at
m = (u; — Vd)n and simplifying the terms obtained by
bounding some probabilities with 1 and re-arranging the
terms (see Zino et al. (2022) for all the steps in a similar
setting). Finally, using Hoeffding’s inequality (Hoeffding,
1963), we bound the first term as P[2 N;(t) < uy — V0] <
exp {—20n}, and similarly with the second term, yielding
(i). The proof of (ii) follows a similar argument. O

4. MAIN RESULTS

We derive analytical insights into the effect of the inter-
vention policies. While the impact of making the inno-
vation more advantageous (u, > 0) and making people
sensitive to emerging trends (u; > 0) has been extensively
studied, both separately and combined (Zino et al., 2021;
Zino et al., 2022), the effect of increasing the visibility of
adopters of the innovation is yet to be analyzed. We start
by considering its impact in the absence of other actions.

Theorem 7. For u, = u; = 0, there exists a thresh-
old ¢;(0,0,u,) € (0,1), which is the unique solution of
Iy 0,u,(2) = z in (0, 1). Innovation diffusion is guaranteed
iff ¢ > (0,0, uy).

Proof. First, observe that Il g ,, is the complementary
cumulative distribution function (CCDF) of a binomial
random variable (r.v.) with k trials and success probability

p(z,uy) = %, from Eq. (12). Since the CCDF of
a binomial RV is a monotonically increasing function
of its success probability, and the success probability is
monotonically increasing in u,, then we conclude that
ITx.0,u, is monotonically increasing in u,. From explicitly
computing the derivatives of Eq. (10), we verify that
1) 0,4, (2) has stationary points at 0 and at 1 (both points
in which I o, (2) = 2), and changes its convexity once at
z=k/2| /(k—14u,(k—[k/2])) from concave to convex.
Hence, I} 0,4, (2) < z in an open neighborhood of z = 0
and Il g4, (%) > z in an open neighborhood of z = 1,
which means that there necessarily exists a value z* such
that Iy g 4, (2*) = 2*. We prove now its uniqueness. Let z*
be the smallest nonzero solution of IIj ¢ ., (2) = z and let
us assume that z* < Z. Then, there cannot be another
z € (0,z] such that Il ., (2) = z since the function
is strictly convex up in (0,%) and I ., (0) = 0. Hence
Ik 0,.u,(2) > z. Finally, since IIj ., (Z) is strictly convex
down in (z, 1), then by definition of convexity we conclude
that Ik 0.4, (2) > 2, Vz € (Z,1). A similar argument is
applied if z* > z, proving uniqueness of z* € (0,1). Hence,
Iy o, (2) > 2, Vz € (2%,1)

Now, we prove that if 2(0) > 2z*, then innovation dif-
fusion is guaranteed. First, we introduce an additional
random time capturing the first time-instant at which
the adopters of the innovation do not increase: Q. :=
inf{t € Ny : 2(¢) < z(t — 1)}. Clearly, Qn . < F), .. Hence,
Sne < Qn.e w.h.p. is a sufficient condition to guarantee
innovation diffusion. Moreover, we observe that R, . :=
min{Qn.c, Sn,c} < n, since either z(t + 1) > z(t) + 1/n or



4190

z(t+1) < z(t). Observe that, for ¢t < R,, . and z > z* the
two conditions of Lemma 6 item (i) are satisfied. Hence,
by conditioning on R, ., using the law of total probability,
and item (i) of Lemma 6 in a recursive fashion, we write
]P[Sn,s < Fn,s} Z P[Sn,s < Qn,s] = Ziio P[Rn,s

rIPAt < r @zt +1) < z20F] = oo PlRue

MTico (U= Ple(k+1) < 2(0)Fe)) > 27 PlRae =
] (1 —exp{—dn})" > (1 — exp{—dn})" > 1— £ for some

positive constant K > 0, which yields sufficiency.

