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Primes in Almost All Short Intervals II.

DANILO BAZZANELLA

Sunto. – In questo lavoro vengono migliorati i risultati ottenuti in «Primes in Almost
All Short Intervals» riguardo la distribuzione dei primi in quasi tutti gli intervalli
corti della forma [ g(n), g(n)1H], con g(n) funzione reale appartenente ad una
ampia classe di funzioni. Il problema viene trattato mettendo in relazione l’insie-
me eccezionale per la distribuzione dei primi in intervalli nella forma
[ g(n), g(n)1H] con l’insieme eccezionale per la formula asintotica

c(x1H)2c(x) AH as xKQ .

I risultati presentati vengono quindi ottenuti grazie allo studio delle proprietà del-
l’insieme eccezionale per tale formula asintotica..

1. – Introduction.

Throughout this paper c(x) will denote Chebyshev’s function, FBG will
mean that FbG and GbF hold, F(x) 4Q(G(x) ) will mean that
lim

xKQ
G(x) /F(x) 40, N(s , T) denotes the counting function defined as the num-

ber of zeros r4b1 ig of Riemann zeta function which satisfy sGbG1 and
NgNGT and N *(s , T) denotes the counting function defined as the number of
ordered sets of zeros r j 4b j 1 ig j (1 G jG4), each counted by N(s , T), for
which Ng 1 1g 2 2g 3 2g 4 NG1.

It is known that

c(x1H)2c(x) AH as xKQ(1)

holds with x 7/122o(1) GHGx, see Heath-Brown [6], and holds for almost all x
with x 1/62o(1) GHGx, see Zaccagnini [11]. It is also known that, under the as-
sumption of the Riemann Hypothesis (RH), (1) holds with x 1/21eGHGx, and
holds for almost all x with H4Q( log2 x), see Selberg [10].

The aim of this paper is to investigate the distribution of primes in inter-
vals of type

[ g(n), g(n)1H] ,

for n such that NGg(n) G2N and the function g(x) belonging in a wide class
of derivable functions.

More precisely we consider the class of derivable functions g(x) such that
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g(x) Bx a and g 8 (x) Bax a21. A function satisfying these requirements will be
called of type a.

The problem that we investigate is how must be large H to have the expect-
ed number of primes for almost all intervals of type [ g(n), g(n)1H] in
[N , 2N], with a fixed function g(x) of type a.

As in the first paper of the series, see Bazzanella [1], the dimension of H
only depends of a and, more precisely, results an increasing function of a.

The basic idea of this paper is to connect the exceptional set for the distri-
bution of primes in intervals of type [ g(n), g(n)1H] to the exceptional set for
the asymptotic formula (1) and use the properties of this set, see Bazzanella
and Perelli [2], to obtain the desired results.
Our main unconditional result is the following:

THEOREM 1. – Let g(x) a function of type a and eD0. Then almost all inter-
vals of type [ g(n), g(n)1H] in [N , 2N] has the expected number of primes
with HDN c(a)1e and

c(a) 4

.
`
`
/
`
`
´

11a210

16a

3a22

5a

47a235

77a

45a2122k1441168a1265a 2

48a

6

5
GaG

273

107

273

107
GaG

21

4

21

4
GaG

210

29

210

29
GaG23 .

This result mainly depends of the bound for counting functions N(s , T)
and N *(s , T). For this purpose we use the density estimate of Ingham, see ch.
12 of Montgomery [9], Huxley [7] and Jutila [8] for N(s , T) and the density es-
timate of Heath-Brown [5] for N *(s , T).

This result is stronger and more explicit than Theorem 1 of [1] for all
values of a in considered range. Note that this new technique is not good for
large values of a. This is due to the fact that we are unable to prove a suffi-
ciently good estimate for N *(s , T). If we assume the heuristic assump-
tion

N *(s , T) b
N(s , T)4

T
,(2)

we can improve Theorem 1 as follows
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THEOREM 2. – Assume (2), let g(x) a function of type a and eD0. Then al-
most all intervals of type [ g(n), g(n)1H] in [N , 2N] has the expected num-
ber of primes with HDN c(a)1e and

c(a) 4

.
`
/
`
´

11a210

16a

7a25

12a

6

5
GaG2

2 Ga .

This conditional result improves Theorem 1 of [1] for all values of a.
Under RH we obtain in a similar way the following theorem

THEOREM 3. – Assume RH and let g(x) a function of type a. Then almost
all intervals of type [ g(n), g(n)1H] in [N , 2N] has the expected number of
primes with H4Q(N a21/2a log N).

