
18 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AMBEATion: Analog Mixed-Signal Back-End Design Automation with Machine Learning and Artificial Intelligence
Techniques / Aliffi, G. E.; Baixinho, J.; Barri, D.; Daghero, F.; Di Carolo, N.; Faraone, G.; Grosso, M.; Jahier Pagliari, D.;
Jakovenko, J.; Janicek, V.; Licastro, D.; Melikyan, V.; Risso, M.; Romano, V.; Serianni, E.; Stastny, M.; Vacula, P.;
Vitanza, G.; Xie, C.. - ELETTRONICO. - (2024), pp. 1-6. (Intervento presentato al convegno Design, Automation and
Test in Europe Conference and Exhibition, DATE 2024 tenutosi a Valencia (ESP) nel 25-27 March 2024).

Original

AMBEATion: Analog Mixed-Signal Back-End Design Automation with Machine Learning and Artificial
Intelligence Techniques

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2991608 since: 2024-08-09T07:54:14Z

Institute of Electrical and Electronics Engineers

AMBEATion: Analog Mixed-Signal Back-End
Design Automation with Machine Learning and

Artificial Intelligence Techniques

Giulia Elena Aliffi∗2, Joao Baixinho¶, Dalibor Barri§, Francesco Daghero‡, Nicola Di Carolo§, Gabriele Faraone§,
Michelangelo Grosso§, Daniele Jahier Pagliari‡, Jiri Jakovenko†, Vladimı́r Janı́ček†, Dario Licastro§, Vazgen Melikyan¶,

Matteo Risso‡, Vittorio Romano∗1, Eugenio Serianni§, Martin Štastný†, Patrik Vacula§, Giorgia Vitanza∗2, Chen Xie‡
∗University of Catania, Catania, Italy, E-mail: name.surname@unict.it1; name.surname@phd.unict.it2

†Czech Technical University, Prague, Czech Republic, E-mail: name.surname@fel.cvut.cz
‡Politecnico di Torino, Turin, Italy, E-mail: name.surname@polito.it

§STMicroelectronics, E-mail: name.surname@st.com
¶ Synopsys, E-mail: name.surname@synopsys.com

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Published as a conference paper at the 2024 Design, Automation and Test in Europe (DATE) Conference. Final version available at: https://ieeexplore.ieee.
org/document/10546515

Abstract—For the competitiveness of the European economy,
automation techniques in the design of complex electronic systems
are a prerequisite for winning the global chip challenge. Specif-
ically, while the physical design of digital Integrated Circuits
(ICs) can be largely automated, the physical design of Analog-
Mixed-Signal (AMS) ICs built with an analog-on-top flow, where
digital subsystems are instantiated as Intellectual Property (IP)
modules, is still carried out predominantly by hand, with a time-
consuming methodology. The AMBEATion consortium, including
global semiconductor and design automation companies as well as
leading universities, aims to address this challenge by combining
classic Electronic Design Automation (EDA) algorithms with
novel Artificial Intelligence and Machine Learning (ML) tech-
niques. Specifically, the scientific and technical result expected at
the end of the project will be a new methodology, implemented
in a framework of scripts for AMS placement, internally making
use of state-of-the-art AI/ML models, and fully integrated with
Industrial design flows. With this methodology, the AMBEATion
consortium aims to reduce the design turnaround-time and,
consequently, the silicon development costs of complex AMS ICs.

Index Terms—EDA, analog design, layout, analog Back-End,
machine learning, artificial intelligence, analog-mixed-signal, in-
tegrated circuits

I. INTRODUCTION

Improving the development process of electronic systems
is an essential factor for the competitiveness of the European
economy. In fact, most key technology areas at the forefront
of tomorrow’s society, including among others the Internet
of Things (IoT), Smart Driving, Industry 4.0, and Active
Assisted Living (AAL), rely on complex electronic devices.
These Smart Systems, are composed of heterogeneous parts,
providing different functionalities, including digital and analog
blocks, sensors, actuators, power generation and storage, etc.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 101007730.

In this context, on-chip heterogeneous integration is funda-
mental to improve perfomance (e.g., speed, reliability and
power consumption) and cost-effectiveness. Therefore, a lead-
ing role is held by Analog Mixed-Signal Integrated Circuits
(AMS-ICs) where Analog and Digital domains are strictly
intertwined.