Necessary condition is proved as follows. Assume that z <
z*. Then, we observe that necessarily (1 —u;)Ily 4, u, (2) +
us < z, which implies that P[z(2) < z*] > 1/2. Moreover,
if 2(2) < z*, then the conditions of item (ii) of Lemma 6
hold. Hence, we can use it recursively to bound P[F,, . <
Snelz(2) < 2*] > 1 — K/n, for some constant K >
0. Finally, we bound P[S,. < F,. < 1-—DP[2(2) <
2 P[Fye < Snel2(2) < 2*] < 1/2 4+ K/n, which does
not converge to 1, yielding the necessity claim. O

Now, we present our general result. The proof follows
the same arguments of the one of Theorem 7, but it re-
quires some additional technicalities due to the presence of
Ug, us > 0, which are briefly discussed after the statement.
A detailed proof is omitted due to space constraints.

Theorem 8. Define ujy , = inf{u, € [0,1] (1 -
) gy, (2) — 2 +us > 0,Vz € (0,1)}. The following
hold:

(i) ifuq > k—2o0ru; > ug ,, , then innovation diffusion is
guaranteed for any fraction of initial adopters ¢ > 0;

(i) if ug < k —2 and w; < Vi, then there exists a
threshold (jf(uq, us, uy) € (0,1), which is the largest
solution z of (1 — w) k4, w,(2) + uy — 2z = 0 in
(0,1). Innovation diffusion is guaranteed iff ¢ >
C]: (’LLa, U, uv)~

Proof. First, for any t < R, ., the condition z > 2*
guarantees that the conditions of Lemma 6 are satisfied,
allowing its recursive use to guarantee diffusion, similar to
Theorem 7. Finally, we observe that the two conditions
in (i) guarantee that w; + (1 — wy)Ily 4, u, (2) > 2z for all
z € (0,1), which concludes the proof for sufficiency. The
proof for necessity is a bit more involved, since it is not
necessarily true that (1 — ug)Ig 4, u, (2) + ur < z for all
z < z*. However, there exists necessarily an interval [z, z*)
for some 0 < Z < z*, in which the inequality above holds
true. Using this observation, one can consider the different
cases depending on whether ¢ belongs to the interval or
z < Z. In the first case, the same argument used for proving
necessity in Theorem 7 yields the claim. In the second case,
one can bound the probability that z(t) jumps from below
Z to above z* without passing into the interval (where
the first argument could be used), and obtain the claim,
similar to (Zino et al., 2022). O

Corollary 9. The threshold (} (uq, ut, uy) is monotonically
nonincreasing in the control parameters u,, us, and u,,.

Proof. By definition, Il ,, 4, is monotonically nonde-
creasing in w, (since the higher wu,, the more positive
terms are included into the summation in Eq. (12)). As
a consequence, if (1 — u)lly ur w, + us — 2 = 0, then
(1 — w) gy 0, +ur — 2 > 0 for any u, > u), and thus

its largest zero } (uq, we, uy) < ¢ (U, ug, u,). Similarly, we
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observe that the function (1 — w)Ily 4, u, +u —2 =0 is
monotonically nondecreasing in uy, being the probability
Iy v, u, < 1. Hence, the same argument used in the above
proves monotonicity of the threshold with respect to wu.
Finally, as observed in the proof of Theorem 8, IIj 4 u,
is monotonically increasing in u,, hence C,j(ua,ut,uv) <
G (ug, ug, ul) for all w, > u,. O

4.1 Case study: k=3

We consider the case in which each individual establishes

k = 3 interactions, for which the analytical computation

of the threshold is possible. First, using the monotonicity

property observed in Corollary 9, we consider the effect

of each control action independently, and we establish the

following sufficient conditions.

Corollary 10. Innovation diffusion is guaranteed if either

of the following conditions on a single control action holds:
(i) uq > 1, for any initial ¢ > 0;

(i) e > § or ¢ > §+ /2

(111) <> —24(14uy ) (/4+4u, +9u2 —3u,)

3
2u3

Proof. First, observe that k — 2 = 1. Hence, item (i) of
Theorem 8, yields (i). Then, for u, € [0,1],

2 3
(1+UU) (1+uv) i 2’3, (13)
(14 uy2)3 (14 uy2)3

For (ii), we refer to the computations in (Zino et al., 2022).
Finally, for (iii), we write Iy 4, 4, (2) = z using Eq. (13),
obtaining a fourth order equation with two trivial solutions
(z = 0 and z = 1), and two other real solutions: one
positive and one negative. The largest of the two is
necessarily the unique solution in (0, 1), yielding (iii). O