This result is stronger than Theorem 2 of [1] for all values of a.
We remark that we may obtain results similar to the above theorems slight

weakening the hypothesis on the function g(x). Furthermore we remark that
in the first two theorems we can replace the positive constant e with an appro-
priate power of log N. We have stated our results in the above form for the
sake of simplicity.

2. – Preliminary lemmas.

We consider the asymptotic formula

c(x1H)2c(x) AH as xKQ ,(3)

with H4X u.
Let define the set

Ed (X , u) 4 ]XGxG2X : ND(x , X u )NFdX u( ,

with

D(x , h) 4c(x1h)2c(x)2h .

It is clear that (3) holds if and only if for every dD0 there exists X0 (d) such
that Ed (X , u) 4¯ for XFX0 (d). Hence for small dD0, and for XKQ the set
Ed (X , u) contains the exceptions, if any, to the expected asymptotic formula
for the number of primes in short intervals.

To deal with the problem to estimate the exceptional set for (3) we intro-
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duce the functions

m d (u) 4 inf ]jF0: NEd (X , u)Nbd , u X j(

and

m(u) 4 sup
dD0

m d (u) .(4)

The basic lemma needed for the proof of the Theorem 1 is the following un-
conditional estimate for the exceptional set for the number of primes in short
intervals.

LEMMA 1. – Let m(u) defined by (4) then we have

m(u) G

.
`
`
/
`
`
´

1126u

10

3(12u)

2

47242u

35

36u 2 296u155

39236u

1

6
EuG

121

273

121

273
GuG

11

21

11

21
GuG

23

42

23

42
GuE

7

12
.

PROOF. – We first reduce our problem to a similar one, but technically sim-
pler. We begin by observing that if for a given 0 EuE1

NmXGxG2X : ND(x , X u )NF
4X u

log X
n N bX a1e(5)

holds with some aF0 and for every eD0, then clearly m(u) Ga. Further,
given any eD0, we subdivide [X , 2X] into bX e intervals of the type Ij 4

[Xj , Xj 1Y] with Xj BX and YbX 12e. Writing j j 4X u /Xj we have

max
x�Ij

NX u2j j xNbX u2e

uniformly in j, and hence

D(x , X u )2D(x , j j x) bX u2e(6)

uniformly in j and x�Ij .
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From (5) and (6) is not difficult to see that if for some aF0 and any
eD0

NmXGxG2X : ND(x , j j x)NF
2X u

log X
n N bX a1e(7)

holds uniformly in j, then m(u) Ga. Also, it is clear that in order to prove (7) we
may restrict ourselves to the case j j 4j4X u21, the other cases being com-
pletely similar.

In order to prove (7) we use the classical explicit formula, see ch. 17 of Dav-
enport [3], to write

D(x , jx) 4 !
NgNGT

x r cr (j)1Og X log2 X

T
h ,(8)

uniformly for XGxG2X, where 10 GTGX, r4b1 ig runs over the non-triv-
ial zeros of z(s),

cr (j) 4
(11j)r21

r
and cr (j) b mingX u21 ,

1

NgN
h .(9)

Choose

T4X 12u log4 X ,(10)

and use the Ingham-Huxley and Jutila density estimates, which asserts that
for every eD0 we have respectively

N(s , T) b

.
`
/
`
´

T 3(12s) /(22s)1e

T 3(12s) /(3s21)1e

1

2
GsG

3

4

3

4
GsG1

(11)

and

N(s , T) bT 2(12s)1e for
11

14
GsG1 .(12)

Let

I4 [a , b]

a4 maxm 1

2
, 3u212en
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and

b4 minm 11

14
1e ,

4

3
2u1en .

From (9), (10), (11) and (12) by a standard argument we see that

!
NgNGT

b�I

x r cr (j) bX u21 ( log2 X) max
s�I

X s N(s , T) b
X u

log2 X
,(13)

uniformly for XGxG2X.
Again by standard argument, from (9), (10), (11) and (12) we obtain

s

X

2XN !
NgNGT

b�I

x r cr (j)N2 dxbX 2u211e max
s�I

X 2s N(s , T) bX 2u1 (1126u) /101e ,

for u� [1 /6 , 121/273] and hence

N{XGxG2X : N !
NgNGT

b�I

x r cr (j)NF
X u

log X } N bX (1126u) /101e .

Then we get

m(u) G
1126u

10
for

1

6
GuG

121

273
.