In AMS ICs, digital blocks usually carry out computational
tasks, and their design and physical implementation are highly
automated by means of highly specialized flows and optimized
standard cell libraries [1]. On the other hand, analog parts
realize functionalities such as power conversion, Analog-
to-Digital Conversion (ADC), Digital-to-Analog Conversion
(DAC), thermal sensing, voltage sensing, current sensing,
actuation, signal conditioning elements, etc. Despite numerous
efforts [2]–[4], automated and universally valid analog phys-
ical design flows are not yet available. The reason for this
discrepancy is rooted in the inherently higher difficulty of the
analog layout problem. In fact, not only are analog circuits
more sensitive to noise and variability effects (Well Proximity
Effect - WPE, Shallow Trench Isolation - STI stress, thermal
gradient, mechanical stress, process variation - mismatch, etc.)
but they also have larger and more complex sets of constraints
(e.g., gain, bandwidth, distortion, etc), all of which affect
performance [5], [6]. Additionally, different specific classes
of analog circuits require different metrics and trade-offs [6].

Machine Learning (ML) and Artificial Intelligence (AI)
techniques have been introduced in the Electronic Design
Automation (EDA) industry since several years to improve
the efficiency and scalability, as well as the Quality of Results
(QoR) of design and verification tools. ML has been applied
ubiquitously, from synthesis to floorplanning, place&route,
timing analysis, analog design and simulation [7], [8]. How-
ever, while digital flows greatly benefits from the integration
with ML and AI techniques [7], [8], a wide gap still exists
in this respect within the analog domain [9].

This paper introduces the Marie Skłodowska-Curie Re-

Device Class:
based on the cellName
and libName

• NMOS
• PMOS
• HV MOS
• Resistor
• Capacitors
• Diodes
• Logic

Topology
Recognition :
• Current mirrors
• Diff. pair
• Resistor ladder
• Capacitors
• Enables, dummy
• symmetry

Current mirrors

Diff. pair

Logic

…

…

Level 1Input

Layout (DB)

Voltage
Class:
• Bulk

sorting
• Voltage

domain

Level 0

Device List
pCell
SKILL

pCell
python

Devices Placers
…

…

Groups Placers

• Current mirrors
• Diff. pair
• Resistor divider
• Capacitors
• Enables
• Dummy

Level 2

pCell
SKILL

IP Recognition:
• OPAMP
• BG
• OTA
• Curr. Ref.
• Volt. Ref
• Oscillator
• Logic…

pCell
python

Schematic

Output

Technology File
Device Constraints

Technology File
Device Constraints

Layout

Schematic

Schematic (DB)

Training
Algorithms

Offline Training

Trained
Models

Fig. 1. The AMBEATion flow.

search and Innovation Staff Exchange project AMBEAtion
(Analog Mixed-signal Back-End design Automation with
Machine Learning and Artificial Intelligence Techniques). The
project aims to improve the quality and productivity of AMS
physical design, with particular focus on device placement, by
developing a new methodology implemented in a framework
of scripts, code parsers, automated processes and simulation
tools, internally making use of a combination of classic EDA
algorithms, and novel AI and ML models. A further intent
of the AMBEATion project is to reach full integration with
Industrial Design flows by leading EDA tool providers, thus
allowing a seamless addition of the methodology to existing
AMS designers’ workflows, as well as easing the access to
large databases of past designs.

The scientific contributions within the AMBEATion con-
sortium are, therefore, strongly driven by the needs of indus-
trial partners, while academic partners contribute with their
expertise on AI/ML. The presence in the consortium of world
leaders in EDA, System on Chip (SoC) and System in Package
(SiP) design such as Synopsys and STMicroelectronics gives
the partners access to a large database of existing designs on
which data-driven ML algorithms can be trained. This allows
to overcome one of the main limitations of current academic
efforts in using AI and ML for back-end, i.e., the very limited
availability of training data.

Given that the main goal of the AMBEATion project is
the development of a new EDA flow for analog layout, we
believe that it fully aligns with the scope of the DATE 2024
conference. With respect to the Call for Paper, the project

relates perfectly to tracks DT4 (“Design and Test for Analog
and Mixed-Signal Circuits and Systems, and MEMS”) and
D14 (“Physical Analysis and Design”).