Mg, (2) = 32%(1—2) +

From this result, we make several observations. First, we
note that making the innovation more advantageous and
making people sensitive to emerging trends will reduce
the threshold to 0, guaranteeing innovation diffusion for
any initial condition if u, > 1 or u; > %. On the other
hand, increasing the visibility of adopters of the innovation
reduces the fraction of initial adopters needed to unlock
diffusion, but the threshold will never go to 0 under the sole
effect of u,. Second, we observe that the human tendency
to interact with a limited number of other people to make
decisions, captured by k, could hinder the effectiveness of
making innovation more advantageous. In fact, for k = 3,
an innovation would need to be twice as advantageous as
the status quo to have any effect on its adoption. On the
contrary, the other two control actions have a continuous
impact on the threshold, i.e., any increase in the control
yields a decrease in the threshold.

The sufficient conditions presented in Corollary 10 illus-
trate the impact of each single control action on the
innovation diffusion process. However, the monotonicity
properties highlighted in Corollary 9 suggest that a joint
implementation of different control actions can be ben-
eficial in further reducing the threshold. From item (ii)
of Theorem 8 and the explicit expression in Eq. (13),
we can derive the general expression for the threshold
¢ (ua,ur, uy), that is either 0 or the largest solution in
(0,1) of the following fourth order equation in z,
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Fig. 1. Threshold (3 (uq, ut, uy), computed analytically by
solving Eq. (14), for different values of the control
parameters u; and u,, and with u, € [0, 1].

(1 —ug) (1 +uyp)?22(1 — 2) + (1 —ug) (1 + uyp)323
+ug(1+upz)? — 2(1 + uy2)® =0,
whose solutions can be computed and expressed in closed
form, but are omitted due to their complexity. However,
they can be used to shed light on the interplay between
the two control actions u; and u,.

(14)

In Fig. 1, we illustrate the threshold, computed by solving
Eq. (14). Note that uw, > 1 would guarantee diffusion,
even in the absence of other control actions. The figure
depicts a Pareto-front scenario, where the same value for
the threshold can be obtained with different combinations
of the two actions. Interestingly, an initial increase in the
sensitivity to trends from u; = 0 to uy = 0.04 is sufficient
to reduce the threshold by 80% from (3(u,,0,0) = 0.5 to
C3(tq,0.4,0) ~ 0.1, while a further increase of the same
amount would only halve the threshold to (3(u4,0.7,0) ~
0.05. On the contrary, in the absence of u, an increase in
visibility would reduce the threshold to just (5(uq, 0,0.6) =
0.0473, but when u, > 0 and u; > 0 simultaneously,
the threshold vanishes ((3(uq,0.7,0.6) = 0). Optimal
interventions could thus entail combining different actions.

5. CONCLUSION

We proposed a stochastic mathematical model for the dif-
fusion of innovation. Building on the framework of network
coordination games, we incorporated three realistic con-
trol actions —making the innovation more advantageous,
making people sensitive to emerging trends, and increasing
the visibility of adopters of the innovation— through the
inclusion of additional mechanisms, each one regulated by
a scalar parameter. Through the analysis of the stochastic
dynamics obtained, we establish a threshold in the initial
fraction of adopters of innovation: above this threshold,
the innovation will spread through the entire network,
replacing the status quo. The derivation of an analytical
expression for such a threshold as a function of the three
control actions allowed us to elucidate their impact.

Our findings pave the way for several promising lines
of research. First, the inclusion of heterogeneity in the
population and of constraints in the possible interactions
that individuals may establish should be explored. Second,
closed-form analytical expression for the threshold allows
for studying the problem of designing an optimal control
strategy by combining the different control actions to
guarantee innovation diffusion. Efforts should be placed
to analyze such optimization problems, toward gaining
insight into the structure of optimal intervention policies.
Finally, although each element of our model is supported
by experimental studies and empirical evidence, real-world
validation of the model is still missing.
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