In order to bound m(u) for the other values of u we use Lemma 1 of Heath-
Brown [4] to get

s
X

2X

N !
NgNGT

b�I

x r cr (j)N4 dxbX 4u231e max
s�I

X 4s N *(s , T) .(14)

From Theorem 2 of Heath-Brown [5] we have

N *(s , T) b

.
`
/
`
´

T (10211s) /(22s)1e

T (18219s) /(422s)1e

T 12(12s) /(4s21)1e

1

2
GsG

2

3

2

3
GsG

3

4

3

4
GsG1 ,

(15)
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Hence from (10), (14) and (15) we obtain

s
X

2X

N !
NgNGT

b�I

x r cr (j)N4 dxb

.
`
/
`
´

X 4u13(12u) /21e

X 4u1 (47242u) /351e

X 4u1 (36u2296u155) /(39236u)1e

121

273
GuG

11

21

11

21
GuG

23

42

23

42
GuE

7

12
.

which implies

N{XGxG2X : N !
NgNGT

b�I

x r cr (j)NF
X u

log X } N b

.
`
/
`
´

X 3(12u) /21e

X (47242u) /351e

X (36u2296u155) /(39236u)1e

121

273
GuG

11

21

11

21
GuG

23

42

23

42
GuE

7

12
.

Then Lemma 1 is proved.
Along the same line, using the heuristic assumption (2) instead of the un-

conditional estimate for N *(s , T), we can obtain

LEMMA 2. – Let m(u) defined by (4) then we have

m(u) 4

.
`
/
`
´

1126u

10

7(12u)

5

1

6
EuG

3

8

3

8
GuE

7

12
.

3. – Proof of the theorems.

As in the proof of theorems of [1] we can immediately obtain the results for
large values of H. More precisely is not difficult to show that

c(g(n)1H )2c(g(n) )AH for almost all n

for HFN a21/a and g(x) of type a.
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Hence in the following we consider g(x) of type a and HEN a21/a.
To deal with our discrete problem we let H4N u and define the set

Ad (N , u) 4 ]N 1/aGnG (2N)1/a : Nc(g(n)1H)2c(g(n) )2HNFdH ( ,

that contains the exceptions, if any, to the expected asymptotic formula for the
number of primes in intervals of type [ g(n), g(n)1H] in [N , 2N], and
let

h d (u) 4 inf ]jF0: NAd (N , u)Nbd , u X j( ,

h(u) 4 sup
dD0

h d (u) .

To prove the theorems is sufficiently to show that

h(u) E
1

a
.(16)

The first step of the proof of the theorems is to obtain that

h(u) Gm(u)2u .(17)

In order to prove (17) we let n�Ad (N , u) and consider g(n) � [N , 2N].
From the definition of the set Ad (N , u) we get

Nc(g(n)1H)2c(g(n) )2HNFdH ,

which implies g(n) �Ed (N , u). As in i) of Theorem 1 of [2] we can prove that
exists an effective constant c such that

[ g(n), g(n)1cH]O [N , 2N] %Ed/2 (N , u) .

Let m�Ad (N , u), mDn. In the same way we can consider g(m) � [N , 2N]
such that

[ g(m), g(m)1cH ]O [N , 2N] %Ed/2 (N , u) .

We observe that

g(m)2g(n) Fg(n11)2g(n) 4g 8 (j) Ban a21 BN a21/aDH ,

for the appropriate j� (n , n11).
Choosing the constant c sufficiently small we obtain that for every mcn

we have

[ g(n), g(n)1cH]O [ g(m), g(m)1cH] 4¯ ,
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which implies

NAd (N , u)NG
NEd/2 (N , u)N

H
b

N m(u)1e

H
bN m(u)2u1e ,(18)

for every dD0 and eD0.
Hence we have

h d (u) Gm(u)2u1e for every dD0 and eD0 ,

and then (17) follows.
Theorem 1 and 2 follows by using Lemma 1 and 2 for the estimate of m(u)

and recalling (17) and (16).
To prove Theorem 3 we recall that Selberg [10] proved, under RH,

that

s
X

2X

Nc(x1H)2c(x)2HN2 dxbXH log2 X ,(19)

which implies

NEd (X , u)Nbd

X

H
log2 X for all dD0 ,

and then

NAd (N , u)NG
NEd/2 (N , u)N

H
b

N

H 2
log2 N ,

for all dD0, since (18) and (19).
This bound is o(N 1/a ) for H4Q(N a21/2a log N) and then Theorem 3

follows.
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