The remainder of this paper is organized as follows. In
Section II we illustrate the AMBEATion flow concept, pro-
viding a general overview of all the steps and abstraction
levels involved. Then, Section III, provides an overview on
the current implementation of each step. Perspectives, future
research directions and lessons learned from the past months
of the project are discussed in Section IV.

II. THE AMBEATION CONCEPT

At the highest level the AMBEATion Back-end flow focuses
on the IC AMS placement phase. Therefore, the main element
of the flow consists in a placer tool together with a set
of supporting tools for realizing auxiliary functions which
will be briefly described in the following section. The flow
implements a novel mix of top-down placement steps, inspired
by the techniques used in digital design, and bottom-up ones,
specific of the analog domain [6].

Specifically, as illustrated in Figure 1, the AMBEATion flow
is divided into three main sections: the first part processes the
IC schematic, and is highlighted in pink; the second, generates
the corresponding layout (green); finally, an offline phase is
also included (blue) to train ML algorithms on a database
of pre-existing designs. The schematic and layout processing
sections are further split into five “levels”, associated with an
input-to-output flow with increasing abstraction levels:

a) The Input Level: deals with the processing of input
schematic/netlist and layout database files. Layouts can also

be an input to the flow during the training phase of ML
algorithms, whereas they are only an output during normal
usage. The flow supports several industrial standards in terms
of file format for schematic and layouts, including the IC CAD
Open Access (OA) database format, as well as Circuit Design
Language (CDL) netlists, and GDS-II layouts.

b) Level 0: contains simple pre-processing scripts aimed
at simplifying the subsequent steps of the flow. In particular,
it aims to recognize all classes of IC components which are
present in the schematic and to differentiate devices based on
different voltage classes or bulk connections. This level adds
a layer of abstraction that makes the flow at least partially
independent from the considered IC technology and device
details. After Level 0, the rest of the flow is entirely real-
ized with internal technology-independent netlist and layout
database formats, based on JSON.

c) Level 1: is in charge of the generation of individ-
ual devices by processing PCells (or similar), and of their
placement onto small topologies (such as current mirrors,
differential pairs, capacitor dividers, etc). In order to do so,
at the netlist level, a Topology Recognition script identi-
fies different elementary functional topologies in the input
schematic/netlist. At layout level, a Device Placer positions
the devices’ layouts generated by PCells within each identified
topology, by respecting both general technology constraints
and additional topology-specific constraints.

d) Level 2: deals with the placement of devices and
elementary topologies identified at Level 1 onto an IP or
block (e.g., operational amplifier, current/voltage reference,
oscillator, etc). At netlist level, the IP Recognition block
identifies the parts of the netlist belonging to each IP. At
layout level, the Group Placer positions them in the layout.
This placement process is closely interconnected with the
device placement of Level 1, and multiple feedback iterations
between the two are foreseen.

e) The Output Level: it’s where the final placement
layout is produced, as well as a new version of the netlist,
annotated with parasitics, dummies, etc, and detailed reports
on the flow execution.

The floorplanning of multiple IPs in the top-level circuit,
considering signal/supply domains, clock routing for the digi-
tal part, etc, as well as packaging and bonding issues, are out of
the scope of the automation flow foreseen in the AMBEATion
project. However, the flow can be conceptually extended with
additional abstraction levels (Level 3, 4, etc) to deal with these
aspects in the future. As mentioned, the flow does not simply
go from one level to the next in a “linear” way. Rather, the
levels provide feedback to each other in an iterative way (e.g.,
the group placement will depend on the individual topologies
placement, but will also influence the latter).

The offline training phase processes databases of human-
generated inputs and outputs for any step that needs to be
implemented by means of ML techniques, be it related to
digital or analog components, and to any abstraction level.
The obtained trained models are then used in inference-mode
in various schematic- or layout-processing steps of the flow.

Fig. 2. An overview of the AMBEAtion GUI with main components
highlighted. The navigation pane contains an entry for each pass of the
AMBEATion flow currently implemented. Clicking on each item will display
a different set of configuration options in the main window, which can then
be changed by users. It also permits opening plots, log files, etc.

In particular, Figure 1 is annotated with a “brain” icon to
identify steps that internally use ML, and with a “wheel” icon
to indicate classic rule-based algorithms. As can be seen, for
many steps, both classic and ML-based solutions are available,
enabling a precise comparative assessment of the benefits of
AI in this domain. Lastly, a “hand” icon indicates human-
generated inputs. In the next section, we go in more detail on
the flow steps implemented at the current state of the project.

III. IMPLEMENTATION

Similar to industrial EDA tools, the AMBEATion flow
can be accessed both with a Command Line Interface (CLI)
and with a simple Graphical User Interface (GUI), shown
in Figure 2. The flow is built as an interconnection of
modular software components, to simplify extensibility and
maintainability, and to permit an easy swap between multiple
implementations of the same step (e.g., classical vs ML-based,
for comparison). To this end, all exchange of information
between steps occurs through a unified file format based on
the JSON standard. At Input Level, the JSON is substantially a
translation of a common netlist format (CDL, OA, etc). Then,
each step modifies or enriches this internal database, e.g.,
adding physical device information, placement coordinates,
etc. The entire AMBEATion codebase is written in Python.
In the following we briefly illustrate the functionality of each
component of the flow.

A. Level 0 (Schematic): Input Conversion and Pre-processing

To implement Level 0 of Figure 1, a set of scripts have been
developed to convert standard netlist formats into our internal
JSON-based, vendor-independent “lingua franca”, and assign
each device to its respective class and voltage group, thus
reducing the dependency on a specific technology node.

The main entities described in the internal database at this
stage include: a) cells, i.e., sub-circuit definitions; b) instances

Current Mirror

(a) (b)

Current Mirror

Fig. 3. Topology recognition. An NMOS current mirror primitive (a) is
represented by a pattern graph, where vertices on the left side represent devices
M0 and M1 respectively and those on the right side represent nets D1, D2
and S. Similarly, a fully differential Telescopic operational transconductance
amplifier (OTA) (b) is converted into a bipartite graph and one subgraph is
matched the current mirror pattern graph, highlighted by red.

of elementary devices or other sub-circuits within a cell;
c) libraries, i.e., sets of cells, usually grouped by common
functionality. Each entity contains several attributes, depending
on its type. In later stages, the database will be enhanced
with new entities, such as topologies, i.e., groups of devices
identified at Level 1, forming a higher-level structure (e.g.,
a current mirror). Further, existing entities will receive new
attributes, e.g., x/y layout coordinates for each device.

B. Level 1 (Schematic): Topology Recognition
The objective of this step is to identify functional topologies

within the schematic, e.g., current mirrors, differential pairs,
etc. This identification process is essential for accurately
specifying constraints in the layout placement phase. Topology
recognition can be converted to a subgraph isomorphism
problem between a template graph (e.g. a current mirror)
and the target graph (e.g., an operational amplifier). Namely,
following [10], we adopt a bipartite graph representation for
netlists, with two sets of nodes, one for devices and one for
nets, as shown in Figure 3. The AMBEATion flow currently
supports two topology recognition implementations: a classical
one, based on the VF2 matching algorithm [11] and a ML-
based alternative using Relational Graph Convolutional Neural
Networks (RGCNs) [10], [12].

The main limitation of the VF2 implementation lies in its
complexity, implying very long running time on large flattened
netlists. Therefore, the orders of magnitude faster RGCN
version can provide significant benefits in terms of efficiency
for real world use-cases. On the other hand, the ML-approach
can lead to significant accuracy degradations, which can be
partially coped with by means of pre- and post-processing
steps, as detailed in Section IV. The output file produced
by topology recognition is a JSON database containing the
original netlist enriched with the extracted topologies, with
their associated type, device group, and nets.

C. Level 1 (Layout): PCell Processing and Device Placement
For what concerns the layout processing, Level 2 comprises

two main steps: PCell processing and device placement. The

former reconstructs the polygons comprising the device’s lay-
ers, extracting the correspondence between spatial coordinates
in the schematic and layout representations. Additionally, it
can incorporate technology-specific constraints, such as spac-
ing requirements, into the design. Currently, AMBEATion sup-
ports PCells [13], but processing of Python-based PyCells [14]
and SKILL is also planned.

The Device Placer then elaborates the internal layout of
each topology identified in the corresponding recognition step,
using the geometrical information extracted from PCells, as
well as technology-dependent constraints from a tech file.
Furthermore, this step processes additional inputs relative to
the type of dummy insertion required, and to the desired aspect
ratio for each topology. The script then positions devices
in matrix arrays which respect the user defined constraints.
Moreover, to suppress the layout dependent effects (such as
WPE, STI-stress etc) it reserves the necessary extra area
around the matrix array. The optimization is purely analytical,
and aims at approximating as well as possible the target aspect
ratio, positioning devices in the appropriate number of rows.

The output of the script is an updated JSON netlist, where
each device is annotated with the minimum (xmin, ymin)
and maximum (xmax, ymax) coordinates of its bounding box
within the topology it belongs to (if any). Coordinates are
referred to (0,0) for each topology since this module does
not deal with inter-topology placement, which is handled by
the Level 2 Group Placer. The Device Placer is designed so
that it can be iteratively invoked from within the optimization
loop of the higher-level Group Placer, each time with different
input parameters (e.g., different target aspect ratios). This gives
the Group Placer the freedom to “re-shape” some topologies’
bounding boxes to better fit the overall IP layout.

Importantly, digital blocks within an AMS IC are treated
separately for what concerns device placement. Namely, they
are not placed by the AMBEATion flow directly, but rather, af-
ter being identified by topology recognition, they are offloaded
to a state-of-the-art digital EDA Place And Route (PnR) tool,
given their high level of automation and QoR. Therefore, the
Level 2 Group Placer will treat each digital block as a black-
box, simply based on its layout area occupation. However,
the placer should have the freedom to reshape/resize digital
blocks, similarly to the case of analog topologies. To allow
this, while avoiding time-consuming iterations including full
digital PnR executions, the AMBEATion flow includes a fast
ML-based PnR Fesibility estimator for digital logic.

1) Digital PnR Feasibility Estimation: The role of this
component is to assess whether a digital block within an AMS
design can be accommodated effectively within the designated
layout area, without the need of a full PnR run.

In the current version of the AMBEATion flow, the Digital
PnR Feasibility module has been implemented with a Decision
Tree (DT) ML model, trained to assign a feasibility score to
a design, based on high-level netlist and (expected) layout
characteristics, as well as technology information. A DT was
selected due to its simplicity, explainability, and effectiveness
with limited training samples [15]. The model is trained in a

Fig. 4. Digital Area Estimation flow overview, consisting of a first feature
selection step followed by the Decision Tree inference. The output of the flow
is a probability of successful PnR.

supervised way, given examples of both successful and failed
back-end executions of past designs. Its inputs are features that
influence the chances of successfully closing a PnR, based
on domain knowledge, e.g, the layout area hypothesis and
its shape factor, the initial row utilization, the number of
sequential cells in the design, the clock frequency, and the total
number and density of pins. Technology information, such as
the number of available routing layers is also provided. Once
all features are available, a feature selection step based on
cross-validation can then be applied to select the subset that
best generalizes on unseen data.

After training, the model learns simple if-then-else rules that
assign each new design to a “bin” (leaf node) by recursively
comparing its features with learned thresholds. The leaf node
value is a feasibility score (in [0:1]), as shown in Figure 4.

D. Level 2 (Schematic): IP Recognition

The goal of IP Recognition is to identify higher level
structures in the circuit, such as operational amplifiers, oscil-
lators, etc, and then constrain them accordingly for placement.
Currently, this stage is not implemented, but techniques similar
to those applied for Topology Recognition can be used for it
too. The input, in this case, will include both individual devices
and topologies identified at Level 1. ML-based approaches
leveraging Graph Neural Networks are expected to work
effectively in this case too, as demonstrated in [10].

E. Level 2 (Layout): Group Placer

The group placer (Level 2) places topology rectangles
prepared by the device placer relative to each other. Thus, it
forms the complete layout of a single IP block. Two alternative
implementations are supported, leveraging respectively Simu-
lated Annealing (SA) [16], [17], and Non-Linear Programming
(NLP) [18], [19], two of the optimization methods considered
state-of-the-art for this problem.

The SA placer leverages a “Sequence Pair” representation of
the layout [20], which identifies virtual non-crossing pathways
in the floorplan. Conversely, the NLP solution simply repre-
sents the x and y coordinates of the bottom-left corner of each
group of devices as floating-point vectors, whose values are
to be determined in the optimization process using gradient

descent with adaptive estimation of first- and second-order
moments [21].

Both placers can support the same optimization objectives,
including area minimization, routability (e.g., Half-Perimeter
Wire-Length or HWPL), etc. However, they are quite sensitive
to their input hyper-parameters, as well as being entirely de-
pendent on the L1 Placer results. To solve this, an agent-based
approach is considered to optimize the placement of each IP.
Namely, the group placement process can be controlled by an
AI agent (e.g., a neural network trained with Reinforcement
Learning, or an Evolutionary Algorithm), which will internally
invoke the Device Placers with different input parameters (e.g.
aspect ratio targets), and change the hyper-parameters of the
SA and NLP optimizers, until all constraints are respected,
and a combined objective function is minimized.

At the end, the output layout for each IP is exported both in
the internal JSON database format, as well as in the standard
GDS-II format. Other Output Layer adapter scripts allow the
import of the generated layout into industrial EDA tools, to
implement the following design phases (routing, signoff, etc).

F. Utilities

Besides the main scripts to implement key placement oper-
ations, the AMBEATion flow also includes several utilities,
including basic scripts such as netlist flattening using the
internal JSON format, as well as an interactive layout plotter,
and several other import/export and conversion tools.

IV. CONCLUSIONS AND FUTURE OUTLOOKS

Being a MSCA-RISE action, the main goal of the AM-
BEATion project is to put in contact European academic staff
with leading industries, and vice versa, through the mechanism
of secondments. In parallel, the overarching technical objective
is to strengthen the competencies on AI-based AMS placement
in Europe. To this end, the project takes strong inspiration
from other non-EU initiatives, mainly from the U.S. NSF
and DARPA programs [3], [4], building upon their work, and
trying to further improve it. At the current stage, the main
result achieved by the project is that of having built a flexible,
modular AMS placement framework, which can function as
foundational infrastructure for future research. Not only in the
direction of developing new ML-enhanced EDA algorithms,
but also in quantitatively and thoroughly comparing existing
solutions, and in extensively evaluating them on real-world
industrial use cases. To this end, the AMBEATion platform
has been designed around a rich and easy-to-use language such
as Python, and using an open, extensible and human-readable
JSON-based database format. The flow is built for usability
and extensibility, and is entirely cross platform. While the
main evaluations have been performed on BCD8 technology
by ST Microelectronics, the platform is also designed with
technology independence in mind.

The most interesting results obtained up to the current
stage concern the “real-world effectiveness” of ML-based
AMS placement techniques. In fact, preliminary validation
experiments on the flow revealed interesting insights, and

highlighted key limitations. We report here three of the main
issues that have been identified during the project journey.
Addressing these issues will also be the main direction of our
future research in the remaining years of the project.

a) Data Quality and Variety: while the industrial part-
ners involved in AMBEATion have access to large databases
of past designs, the main obstacle towards obtaining highly
accurate with ML-based placement approaches is data quality
rather than quantity. The available datasets are often highly
imbalanced, and contain many similar samples, that do not
cover the design space entirely. For instance, input graphs
used to train our RGCN models for topology recognition,
despite including hundreds of thousands of nodes, contain
very few examples of “uncommon” topologies (all structures
except current mirrors are present in far less than 1% of
the total nodes). Despite applying several countermeasures at
training level, such as loss function weighting, oversampling,
or treating the problem as a one-class anomaly detection, this
imbalance still negatively affects performance in many cases.
Similarly, the training data used for Digital PnR Feasibility
Estimation contains many more examples of successful runs
than failed ones, because the outputs and logs for the latter
are usually not preserved by designers. One solution we
envision and we explore in the future, is the use of synthetic
data generation by means of scripts that create from scratch
or modify existing netlists and layouts. This approach has
proven effective in several other domains [22]. More broadly,
these limitations also provides guidance on possible updates
company policies on data storage and management.

b) Technology Independence: Many previous efforts
on ML-based AMS layout focused on single technology
nodes [3], [4], [10]. In AMBEATion, we found that one of
the key issues in applying techniques from the state-of-the-art
to build a general tool is that ML-based approaches, and often
also classic ones, do not generalize well across technologies.
As an example, the template library used by the VF2 algorithm
for topology recognition had to be completely rewritten with
respect to previous works [10] to make it work on BCD8,
and new post-processing rules had to be designed to avoid
false positive matches. Similar issues apply to ML models
trained on one technology and applied to a different one.
Similar to other domains, possible directions to address this
issue for ML-based components are domain adaptation and
transfer learning [23].

c) Scalability: The main practical limitation of many
of the algorithms implemented in the AMBEATion flow is
their limited scalability to large designs with hundreds of
thousands of devices. Scalability has been addressed in digital
design for years, and many of the same solutions (hierarchical
placement, parallelization, etc) can be applied on AMS too.
However, there are also some peculiarities. For example, the
VF2 algorithm for topology recognition scales extremely well
if it is applied independently, and possibly in parallel, to
hierarchical blocks of the netlist (most of which correspond
to small bipartite graphs). Conversely, it scales poorly on
large flattened netlists. However, the hierarchical approach

cannot identify topologies spread across multiple sub-circuit
blocks, thus it requires designers to fully trust the goodness of
their human-made hierarchy. The RGCN approach, conversely,
executes fast even on flat netlists. In this sense, here and
in many other parts of the flow, ML can be seen more as
a way to improve performance by means of computational
approximation, rather than a way to solve otherwise unsolvable
problems.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No
101007730.

REFERENCES

[1] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill Higher Education, 1994.

[2] E. Malavasi et al., “Automation of ic layout with analog constraints,”
IEEE TCAD, vol. 15, no. 8, pp. 923–942, 1996.

[3] K. Kunal et al., “ALIGN: Open-Source Analog Layout Automation from
the Ground Up,” in 56th DAC, 2019.

[4] B. Xu et al., “MAGICAL: Toward Fully Automated Analog IC Layout
Leveraging Human and Machine Intelligence: Invited Paper,” in 2019
IEEE/ACM ICCAD, 2019, pp. 1–8.

[5] M. P.-H. Lin et al., “Recent research development and new challenges
in analog layout synthesis,” in ASP-DAC, 2016, pp. 617–622.

[6] J. Scheible and J. Lienig, “Automation of analog ic layout: Challenges
and solutions,” in ISPD, 2015, p. 33–40.

[7] A. Venkatachar, “Confluence of ai/ml with eda and software engineer-
ing,” in ISQED, 2021, pp. 13–15.

[8] A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, pp. 207 – 212, 2021.

[9] B. Nikolić, “Ml for analog design: Good progress, but more to do,” in
ACM/IEEE MLCAD, 2022, pp. 53–54.

[10] K. Kunal et al., “GANA: Graph Convolutional Network Based Auto-
mated Netlist Annotation for Analog Circuits,” in DATE, 2020, pp. 55–
60.

[11] L. Cordella et al., “A (sub)graph isomorphism algorithm for matching
large graphs,” IEEE TPAMI, vol. 26, no. 10, pp. 1367–1372, 2004.

[12] A. Teliti, “Graph neural networks for topology recognition of ams
integrated circuits,” Master thesis, Politecnico di Torino, 2023.

[13] R. Arora et al., “Virtuoso express pcells for better interoperability and
performance on oa,” CDNLive! India 2007, 2007.

[14] “Synopsys “pycell studio”.” [Online]. Available: http://www.synopsys.
com/cgibin/pycellstudio/req1.cgi

[15] O. Z. Maimon and L. Rokach, Data mining with decision trees: theory
and applications. World scientific, 2014, vol. 81.

[16] Q. Ma et al., “Simultaneous handling of symmetry, common centroid,
and general placement constraints,” IEEE TCAD, vol. 30, no. 1, pp.
85–95, 2010.

[17] Y. Li et al., “Exploring a machine learning approach to performance
driven analog ic placement,” in ISVLSI. IEEE, 2020, pp. 24–29.

[18] B. Xu et al., “Device layer-aware analytical placement for analog
circuits,” in ISPD, 2019, pp. 19–26.

[19] Y. Lin et al., “Are analytical techniques worthwhile for analog ic
placement?” in 2022. IEEE, 2022, pp. 154–159.

[20] J.-M. Hsu and Y.-W. Chang, “A reusable methodology for non-slicing
floorplanning,” in ASPCAS, vol. 1, 2004, pp. 165–168 vol.1.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[22] J. Tremblay et al., “Training deep networks with synthetic data: Bridging
the reality gap by domain randomization,” in CVPR, June 2018.

[23] W. M. Kouw and M. Loog, “An introduction to domain adaptation and
transfer learning,” arXiv:1812.11806, 2018.

